前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MongoDB数据库的高级查询技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HTML
...略以减少初始加载时的数据量。 此外,针对不同设备屏幕大小的自适应布局也是现今Web开发中的热门话题。CSS3引入的object-fit属性能够帮助开发者更灵活地控制元素在容器中的填充方式,确保图片在任何尺寸下都能得到合适且不失真的展示。 对于SEO优化而言,为标签添加具有描述性和关键词丰富的alt属性同样关键,这不仅有助于搜索引擎理解图片内容,还有利于视觉障碍用户借助读屏软件了解网页信息,符合无障碍网页设计规范(WCAG)的要求。 综上所述,在实际的Web开发工作中,对HTML中标签的理解和运用需不断跟进最新的技术和最佳实践,通过合理配置及优化策略,实现快速、高效、美观且友好的图片展示效果。
2023-10-13 11:52:48
470
逻辑鬼才
VUE
...,不仅展示了Vue在数据绑定方面的强大能力,也体现了其在大型项目中的可扩展性和模块化优势。 另外,Vue生态系统的完善也是其备受开发者青睐的原因之一。Vue Router和Vuex作为状态管理和路由管理的核心工具,在实际博客开发中扮演着至关重要的角色。通过它们,开发者能够轻松处理复杂的页面跳转逻辑和全局状态共享,从而打造出功能丰富、用户体验优秀的博客网站。 此外,Vue还支持与Webpack等现代前端构建工具深度集成,借助Vue CLI可以快速初始化项目并配置自动化流程,使得博客网站的开发工作更加便捷高效。未来,随着Vue技术的持续发展和完善,我们有理由期待它将在博客制作领域发挥更大的作用,帮助开发者们创造出更多优质的在线内容分享平台。
2023-02-07 16:45:07
118
数据库专家
转载文章
...代表性的批流一体的大数据平台。特点:让批处理和流处理共用一套代码,从而既能批量处理已落盘的数据,又能直接处理实时数据流。 (2)Flink 提高推荐系统实时性:用户数据进入数据流,即进入数据消息队列后,会被分割成一定时长的时间窗口,之后 Flink 会按照顺序来依次处理每个时间窗口内的数据,计算出推荐系统需要的特征。这个处理是直接在实时数据流上进行的,所以相比原来基于 Spark 的批处理过程,实时性有了大幅提高。 (3)Flink的实时性实践:利用 Flink 我们可以实时地获取到用户刚刚评价过的电影,然后通过实时更新用户 Embedding,就可以实现 SparrowRecsys 的实时推荐了。 (4)实时推荐系统的适用场景(快消产品): 新闻咨询类 短视频 婚恋类、陌生人社交类 直播类 电商类 音乐、电台类 文章目录 学习总结 一、实时性是影响推荐系统效果的关键因素 二、批流一体的数据处理体系 2.1 传统 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35812205/article/details/121688616。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-08 12:34:43
528
转载
转载文章
...的续航能力,还强化了数据保护措施,确保在物联网设备广泛应用的背景下,用户能更好地应对潜在的安全威胁。 与此同时,Yocto Project社区也在不断推动嵌入式Linux发行版构建工具链的迭代升级。最近,一项关于使用Yocto Thud版本打造轻量级、实时性强的操作系统的教程引起了广泛关注,这对于希望在MYS-6ULX-IOT上实现高度定制化操作系统的开发者而言,无疑是一大福音。 此外,随着WiFi 6标准的普及,RTL8188系列WiFi模块的升级换代也成为热点话题。瑞昱半导体(Realtek)已推出兼容WiFi 6标准的新一代RTL8195系列模块,适配于多种嵌入式平台,对于MYS-6ULX-IOT等物联网开发板而言,意味着更快的数据传输速度和更优秀的连接稳定性,为未来高端物联网应用场景提供了更多可能。 综上所述,在紧跟行业前沿动态的同时,深入研究MYS-6ULX-IOT开发板相关的最新软硬件资源和技术趋势,将有助于开发者充分挖掘其潜能,以适应日新月异的物联网市场挑战,并创造出更具竞争力的产品解决方案。
2023-08-22 08:32:34
152
转载
VUE
...iew table的数据绑定机制。 2. 数据绑定与默认行为 首先,我们需要明确iview table的选中状态是基于数据驱动的。当我们勾选某一行时,该行对应的记录会被添加到表格的selection属性中。举个例子: vue 在上述代码中,当用户勾选或取消勾选行时,会触发on-select-change事件,并更新selectedRows数组。 3. 动态取消选中状态 那么,如何主动取消某一行的选中状态呢?关键在于根据业务需求去更新selectedRows数组。假设我们想要取消id为2的项的选中状态: vue // 在methods中增加一个方法 unselectRow(id) { this.selectedRows = this.selectedRows.filter(row => row.id !== id); } // 调用该方法 this.unselectRow(2); 上面的unselectRow方法通过filter函数移除了selectedRows中id为2的项,这样在视图层上对应id为2的行就会自动变为未选中状态。 4. 深入思考与探讨 实际上,取消选中状态的过程并不是直接对table组件进行操作,而是通过操作绑定的数据源间接影响了组件的状态。这体现了Vue的核心思想——数据驱动视图,也展示了iview table组件设计的灵活性。 当然,实际项目中可能还会涉及更复杂的交互逻辑,例如批量取消、联动其他组件等,但只要遵循“数据驱动”的原则,灵活运用Vue的数据绑定和计算属性等功能,都能迎刃而解。同时,也要注意适时地利用生命周期钩子或者watcher来监听数据变化,确保视图及时响应数据的变化,以提供流畅的用户体验。 总的来说,理解并掌握iview table组件数据绑定机制以及Vue的数据驱动特性,对于处理这类问题至关重要。在编程的世界里,我们在摸爬滚打的探索旅程中,不断挠头苦思、动手尝试、优化打磨,直到最后能把实际问题迎刃而解,这就是编程让人着迷的地方啦!
2023-05-25 23:04:41
88
雪落无痕_
转载文章
...防止因密钥泄露导致的数据安全事件发生。 此外,OpenSSL作为广泛应用的开源密码库,其自身的安全性同样值得关注。近年来,OpenSSL团队不断进行版本更新以修复潜在的安全漏洞,如2014年的“心脏出血”漏洞曾引发全球范围内的安全升级行动。因此,在实际操作中,用户需确保使用的是最新稳定版的OpenSSL,并及时关注官方发布的安全公告,以便及时响应并防范可能的安全风险。 综上所述,RSA及OPENSSL的应用不仅停留在密钥生成与转换层面,更需要结合最新的信息安全动态与法规政策,构建更为稳固、合规的信息安全保障体系。
2024-01-18 17:04:03
92
转载
ActiveMQ
...仍可以从其它包含相同数据的队列中继续获取消息。 同时,在ActiveMQ社区,开发者们也正在积极探讨如何进一步改进非持久订阅的可靠性。比如,通过引入新的配置选项或者结合外部存储方案,可能在未来版本中提供更为灵活且兼顾实时性和可靠性的订阅模式。 此外,深入理解CAP理论(一致性、可用性和分区容错性)对于设计和选择合适的消息中间件至关重要。在实际应用场景中,我们需根据业务需求权衡并确定是优先保证消息的实时传递还是数据的完整性,从而更好地指导我们在ActiveMQ或其他消息队列产品中的技术选型与实现策略。
2023-03-05 16:49:49
351
青春印记-t
转载文章
...除相应内容。 1. 数据集 数据下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/ 数据描述 (1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤相关的医学特征,最后一列表示肿瘤类型的数值。 (2)包含16个缺失值,用”?”标出。 2.分析——实现步骤 获取数据(读取的时候加上names) 数据处理(缺失值) 数据集划分 特征工程(无量纲化——标准化) 逻辑回归的预估器 模型评估 3. 代码实现 3.1 代码 3.2 结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44109827/article/details/124828251。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-10 11:21:12
362
转载
转载文章
...;title>数据属性和访问器属性</title> <script src="js/jquery.min.js"></script> <script> 模板 var obj ={ get 空格 属性名(){ return 属性值; }, set 空格 属性名(value){ //需要接收到的value作处理 实例 //访问器属性 // 看起来像函数但是调用起来像是属性, // 并未真正存储数据,只是用来操作数据 var circle={ r:10, //数据属性(半径) get size(){//size属性的getter访问器(只有get访问器属性时是只读的,即只能调用获取值但是不能设置新值) return Math.PIthis.rthis.r;//知道半径求面积 }, set size(value){//size属性的setter访问器,可读也可以写 this.r=Math.sqrt(value/Math.PI) ;//知道面积求半径(平方根) } }; alert(circle.size);//调用属性的getter访问器 circle.size=31400;//调用属性的setter访问器 alert(circle.r); 注意:1、访问器属性的本质是两个函数,若想要读取访问器属性的值,会自动调用get访问器; 2、若想为访问器属性赋值,会自动调用set访问器,并把等号右边的值传递给set访问器的形参, 3、访问器属性不能存储数据,所以访问器属性往往依赖于其他的数据属性, 4、访问器属性一般用于两个场合:冗余属性(某些不能定义死的属性值(面积、周长等))、有意控制属性的只读(get访问器)或者只写(set访问器) </script> </head> <body></body> </html> 转载于:https://www.cnblogs.com/LindaBlog/p/9294803.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30920597/article/details/99806994。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-09 18:12:44
117
转载
Apache Atlas
...las是一个强大的元数据管理工具,可以帮助企业更好地管理和保护他们的数据资产。在当今数字化时代,数据已经成为企业的重要资源之一。然而,数据安全也是企业发展过程中需要重点关注的一个方面。那么,Apache Atlas是如何保障数据安全的呢? 二、Apache Atlas的数据安全策略 1. 权限控制 Apache Atlas允许管理员根据用户的角色和职责来分配不同的权限。例如,只有拥有特定角色的用户才能访问特定的数据资产。这种权限控制机制可以有效防止未经授权的用户访问敏感数据。 2. 数据加密 Apache Atlas支持数据加密功能,可以对敏感数据进行加密,从而提高数据安全性。此外,Apache Atlas还支持密钥管理功能,可以帮助企业管理加密密钥,确保密钥的安全性。 3. 审计跟踪 Apache Atlas提供审计跟踪功能,可以记录用户的操作行为,包括谁访问了哪些数据资产,何时访问的等等。这样一来,假如不幸发生了数据泄露或者其他安全方面的幺蛾子,管理员就能根据审计跟踪记录,像看侦探小说一样顺藤摸瓜找到“元凶”,并能迅速采取应对措施,把问题扼杀在摇篮里。 三、Apache Atlas的安全实践案例 下面我们来看一个具体的案例,说明Apache Atlas如何帮助企业保障数据安全。 假设有一个电子商务公司,他们使用Apache Atlas来管理所有的客户数据。为了保护客户数据的安全,他们设置了严格的权限控制规则。比如,咱就拿这个场景来说哈,只有销售部的同事们才有权限去查看客户订单的具体信息,而其他部门的兄弟姐妹们是没这“通行证”的。同时,他们还使用数据加密功能对敏感数据进行了加密,如信用卡号等。另外,他们还开启了审计跟踪这个神器,把所有的数据访问行为都给记录下来,这样一来,任何小异常都逃不过他们的法眼,一旦发现就能迅速采取行动,保证一切都在掌控之中。 四、总结 总的来说,Apache Atlas提供了一套全面的数据安全管理方案,包括权限控制、数据加密和审计跟踪等功能。这些功能简直就是企业数据资产的守护神,能实实在在地帮助企业把重要的数据资料守得牢牢的,防止那些让人头疼的数据泄露问题和其他安全意外情况冒出来。当然啦,在实际用起来的时候,咱们得瞅瞅企业的具体状况,对它进行量体裁衣般的定制和设置,确保能收获最理想的效果。
2024-01-02 12:35:39
514
初心未变-t
JQuery
...a, // 省市区县数据结构,内置于插件中 autoHideOnSelect: true, // 选择完成后是否自动隐藏控件 hideOnBodyClick: true // 在控件外点击时是否隐藏控件 } 使用jQuery手机端地区插件,可以大大提高移动端Web应用的用户体验,而且插件API简洁易用,非常适合开发者快速完成相关功能的开发。当然,在使用插件前,还需要了解地区数据的相关知识,如何将数据导入到应用中等。总之,jQuery地区插件是一个非常实用的工具,值得Web开发者掌握。
2023-01-04 17:27:06
404
软件工程师
转载文章
...onProject\数据可视化\pandas.py", line 2, in <module>import pandas as pdFile "E:\Temporary\pythonProject\数据可视化\pandas.py", line 4, in <module>pd.set_option('display.unicode.east_asian_width', True)AttributeError: partially initialized module 'pandas' has no attribute 'set_option' (most likely due to a circular import) 解决方案 最有可能的是,您的python脚本的名称是’pandas.py‘,这将导致循环导入,更换脚本名称 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_51644623/article/details/127341965。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-10 16:40:15
157
转载
转载文章
...了该算法在处理大规模数据和实时调度方面的优势,并进一步探讨了其在智能电网未来发展中的潜在作用。 另一方面,国际知名学术期刊《ACM Transactions on Algorithms》近期发布了一篇深度解读论文,作者深入剖析了有源汇上下界最大流问题的理论基础,并在此基础上提出了一种新的求解框架,不仅提高了原有Dinic算法的性能,还在特定条件下解决了最小流问题。这项研究为未来更复杂网络流问题的求解提供了新的理论工具和方法论指导,对于推动相关领域的发展具有深远意义。 总之,无论是从最新的科研进展还是现实世界的工程应用层面,有源汇上下界最大流与最小流算法都在持续展现出其强大的实用性与创新性,为我们理解和解决各类资源优化配置问题提供了强有力的数学工具和解决方案。
2023-02-17 10:00:53
98
转载
Python
...类可以应对更加复杂的数据,因为它们通常有一定层级的模糊性和模糊性。 import numpy as np from sklearn.datasets import make_blobs from sklearn.cluster import KMeans 生成随机数据 X, _ = make_blobs(n_samples=1000, centers=4) 创建 KMeans 模糊分类模型实例 class FuzzyKMeans: def __init__(self, n_clusters=4, m=2, max_iter=100): self.n_clusters = n_clusters self.m = m self.max_iter = max_iter def fit(self, X): N = X.shape[0] C = self.n_clusters kmeans = KMeans(n_clusters=C) labels = kmeans.fit_predict(X) centroids = kmeans.cluster_centers_ 设定初始值隶属度二维数组 U = np.random.rand(N, C) U = np.divide(U, np.sum(U, axis=1, keepdims=True)) for i in range(self.max_iter): 求解中心点 centroids = np.dot(U.T, X) / np.sum(U, axis=0, keepdims=True) 求解隶属度二维数组 d = np.power(np.sum(np.power(X[:, np.newaxis] - centroids, 2), axis=2), 1 / (self.m - 1)) U = np.divide(1, np.power(np.add(np.divide(d[:, np.newaxis], d[:, np.newaxis] - U), 1), 1 / (self.m - 1))) self.labels_ = np.argmax(U, axis=1) self.cluster_centers_ = centroids 对随机数据进行模糊分类 fkm = FuzzyKMeans(n_clusters=4, m=2) fkm.fit(X) print(fkm.labels_) print(fkm.cluster_centers_) 以上代码是利用Python实现模糊分类算法的简单示例。算法主要分为两部分:确定中心点和求解隶属度二维数组。中心点的确定类似于K-Means算法,而求解隶属度二维数组则需要使用模糊数理中的公式进行求解。
2023-05-25 19:43:33
308
程序媛
转载文章
...Vue.js生态下,数据驱动视图的理念使得状态管理更为高效与便捷。 近期,Vue3及配套的Composition API更是对此类问题提供了更强大、灵活的解决方案。Vue3的setup语法糖结合reactive函数可以更好地封装状态和方法,使得处理复用组件的状态变更更为清晰和模块化。例如,开发者可以通过定义一个包含状态和更新逻辑的自定义hook,然后在每个Switch组件中调用该hook,轻松实现状态的同步与追踪。 另外,值得一提的是,随着UI库Ant Design Vue等新兴项目的崛起和发展,它们同样对表单控件如Switch的状态管理提供了丰富且易用的API。例如,Ant Design Vue中的Form.Item配合switch组件,不仅支持联动状态控制,还内置了验证规则等功能,为开发者在实际项目中解决类似问题提供了更多选择。 进一步阅读推荐: 1. 《Vue3 Composition API实战:高效管理组件状态》 - 通过实战案例详解如何运用Vue3的Composition API进行组件状态管理,包括复用组件状态变更的场景。 2. 《深入浅出ElementUI/ Ant Design Vue表单组件状态管理》 - 深度剖析两种流行UI框架下的表单组件状态同步机制,并对比其优缺点,帮助开发者针对不同场景选取最优解。 3. 最新官方文档 - Vue3官方文档(vuejs.org/v3/api)和Ant Design Vue官方文档(antdv.com/docs/vue/overview),实时关注框架的最新特性与最佳实践,确保代码与时俱进,提升开发效率。 通过以上延伸阅读,开发者不仅可以深化对ElementUI Switch组件状态管理的理解,还能了解到Vue3以及其他UI框架在此方面的最新进展和最佳实践,从而在实际项目中更加游刃有余地应对多组件状态同步的需求。
2023-03-04 16:22:19
350
转载
Python
...拟真实世界小数的一种数据表现方式。它呢,一般是由三个部分精巧拼接起来的:一个负责正负号的小家伙叫符号位,一位喜欢用指数形式表达大小的大兄弟叫指数位,还有一位记录具体数值细节的尾数位。例如,3.14159265358979323846可以被表示为3.141592653589793E+00。 然后,让我们了解一下舍入误差。当你在捣鼓浮点数做计算的时候,由于计算机这小子内在的表达方式有限制,就可能会冒出一些微乎其微的小差错,这些小差错就是我们常说的“舍入误差”。 三、解决方法 round()函数和decimal模块 在Python中,我们可以使用内置的round()函数来解决这个问题。round()函数的基本语法是: round(number[, ndigits]) 其中,number是我们想要四舍五入的数字,ndigits是一个可选参数,表示保留的小数位数。 但是,这种方法有一个问题,那就是当ndigits=0时,它会直接将浮点数转换为整数,而不会进行四舍五入。例如,round(3.14159, 0)的结果是3,而不是我们预期的3.1。 如果你需要更精确的控制,那么你可能需要使用decimal模块。decimal模块提供了一种更精确的十进制浮点数数据类型。这个数据类型可厉害了,不仅能hold住无限精度的十进制数,还能随心所欲地调整舍入方式,就像是个超级数学小能手。 例如,你可以使用以下代码来创建一个Decimal对象,并设置它的精度: python from decimal import Decimal 创建一个Decimal对象,精度为5位小数 d = Decimal('3.14159') d = d.quantize(Decimal('.00001')) print(d) 在这个例子中,我们首先导入了decimal模块,然后创建了一个Decimal对象d,精度为5位小数。接着,我们运用一个叫quantize()的函数,把d这个数像咱们平时四舍五入那样,精确到小数点后5位。 四、总结 在Python中保留小数并不是一件容易的事情。我们可以通过round()函数来快速实现简单的四舍五入,但是对于更复杂的需求,我们可能需要使用decimal模块提供的精确计算功能。无论是哪种方法,咱都得记住一个铁律:浮点数的精度是有天花板的,不可能无限精确。所以呢,咱们得尽可能地挑个合适的精度来用,同时也要理解和欣然接受舍入误差这个小调皮的存在哈。
2023-07-31 11:30:58
277
翡翠梦境_t
Scala
...范式的日益流行以及大数据处理框架Apache Spark等基于Scala开发的项目广泛应用,对Scala语言特性的探讨热度不减。在实际开发中,Scala的隐式转换功能不仅被用于简化类型系统交互,还能增强API的易用性和一致性。 实际上,Scala社区也在不断优化和完善隐式转换的实践与规范。例如,在Scala 2.13版本中,引入了更为严格的隐式查找规则以减少潜在的混淆和维护难题,提倡开发者更加谨慎地使用隐式转换,并倡导通过context bounds和using子句等新特性来实现更清晰、更安全的隐式逻辑。 同时,针对隐式转换可能带来的“魔法”效应(即难以理解和追踪的代码行为),一些工程团队和开源项目开始强调代码可读性和可维护性,提倡适度限制隐式转换的使用范围,并鼓励通过显式转换或类型类设计等方式来达到类型系统的灵活扩展。 因此,深入研究Scala隐式转换的实际应用及背后原理的同时,也需要关注其在最新社区实践和未来发展方向上的变化,以便更好地适应现代软件工程的需求,编写出既高效又易于维护的Scala代码。
2023-02-01 13:19:52
120
月下独酌-t
Tomcat
...或其他安全事件导致的数据泄露或服务中断。 同时,对于企业级用户来说,深入理解Unix/Linux文件系统ACL(Access Control List)扩展机制也是必不可少的。ACL允许更灵活、详细的权限分配,超越传统的用户、组、其他三类权限设定,能够实现针对特定用户的精细化权限控制,这对于维护复杂的企业级Java应用至关重要。 另外,持续跟进Apache Tomcat官方发布的安全公告与补丁更新,了解并及时修复可能影响到文件权限管理的相关漏洞,是保障服务器稳定运行的重要一环。在此基础上,结合最佳实践,如遵循最小权限原则设置文件权限,可以有效降低潜在的安全风险,确保Java应用程序在Tomcat上的安全、高效运行。
2023-10-23 09:02:38
244
岁月如歌-t
Java
...一个对象提供的服务或数据,但是两者之间并非对等的关系。一方面,受依赖实体可能无法获得invoke者的数据,换言之,它没有对invoke者的支配权;另一方面,被依赖对象能够提供自己的服务给invoke者,因而它具有一定的自主性。 public class Car { private Engine eng; public Car() { eng = new Engine(); } public void start() { eng.ignite(); } } 上述代码中,Car类别倚赖于Engine类别,将其初始化并在start()函数中invoke了ignition()函数。Car类别要求Engine类别的帮助才能正常运行,但Engine类别没有办法invokeCar类别的函数。 联系关系是指不同对象之间通过某种指针或者指针的方式连接在一起形成的关系,它们之间是对等的关系。使用联系关系的关键是要明确各个实体之间的责任和身份,并且联系关系应该在理论上是恰当和自然的。 public class Student { private List courses; public Student() { courses = new ArrayList<>(); } public void addCourse(Course course) { courses.add(course); } } public class Course { private String name; public Course(String name) { this.name = name; } } 以上代码中,Student类别和Course类别之间存在联系关系。Student类别中包含了一个List对象courses,它存储了该学生选修的课程。通过addCourse()函数,Student类别向courses列表中添加了一个Course对象,从而实现了Student类别和Course类别之间的联系关系。 在程序设计中,依靠关系和联系关系都有着重要的应用。依靠关系可以帮助我们实现模块化的代码,通过将相关的代码归纳在一起可以提高程序的可读性和维护性;而联系关系可以帮助我们实现对象之间的交互和数据流动,从而实现更复杂的功能。
2023-05-30 09:47:08
320
电脑达人
转载文章
...数设备是用于生成随机数据的特殊文件接口。在Linux和Unix系统中,最常见的随机数设备为/dev/random和/dev/urandom。其中,/dev/random提供基于环境噪声(如键盘敲击、鼠标移动等)产生的高质量随机数,但由于其依赖于熵池中的可用熵,因此在熵耗尽时可能会阻塞或变慢;而/dev/urandom同样基于熵池,但在熵不足时会利用特定算法预测并填充随机数,从而确保始终能快速生成随机数,但安全性理论上略低于/dev/random。 Tomcat , Apache Tomcat是一个开源的Servlet容器,它实现了Java Servlet和JavaServer Pages (JSP)规范,并提供了运行Java Web应用程序的标准环境。在本文语境中,Tomcat是部署在阿里云CentOS7服务器上的Web应用服务器,负责处理HTTP请求并将动态内容转换为客户端可读的HTML页面。 java.security文件 , java.security文件是Java运行环境中一个关键的安全配置文件,它定义了JVM如何实现各种安全特性,包括但不限于加密服务提供者列表、访问策略、证书管理器设置以及随机数生成器源等。在本文所描述的问题场景中,通过修改该文件中的securerandom.source属性值,将JDK默认使用的随机数生成源由/dev/random更改为/dev/urandom,以解决Tomcat启动速度慢的问题。这意味着Java虚拟机在需要生成随机数时,将不再等待/dev/random提供的高熵随机数,转而使用/dev/urandom提供的更快捷但相对较低熵的随机数源。
2023-12-19 21:20:44
98
转载
Python
...被广泛用于机器学习和数据分析中。其中梯度下降算法也是机器学习中的一个关键算法,用来搜寻函数值的极小值。 下面我们将学习如何使用Python执行梯度下降算法。我们将使用一个简单的线性回归模型作为例子,来介绍如何使用梯度下降算法来搜寻最小化损失函数值的变量。 import numpy as np def gradient_descent(X, y, theta, alpha, num_iters): m = y.size J_history = np.zeros(num_iters) for i in range(num_iters): h = X.dot(theta) theta = theta - alpha (1/m) (X.T.dot(h-y)) J_history[i] = compute_cost(X, y, theta) return(theta, J_history) def compute_cost(X, y, theta): m = y.size h = X.dot(theta) J = 1/(2m) np.sum(np.square(h-y)) return(J) 上述代码执行了一个梯度下降函数值,其中X为特征矩阵,y为目标变量,theta为当前变量的初始值,alpha为学习率,num_iters为迭代次数。函数值中使用了一个计算损失函数值的函数值compute_cost,这个函数值执行了简单的线性回归的成本函数值的计算。 在实际应用中,我们需要先对数据进行标准化处理,以便使数据在相同的比例下进行。我们还需要使用交叉验证来选取适当的超变量,以防止模型过拟合或欠拟合。此外,我们还可以将其与其他优化算法(如牛顿法)进行比较,以获得更高的效能。 总之,梯度下降算法是机器学习中的一个关键算法,Python也提供了丰富的工具和库来执行梯度下降算法。通过学习和使用Python,我们可以更好地了解和应用这些算法,从而获得更好的结果。
2023-09-27 14:38:40
303
电脑达人
Python
...模型是指已经在大规模数据集上进行了训练并取得良好性能的机器学习或深度学习模型。在本文的Python代码示例中,所使用的汽车级联分类器( cars.xml )就是一个预训练模型,意味着该模型已经学习了大量不同角度、大小、光照条件下的车辆样本数据,并能据此识别新图像中的车辆。使用预训练模型的好处在于可以大大减少从零开始训练所需的时间和计算资源,同时提高模型在目标检测任务上的准确性。在实际应用中,开发者可以直接调用这样的预训练模型,针对具体应用场景进行微调或者直接使用。
2023-12-14 13:35:31
42
键盘勇士
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sudo !!
- 以管理员权限重新执行上一条命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"