前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
站内搜索
用于搜索本网站内部文章,支持栏目切换。
关于这篇文章,其他用户还搜了这些:
名词解释
作为当前文章的名词解释,仅对当前文章有效。
Kubernetes(简称K8s):Kubernetes是一个开源的容器管理系统,由Google公司发起并捐赠给Cloud Native Computing Foundation(CNCF)。它提供了一种自动部署、扩展和管理容器化应用程序的方法。在文章语境中,Kubernetes集群用于管理和调度多个节点上的Pod资源,以确保整个系统的稳定运行。
Horizontal Pod Autoscaler (HPA):HPA是Kubernetes中的一种自动化工具,它可以动态调整Pod的数量以应对负载变化。根据用户设置的CPU利用率、内存使用量或其他自定义度量指标,HPA会自动增加或减少指定Deployment或StatefulSet中的Pod数量,从而实现集群资源的有效利用和负载均衡。
Node:在Kubernetes集群中,Node是指一个物理机或虚拟机,它是工作负载运行的地方,承载着Pod实例。每个Node都运行着一系列的服务和代理,如kubelet、container runtime等,负责与Master节点通信,管理Pod的生命周期及资源分配。
Pod:Pod是Kubernetes中最基本的部署单元,可以理解为运行在Node上的一组紧密相关的容器集合。Pod内的所有容器共享网络命名空间、存储卷以及其他相关资源,保证了容器间的高效通信和数据共享。在处理节点资源不足问题时,合理安排和优化Pod的资源配置至关重要。
延伸阅读
作为当前文章的延伸阅读,仅对当前文章有效。
在深入探讨了如何处理Kubernetes节点资源不足的问题后,我们可以进一步关注云原生领域的最新发展和实践,以期持续优化集群资源管理。近期,随着Kubernetes 1.23版本的发布,对资源管理功能进行了更多增强,例如支持Pod Overhead配置以及更精细的资源配额管理API。此外,社区正积极研发“Vertical Pod Autoscaler”(VPA),旨在自动调整单个Pod的资源请求,与HPA结合能实现更为智能、高效的资源调度。
另一方面,针对大型分布式系统,Google Cloud等云服务提供商已开始推出基于机器学习预测模型的集群自动扩展方案,能在负载增加前预先扩容,有效避免因资源不足导致的服务中断。同时,也有越来越多的企业采用混合云或边缘计算策略,通过跨不同环境的有效资源整合,进一步提升资源利用率和整体运维效率。
值得注意的是,在优化资源配置的同时,保持良好的可观测性和监控能力同样至关重要。现代监控工具如Prometheus、Grafana等,配合Kubernetes原生的Metrics Server,能够实时提供详尽的集群资源使用情况,助力运维人员做出精准决策。
综上所述,不断跟进 Kubernetes 及相关技术的发展动态,结合实际业务场景合理运用新特性及工具,是应对节点资源不足问题,并确保云原生环境中服务稳定运行的关键所在。
另一方面,针对大型分布式系统,Google Cloud等云服务提供商已开始推出基于机器学习预测模型的集群自动扩展方案,能在负载增加前预先扩容,有效避免因资源不足导致的服务中断。同时,也有越来越多的企业采用混合云或边缘计算策略,通过跨不同环境的有效资源整合,进一步提升资源利用率和整体运维效率。
值得注意的是,在优化资源配置的同时,保持良好的可观测性和监控能力同样至关重要。现代监控工具如Prometheus、Grafana等,配合Kubernetes原生的Metrics Server,能够实时提供详尽的集群资源使用情况,助力运维人员做出精准决策。
综上所述,不断跟进 Kubernetes 及相关技术的发展动态,结合实际业务场景合理运用新特性及工具,是应对节点资源不足问题,并确保云原生环境中服务稳定运行的关键所在。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 在当前目录下查看所有文件和目录的大致大小。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-09-19
2023-04-13
2023-06-29
2023-12-27
2023-03-14
2024-10-22
2023-07-23
2023-07-02
2023-01-04
2025-04-04
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"