新用户注册入口 老用户登录入口

[转载]【王喆-推荐系统】前沿篇-(task3)流处理平台Flink:实时推荐

文章作者:转载 更新时间:2024-03-08 12:34:43 阅读数量:526
文章标签:Flink实时性推荐系统批流一体数据处理时间窗口
本文摘要:Flink作为批流一体大数据平台,利用其统一处理框架有效提升了推荐系统的实时性。在处理用户行为数据时,Flink通过时间窗口划分实时数据流,直接计算出推荐所需的特征信息,相较于Spark批处理方式,显著提高了响应速度。实践中,Flink能实时更新用户Embedding以实现SparrowRecsys等推荐系统的即时推荐。实时推荐系统在新闻咨询、短视频、社交、直播、电商及音乐电台等领域具有广泛应用价值。
转载文章

本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35812205/article/details/121688616。

该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。

作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。

如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。

学习总结

(1)Flink 是最具代表性的批流一体的大数据平台。特点:让批处理和流处理共用一套代码,从而既能批量处理已落盘的数据,又能直接处理实时数据流。
(2)Flink 提高推荐系统实时性:用户数据进入数据流,即进入数据消息队列后,会被分割成一定时长的时间窗口,之后 Flink 会按照顺序来依次处理每个时间窗口内的数据,计算出推荐系统需要的特征。这个处理是直接在实时数据流上进行的,所以相比原来基于 Spark 的批处理过程,实时性有了大幅提高。
(3)Flink的实时性实践:利用 Flink 我们可以实时地获取到用户刚刚评价过的电影,然后通过实时更新用户 Embedding,就可以实现 SparrowRecsys 的实时推荐了。
(4)实时推荐系统的适用场景(快消产品):

  • 新闻咨询类
  • 短视频
  • 婚恋类、陌生人社交类
  • 直播类
  • 电商类
  • 音乐、电台类

在这里插入图片描述

文章目录

  • 学习总结
  • 一、实时性是影响推荐系统效果的关键因素
  • 二、批流一体的数据处理体系
    • 2.1 传统

本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35812205/article/details/121688616。

该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。

作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。

如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。

相关阅读
文章标题:[转载][洛谷P1082]同余方程

更新时间:2023-02-18
[转载][洛谷P1082]同余方程
文章标题:[转载]webpack优化之HappyPack实战

更新时间:2023-08-07
[转载]webpack优化之HappyPack实战
文章标题:[转载]oracle 同时更新多表,在Oracle数据库中同时更新两张表的简单方法

更新时间:2023-09-10
[转载]oracle 同时更新多表,在Oracle数据库中同时更新两张表的简单方法
文章标题:[转载][Unity] 包括场景互动与射击要素的俯视角闯关游戏Demo

更新时间:2024-03-11
[转载][Unity] 包括场景互动与射击要素的俯视角闯关游戏Demo
文章标题:[转载]程序员也分三六九等?等级差异,一个看不起一个!

更新时间:2024-05-10
[转载]程序员也分三六九等?等级差异,一个看不起一个!
文章标题:[转载]海贼王 动漫 全集目录 分章节 精彩打斗剧集

更新时间:2024-01-12
[转载]海贼王 动漫 全集目录 分章节 精彩打斗剧集
名词解释
作为当前文章的名词解释,仅对当前文章有效。
批流一体批流一体是一种大数据处理范式,指的是在同一个计算引擎中同时支持批量数据处理和实时流数据处理的能力。在Flink中,这种能力表现为可以使用相同的API、操作符和执行模型来处理历史的批量数据以及实时流入的数据流,从而简化开发流程,提高资源利用率,并满足不同场景下对数据处理时效性的要求。
时间窗口在流处理系统(如Apache Flink)中,时间窗口是一种将无限持续的数据流划分为有限时间段进行处理的机制。它允许系统按照固定的时间间隔(如每分钟或每5秒)对数据进行聚合、统计或其他计算操作,这对于实时推荐系统来说至关重要,因为可以通过分析用户在特定时间窗口内的行为数据来实时更新其兴趣偏好特征。
用户Embedding用户Embedding是机器学习领域特别是推荐系统中用于表示用户的一种低维向量形式。它通过深度学习等方法将用户的复杂属性和行为信息映射到一个连续的数值向量空间中,使得相似用户在该空间中的Embedding向量距离相近。在实时推荐系统的实践中,借助Flink实现实时更新用户Embedding意味着当用户产生新的行为数据时,能够立刻反映到Embedding向量上,进而快速调整推荐策略,提升推荐结果的相关性和实时性。
延伸阅读
作为当前文章的延伸阅读,仅对当前文章有效。
在大数据处理领域,Apache Flink作为一款强大的批流一体处理引擎,其在实时推荐系统的应用中展现了显著的优势。近期,阿里巴巴集团发布了一项关于利用Flink构建大规模实时推荐系统的实践报告,该报告详述了如何借助Flink的窗口机制和状态管理功能实现实时用户行为分析,并结合深度学习技术动态更新用户Embedding,进而大幅提升推荐效果。
与此同时,随着5G、IoT等技术的发展,数据产生速度呈指数级增长,对实时处理能力的需求愈发迫切。近日,一项关于流处理与批处理融合趋势的研究表明,Flink因其统一的数据处理架构,在面对海量数据洪峰时,相较于传统的Spark等框架,能够更好地满足低延迟、高吞吐的实时计算需求。
此外,Netflix公司也在其博客上分享了如何通过Flink实现个性化内容推荐系统的实时化升级经验。他们指出,Flink的时间窗口特性使得系统能够在捕获到用户最新行为后立即做出响应,优化推荐策略,从而提高用户满意度和留存率。
总之,随着技术生态的不断演进,Flink正在成为众多企业构建高性能、实时推荐系统的首选工具。在未来,随着Flink社区的持续发展和完善,我们有理由期待它将在更多场景下发挥关键作用,助力企业挖掘数据价值,提升业务效能。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -n 10 file.txt - 显示文件结尾的10行内容。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
可自定义logo的jQuery生成二维码插件 01-03 jquery每日签到日历插件 10-10 高度可定制的jQuery瀑布流网格布局插件 03-15 Consul中服务实例自动注销问题解析:健康检查、稳定性与Agent配置的影响及解决策略 01-22 怎么看mysql 的安装路径 12-31 jquery横向手风琴效果 12-23 蓝色数码电子产品销售HTML5网站模板 12-14 jQuery和CSS3汉堡包导航菜单打开动画特效 10-19 python模拟生存游戏 10-08 本次刷新还10个文章未展示,点击 更多查看。
jQuery.eraser-实现橡皮擦擦除功能的jquery插件 05-26 Netty中ChannelNotRegisteredException异常处理:理解原因与确保Channel注册状态的方法示例 05-16 响应式游戏开发类企业前端cms模板下载 05-02 精美的花甲美食网站HTML模板下载 03-09 soulmate粉色干净浪漫唯美婚礼单页响应式网站模板 03-07 Vue.js项目中proxyTable数据转发遭遇504错误:服务器响应时间与网络连接问题排查及解决方案 03-05 SpringCloud服务路由配置错误与失效:识别问题、排查步骤及组件解析这个涵盖了的核心内容,包括SpringCloud框架下的服务路由配置错误失效问题的识别,以及涉及到的服务注册中心、Gateway、Zuul等组件的功能解析和故障排查的具体步骤。同时,字数控制在了50个字以内,满足了要求。 03-01 css水平线长度设置 02-11 [转载]Proxy 、Relect、响应式 01-11 蓝色响应式软件营销代理公司网站静态模板 01-06 python正太分布校验 01-05
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"