前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Query API 实现HQL和SQL查...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...zed方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...划算。这些都是源码的实现细节,大家在阅读源码时需要细细斟酌。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 20:37:50
246
转载
转载文章
...或天)来调度作业。它实现了作业和触发器的多对多关系,还能把多个作业与不同的触发器关联。整合了 Quartz 的应用程序可以重用来自不同事件的作业,还可以为一个事件组合多个作业。虽然可以通过属性文件(在属性文件中可以指定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。 二、java中实现定时任务分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务。使用这种方式可以让你的程序按照某一个频度执行,但不能在指定时间运行。一般用的较少,这篇文章将不做详细介绍。 使用Quartz,这是一个功能比较强大的的调度器,可以让你的程序在指定时间执行,也可以按照某一个频度执行,配置起来稍显复杂,稍后会详细介绍。 Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多,稍后会介绍。 从作业类的继承方式来讲,可以分为两类: 作业类需要继承自特定的作业类基类,如Quartz中需要继承自org.springframework.scheduling.quartz.QuartzJobBean;java.util.Timer中需要继承自java.util.TimerTask。 作业类即普通的java类,不需要继承自任何基类。 注:个人推荐使用第二种方式,因为这样所以的类都是普通类,不需要事先区别对待。 从任务调度的触发时机来分,这里主要是针对作业使用的触发器,主要有以下两种: 每隔指定时间则触发一次,在Quartz中对应的触发器为:org.springframework.scheduling.quartz.SimpleTriggerBean 每到指定时间则触发一次,在Quartz中对应的调度器为:org.springframework.scheduling.quartz.CronTriggerBean 注:并非每种任务都可以使用这两种触发器,如java.util.TimerTask任务就只能使用第一种。Quartz和spring task都可以支持这两种触发条件。 三、Quartz与Spring的集成 第一种,作业类继承自特定的基类:org.springframework.scheduling.quartz.QuartzJobBean。 第一步:定义作业类 Java代码 import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; import org.springframework.scheduling.quartz.QuartzJobBean; public class Job1 extends QuartzJobBean { private int timeout; private static int i = 0; //调度工厂实例化后,经过timeout时间开始执行调度 public void setTimeout(int timeout) { this.timeout = timeout; } / 要调度的具体任务 / @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { System.out.println("定时任务执行中…"); } } 第二步:spring配置文件中配置作业类JobDetailBean Xml代码 <bean name="job1" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="com.gy.Job1" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="0" /> </map> </property> </bean> 说明:org.springframework.scheduling.quartz.JobDetailBean有两个属性,jobClass属性即我们在java代码中定义的任务类,jobDataAsMap属性即该任务类中需要注入的属性值。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job1" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job1" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 关于cronExpression表达式的语法参见附录。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 第二种,作业类不继承特定基类。 Spring能够支持这种方式,归功于两个类: org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean 这两个类分别对应spring支持的两种实现任务调度的方式,即前文提到到java自带的timer task方式和Quartz方式。这里我只写MethodInvokingJobDetailFactoryBean的用法,使用该类的好处是,我们的任务类不再需要继承自任何类,而是普通的pojo。 第一步:编写任务类 Java代码 public class Job2 { public void doJob2() { System.out.println("不继承QuartzJobBean方式-调度进行中..."); } } 可以看出,这就是一个普通的类,并且有一个方法。 第二步:配置作业类 Xml代码 <bean id="job2" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject"> <bean class="com.gy.Job2" /> </property> <property name="targetMethod" value="doJob2" /> <property name="concurrent" value="false" /><!-- 作业不并发调度 --> </bean> 说明:这一步是关键步骤,声明一个MethodInvokingJobDetailFactoryBean,有两个关键属性:targetObject指定任务类,targetMethod指定运行的方法。往下的步骤就与方法一相同了,为了完整,同样贴出。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job2" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job2" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 以上两种调度方式根据实际情况,任选一种即可。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 到此,spring中Quartz的基本配置就介绍完了,当然了,使用之前,要导入相应的spring的包与Quartz的包,这些就不消多说了。 其实可以看出Quartz的配置看上去还是挺复杂的,没有办法,因为Quartz其实是个重量级的工具,如果我们只是想简单的执行几个简单的定时任务,有没有更简单的工具,有! 四、Spring-Task 上节介绍了在Spring 中使用Quartz,本文介绍Spring3.0以后自主开发的定时任务工具,spring task,可以将它比作一个轻量级的Quartz,而且使用起来很简单,除spring相关的包外不需要额外的包,而且支持注解和配置文件两种 形式,下面将分别介绍这两种方式。 第一种:配置文件方式 第一步:编写作业类 即普通的pojo,如下: Java代码 import org.springframework.stereotype.Service; @Service public class TaskJob { public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:在spring配置文件头中添加命名空间及描述 Xml代码 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:task="http://www.springframework.org/schema/task" 。。。。。。 xsi:schemaLocation="http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd"> 第三步:spring配置文件中设置具体的任务 Xml代码 <task:scheduled-tasks> <task:scheduled ref="taskJob" method="job1" cron="0 ?"/> </task:scheduled-tasks> <context:component-scan base-package=" com.gy.mytask " /> 说明:ref参数指定的即任务类,method指定的即需要运行的方法,cron及cronExpression表达式,具体写法这里不介绍了,详情见上篇文章附录。 <context:component-scan base-package="com.gy.mytask" />这个配置不消多说了,spring扫描注解用的。 到这里配置就完成了,是不是很简单。 第二种:使用注解形式 也许我们不想每写一个任务类还要在xml文件中配置下,我们可以使用注解@Scheduled,我们看看源文件中该注解的定义: Java代码 @Target({java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface Scheduled { public abstract String cron(); public abstract long fixedDelay(); public abstract long fixedRate(); } 可以看出该注解有三个方法或者叫参数,分别表示的意思是: cron:指定cron表达式 fixedDelay:官方文档解释:An interval-based trigger where the interval is measured from the completion time of the previous task. The time unit value is measured in milliseconds.即表示从上一个任务完成开始到下一个任务开始的间隔,单位是毫秒。 fixedRate:官方文档解释:An interval-based trigger where the interval is measured from the start time of the previous task. The time unit value is measured in milliseconds.即从上一个任务开始到下一个任务开始的间隔,单位是毫秒。 下面我来配置一下。 第一步:编写pojo Java代码 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component; @Component(“taskJob”) public class TaskJob { @Scheduled(cron = "0 0 3 ?") public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:添加task相关的配置: Xml代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd" default-lazy-init="false"> <context:annotation-config /> <!—spring扫描注解的配置 --> <context:component-scan base-package="com.gy.mytask" /> <!—开启这个配置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
344
转载
转载文章
...该IP地址进行连接,实现远程查看和操作A电脑桌面的功能。这一技术广泛应用于远程办公、技术支持、服务器管理等领域。 QoS数据计划程序(Quality of Service Data Plan Policy) , QoS数据计划程序是Windows操作系统中的一种网络服务质量保证机制,它可以根据不同的网络流量需求为其分配优先级,确保关键业务或应用程序有足够的带宽资源。在本文中,通过组策略编辑器调整QoS数据计划程序,可以限制某些进程占用的网络带宽,从而优化整体网络使用情况。 SoftwareDistribution文件夹 , SoftwareDistribution文件夹是Windows操作系统中用于存储Windows Update服务下载的更新文件及其相关临时文件的目录。当用户遇到Windows Update更新失败时,通常会建议清理这个文件夹中的内容,以便于重新下载更新包,解决由于旧的或损坏的更新文件导致的更新失败问题。
2023-02-16 16:18:33
136
转载
转载文章
...有,留到需要的时候去实现。这些特殊方法是Python中用来扩充类的强有力的方式。它们可以实现模拟标准类型和重载操作符等。比如__init__()和__del__()就分别充当了构造器和析够器的功能。 这些特殊这些方法都是以双下划线(__)开始及结尾的。下表进行了总结: 基本定制型 C.__init__(self[, arg1, ...]) 构造器(带一些可选的参数) C.__new__(self[, arg1, ...]) 构造器(带一些可选的参数);通常用在设置不变数据类型的子类。 C.__del__(self) 解构器 C.__str__(self) 可打印的字符输出;内建str()及print 语句 C.__repr__(self) 运行时的字符串输出;内建repr() 和操作符 C.__unicode__(self) Unicode 字符串输出;内建unicode() C.__call__(self, args) 表示可调用的实例 C.__nonzero__(self) 为object 定义False 值;内建bool() (从2.2 版开始) C.__len__(self) “长度”(可用于类);内建len() 对象(值)比较 C.__cmp__(self, obj) 对象比较;内建cmp() C.__lt__(self, obj) C.__le__(self, obj) 小于/小于或等于;对应 C.__gt__(self, obj) C.__ge__(self, obj) 大于/大于或等于;对应>及>=操作符 C.__eq__(self, obj) C.__ne__(self, obj) 等于/不等于;对应==,!=及<>操作符 属性 C.__getattr__(self, attr) 获取属性;内建getattr();仅当属性没有找到时调用 C.__setattr__(self, attr, val) 设置属性 C.__delattr__(self, attr) 删除属性 C.__getattribute__(self, attr) 获取属性;内建getattr();总是被调用 C.__get__(self, attr) (描述符)获取属性 C.__set__(self, attr, val) (描述符)设置属性 C.__delete__(self, attr) (描述符)删除属性 数值类型:二进制操作符 C.__add__(self, obj) 加;+操作符 C.__sub__(self, obj) 减;-操作符 C.__mul__(self, obj) 乘;操作符 C.__div__(self, obj) 除;/操作符 C.__truediv__(self, obj) True 除;/操作符 C.__floordiv__(self, obj) Floor 除;//操作符 C.__mod__(self, obj) 取模/取余;%操作符 C.__divmod__(self, obj) 除和取模;内建divmod() C.__pow__(self, obj[, mod]) 乘幂;内建pow();操作符 C.__lshift__(self, obj) 左移位;< 数值类型:二进制操作符 C.__rshift__(self, obj) 右移;>>操作符 C.__and__(self, obj) 按位与;&操作符 C.__or__(self, obj) 按位或;|操作符 C.__xor__(self, obj) 按位与或;^操作符 数值类型:一元操作符 C.__neg__(self) 一元负 C.__pos__(self) 一元正 C.__abs__(self) 绝对值;内建abs() C.__invert__(self) 按位求反;~操作符 数值类型:数值转换 C.__complex__(self, com) 转为complex(复数);内建complex() C.__int__(self) 转为int;内建int() C.__long__(self) 转 .long;内建long() C.__float__(self) 转为float;内建float() 数值类型:基本表示法(String) C.__oct__(self) 八进制表示;内建oct() C.__hex__(self) 十六进制表示;内建hex() 数值类型:数值压缩 C.__coerce__(self, num) 压缩成同样的数值类型;内建coerce() C.__index__(self) 在有必要时,压缩可选的数值类型为整型(比如:用于切片索引等等) 序列类型 C.__len__(self) 序列中项的数目 C.__getitem__(self, ind) 得到单个序列元素 C.__setitem__(self, ind,val) 设置单个序列元素 C.__delitem__(self, ind) 删除单个序列元素 C.__getslice__(self, ind1,ind2) 得到序列片断 C.__setslice__(self, i1, i2,val) 设置序列片断 C.__delslice__(self, ind1,ind2) 删除序列片断 C.__contains__(self, val) 测试序列成员;内建in 关键字 C.__add__(self,obj) 串连;+操作符 C.__mul__(self,obj) 重复;操作符 C.__iter__(self) 创建迭代类;内建iter() 映射类型 C.__len__(self) mapping 中的项的数目 C.__hash__(self) 散列(hash)函数值 C.__getitem__(self,key) 得到给定键(key)的值 C.__setitem__(self,key,val) 设置给定键(key)的值 C.__delitem__(self,key) 删除给定键(key)的值 C.__missing__(self,key) 给定键如果不存在字典中,则提供一个默认值 一:简单定制 classRoundFloatManual(object):def __init__(self, val):assert isinstance(val, float), "Value must be a float!"self.value= round(val, 2)>>> rfm =RoundFloatManual(42) Traceback (mostrecent call last): File"", line 1, in? File"roundFloat2.py", line 5, in __init__assertisinstance(val, float), \ AssertionError: Value must be a float!>>> rfm =RoundFloatManual(4.2)>>>rfm >>> printrfm 它因输入非法而异常,但如果输入正确时,就没有任何输出了。在解释器中,我们得到一些信息,却不是我们想要的。print(使用str())和真正的字符串对象表示(使用repr())都没能显示更多有关我们对象的信息。这就需要实现__str__()和__repr__()二者之一,或者两者都实现。加入下面的方法: def __str__(self):return str(self.value) 现在我们得到下面的: >>> rfm = RoundFloatManual(5.590464)>>>rfm >>> printrfm5.59 >>> rfm = RoundFloatManual(5.5964)>>> printrfm5.6 但是在解释器中转储(dump)对象时,仍然显示的是默认对象符号,要修复它,只需要覆盖__repr__()。可以让__repr__()和__str__()具有相同的代码,但最好的方案是:__repr__ = __str__ 在带参数5.5964的第二个例子中,我们看到它舍入值刚好为5.6,但我们还是想显示带两位小数的数。可以这样修改: def __str__(self):return '%.2f' % self.value 这里就同时具备str()和repr()的输出了: >>> rfm =RoundFloatManual(5.5964)>>>rfm5.60 >>>printrfm5.60 所有代码如下: classRoundFloatManual(object):def __init__(self,val):assert isinstance(val, float), "Valuemust be a float!"self.value= round(val, 2)def __str__(self):return '%.2f' %self.value__repr__ = __str__ 二:数值定制 定义一个Time60,其中,将整数的小时和分钟作为输入传给构造器: classTime60(object):def __init__(self, hr, min): self.hr=hr self.min= min 1:显示 需要在显示实例的时候,得到一个有意义的输出,那么就要覆盖__str__()(如果有必要的话,__repr__()也要覆盖): def __str__(self):return '%d:%d' % (self.hr, self.min) 比如: >>> mon =Time60(10, 30)>>> tue =Time60(11, 15)>>> >>> printmon, tue10:30 11:15 2:加法 Python中的重载操作符很简单。像加号(+),只需要重载__add__()方法,如果合适,还可以用__radd__()及__iadd__()。注意,实现__add__()的时候,必须认识到它返回另一个Time60对象,而不修改原mon或tue: def __add__(self, other):return self.__class__(self.hr + other.hr, self.min + other.min) 在类中,一般不直接调用类名,而是使用self 的__class__属性,即实例化self 的那个类,并调用它。调用self.__class__()与调用Time60()是一回事。但self.__class__()的方式更好。 >>> mon = Time60(10, 30)>>> tue = Time60(11, 15)>>> mon +tue >>> print mon +tue21:45 如果没有定义相对应的特殊方法,但是却使用了该方法对应的运算,则会引起一个TypeError异常: >>> mon -tue Traceback (mostrecent call last): File"", line 1, in? TypeError:unsupported operand type(s)for -: 'Time60' and 'Time60' 3:原位加法 __iadd__(),是用来支持像mon += tue 这样的操作符,并把正确的结果赋给mon。重载一个__i__()方法的唯一秘密是它必须返回self: def __iadd__(self, other): self.hr+=other.hr self.min+=other.minreturn self 下面是结果输出: >>> mon = Time60(10,30)>>> tue = Time60(11,15)>>>mon10:30 >>>id(mon)401872 >>> mon +=tue>>>id(mon)401872 >>>mon21:45 下面是Time60的类的完全定义: classTime60(object):'Time60 - track hours and minutes' def __init__(self,hr, min):'Time60 constructor - takes hours andminutes'self.hr=hr self.min=mindef __str__(self):'Time60 - string representation' return '%d:%d' %(self.hr, self.min)__repr__ = __str__ def __add__(self, other):'Time60 - overloading the additionoperator' return self.__class__(self.hr + other.hr,self.min +other.min)def __iadd__(self,other):'Time60 - overloading in-place addition'self.hr+=other.hr self.min+=other.minreturn self 4:升华 在这个类中,还有很多需要优化和改良的地方。首先看下面的例子: >>> wed =Time60(12, 5)>>>wed12:5 正确的显示应该是:“12:05” >>> thu =Time60(10, 30)>>> fri =Time60(8, 45)>>> thu +fri18:75 正确的显示应该是:19:15 可以做出如下修改: def __str__(self):return '%02d:%02d'%(self.hr, self.min)__repr__ = __str__ def __add__(self, othertime): tmin= self.min +othertime.min thr= self.hr +othertime.hrreturn self.__class__(thr + tmin/60, tmin%60)def __iadd__(self, othertime): self.min+=othertime.min self.hr+=othertime.hr self.hr+= self.min/60self.min%= 60 return self 三:迭代器 迭代器对象本身需要支持以下两种方法,它们组合在一起形成迭代器协议: iterator.__iter__() 返回迭代器对象本身。 iterator.next() 从容器中返回下一个元素。 实现了__iter__()和next()方法的类就是一个迭代器。自定义迭代器的例子如下: RandSeq(Random Sequence),传入一个初始序列,__init__()方法执行前述的赋值操作。__iter__()仅返回self,这就是如何将一个对象声明为迭代器的方式,最后,调用next()来得到迭代器中连续的值。这个迭代器唯一的亮点是它没有终点。代码如下: classRandSeq(object):def __init__(self, seq): self.data=seqdef __iter__(self):returnselfdefnext(self):return choice(self.data) 运行它,将会看到下面的输出: >>> from randseq importRandSeq>>> for eachItem in RandSeq(('rock', 'paper', 'scissors')): ...printeachItem ... scissors scissors rock paper paper scissors ...... 四:多类型定制 现在创建另一个新类,NumStr,由一个数字-字符对组成,记为n和s,数值类型使用整型(integer)。用[n::s]来表示它,这两个数据元素构成一个整体。NumStr有下面的特征: 初始化: 类应当对数字和字符串进行初始化;如果其中一个(或两)没有初始化,则使用0和空字符串,也就是, n=0 且s=''作为默认。 加法: 定义加法操作符,功能是把数字加起来,把字符连在一起;比如,NumStr1=[n1::s1]且NumStr2=[n2::s2]。则NumStr1+NumStr2 表示[n1+n2::s1+s2],其中,+代表数字相加及字符相连接。 乘法: 类似的, 定义乘法操作符的功能为, 数字相乘,字符累积相连, 也就是,NumStr1NumStr2=[n1n::s1n]。 False 值:当数字的数值为 0 且字符串为空时,也就是当NumStr=[0::'']时,这个实体即有一个false值。 比较: 比较一对NumStr对象,比如,[n1::s1] vs. [n2::s2],有九种不同的组合。对数字和字符串,按照标准的数值和字典顺序的进行比较。 如果obj1< obj2,则cmp(obj1, obj2)的返回值是一个小于0 的整数, 当obj1 > obj2 时,比较的返回值大于0, 当两个对象有相同的值时, 比较的返回值等于0。 我们的类的解决方案是把这些值相加,然后返回结果。为了能够正确的比较对象,我们需要让__cmp__()在 (n1>n2) 且 (s1>s2)时,返回 1,在(n1s2),或相反),返回0. 反之亦然。代码如下: classNumStr(object):def __init__(self, num=0, string=''): self.__num =num self.__string =stringdef __str__(self):return '[%d :: %r]' % (self.__num, self.__string)__repr__ = __str__ def __add__(self, other):ifisinstance(other, NumStr):return self.__class__(self.__num + other.__num, self.__string + other.__string)else:raise TypeError, 'Illegal argument type for built-in operation' def __mul__(self, num):ifisinstance(num, int):return self.__class__(self.__num num, self.__string num)else:raise TypeError, 'Illegal argument type for built-inoperation' def __nonzero__(self):return self.__num or len(self.__string)def __norm_cval(self, cmpres):returncmp(cmpres, 0)def __cmp__(self, other):return self.__norm_cval(cmp(self.__num, other.__num))+\ self.__norm_cval(cmp(self.__string,other.__string)) 执行一些例子: >>> a =NumStr(3, 'foo')>>> b =NumStr(3, 'goo')>>> c =NumStr(2, 'foo')>>> d =NumStr()>>> e =NumStr(string='boo')>>> f =NumStr(1)>>>a [3 :: 'foo']>>>b [3 :: 'goo']>>>c [2 :: 'foo']>>>d [0 ::'']>>>e [0 ::'boo']>>>f [1 :: '']>>> a True>>> b False>>> a ==a True>>> b 2[6 :: 'googoo']>>> a 3[9 :: 'foofoofoo']>>> b +e [3 :: 'gooboo']>>> e +b [3 :: 'boogoo']>>> if d: 'not false'...>>> if e: 'not false'...'not false' >>>cmp(a, b)-1 >>>cmp(a, c)1 >>>cmp(a, a) 0 如果在__str__中使用“%s”,将导致字符串没有引号: return '[%d :: %s]' % (self.__num, self.__string)>>> printa [3 :: foo] 第二个元素是一个字符串,如果用户看到由引号标记的字符串时,会更加直观。要做到这点,使用“repr()”表示法对代码进行转换,把“%s”替换成“%r”。这相当于调用repr()或者使用单反引号来给出字符串的可求值版本--可求值版本的确要有引号: >>> printa [3 :: 'foo'] __norm_cval()不是一个特殊方法。它是一个帮助我们重载__cmp__()的助手函数:唯一的目的就是把cmp()返回的正值转为1,负值转为-1。cmp()基于比较的结果,通常返回任意的正数或负数(或0),但为了我们的目的,需要严格规定返回值为-1,0 和1。 对整数调用cmp()及与 0 比较,结果即是我们所需要的,相当于如下代码片断: def __norm_cval(self, cmpres):if cmpres<0:return -1 elif cmpres>0:return 1 else:return 0 两个相似对象的实际比较是比较数字,比较字符串,然后返回这两个比较结果的和。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-19 14:30:42
132
转载
转载文章
...、模型训练 三、项目实现 1. 代码实现 2. 采用器件 2. 注意事项 总结 前言 第一次接触OpenMV也是第一次将理论用于实践,是老师让我实现的一个小测验,这几天完成后决定写下完整的过程。本文主要是当缝合怪,借鉴和参考了其他人的代码再根据我个人设备进行了一定的调整,此外还包括了我自身实践过程中的一些小意外。 !!!一定要根据个人器件型号和个人设备来参考 一、数字识别的模型训练 1.下载训练集 研究期间,我发现大部分人以及官网教程采用的都是自己拍摄照片再进行网络训练,存在的缺陷就是数据集较小不全面、操作繁琐。个人认为如果是对标准的数字进行识别,自己手动拍取照片进行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
Golang
...举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
...应内容。 PLC通讯实现-C访问OpcUa实现读写PLC(十) 背景 概念 特点 依赖 配置OpcUA Server 关键代码 代码下载 背景 由于工厂设备种类多、分阶段建设,工控程序开发通常面临对接多种PLC厂商设备和不同系列与型号。因此出现了一种专门与不同PLC通讯的软件协议-OPC(OLE for Process Control),而各厂家在OPC基础上进行了不同程度的扩展,为了应对标准化和跨平台的趋势,和了更好的推广OPC,OPC基金会近些年在之前OPC成功应用的基础上推出了一个新的OPC标准-OPC UA。处于通讯效率上的考虑,很多厂家生产了OPCUA设备模块,内置处理器,性价比不错。不过这不是本文关注的重点。 概念 OPC UA(OPC Unified Architecture)是指OPC统一体系架构,是一种基于服务的、跨越平台的解决方案。 特点 扩展了OPC的应用平台。传统的基于COM/DCOM 的OPC技术只能基于Windows操作系统,OPC UA支持拓展到Linux和Unix平台。这使得基于OPC UA的标准产品可以更好地实现工厂级的数据采集和管理; 不再基于DCOM通讯,不需要进行DCOM安全设置; OPC UA定义了统一数据和服务模型,使数据组织更为灵活,可以实现报警与事件、数据存取、历史数据存取、控制命令、复杂数据的交互通信; OPC UA比OPC DA更安全。OPC UA传递的数据是可以加密的,并对通信连接和数据本身都可以实现安全控制。新的安全模型保证了数据从原始设备到MES,ERP系统,从本地到远程的各级自动化和信息化系统的可靠传递; OPC UA可以穿越防火墙,实现Internet 通讯。 依赖 我们通常不会从头写,可以基于OpcUa.core.dll库和OpcUa.Client.dll库,而且附上这2个库的源代码。 配置OpcUA Server 您可以安装任何一款支持OPCUA的服务端软件进行以下配置(此为示例配置,您可根据你的实际情况进行配置) 1、OpcUa Server Url:opc.tcp://192.168.100.1:4840。 2、OpcUa EndPoint:[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01] 3、PLC Device Name:Siemens S7-1200/S7-1500 4、Account:user1 5、Password:自己设置 6、在PLC中开了2个数据块,分别为DB4长度110个字、DB5长度122个字。 7、对应第4块创建标签,第一个名称为DB4.0-99,地址为DB4DBW0.100,数据类型为Short,长度100,即定义长度最长为100的Short数组。第二个名称为DB4.100-109,地址为DB4DBW100.10,数据类型为Short,方便快速读取。 5、对应第5块创建3个标签,第一个名称为DB5.0-99,地址为DB5DBW0.100,数据类型为Short,第二个名称为DB5.100-121, 地址为DB5DBW100.22,数据类型为Short,即定义长度最长为100的Short数组。方便快速读取。第三个标签名称为DB5DBW64,地址为DB5DBW64,数据类型为Short。 具体如下图: 关键代码 using System;using System.Collections.Generic;using System.Linq;using Opc.Ua.Helper;using Mesnac.Equips;namespace Mesnac.Equip.OPC.OpcUa.OPCUA{public class Equip : BaseEquip{region 字段定义private bool _isOpen = false; //是否已打开设备private bool _isClosing = false; //是否正在关闭设备private OPCUAClass myOpcHelper; //OPCUA设备访问辅助对象private Dictionary<string, string> dicTags = null; //保存标签集合private Dictionary<string, object> readResult = null; //设备标签数据缓存private int stepLen = 250; //标签变量的步长设置private string groupNamePrefix = "DB"; //数据块号前缀private string childTagFlag = "~"; //子元素标签标志符private System.Threading.Thread innerReadThread = null; //内部读取线程对象private int innerReadRate = 1000; //内部读取频率endregionregion 属性定义/// <summary>/// OPCUA Server Url/// </summary>public string OpcUaServerUrl{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServerUrl;return "opc.tcp://192.168.1.102:4840";//return "opc.tcp://192.168.100.1:4840";//return "opc.tcp://192.168.100.2:4840";} }/// <summary>/// 要连接的OPCUA服务器上的服务名/// </summary>public string OpcUaServiceName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServiceName;return "[UaServer@cMT-9F1F] [None] [None] [opc.tcp://192.168.1.102:4840/G01]";//return "[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G02]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G01]";} }/// <summary>/// 要连接的OPCUA服务器上指定服务名下的PLC的名称/// </summary>public string PLCName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).PLCName;//return "Feeding";return "Siemens_192.168.2.1";//return "Rockwell_192.168.1.10";} }/// <summary>/// OPCUA服务器的访问账户/// </summary>public string Account{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Account;return "user1";} }/// <summary>/// OPCUA服务器的访问密码/// </summary>public string Password{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Password;return "1";} }endregionregion BaseEquip成员实现/// <summary>/// 打开连接设备/// </summary>/// <returns>成功返回true,失败返回false</returns>public override bool Open(){lock (this){this._isClosing = false;if (this._isOpen == true && this.myOpcHelper != null){return true;}this.State = false;this.myOpcHelper = new OPCUAClass();this.dicTags = this.myOpcHelper.ConnectOPCUA(this.OpcUaServerUrl, this.Account, this.Password, this.OpcUaServiceName, this.PLCName); //连接OPCServerif (this.dicTags == null || this.dicTags.Count == 0){this.myOpcHelper = null;Console.WriteLine("OPC连接失败!");this.State = false;return false;}else{this.State = true;this._isOpen = true;region 初始化读取结果this.readResult = new Dictionary<string, object>();foreach (Equips.BaseInfo.Group group in this.Group.Values){if (!group.IsAutoRead){continue;}int groupMinStart = group.Start;int groupMaxEnd = group.Start + group.Len;int groupMaxLen = group.Len;foreach (Equips.BaseInfo.Group g in this.Group.Values){if (!g.IsAutoRead){continue;}if (g.Block == group.Block){if (g.Start < group.Start){groupMinStart = g.Start;}if (g.Start + g.Len > groupMaxEnd){groupMaxEnd = g.Start + g.Len;} }}groupMaxLen = groupMaxEnd - groupMinStart;int tagCount = groupMaxLen % this.stepLen == 0 ? groupMaxLen / this.stepLen : groupMaxLen / this.stepLen + 1;int currLen = 0;for (int i = 0; i < tagCount; i++){string tagName = String.Empty;if (tagCount == 1){tagName = String.Format("{0}-{1}", groupMinStart, groupMinStart + groupMaxLen - 1);currLen = groupMaxLen;}else if (i == tagCount - 1){tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + (groupMaxLen % this.stepLen == 0 ? this.stepLen : groupMaxLen % this.stepLen) - 1);currLen = groupMaxLen % this.stepLen;}else{tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + this.stepLen - 1);currLen = this.stepLen;}string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);if (!this.readResult.ContainsKey(tagFullName)){bool exists = false;region 判断读取结果标签组的范围是否包括了此标签 比如tagFullName DB5.220-299,在readResult中存在 DB5.200-299,则认为已存在,不需要再添加string[] beginend = null;int begin = 0;int end = 0;string[] startstop = tagFullName.Replace(String.Format("{0}{1}.", groupNamePrefix, group.Block), String.Empty).Split(new char[] { '-' });int start = 0;int stop = 0;bool parseResult = false;if (startstop.Length == 2){parseResult = int.TryParse(startstop[0], out start);if (parseResult){parseResult = int.TryParse(startstop[1], out stop);} }if (parseResult){int existsMinBegin = 0; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, group.Block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){if (start >= begin && stop <= end){exists = true;break;}if (isContinue){if (start >= existsMinBegin && stop <= existsMaxEnd){exists = true;break;} }} }} }endregionif (!exists){ushort[] groupData = new ushort[currLen];this.readResult[tagFullName] = groupData;Console.WriteLine(tagFullName);} }}//int tagCount = group.Len % this.stepLen == 0 ? group.Len / this.stepLen : group.Len / this.stepLen + 1;//int currLen = 0;//for (int i = 0; i < tagCount; i++)//{// string tagName = String.Empty;// if (tagCount == 1)// {// tagName = String.Format("{0}-{1}", group.Start, group.Start + group.Len - 1);// currLen = group.Len;// }// else if (i == tagCount - 1)// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + (group.Len % this.stepLen == 0 ? this.stepLen : group.Len % this.stepLen) - 1);// currLen = group.Len % this.stepLen;// }// else// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + this.stepLen - 1);// currLen = this.stepLen;// }// string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);// if (!this.readResult.ContainsKey(tagFullName))// {// short[] groupData = new short[currLen];// this.readResult[tagFullName] = groupData;// }//} }endregionregion 开启内部定时读取if (this.innerReadThread == null){this.innerReadRate = this.Main.ReadHz / 2;this.innerReadThread = new System.Threading.Thread(this.InnerAutoRead);this.innerReadThread.Start();}endregion}return this.State;} }/// <summary>/// 从设备读取数据/// </summary>/// <param name="block">要读取的块号</param>/// <param name="start">要读取的起始字</param>/// <param name="len">要读取的长度</param>/// <param name="buff">读取成功后的输出数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Read(string block, int start, int len, out object[] buff){lock (this){buff = null;if (this._isClosing){return false;}string readstrflag = String.Format("{0}{1}.{2}-{3}", this.groupNamePrefix, block, start, start + len - 1);System.Text.StringBuilder sbtaglength = new System.Text.StringBuilder();string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();List<string> groupTagNames = new List<string>();int startIndex = 0;try{if (!Open()){return false;}//return true;string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){if (key.StartsWith(groupName) && key.Replace(String.Format("{0}.", groupName), String.Empty).Contains("-")){groupTagNames.Add(key);} }groupTagNames.Sort(); //对块标签进行排序foreach (string key in groupTagNames){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}ushort[] values;if (this.readResult[key] is ushort[]){values = this.readResult[key] as ushort[];}else{values = new ushort[] { (ushort)this.readResult[key] };}sbtaglength.Append(String.Format("tagName={0}, buff length = {1}", key, values.Length));groupData.AddRange(values);}buff = new object[len];if (!String.IsNullOrEmpty(startTag)){string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;Array.Copy(groupData.ToArray(), startIndex, buff, 0, buff.Length);}else{}return true;}catch (Exception ex){Console.WriteLine(String.Join(";", groupTagNames.ToArray<string>()));Console.WriteLine("data length = " + groupData.Count);Console.WriteLine(this.Name + "读取失败[" + readstrflag + "]:" + ex.Message);Console.WriteLine(sbtaglength.ToString());this.State = false;return false;} }}/// <summary>/// 写入数据到设备/// </summary>/// <param name="block">要写入的块号</param>/// <param name="start">要写入的起始字</param>/// <param name="buff">要写如的数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Write(int block, int start, object[] buff){bool result = true;lock (this){try{if (this._isClosing){return false;}if (!Open()){return false;}bool isWrite = false;region 按标签变量写入string itemId = "";foreach (Equips.BaseInfo.Group group in this.Group.Values){if (group.Block == block.ToString()){foreach (Equips.BaseInfo.Data data in group.Data.Values){if (group.Start + data.Start == start && data.Len == buff.Length){if (this.dicTags.ContainsKey(data.Name)){itemId = this.dicTags[data.Name];}break;} }} }if (!String.IsNullOrEmpty(itemId)){UInt16[] intBuff = new UInt16[buff.Length];for (int i = 0; i < intBuff.Length; i++){intBuff[i] = 0;if (!UInt16.TryParse(buff[i].ToString(), out intBuff[i])){Console.WriteLine("在写入OPCUA标签时把buff中的元素转为UInt16类型失败!");} }result = this.myOpcHelper.WriteUInt16(itemId, intBuff);if (!result){Console.WriteLine(String.Format("标签变量[{0}]写入失败!", itemId));return false;}else{Console.WriteLine("按标签变量写入..." + itemId);isWrite = true;} }if (isWrite){return true;}endregionregion 按块写入region 先读取相应标签数数据string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();string[] keys = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key in keys){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}string[] beginEnd = key.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}.{1}", key)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);region 写入之前,先读取一下PLC的值if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){this.ReadTag(key);if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);}else{Console.WriteLine(String.Format("读取结果中不包含标签变量[{0}]的值!", String.Format("{0}", key)));} }else{if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("no read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);} }endregion}endregionif (String.IsNullOrEmpty(startTag)){Console.WriteLine("写入失败,未在OPCUAserver中找到对应的标签,block = {0}, start = {1}, len = {2}", block, start, buff.Length);return false;}region 更新标签中对应的数据后,再写回OPCServerint startIndex = 0;string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;ushort[] newDataBuffer = groupData.ToArray();for (int i = 0; i < buff.Length; i++){ushort svalue = 0;ushort.TryParse(buff[i].ToString(), out svalue);newDataBuffer[startIndex + i] = svalue;}int index = 0;string[] keys2 = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key2 in keys2){string[] beginEnd = key2.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}", key2)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){//Console.WriteLine("---------------------------------------------------------");//Console.WriteLine("start = " + start);//Console.WriteLine("start + buff.Length - 1 = " + (start + buff.Length -1));//Console.WriteLine("begin = " + begin);//Console.WriteLine("end = " + end);//Console.WriteLine("---------------------------------------------------------");if (!this.dicTags.ContainsKey(key2)){Console.WriteLine(String.Format("写入失败:标签变量[{0}]在OpcUA Server中未定义!", String.Format("{0}", key2)));return false;}int len = (this.readResult[key2] as ushort[]).Length;ushort[] tagDataBuff = new ushort[len];//Console.WriteLine("newDataBuff");//Console.WriteLine(String.Join(",", newDataBuffer));//Console.WriteLine("index = " + index);//Console.WriteLine("tagDataBuff.Length = " + tagDataBuff.Length);//Array.Copy(newDataBuffer, begin, tagDataBuff, 0, tagDataBuff.Length);int existsMinBegin = this.GetExistsMinBeginByBlock(block.ToString());Array.Copy(newDataBuffer, begin - existsMinBegin, tagDataBuff, 0, tagDataBuff.Length);index += tagDataBuff.Length;//Console.WriteLine("Write " + key2);//Console.WriteLine(String.Join(",", tagDataBuff));//Console.WriteLine("写入标签:" + this.dicTags[key2]);result = this.myOpcHelper.WriteUInt16(this.dicTags[key2], tagDataBuff);if (!result){Console.WriteLine(String.Format("向标签变量[{0}]中写入值失败!", String.Format("{0}", key2)));return false;}else{this.ReadTag(key2);Console.WriteLine("写入...");}//Console.WriteLine("---------------------------------------------------------");} }endregionendregionreturn result;}catch (Exception ex){Console.WriteLine(this.Name + "写入失败:" + ex.Message);return false;} }}/// <summary>/// 关闭方法,断开与设备的连接释放资源/// </summary>public override void Close(){try{this._isClosing = true;System.Threading.Thread.Sleep(this.Main.ReadHz);if (this.innerReadThread != null){this.innerReadThread.Abort();this.innerReadThread = null;} }catch (Exception ex){Console.WriteLine("关闭内部读取OPCUA线程异常:" + ex.Message);}try{if (this.myOpcHelper != null){this.myOpcHelper.Close();this.myOpcHelper = null;this.State = false;this._isOpen = false;} }catch (Exception ex){Console.WriteLine("关于与OPCUA服务连接异常:" + ex.Message);} }endregionregion 辅助方法/// <summary>/// 获取某个数据块标签的最小开始索引/// </summary>/// <param name="block">块号</param>/// <returns>返回数据块标签的最小开始索引</returns>private int GetExistsMinBeginByBlock(string block){int existsMinBegin = 99999; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();string[] beginend = null;bool parseResult = false;int begin = 0;int end = 0;foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){//} }}return existsMinBegin;}/// <summary>/// 读取标签/// </summary>/// <param name="tagName"></param>private void ReadTag(string tagName){UInt16[] buff = null;if (this.dicTags.ContainsKey(tagName)){if (this.myOpcHelper.ReadUInt16(this.dicTags[tagName], out buff)){//Console.WriteLine("tagName={0}, buff length = {1}", tagName, buff.Length);if (this.readResult.ContainsKey(tagName)){this.readResult[tagName] = buff;}else{this.readResult.Add(tagName, buff);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception 读取标签:[{0}]失败!", tagName);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception OPCUA Server中未定义此标签:[{0}]!", tagName);} }/// <summary>/// 内部自动读取方法/// </summary>private void InnerAutoRead(){while (this._isOpen && this._isClosing == false){try{if (this.myOpcHelper == null){this._isClosing = true;this.State = false;return;}lock (this){string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){this.ReadTag(key);} }System.Threading.Thread.Sleep(this.innerReadRate);}catch (Exception ex){Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.InnerAutoRead Exception : " + ex.Message);} }this.innerReadThread = null;}endregionregion 析构方法~Equip(){this.Close();}endregion} } 代码下载 代码下载 本篇文章为转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 18:43:00
269
转载
转载文章
...架的基础上进行改进。实现了只要指定一张 Mysql 数据库中的表,就可以自动生成 bootstrap 样式的管理后台界面。支持列表展示、搜索、删除、批量删除、文本框、时间控件等等一切基础功能。再以后涉及管理后台的功能,只需要在这个基础上改造就行了,人力投入降低了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
转载文章
...资自己,通过不断学习实现职业生涯的可持续发展。 同时,心理学专家也强调,保持积极心态是中年人应对职场挑战的关键要素之一。正如美国心理学家卡罗尔·德韦克提出的“成长思维模式”,鼓励人们以开放的态度看待困难和挑战,相信能力可以通过努力得以提升,这对于中年职场人士打破现状、激发潜力具有深远意义。 综上所述,面对日新月异的社会变迁和职场环境,中年群体需树立长期职业规划意识,提高实际行动力,强化个人核心竞争力,并始终保持与时俱进的学习态度和积极进取的心态,以此来应对职业道路上的各种挑战,实现职业生涯的二次腾飞。
2023-06-29 14:16:29
119
转载
转载文章
... ES 模块导入功能实现快速热更新和按需编译,显著提升了开发者的工作效率。在本文中,作者使用 Vite 配合 Vue3 和 TypeScript 进行项目搭建,并通过引入相应的插件支持 tsx 语法糖。 TailwindCSS , TailwindCSS 是一种实用的原子化 CSS 框架,采用实用类名(utility-first)的方法为开发者提供了一系列预设的样式类,可快速应用于 HTML 元素以实现响应式布局、间距调整、颜色定制等常见样式需求。在该文章中,作者推荐了 TailwindCSS 用于后台管理系统项目的样式构建,以降低编写 CSS 样式的复杂度,提高开发效率。 Pinia , Pinia 是专为 Vue3 设计的状态管理库,用于在大型或复杂应用中管理和共享组件之间的状态数据。相较于 Vuex,Pinia 在设计上更加简洁易用,提供了灵活且强大的状态管理解决方案。在模板项目中,作者集成了 Pinia 来帮助团队成员更好地组织和维护应用中的全局状态与逻辑。 Jest , Jest 是一个流行的 JavaScript 测试框架,具有丰富的断言库和模拟功能,能够支持单元测试、集成测试等多种测试场景。在文中,作者配置了 Jest 作为项目的单元测试工具,确保代码质量与稳定性,通过编写测试用例来验证代码逻辑的正确性以及预期功能的实现。 Eslint 和 Prettier , Eslint 是一款静态代码检查工具,用于识别并报告 JavaScript 和 TypeScript 代码中的潜在错误、不一致性和不良编码习惯;Prettier 则是一款代码格式化工具,可以自动按照一套统一的规则格式化代码,确保团队间的代码风格一致性。在这篇文章中,作者介绍了如何结合 Eslint 和 Prettier 设置项目规范,以提升代码质量和团队协作效率。
2023-10-05 12:27:41
116
转载
转载文章
...。”此次成功登月,也实现了全人类数千年来盼望登上月球的梦想。 历史总是惊人的相似。随着全面云化时代的来临,企业级客户应用部署的范围也从传统数据中心扩展至公有云、私有云乃至混合云模式,其应用服务的复杂性和多样性随之快速上升,由此也带来了一系列巨大的挑战。所以,如何让上云更简单、更高效、更安全,更贴近业务,成为业界共同思考和关注的话题。 在此背景下,今年8月8日,华云数据正式发布了国产通用型云操作系统安超OS,这是一款具有应用创新特性的轻量级云创新平台,拥有全栈、安全、创新、无厂商锁定的特性,能够真正让政府和企业客户通过简单便捷的操作实现云部署和数字化转型。 更为关键的是,安超OS还是构建于生态开放基础之上的云操作系统,这让更多的合作伙伴也能借助这一创新的平台,和华云数据一起赋能数字中国,共同走向成功。因此,国产通用型云操作系统安超OS的发布,对于中国政府和企业更好的实现上云、应用云、管理云、优化云,无疑具有十分重要的价值和意义。 从这个角度来说,安超OS的“一小步”,也正是中国云的“一大步”。 安超OS应运而生背后 众所周知,随着数据量的不断增长和对IT系统安全性、可控性要求的不断提升,越来越多的企业发现无法通过单一的公有云或者私有云服务,满足其所有的工作负载和业务创新需求,特别是在中国这种情况更加的明显。 华云数据集团董事长、总裁许广彬 一方面,目前中国企业现有的IT基础设施架构,让他们很难“一步上公有云”,这也决定了私有云仍然会成为众多政府和企业在未来相当长一段时间采用云服务的主流模式。 来自IDC的数据从一个侧面也证实了这一现状,数据显示仅2018年中国的私有云IT基础设施架构市场的相关支出就增长了49.2%,同时过去6年中国在这方面支出的增长速度更是远高于全球市场,预测2023年中国将成为全球最大的私有云IT基础架构市场。 另一方面,无论是传统的私有云还是公有云厂商的专有云,同样也很难满足中国企业的具体需求。比如,传统私有云的定制化尽管满足了行业企业客户复杂的IT环境和利旧的需求,但存在碎片化、不可进化的问题,也无法达到公有云启用便捷、功能不断进化、统一运维、按需付费的消费级体验,成为传统私有云规模化增长的掣肘。 当然,过去几年国内外公有云巨头也纷纷推出面向私有云市场的专有云产品,但其设计思路是以公有云为核心,其价值更多在于公有云服务在防火墙内的延伸,其初衷是“将数据迁移到中心云上”,这同样不适合,更难以匹配中国企业希望“将云移动到数据上”的最终目标。 正是源于这些客户“痛点”和市场现状,让华云数据产生了打造一款通用型云操作系统的想法。今年3月1日,华云数据宣布对超融合软件厂商Maxta全部资产完成了合法合规收购。至此,华云数据将独家拥有Maxta的包括产品技术、专利软著、品牌、市场在内的全球范围的资产所有权。 在此基础上,华云数据又把Maxta与华云自身的优势产品相融合,正式推出了安超OS国产通用型云操作系统,并在国产化与通用型方向做了三个方面的重要演进: 首先,兼容国产服务器、CPU、操作系统。安超OS对代码进行了全新的架构扩展,创建并维护新的一套代码分支,从源码级完成众多底层的对国产服务器、CPU、操作系统的支持。 其次,扩展通用型云操作系统的易用性。安超OS以VM为核心做为管理理念,以业务应用的视觉管理基础设施,为云操作系统开发了生命周期管理系统(LCM),提供像服务器操作系统的光盘ISO安装方式,可以30分钟完成云操作系统的搭建,并具备一键集群启停、一键日志收集、一键运维巡检业务等通用型云操作系统所必备的易用性功能。 最后,增强国内行业、企业所需的安全性。安超OS的所有源代码都通过了相关部门的安全检查,确保没有“后门”等漏洞,杜绝安全隐患,并且通过了由中国数据中心联盟、云计算开源产业联盟组织,中国信息通信研究院(工信部电信研究院)测试评估的可信云认证。 不难看出,安超OS不仅具有全球领先的技术,同时又充分满足中国市场和中国客户的需求。正如华云数据集团董事长、总裁许广彬所言:“唯改革者进,唯创新者强,华云数据愿意用全球视野推动中国云计算发展,用云创新驱动数字经济挺进新纵深,植根中国,奉献中国,引领中国,腾飞中国。” 五大维度解读安超OS 那么,什么是云操作系统?安超OS通用型云操作系统又有什么与众不同之处呢? 华云数据集团联席总裁、首席技术官谭瑞忠 在华云数据集团联席总裁、首席技术官谭瑞忠看来,云操作系统是基于服务器操作系统,高度的融合了基础设施的资源,实现了资源弹性伸缩扩展,以及具备运维自动化智能化等云计算的特点。同时,云操作系统具有和计算机操作系统一样的高稳定性,高性能,高易用性等特征。 但是,相比计算机操作系统,云计算的操作系统会更为复杂,属于云计算后台数据中心的整体管理运营系统,是构架于服务器、存储、网络等基础硬件资源和PC操作系统、中间件、数据库等基础软件之上的、管理海量的基础硬件、软件资源的云平台综合管理系统。 更为关键的是,和国内外很多基础设备厂商基于自已的产品与理解推出了云操作系统不同,安超OS走的是通用型云操作系统的技术路线,它不是采用软硬件一体的封闭或半封闭的云操作系统平台,所以这也让安超OS拥有安全稳定、广泛兼容、业务优化、简洁运维、高性价比方面的特性,具体而言: 一是,在安全稳定方面,安超OS采用全容错架构设计,从数据一致性校验到磁盘损坏,从节点故障到区域性灾难,提供端到端的容错和灾备方案,为企业构筑高可用的通用型云环境,为企业的业务运营提供坚实与安全可靠的基础平台。 二是,在广泛兼容方面,安超OS所有产品技术、专利软著、品牌都拥有国内自主权,符合国家相关安全自主可信的规范要求,无服务器硬件锁定,支持国内外主流品牌服务器,同时适配大多数芯片、操作系统和中间件,支持利旧与升级,更新硬件时无需重新购买软件,为企业客户提供显著的投资保护,降低企业IT成本。 三是,在业务优化方面,安超OS具备在同一集群内提供混合业务负载的独特能力,可在一套安超OS环境内实现不同业务的优化:为每类应用定制不同的存储数据块大小,优化应用读写效率,提供更高的业务性能;数据可按组织架构逻辑隔离,部门拥有独立的副本而无需新建一套云环境,降低企业IT的成本与复杂度;数据重构优先级保证关键业务在故障时第一时间恢复,也能避免业务链启动错误的场景出现。 四是,在简捷运维方面,安超OS是一款轻量级云创新平台,其所有管理策略以虚拟机和业务为核心,不需要配置或管理卷、LUN、文件系统、RAID等需求,从根本上简化了云操作系统的管理。通过标准ISO安装,可实现30分钟平台极速搭建,1分钟业务快速部署,一键集群启停与一键运维巡检。降低企业IT技术门槛,使IT部门从技术转移并聚焦于业务推进和变革,助力企业实现软件定义数据中心。 五是,在高性价比方面,安超OS在设计之初,华云数据就考虑到它是一个小而美、大而全的产品,所以给客户提供组件化授权,方便用户按需购买,按需使用,避免一次性采购过度,产生配置浪费。并且安超OS提供在线压缩等容量优化方案,支持无限个数无损快照,无硬件绑定,支持License迁移。 由此可见,安超OS通用型云操作系统的本质,其实就是一款以安全可信为基础,以业务优化为核心的轻量级云创新平台,能够让中国政府和企业在数字化转型中,更好的发挥云平台的价值,同时也能有效的支持他们的业务创新。 生态之上的云操作系统 纵观IT发展的过程,每个时代都离不开通用型操作系统:在PC时代,通用型操作系统是Windows、Linux;在移动互联时代,通用型操作系统是安卓(Android),而这些通用型操作系统之所以能够成功,背后其实也离不开生态的开放和壮大。 如果以此类比的话,生态合作和生态开放同样也是华云安超OS产品的核心战略,这也让安超OS超越了传统意义上的云创新平台,是一款架构于生态开放之上的云操作系统。 华云数据集团副董事长、执行副总裁马杜 据华云数据集团副董事长、执行副总裁马杜介绍,目前华云数据正与业内众多合作伙伴建立了生态合作关系,覆盖硬件、软件、芯片、应用、方案等多个领域,通过生态合作,华云数据希望进一步完善云数据中心的产业链生态,与合作伙伴共建云计算生态圈。 其中,在基础架构方面,华云数据与飞腾、海光、申威等芯片厂商以及中标麒麟、银河麒麟等国产操作系统实现了互认证,与VMware、Dell EMC、广达、浪潮、曙光、长城、Citrix、Veeam、SevOne、XSKY、锐捷网络、上海仪电、NEXIFY等多家国内外知名IT厂商达成了战略合作,共同为中国政企用户提供基于云计算的通用行业解决方案与垂直行业解决方案,助推用户上云实现创新加速模式。 同时,在解决方案方面,华云数据也一直在完善自身的产业链,建立最广泛的生态体系。例如,PaaS平台领域的合作伙伴包括灵雀云、Daocloud、时速云、优创联动、长城超云、蓝云、星环科技、华夏博格、时汇信息、云赛、热璞科技、思捷、和信创天、酷站科技、至臻科技达成合作关系;数据备份领域有金蝶、爱数、Veeam、英方云、壹进制;安全领域有亚信安全、江南安全、绿盟、赛亚安全、默安科技;行业厂商包括善智互联、蓝美视讯、滴滴、天港集团、航天科工等合作伙伴,由此形成了非常有竞争力的整体解决方案。 不仅如此,华云数据与众多生态厂家共同完成了兼容性互认证测试,构建了一个最全面的基础架构生态体系,为推出的国产通用型云操作系统提供了一个坚实的基础。也让该系统提高了其包括架构优化能力、技术研发能力、资源整合能力、海量运营能力在内的综合能力,为客户提供稳定、可靠的上云服务,赋能产业变革。 值得一提的是,华云数据还发布了让利于合作伙伴的渠道合作策略,通过和合作伙伴的合作共赢,华云数据希望将安超OS推广到国内的全行业,让中国企业都能用上安全、放心的国产通用型云操作系统,并让安超OS真正成为未来中国企业上云的重要推手。 显而易见,数字化的转型与升级,以及数字经济的落地和发展,任重而道远,艰难而伟大,而华云数据正以安超OS云操作系统为核心构建的新生态模式和所释放的新能力,不仅会驱动华云数据未来展现出更多的可能性,激发出更多新的升维竞争力,更将会加速整个中国政府和企业的数字化转型步伐。 全文总结,在云计算落地中国的过程中,华云数据既是早期的探索者,也是落地的实践者,更是未来的推动者。特别是安超OS云操作系统的推出,背后正是华云凭借较强的技术驾驭能力,以及对中国企业用户痛点的捕捉,使得华云能够走出一条差异化的创新成长之路,也真正重新定义了“中国云”未来的发展壮大之路。 申耀的科技观察,由科技与汽车跨界媒体人申斯基(微信号:shenyao)创办,16年媒体工作经验,拥有中美两地16万公里自驾经验,专注产业互联网、企业数字化、渠道生态以及汽车科技内容的观察和思考。 本篇文章为转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-16 21:41:38
302
转载
转载文章
...过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...数据、用户数据等信息实现智能派单,逐步替代调度员的大部分工作。智能派单系统整体全面上线后将释放90%以上人工派单的人力,每年节省人力支出预计超过亿元。 饿了么的IT系统架构伴随业务量飙升,进行了三次重大升级。 1)起步期(2009至2013年):饿了么由上海交通大学创始团队起家,发展至35人规模,日订单量维持在十万量级,由“IDC+Python”技术组合支撑业务运营,但面临Python人才难觅等困扰。 2)成长期(2014年至2015年):14年8至9月短短2个月内日均订单量增长10倍,从10万迅猛飙升至100万,业务规模主攻全国200个城市,原有IT系统架构压力极大,依靠人肉运维举步维艰,故障波动影响业务,创始人与核心技术团队坚守机房运维一线,才勉强扛住100万量级业务订单。开始借鉴阿里淘宝架构模式,人员团队也涨至500人,技术生态从Python扩展至“Java+Python”开发体系,从“人肉”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
....14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 前言 通过第二章的学习,已经对类和对象有了初步了解。本章将对类和对象进行进一步讨论。 一、构造函数 如果定义一个变量,而程序未对其进行初始化的话,这个变量的值是不确定的,因为C和C++不会自觉地去为它赋值。与此相似,如果定义一个对象,而程序未对其数据成员进行初始化的话,这个对象的值也是不确定的。 1.对象的初始化 在定义一个类时,不能对其数据成员赋初值,因为类是一种类型,系统不会为它分配内存空间。在建立一个对象时,需要对其数据成员赋初值。如果一个数据成员未被赋初值,则它的值是不确定的。因为系统为对象分配内存时,保持了内存单元的原状,它就成为数据成员的初值。这个值是随机的。 C++提供了构造函数机制,用来为对象的数据成员进行初始化。在前面的学习中一直未讲这个概念,其实如果你未设计构造函数,系统在创建对象时,会自动提供一个默认的构造函数,而它只为对象分配内存空间其他什么也不做。 如果类中的所有数据成员是公有的,可以在定义对象时对其数据成员初始化。例如: class Time{public:int hour;int minute;int sec;};Time t1{15,36,26}; 在一个打括号内顺序列出各个公有数据成员的值,在两个值之间用逗号分隔。注意这只能用于数据成员都是共有的情况。 在前面的例子里,是用成员函数对对象的数据成员赋初值,如果一个类定义了多个对象,对每个对象都要调用成员函数对数据成员赋初值,那么程序就会变得繁琐,所以用成员函数为数据成员赋初值不是一个好办法。 2.构造函数的作用 构造函数用于为对象分配空间和进行初始化,它属于某一个类,可以由系统自动生成。也可以由程序员编写,程序员根据初始化的要求设计构造函数及函数参数。 构造函数是一种特殊的成员函数,在程序中不需要写调用语句,在系统建立对象时由系统自觉调用执行。 构造函数的特点: 构造函数的名字与它的类名必须相同 它没有类型,也不返回值 它可以带参数,也可以不带参数 include <iostream>using namespace std;class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};int main() {Time t1;t1.set_time();t1.show_time();Time t2;t2.show_time();return 0;}void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在类Time中定义了构造函数Time,它与所在的类同名。在建立对象时自动执行构造函数,该函数的作用是为对象中的每个数据成员赋初值0。注意只有执行构造函数时才能为数据成员赋初值。 程序运行时首先建立对象t1,并对t1中的数据成员赋初值0,然后执行t1.set_time函数,从键盘输入新值给对象t1的数据成员,再输出t1的数据成员的值。接着建立对象t2,同时对t2中的数据成员赋初值0,最后输出t2的数据成员的初值。程序运行情况如下: 也可以在类内声明构造函数然后在类外定义构造函数。将程序修改为Time();然后在类外定义构造函数: Time::Time() {hour = 0;minute = 0;sec = 0;} 关于构造函数的使用,说明如下: 什么时候调用构造函数?当函数执行到对象定义语句时建立对象,此时就要调用构造函数,对象就有了自己的作用域,对象的生命周期开始了。 构造函数没有返回值,因此不需要在定义中声明类型。 构造函数不需要显式地调用,构造函数是在建立对象时由系统自动执行的,且只执行以此。构造函数一般定义为public。 在构造函数中除了可以对数据成员赋初值,还可以使用其他语句。 如果用户没有定义构造函数,C++系统会自动生成一个构造函数,而这个函数体是空的,不执行初始化操作。 3.带形参数的构造函数 (1)含义 可以采用带形参数的构造函数,在调用不同对象的构造函数时,从外边将不同的数据传递给构造函数,实现不同对象的初始化。 构造函数的首部的一般格式为:构造函数名(类型 形参1,类型 形参2,……)。在定义对象时指定实参,定义对象的格式为:类名 对象名(实参1,实参2,……)。 (2)【例3.2】 有两个长方柱,其长、宽、高分别为:(1)12,25,30(2)15,30,21编写程序,在类中用带参数的构造函数,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...学员通过Python实现机器学习项目的开发。 Pandas , Pandas是一个强大的Python数据分析库,为数据清洗、转换、分析以及可视化提供了高效的数据结构和数据分析工具。在本篇文章中,Pandas被用来加载CSV文件、执行描述性统计分析以及进行数据预处理,使学员能够更好地理解和准备用于建模的数据集。 数据预处理 , 数据预处理是机器学习流程中的关键步骤,涉及对原始数据进行一系列操作以提高其质量,便于后续的建模任务。这包括缺失值处理、异常值检测与处理、数据标准化或归一化、特征编码(例如独热编码)、特征选择或降维等技术。在本文的课程内容中,学员需要学习如何使用Python库(如Pandas)和scikit-learn提供的函数来进行有效的数据预处理工作。 描述性统计信息 , 描述性统计信息是对数据集基本特征的量化度量,包括中心趋势(如均值、中位数)、离散程度(如标准差、四分位数范围)以及分布形态(如偏度、峰度)。在文中提到的第4课中,学员利用Pandas DataFrame的describe()函数来计算并展示数据集中各个属性的描述性统计信息,以便更好地理解数据分布情况和内在规律。 箱须图(Boxplot) , 箱须图是一种用于描绘一组数值型数据分布情况的统计图表,通过最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)以及可能存在的异常值来展示数据分布的集中趋势和变异程度。在该课程的第5课中,学员使用Pandas提供的plot(kind= box )函数绘制箱须图,以直观地了解每个属性在数据集中的分布特点。
2023-07-11 10:04:06
92
转载
转载文章
...的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...目标的基础上如何对其实现。 前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。 一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。PaddlePaddle官网 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 通过 import jieba 来引用 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。 算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 主要功能 分词 jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...时长、流程复杂,无法实现原位检测或远程快速检测。使用激光诱导击穿光谱(LIBS)可以有效改善上述问题,但是其准确率低,存在相邻特征谱线干扰。激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF)则是对LIBS技术的进一步强化升级,满足了检测需求。文章首先介绍了LIBS技术以及LIBS-LIF技术的基本原理;接着简要介绍LIBS-LIF技术在土壤监测的应用情况,介绍了技术的应用起源和研究进展;然后介绍LIBS技术和LIBS-LIF技术在水质监测方面的应用,由于液体检测中对于预处理的方式最为重要,因此此处简要归纳了液体检测样品预处理的方法,最后对LIBS-LIF技术在环境方面的应用做出总结和展望。LIBS-LIF技术具有着传统实验室检测无法比拟的优势,也正处于热门研究方向,未来潜力无限。 关键词: 激光诱导击穿光谱(LIBS);激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF);环境监测;土壤监测;水质监测 Elemental Analysis Application of Laser Induced Breakdown Spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF) Technology in Environmental Monitoring Abstract: The importance of environmental monitoring is becoming more and more significant under the background of increasingly prominent environmental problems. Among the environmental problems, soil problem and water quality problem is one of the very important topics. Element analysis is often used for soil monitoring and water quality monitoring. Although the traditional laboratory detection method has high accuracy and good accuracy, it takes a long time and the process is complex, so it is impossible to realize in-situ detection or remote rapid detection. Laser induced breakdown spectroscopy (LIBS) can effectively improve the above problems, but its accuracy is low and there is interference between adjacent characteristic lines. Laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF) is a further enhancement and upgrade of LIBS technology to meet the detection needs. This paper first introduces the basic principles of LIBS technology and LIBS-LIF technology, then briefly introduces the application of LIBS-LIF technology in soil monitoring, and introduces the application origin and research progress of LIBS-LIF technology. Then it introduces the application of LIBS technology and LIBS-LIF technology in water quality monitoring. Because the way of pretreatment is the most important in liquid detection, the pretreatment methods of liquid testing samples are briefly summarized here. Finally, the application of LIBS-LIF technology in the environment is summarized and prospected. LIBS-LIF technology has incomparable advantages over traditional laboratory testing, and it is also in a hot research direction, with unlimited potential in the future. Keywords: Laser induced breakdown spectroscopy(LIBS); Laser induced breakdown spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF); Environmental monitoring; Soil monitoring; Water quality monitoring Completion time: 2021-11 目录 0. 引言 1. 技术简介 1.1 LIBS技术简介 1.1.1 LIBS技术的基本原理 1.1.2 LIBS技术的定量分析 1.1.3 LIBS技术的优缺点 1.2 LIBS-LIF技术 1.2.1 LIF技术的基本原理 1.2.2 Co原子的LIBS-LIF增强原理 2. LIBS-LIF技术用于土壤监测 2.1 早期研究 2.2 近期研究现状 3. LIBS及LIBS-LIF技术用于水质监测 3.1液体直接检测 3.2液固转换检测 3.2.1吸附法 3.2.2成膜法 3.2.3微萃取法 3.2.4冷冻法 3.2.5电沉积法 3.3液气转换检测 4. 总结与展望 参考文献 0. 引言 随着经济的发展,人们物质生活水平提高的同时,环境的问题也愈发突出,其中,土壤问题和水体问题十分突出。 土壤是包括人类在内的一切生物体生存的载体,土壤的质量与农作物的生长息息相关,而农作物的收成则是人类发展的基石。在工业化发展的影响下,土壤重金属污染和积累成为了一个世界性的问题,尤其在中国特别是长三角地区尤为严重[1]。 水是生命之源,水体问题直接关系到所有生物体的生存。环境中的水体问题,主要集中在工业废水的治理与监测上。工业废水中含有大量重金属元素,其难以生物降解,重金属元素会随着水体流动而扩散。 物质元素分析在土壤分析和水质分析上是常用的方式。传统的分析方法是基于实验室的元素光谱分析法,其具有高精度、高稳定的特点,如:原子吸收光谱法(Atomic absorption spectrometry, AAS)、电感耦合等离子体质谱法(Inductively coupled plasma mass spectrometry, ICP-MS)、电感耦合等离子体原子发射光谱法(Inductively coupled plasma atomic emission spectrometry, ICP-AES)等,但是此类光谱的检测样品预处理复杂、检测操作难度高、需要庞大复杂的实验设备,且对样品造成损坏,有所不便[2,3]。 激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)是一种基于原子光谱分析技术,与传统的光谱分析技术相比,其实验装置简单便携、操作简便、应用广泛、可远程测量,同时有在简单预处理样品或根本不预处理的情况下进行现场测量的潜力。因此,其满足在环境监测中,特别是土壤监测和水质监测此类希望可以在现场检测、快速便捷检测,同时精度较高的需求。LIBS技术很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,进一步提高了 LIBS技术的检测准确度和竞争力[4]。 1. 技术简介 1.1 LIBS技术简介 LIBS技术最早可以追溯到20世纪60年代Brech, F.和Cross, L.所做的激光诱导火花散射实验,其中的一项实验使用红宝石激光器产生的激光照射材料后产生等离子体羽流。经过了几十年的发展,LIBS技术得到了显著发展,其在环境检测、文物保护鉴定、岩石检测、宇宙探索等领域中被广泛应用。 1.1.1 LIBS技术的基本原理 LIBS技术的装置主要由脉冲激光器、光谱仪、样品装载平台和计算机组成,光谱仪和计算机之间常常由光电倍增管或CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...这些意愿大部分都难以实现。反而是那些遭到诸多抱怨的民营企业,尤其是占据31%的最高市场份额、员工数不足50人、管理不规范的中小软件公司,容纳了52%的开发者队伍。 c/c++、java成为翘楚,c实力强劲 调查显示,c/c++、java已是中国开发者的最爱,delphi依然延续着它的传奇之路,而c表现出了强大的后劲,相信这个微软公司推崇备至的开发利器在未来几年会如vb一样赢得开发者的信赖。 人气最旺的2大领域——企业信息化、通信 企业信息化、通信、通用软件开发、系统集成四大领域集中了目前开发者的大多数。加入wto之后,中国企业要与世界接轨,e化是必然的趋势,况且通信这个新兴行业以其门槛高、薪水高也吸引了许多开发者。企业信息化作为传统行业向网络化迈进的必然过程,容纳着很多软件人。另外,从市场角度看,移动、游戏开发、信息全三大热点领域对开发者也同样有极强诱惑力。 本科、计算机专业、部属院校大学毕业者成为中流砥柱 软件开发,并非只有计算机专业的人才能胜任,调查显示,有近40%的开发者是从其它相关或无关专业转行而来,但不可否认的是,占据60%者仍然为科班出身者。另外,尽管从来就崇尚高中毕业生就能成为软件天才,但这样的神话毕竟只是少数,支撑中国软件业的仍然是大学教育程度以上者。参与调查者中86%具有大专以上学历,另有8%的人具有硕士学历,数据表明中国开发者的整体教育水平较高。 综合实力的三大法宝:阅历、技术与沟通 59%的开发者从业期间做过的项目不超过5个,61%的人沟通能力较差,而近76%的开发者对自己比较自信,认为自己能力不弱于公司其它人员甚至更强。根据调查,在影响软件人薪资的因素中,阅历、技术强弱是决定性因素。另外,信息化时代普遍重视团队与项目整体实力,沟通能力成为影响程序员个人发展的一个重要因素。 软件人主体正处青春期 “程序员是吃青春饭的”,这个论断在本次调查中从另外一个角度得到验证。58%的软件开发者年龄不到25岁,48%的人在本领域工作时间不到3年,这些软件生力军未来5年必将成为引导中国软件发展潮流的主力军(见表18、表19)。另外,根据调查与采访,年龄在35岁左右的第二代软件人,现在已经成长为企业或项目的管理者,在各大软件公司担当着成熟、理性、有主见的软件开发带头人的角色。 待遇与福利走向正规化 有63%的公司会根据员工表现主动加薪(见表20),近80%的公司会为员工提供基本福利,如养老、医疗保险、住房补助、午餐补助等(见表21)。培训作为提升开发人员专业技能和实力的直接手段,越来越得到更多公司的重视。根据调查,项目奖金和固定假期基本成为以项目方式运作的公司的固定法宝,以鼓励和保障员工的士气和工作积极性。越来越多的中国软件企业,开始迈向规范化管理之路。 技术与眼光是决定薪水的至关要素 绝大部分被调查者都认为技术能力是决定薪资的最关键因素。但在采访过程中,却有更多的技术总监甚至公司总经理一级,认为短期内决定一个开发者薪水的因素中技术能力确实非常关键,但从长期来看,能对开发者的薪水带来长期且持久影响的,却不只是技术能力,更多的则是他本人对业界的了解度,即眼光是否开阔。这是一个很重要的信号,如果只在技术点上打转的人,除非是技术天才型,决大多数必须从综合能力等各方面来加强,而绝非技术这一点。可以说,在加强自身技术实力的前提下,开阔的视野、一定的沟通能力、自我管理与团队管理能力都对个人的发展起到至关重要的作用。(见表22) 现状解析:五维度立体定位开发者的薪资水平 结合以上调查结果以及本刊记者的深入采访,从宏观角度来看,有五个要素立体性地将软件人定位在了一定的薪资水平上。 这五个要素分别是:眼光技术、角色定位、公司性质、行业领域、地域因素。除第一、二要素是以个体原因占主体外,其他三个关键要素都取决于社会、产业、企业或公司本身的发展情况,但这些要素也不是一成不变的,在一定程度上,都是双向选择。 眼光技术是关键 一级:眼光与阅历 二级:核心技术 三级:专业与沟通 眼光开阔者得高薪 被采访者:王永刚 个人背景:软件公司cto 对于“决定薪资的最关键因素是什么”这个问题,王永刚用“是否适合职位”来回答,这一点与很多认为技术能力强就可以拿高薪的观点很不一样。他认为,多数职位分工不同,即便技术能力强但不适合职位,一样拿不到理想的薪水。他们公司在给员工定职定薪时,会与权威的咨询公司合作,从分析职位工作职责,到该职位所要求的人员素质,再到应聘员工对该职位的理解以及实际的工作情况,进行综合考虑。 专业与技术产生核心竞争力 被采访者:孙勇 个人背景:高级程序员,linux下c/c++开发 工作四年来,孙勇一直从事linux下使用c/c++进行的嵌入式开发,四年中跳过两次槽。跳槽前后的薪水变化很有意思,跳槽前月薪低年薪高,跳槽后月薪高但年薪却降了很多,原因是第一家公司项目奖金、年终分红很多,而第二家公司却没有其他方面的奖励机制。 孙勇自认为跳槽太过频繁,这样对自己技术能力的发展会产生较多的负面影响。在他看来,一个人薪资的高低终究取决于自己技术的核心竞争力,变动太大可能会造成技术上的不连续。所以孙勇说,未来五年内自己会沉浸于技术不考虑其它,目的只有一个,就是让自己更专业、更核心! 专家分析:眼光专业与核心竞争力是定位软件人层级的第一法码,其包含着很多的综合因素:专业背景、阅历、经验值、能力高下等等。趋势全球研发及资讯执行副总裁国屏认为,“技术很重要,但更重要的是市场和文化的配合。在个人的发展过程中,学习也会起到重要的作用。此外,还必须认同企业文化,具备技术、对工作、对解决问题的热情”。此外,学习能力和沟通能力也是专家们认为重要度很高的2个要素。当然,这其中,作为前提“最重要的还是兴趣,缘于自身对程序开发的热爱”,8848公司cto张研如是说。 角色大挪移 一级指标:cto、项目承包人 二级指标:架构师、部门主管/项目主管 三级指标:普通开发人员 从个人发展的角度和过程来看,这个指标应该是倒向。但从业界普遍的认识,无论是能力、阅历还是收入待遇,人们普遍对一级指标中的人员更多持赞赏态度。 被采访者:张齐生 个人背景:技术总监 起初,我只是在一家软件公司作java程序员,后来随着项目的进展以及工作时间的推移,自己的技术能力、项目管理能力也逐步加强,从最初的开发人员做到项目主管,2003年底的时候做到技术总监,工资范围也从最初的4000元到8000元,再到技术总监的万元,角色的改变确实带来了很多附加价值,当然,这个职位要求你带来的价值也会更多。 专家分析:出现这种工资结构是正常的。因为架构师、cto一般都是从普通开发人员过来的,具有深厚的业界开发经验和背景。联合信息集团移动应用开发部总经理熊军认为,开发人员必须“对自己能力的认识有一个准确的职业定位。认识自己,才能准确地职业定位,有了准确的职业定位,才能有短期、中期和长期的发展方向和动力。” 8848公司cto张研表示反对“学而优则士”、“不想当将军的士兵就不是好士兵”此类说法。同样,csdn网站、《程序员》杂志社总经理蒋涛也不建议所有程序员都向管理道路发展,因为相比之下,项目经理和cto必定具有一些独特的素质,比如沟通能力、项目管理能力,组织能力、计划能力以及产品和技术的眼光等,这些素质并不是每一个人都具备的。 公司对对碰 一级指标:外资、合资、民营大型it公司 二级指标:合资、中小软件公司 三级指标:国企、事业单位 采访中,有位叫王岩的资深开发人员一再强调,如果可能,一定要进外企。本次调查中,微软亚洲研究院,ibm研究院等外企几乎成了大部分开发人员所向往的圣地。 外企是我第一选择 被采访者:李文山 个人背景:技术支持 上海交大毕业的李文山,在校时就已经参与了很多社团活动,因此也见识了不少各种企业人员的做事风格与思想状态。外企大公司前沿的技术科研、严谨负责的处事态度都给他留下了深刻的印象。当然,丰富的培训、优厚的待遇、放心的福利也是必须考虑的因素。用他的话说,“身边全是一级的牛人,自己的发展自然就有了保障”。 中小软件企业机会多 被采访者:刘洋 个人背景:项目经理+程序员 天天加班加点,见到刘洋时他一脸的菜色,但心情不错。毕业不到一年,他就凭技术能力与管理能力当上了项目经理。虽然下面员工流动率高,但刘洋的薪水却是老板亲自钦点,比起毕业的同班同学绰绰有余。从项目最初的客户谈判、到中间执行,再到最后的交工,刘洋什么都做过,因此也锻炼得几乎成了全能手。对于未来,他希望公司业务做大后,能再规范一些,当然,随着公司的成长,自己上升的空间也很大。 三企走遍 被采访者:阿蒙(vchome.net) 个人背景:6年,通信行业,珠海 我很幸运,毕业时就进了美资软件公司,从事系统软件的开发工作,主要应用c/c++、x86汇编、mips汇编、ddk、sdk等技术,年薪四万多。在这家外企工作两年后,技术与处事能力大有提高,但开始心生厌倦,总觉得外面的世界很精彩。后来有一家从事通信软件产品开发的公司,答应年薪翻倍,一年后可走上管理层,怦然心动后就去新公司报到了。一年后,如愿以偿地走上管理层,两年后,技术管理能力以及行业业务能力有了质的飞跃,也越来越发现这个行业有前途,于是与朋友开始策划开公司,资金融到后就轰轰烈烈地创业了。没日没干了一年,由于资金与市场的原因,公司over,只好灰溜溜地去一家香港合资公司继续打工,仍做管理层。 我的感觉是,外企有一整套规章制度,薪金制度也较为完善,工作考评有客观的数值:月工作计划与总结、季度工作考核、上司的总体评价等,这些考核都很详细,细到完成的代码量、文档数、提过什么建议等等。国内企业也有计划与考核,但更多的是主观态度,而对工作的效果与过程并不具体细化,人际关系、表达能力等往往起着很微妙的关键作用。当然国内企业也有很多优点,比如制度灵活。 专家点评:人才的争夺,一方面是卯足了劲准备抢占有利地势和环境的个人开发者,另一方面,企业间的人才争夺战越演越烈。在此情况下,为了吸引国内的高素质人才,不少外企纷纷在中国开设研究院,走“曲线救国”道路。根据一份猎头资料,摩托罗拉研发中心、松下电器中国研究开发公司、ibm中国研究中心、朗讯公司贝尔实验室、微软中国研究院都是猎取高级科研、管理人才的大头。外企与外企、外企与国企、国企与民企,这个三角关系,虽然在早几年优劣非常明显,但现在,这种差距正在明显缩小。具体适合哪个企业,围城内外其实也并不是三重天(见下页表23)。 热点行业易淘金 一级推荐:移动开发、游戏开发 二级推荐:安全领域、企业信息化 三级推荐:通用软件、系统平台、项目开发等 专家点评:出现这种趋势主要是由市场对软件人才的供求决定的,因为目前在移动和游戏领域开发人员确实比较少,所以相对而言,他们的薪资较高,这就是所谓的“奇货可居”。但是,目前市场在成长,这些新兴或热点领域的开发人员数量也在逐渐增加,当达到一个平衡点时,他们的工资也会随之下降,这主要由市场对人才的供求关系决定。不建议开发人员轻易放弃自己原有的开发领域花大量时间和精力投向自己不熟悉的领域。 所以,熊军认为:这两个行业方向的长线发展看好,也需要更多的开发人员,但是年轻人都要根据自己的兴趣爱好、思维模式、技术能力选择更适合自己的行业方向,而且也有很多更有潜力的方向,建议年轻人从长远考虑。 地域火拼 一级指标:北京、上海 二级指标:深圳、杭州、广州 三级指标:成都、武汉、大连等 绝大多数的软件从业人员集中在北京、上海、广州和深圳四大城市,其中尤以北京的人数最为集中,但在另一项相关的调查中,上海却是程序员最向往的城市。在本次收入调查中,北京、上海的工资较高。武汉稍低于成都。 地域不同,薪资有别 被采访者:青润 个人背景:5年,电信行业、软件企业服务 我本人在北京、上海、深圳、成都四地都曾工作过。我基本上这样认为,对于刚刚大学毕业的软件人员,工资情况是这样:成都1500-2000元/月,上海2000元/月,深圳2000-2500元/月,北京2000-2500元/月。工作几年后,以成都系数为1来计,上海和其他地方为1.3-1.5倍于成都的收入。差异主要也是因为生活成本造成的。 相比而言,北京具有王者气氛,有着俯瞰全国的实力和影响力。上海是经济驱动的城市。深圳对人的友好度最好,它的优点是有各种各样的新技术公司,缺点是缺乏大公司的支撑。好山好水的成都,虽起步了很多软件公司,但大都在出川后倒下了,或者只是长居四川,足少出户,感觉比较舒适和懒散。 安逸的成都竞争的北京 被采访者:夏桅 个人背景:。net开发人员 夏桅毕业之后就来到北京从事软件开发工作。但他时常怀念起成都的生活,那里的山,那里的水,还有怡然自得的成都人都给他留下了深刻的印象。 但夏桅还是不后悔。一方面,安逸的环境对自己发展不利,适度的竞争可以发掘自身的潜力。而且,眼界开阔了,薪水也高不少。当然,在北京的生活绝对说不上舒服,但机会多,可有多种选择,极大地改观了自己的现状。 一眼可以看到头的武汉,但我喜欢 被采访者:刘如宁 个人背景:大学教师、项目主管 在武汉工作了10多年,刘如宁感觉还是比较惬意。比收入,武汉可能还不如成都,更别提北京和上海,但武汉的生活成本比较低,几块钱就够一天的伙食了。在高校担当大学教师的刘如宁,科研任务不重,而且还有足够的时间去外面承接项目,用自己喜欢的软件开发技术赚取外快。“我不是一个特别喜欢接受挑战的人,这种做自己喜欢的事情、宁静而富裕的生活,我还是比较满足”,有房、有车,生活安定富足的刘如宁如是说。 专家点评:比“营利”,必须是一个闭环。有收入比较,还得有支出比较,两者对比后才是最终收获。在地域这个问题上,大城市,确实收入比较高,但相对的,生活成本也较高。 趋势全球研发及资讯执行副总裁梁国屏表示,趋势的薪资结构体系在全世界都是一样的,具体数值要根据各地的市场来调整。比如一个经理,他的等级可能是10,那么不论在中国、日本还是美国,他的等级都是10.但这个等级的薪水具体是多少,就要看当地的市场了,趋势会和当地的薪资调查单位合作,来确定系数,然后计算出具体的薪水。 除薪水外,地域的附加价值会更重要一些。第一,对于技术发展比较迅速的it业,在大城市,整体的环境和氛围相对会好一些,例如在北京和上海等地,几乎每天都会有技术论坛、开发者大会、大厂商的开发日、各领域大师的巡回讲座等。其次,作的机会也会比较多,因为集中了各种类型的公司和企业,总会找到适合你条件的合适职位和选择。第三,可以参与比较大的技术团体,形成独特的生活与社交圈。用8848公司cto张研的话来说,“如果周围都是高手,你不是高手也难”,所以地域对人影响最大的是提供了一个环境,其次才是机会和薪水。 对此,telelogic公司北方区总经理任群力建议说,“如果开发人员能够善于利用互联网,并有决心多学习,这种地域差异会得到弱化。” 我拿青春赌明天 在本次专题组织中,大部分被采访人都明确表示,自己会在软件业领域一直奋斗下去,因为从中得到了很多的快乐与激情。但明天是否一定会更好,这需要从两个角度去考虑:一是从个人角度讲,年轻的软件人一定要有个人职业的规划,而且这种规划要从自己特点或专长出发,与当前业界相适应。另外,更重要的是,个人发展到什么程度,还需要同整个软件大环境和社会环境挂钩。 个人职业要规划 现在广州做了4年delphi/c行业开发、年薪10万的王旋说,“工作后所得到的收获就是,学习和工作要有相对明确的目标,不能因为一时心动而去学习某一技术。在真正下决定之前,我通常会考虑更多因素,包括长期的发展、个人路线的规划、需要付出的代价、可能遇到的困难以及解决的办法等等,在决定后还会制定更加明确的计划,包括短期、中期和长期的,身边可以利用到的资源,以及每一个阶段是怎么过渡到更高阶段的计划。” 现在,越来越多的在职人员意识到,未来的职业细分市场中,只有在某一领域确实比较深入、具有专长和资源的人会得到企业的重视,浪里淘沙勇者胜。 中国软件业面临困境 中国的软件业发展目前面临两难境地。上至国家,下至各城市都给予了相当的政策优惠,但整体软件业的发展却一直雷声大,雨点小。对此,北航软件学院院长孙伟忧心忡忡,“很多人从心里看不起印度,但印度的软件业却有数家2万、3万员工规模的大企业,放眼中国,规模最大的东软集团、用友公司,真正的软件开发者也不过两、三千人,这种差别太巨大了,我们一定要好好思考,中国的软件业究竟出了什么问题?” 对此,很多专家认为,中国软件业已经面临一个新的转折点,随着信息化在各行各业的深入运用,软件业有机会深度专业化,由边缘而进入核心,从而形成以深度专业化为特征的核心竞争力。无论个人还是公司,我们都有幸在第一时间站在了软件业这块前沿阵地,但明天是否会更好,还有待于中国软件业的整体发展,在这颇为沉闷的时刻,我们期望“让暴风雨来得更猛烈些吧”! 参考资料:http://www.w-training.com/viewc.asp?id=23922 ====================================================== 在最后,我邀请大家参加新浪APP,就是新浪免费送大家的一个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
286
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chown user:group file
- 改变文件的所有者和组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"