前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[RIGHT OUTER JOIN在Hib...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hibernate
Hibernate , Hibernate是一个开源的Java对象关系映射(ORM)框架,它提供了将Java对象模型与传统的关系型数据库进行映射的工具,简化了Java应用程序对数据库的操作,如查询、更新和事务处理等。在本文语境中,Hibernate允许开发者通过面向对象的方式来操作数据库,并支持JOIN查询功能。 Criteria API , Criteria API是Hibernate提供的一种API接口,用于构建动态SQL查询。它允许开发人员在运行时创建并执行面向对象的查询,而无需编写硬编码的HQL或原生SQL语句。在本文中,通过使用Criteria API,可以灵活地构造JOIN查询条件,实现表间数据关联查询。 HQL (Hibernate Query Language) , HQL是Hibernate特有的查询语言,类似于SQL但更面向对象。它允许开发人员以类和属性的方式来查询数据库,而不是直接操作数据库表。在本文上下文中,HQL被用来编写JOIN查询语句,可以根据实体类之间的关联关系来检索多个表中的数据,使得查询更具可读性和移植性。 JOIN , JOIN是SQL中的一个关键概念,用于合并来自两个或更多表的行。根据JOIN类型的不同(INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN),可以从这些表中选择满足特定连接条件的数据行进行组合。在Hibernate中,可以通过Criteria API或HQL来执行JOIN操作,以便从多个相关联的实体类中获取所需数据。
2023-01-23 14:43:22
504
雪落无痕-t
Apache Pig
...别是在执行多表联接(JOIN)这样的高级操作时,Pig展现出了其无可比拟的优势。这篇文咱要带你手把手探索如何用Apache Pig玩转多表联合查询,还会甩出几个实例代码,让你亲眼见证它是怎么在实际场景中大显身手的。 2. Apache Pig与多表联接简介 在处理大规模数据时,我们经常需要从不同的数据源提取信息并通过联接操作将它们整合在一起。Apache Pig就像个数据库大厨,它手中掌握着JOIN操作的各种秘籍,比如内联接(INNER JOIN)、外联接(OUTER JOIN)、左联接(LEFT JOIN)和右联接(RIGHT JOIN)这些“调料”。这就意味着用户可以根据自己实际的“口味”和“菜式”,灵活地处理那些复杂得像蜘蛛网一样的关联查询,让数据处理变得轻松又自在。 3. 实战Apache Pig中的多表联接操作 (示例一) 内联接操作 假设我们有两个关系式数据集:orders和customers,分别存储订单信息和客户信息。现在我们希望找出所有下单的客户详细信息。 pig -- 定义并加载数据 orders = LOAD 'orders_data' AS (order_id:int, customer_id:int, order_date:chararray); customers = LOAD 'customers_data' AS (customer_id:int, name:chararray, email:chararray); -- 进行内联接操作 joined_data = JOIN orders BY customer_id, customers BY customer_id; -- 显示结果 DUMP joined_data; 在这个例子中,JOIN orders BY customer_id, customers BY customer_id;这句Pig Latin语句完成了两个数据集基于customer_id字段的内联接操作。 (示例二) 左外联接操作 有时,我们可能需要获取所有订单以及相关的客户信息,即使某些订单找不到对应的客户记录。 pig -- 左外联接操作 left_joined_data = JOIN orders BY customer_id LEFT, customers BY customer_id; -- 查看结果,未找到匹配项的客户信息将以null表示 DUMP left_joined_data; 4. 思考与理解过程 使用Apache Pig进行多表联接时,它的优势在于其底层自动优化JOIN算法,可以有效利用Hadoop MapReduce框架的分布式计算能力,大大提高了处理大规模数据集的效率。另外,Pig Latin这门语言的语法设计得既简单又明了,学起来超省劲儿,这样一来,开发者就能把更多的精力放在对付那些复杂的数据处理逻辑上,而不是在底层实现的细枝末节里兜圈子啦。 5. 探讨与总结 Apache Pig在处理多表联接这类复杂操作上表现出了卓越的能力,不仅简化了数据处理流程,还极大地提升了开发效率。虽然Pig确实帮我们省了不少力气,但身为数据工程师,在实际工作中咱们还是得绞尽脑汁琢磨怎么巧妙地设计JOIN条件。为啥呢?就是为了避免那些不必要的性能卡壳问题呗。同时,咱们还要灵活应变,根据实际情况挑选出最对味的数据模型和JOIN类型,让工作更加顺溜儿。 总的来说,Apache Pig以其人性化的语言风格、高效的执行引擎以及丰富的JOIN功能,在大数据处理领域展现了独特魅力。对于那些埋头苦干,热衷于从浩瀚数据海洋中挖宝的家伙们来说,真正掌握并灵活运用Pig进行多表联接,那可是让工作效率蹭蹭上涨的超级大招啊!
2023-06-14 14:13:41
456
风中飘零
转载文章
...使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
...用 课程计划媒资信息查询接口,获取该课程计划的视频播放的 m3u8 url地址,并返回给前端,前端使用该 url 进行视频的在线播放。 在线学习完整的测试流程:媒资信息的上传、选择、发布到前端门户、搜索门户测试,在线学习的播放视频。 目录 内容会比较多,小伙伴门可以根据目录进行按需查阅。 文章目录 😎 知识点概览 目录 一、学习页面:查询课程计划 0x01 需求分析 0x02 Api接口 0x03 服务端开发 Controller Service 测试 0x04 前端开发 配置NGINX虚拟主机 前端 API 方法 前端 API 方法调用 测试 二、学习页面:获取视频播放地址 0x01 需求分析 0x02 课程发布:储存媒资信息 需求分析 数据模型 Dao Service 测试 0x03 Logstash:扫描课程计划媒资 创建索引 创建模板文件 配置 mysql.conf 启动 logstash.bat Logstash多实例运行 0x04 搜素服务:查询课程媒资接口 需求分析 Api接口定义 Service Controller 测试 三、在线学习:接口开发 0x01 需求分析 0x02 搭建开发环境 0x03 Api接口 0x04 服务端开发 需求分析 搜索服务注册Eureka 搜索服务客户端 自定义错误代码 Service Controller 测试 0x05 前端开发 需求分析 api方法 配置代理 视频播放页面 简单的测试 完整的测试 1、上传文件 一些问题 ~~方案1:删除本地分块文件重新尝试上传~~ 方案2:检查前端提交的MD5值是否正确 2、为课程计划选择媒资信息 3、前端门户测试 四、待完善的一些功能 😁 认识作者 一、学习页面:查询课程计划 0x01 需求分析 到目前为止,我们已可以编辑课程计划信息并上传课程视频,下一步我们要实现在线学习页面动态读取章节对应的视频并进行播放。在线学习页面所需要的信息有两类: 课程计划信息 课程学习信息(视频地址、学习进度等) 如下图: 在线学习集成媒资管理的需求如下: 1、在线学习页面显示课程计划 2、点击课程计划播放该课程计划对应的视频 本章节实现学习页面动态显示课程计划,进入不同课程的学习页面右侧动态显示当前课程的课程计划。 0x02 Api接口 课程计划信息从哪里获取? 在课程发布完成后会自动发布到一个 course_pub 的表中,logstash 会自动将课程发布后的信息自动采集到 ES 索引库中,这些信息也包含课程计划信息。 所以考虑性能要求,课程发布后对课程的查询统一从 ES 索引库中查询。 前端通过请求 搜索服务 获取课程信息,需要单独在 搜索服务 中定义课程信息查询接口。 本接口接收课程id,查询课程所有信息返回给前端。 我们在搜素服务 API 下添加以下方法 @ApiOperation("根据id搜索课程发布信息")public Map<String,CoursePub> getdetail(String id); 返回的课程信息为 json 结构:key 为课程id,value 为课程内容。 0x03 服务端开发 在搜索服务中开发查询课程信息接口。 Controller 在搜素服务下添加以下方法 / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/@Override@GetMapping("/getdetail/{id}")public Map<String, CoursePub> getdetail(@PathVariable("id")String id) {return esCourseService.getdetail(id);} Service / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/public Map<String, CoursePub> getdetail(String id) {//设置索引SearchRequest searchRequest = new SearchRequest(es_index);//设置类型searchRequest.types(es_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//设置查询条件,根据id进行查询searchSourceBuilder.query(QueryBuilders.termQuery("id",id));//这里不使用source的原字段过滤,查询所有字段// searchSourceBuilder.fetchSource(new String[]{"name", "grade", "charge","pic"}, newString[]{});//设置搜索源对象searchRequest.source(searchSourceBuilder);//执行搜索SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取搜索结果SearchHits hits = searchResponse.getHits();SearchHit[] searchHits = hits.getHits(); //获取最优结果Map<String,CoursePub> map = new HashMap<>();for (SearchHit hit: searchHits) {//从搜索结果中取值并添加到coursePub对象Map<String, Object> sourceAsMap = hit.getSourceAsMap();String courseId = (String) sourceAsMap.get("id");String name = (String) sourceAsMap.get("name");String grade = (String) sourceAsMap.get("grade");String charge = (String) sourceAsMap.get("charge");String pic = (String) sourceAsMap.get("pic");String description = (String) sourceAsMap.get("description");String teachplan = (String) sourceAsMap.get("teachplan");CoursePub coursePub = new CoursePub();coursePub.setId(courseId);coursePub.setName(name);coursePub.setPic(pic);coursePub.setGrade(grade);coursePub.setTeachplan(teachplan);coursePub.setDescription(description);//设置map对象map.put(courseId,coursePub);}return map;} 测试 使用 swagger-ui 或 postman 测试查询课程信息接口。 0x04 前端开发 配置NGINX虚拟主机 学习中心的二级域名为 ucenter.xuecheng.com ,我们在 nginx 中配置 ucenter 虚拟主机。 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;} } 前端ucenterupstream ucenter_server_pool{server 127.0.0.1:7081 weight=10;server 127.0.0.1:13000 weight=10;} 在学习中心要调用搜索的 API,使用 Nginx 解决代理,如下图: 在 ucenter 虚拟主机下配置搜索 Api 代理路径 后台搜索(公开api)upstream search_server_pool{server 127.0.0.1:40100 weight=10;} 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/;} } 前端 API 方法 在学习中心 xc-ui-pc-leanring 对课程信息的查询属于基础常用功能,所以我们将课程查询的 api 方法定义在base 模块下,如下图: 在system.js 中定义课程查询方法: import http from './public'export const course_view = id => {return http.requestGet('/openapi/search/course/getdetail/'+id);} 前端 API 方法调用 在 learning_video.vue 页面中调用课程信息查询接口得到课程计划,将课程计划json 串转成对象。 xc-ui-pc-leanring/src/module/course/page/learning_video.vue 1、定义视图 课程计划 <!--课程计划部分代码--><div class="navCont"><div class="course-weeklist"><div class="nav nav-stacked" v-for="(teachplan_first, index) in teachplanList"><div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>{ {teachplan_first.pname} }<i class="pull-right"></i></div><li v-if="teachplan_first.children!=null" v-for="(teachplan_second, index) in teachplan_first.children"><i class="glyphicon glyphicon-check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li><!-- <div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>第一章<i class="pull-right"></i></div><li ><i class="glyphicon glyphicon-check"></i><a :href="url" >第一节</a></li>--><!--<li><i class="glyphicon glyphicon-unchecked"></i>为什么分为A、B、C部分</li>--></div></div></div> 课程名称 <div class="top text-center">{ {coursename} }</div> 定义数据对象 data() {return {url:'',//当前urlcourseId:'',//课程idchapter:'',//章节Idcoursename:'',//课程名称coursepic:'',//课程图片teachplanList:[],//课程计划playerOptions: {//播放参数autoplay: false,controls: true,sources: [{type: "application/x-mpegURL",src: ''}]},} } 在 created 钩子方法中获取课程信息 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;} let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;} })}, 测试 在浏览器请求:http://ucenter.xuecheng.com//learning/4028e581617f945f01617f9dabc40000/0 4028e581617f945f01617f9dabc40000:第一个参数为课程 id,测试时从 ES索引库找一个课程 id 0:第二个参数为课程计划 id,此参数用于点击课程计划播放视频。 如果出现跨域问题,但是确定已经配置了跨域,请尝试结束所以 nginx.exe 的进程 和 清空浏览器缓存。 如果还没有解决?重启电脑试试。 二、学习页面:获取视频播放地址 0x01 需求分析 用户进入在线学习页面,点击课程计划将播放该课程计划对应的教学视频。 业务流程如下: 业务流程说明: 1、用户进入在线学习页面,页面请求搜索服务获取课程信息(包括课程计划信息)并且在页面展示。 2、在线学习请求学习服务获取视频播放地址。 3、学习服务校验当前用户是否有权限学习,如果没有权限学习则提示用户。 4、学习服务校验通过,请求搜索服务获取课程媒资信息。 5、搜索服务请求ElasticSearch获取课程媒资信息。 为什么要请求 ElasticSearch 查询课程媒资信息? 出于性能的考虑,公开查询课程信息从搜索服务查询,分摊 mysql 数据库的访问压力。 什么时候将课程媒资信息存储到 ElasticSearch 中? 课程媒资信息是在课程发布的时候存入 ElasticSearch,因为课程发布后课程信息将基本不再修改。 0x02 课程发布:储存媒资信息 需求分析 课程媒资信息是在课程发布的时候存入 ElasticSearch 索引库,因为课程发布后课程信息将基本不再修改,具体的业务流程如下。 1、课程发布,向课程媒资信息表写入数据。 1)根据课程 id 删除 teachplanMediaPub 中的数据 2)根据课程 id 查询 teachplanMedia 数据 3)将查询到的 teachplanMedia 数据插入到 teachplanMediaPub 中 2、Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 数据模型 在 xc_course 数据库创建课程计划媒资发布表: CREATE TABLE teachplan_media_pub (teachplan_id varchar(32) NOT NULL COMMENT '课程计划id',media_id varchar(32) NOT NULL COMMENT '媒资文件id',media_fileoriginalname varchar(128) NOT NULL COMMENT '媒资文件的原始名称',media_url varchar(256) NOT NULL COMMENT '媒资文件访问地址',courseid varchar(32) NOT NULL COMMENT '课程Id',timestamp timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT'logstash使用',PRIMARY KEY (teachplan_id)) ENGINE=InnoDB DEFAULT CHARSET=utf8 数据模型类如下: package com.xuecheng.framework.domain.course;import lombok.Data;import lombok.ToString;import org.hibernate.annotations.GenericGenerator;import javax.persistence.;import java.io.Serializable;import java.util.Date;@Data@ToString@Entity@Table(name="teachplan_media_pub")@GenericGenerator(name = "jpa-assigned", strategy = "assigned")public class TeachplanMediaPub implements Serializable {private static final long serialVersionUID = -916357110051689485L;@Id@GeneratedValue(generator = "jpa-assigned")@Column(name="teachplan_id")private String teachplanId;@Column(name="media_id")private String mediaId;@Column(name="media_fileoriginalname")private String mediaFileOriginalName;@Column(name="media_url")private String mediaUrl;@Column(name="courseid")private String courseId;@Column(name="timestamp")private Date timestamp;//时间戳} Dao 创建 TeachplanMediaPub 表的 Dao,向 TeachplanMediaPub 存储信息采用先删除该课程的媒资信息,再添加该课程的媒资信息,所以这里定义根据课程 id 删除课程计划媒资方法: public interface TeachplanMediaPubRepository extends JpaRepository<TeachplanMediaPub, String> {//根据课程id删除课程计划媒资信息long deleteByCourseId(String courseId);} 从TeachplanMedia查询课程计划媒资信息 //从TeachplanMedia查询课程计划媒资信息public interface TeachplanMediaRepository extends JpaRepository<TeachplanMedia, String> {List<TeachplanMedia> findByCourseId(String courseId);} Service 编写保存课程计划媒资信息方法,并在课程发布时调用此方法。 1、保存课程计划媒资信息方法 本方法采用先删除该课程的媒资信息,再添加该课程的媒资信息,在 CourseService 下定义该方法 //保存课程计划媒资信息private void saveTeachplanMediaPub(String courseId){//查询课程媒资信息List<TeachplanMedia> byCourseId = teachplanMediaRepository.findByCourseId(courseId);if(byCourseId == null) return; //没有查询到媒资数据则直接结束该方法//将课程计划媒资信息储存到待索引表//删除原有的索引信息teachplanMediaPubRepository.deleteByCourseId(courseId);//一个课程可能会有多个媒资信息,遍历并使用list进行储存List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for (TeachplanMedia teachplanMedia: byCourseId) {TeachplanMediaPub teachplanMediaPub = new TeachplanMediaPub();BeanUtils.copyProperties(teachplanMedia, teachplanMediaPub);teachplanMediaPubList.add(teachplanMediaPub);}//保存所有信息teachplanMediaPubRepository.saveAll(teachplanMediaPubList);} 2、课程发布时调用此方法 修改课程发布的 coursePublish 方法: ....//保存课程计划媒资信息到待索引表saveTeachplanMediaPub(courseId);//页面urlString pageUrl = cmsPostPageResult.getPageUrl();return new CoursePublishResult(CommonCode.SUCCESS,pageUrl);..... 测试 测试课程发布后是否成功将课程媒资信息存储到 teachplan_media_pub 中,测试流程如下: 1、指定一个课程 2、为课程计划添加课程媒资 3、执行课程发布 4、观察课程计划媒资信息是否存储至 teachplan_media_pub 中 注意:由于此测试仅用于测试发布课程计划媒资信息的功能,可暂时将 cms页面发布的功能暂时屏蔽,提高测试效率。 测试结果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vrzs5589-1595567273126)(https://qnoss.codeyee.com/20200704_15/image7)] 0x03 Logstash:扫描课程计划媒资 Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 创建索引 1、创建 xc_course_media 索引 2、并向此索引创建如下映射 POST: http://localhost:9200/xc_course_media/doc/_mapping {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }} 索引创建成功 创建模板文件 在 logstach 的 config 目录文件 xc_course_media_template.json 文件路径为 %ES_ROOT_DIR%/logstash6.8.8/config/xc_course_media_template.json %ES_ROOT_DIR% 为 ElasticSearch 和 logstash 的安装目录 内容如下: {"mappings" : {"doc" : {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }},"template" : "xc_course_media"} } 配置 mysql.conf 在logstash的 config 目录下配置 mysql_course_media.conf 文件供 logstash 使用,logstash 会根据 mysql_course_media.conf 文件的配置的地址从 MySQL 中读取数据向 ES 中写入索引。 参考https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html 配置输入数据源和输出数据源。 input {stdin {} jdbc {jdbc_connection_string => "jdbc:mysql://localhost:3306/xc_course?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC" 数据库信息jdbc_user => "root"jdbc_password => "123123" MYSQL 驱动地址,修改为maven仓库对应的位置jdbc_driver_library => "D:/soft/apache-maven-3.5.4/repository/mysql/mysql-connector-java/5.1.40/mysql-connector-java-5.1.40.jar" the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"jdbc_paging_enabled => "true"jdbc_page_size => "50000"要执行的sql文件statement_filepath => "/conf/course.sql"statement => "select from teachplan_media_pub where timestamp > date_add(:sql_last_value,INTERVAL 8 HOUR)"定时配置schedule => " "record_last_run => truelast_run_metadata_path => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_metadata"} } output {elasticsearch {ES的ip地址和端口hosts => "localhost:9200"hosts => ["localhost:9200","localhost:9202","localhost:9203"]ES索引库名称index => "xc_course_media"document_id => "%{teachplan_id}"document_type => "doc"template => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_template.json"template_name =>"xc_course_media"template_overwrite =>"true"} stdout {日志输出codec => json_lines} } 启动 logstash.bat 启动 logstash.bat 采集 teachplan_media_pub 中的数据,向 ES 写入索引。 logstash.bat -f ../config/mysql_course_media.conf 课程发布成功后,Logstash 会自动参加 teachplan_media_pub 表中新增的数据,效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ILPBxfXi-1595567273134)(https://qnoss.codeyee.com/20200704_15/image10)] Logstash多实例运行 由于之前我们还启动了一个 Logstash 对课程的发布信息进行采集,所以如果想两个 logstash 实例同时运行,因为每个实例都有一个.lock文件,所以不能使用同一个目录来存放数据,所以我们需要使用 --path.data= 为每个实例指定单独的数据目录,具体的代码如下: 该配置是在windows下进行的 课程发布实例 logstash_start_course_pub.bat @title logstash in course_publogstash.bat -f ..\config\mysql.conf --path.data=../data/course_pub 课程计划媒体发布实例 logstash_start_teachplan_media.bat @title logstash i n teachplan_media_publogstash.bat -f ../config/mysql_course_media.conf --path.data=../data/teachplan_media/ 同时运行效果如下 0x04 搜素服务:查询课程媒资接口 需求分析 搜索服务 提供查询课程媒资接口,此接口供学习服务调用。 Api接口定义 @ApiOperation("根据课程计划查询媒资信息")public TeachplanMediaPub getmedia(String teachplanId); Service 1、配置课程计划媒资索引库等信息 在 application.yml 中配置 xuecheng:elasticsearch:hostlist: ${eshostlist:127.0.0.1:9200} 多个结点中间用逗号分隔course:index: xc_coursetype: docsource_field: id,name,grade,mt,st,charge,valid,pic,qq,price,price_old,status,studymodel,teachmode,expires,pub_time,start_time,end_timemedia:index: xc_course_mediatype: docsource_field: courseid,media_id,media_url,teachplan_id,media_fileoriginalname 2、service 方法开发 在 课程搜索服务 中定义课程媒资查询接口,为了适应后续需求,service 参数定义为数组,可一次查询多个课程计划的媒资信息。 / 根据一个或者多个课程计划id查询媒资信息 @param teachplanIds 课程id @return QueryResponseResult/public QueryResponseResult<TeachplanMediaPub> getmedia(String [] teachplanIds){//设置索引SearchRequest searchRequest = new SearchRequest(media_index);//设置类型searchRequest.types(media_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//源字段过滤String[] media_index_arr = media_field.split(",");searchSourceBuilder.fetchSource(media_index_arr, new String[]{});//查询条件,根据课程计划id查询(可以传入多个课程计划id)searchSourceBuilder.query(QueryBuilders.termsQuery("teachplan_id", teachplanIds));searchRequest.source(searchSourceBuilder);SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取结果SearchHits hits = searchResponse.getHits();long totalHits = hits.getTotalHits();SearchHit[] searchHits = hits.getHits();//数据列表List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for(SearchHit hit:searchHits){TeachplanMediaPub teachplanMediaPub =new TeachplanMediaPub();Map<String, Object> sourceAsMap = hit.getSourceAsMap();//取出课程计划媒资信息String courseid = (String) sourceAsMap.get("courseid");String media_id = (String) sourceAsMap.get("media_id");String media_url = (String) sourceAsMap.get("media_url");String teachplan_id = (String) sourceAsMap.get("teachplan_id");String media_fileoriginalname = (String) sourceAsMap.get("media_fileoriginalname");teachplanMediaPub.setCourseId(courseid);teachplanMediaPub.setMediaUrl(media_url);teachplanMediaPub.setMediaFileOriginalName(media_fileoriginalname);teachplanMediaPub.setMediaId(media_id);teachplanMediaPub.setTeachplanId(teachplan_id);//将对象加入到列表中teachplanMediaPubList.add(teachplanMediaPub);}//构建返回课程媒资信息对象QueryResult<TeachplanMediaPub> queryResult = new QueryResult<>();queryResult.setList(teachplanMediaPubList);queryResult.setTotal(totalHits);return new QueryResponseResult<TeachplanMediaPub>(CommonCode.SUCCESS,queryResult);} Controller / 根据课程计划id搜索发布后的媒资信息 @param teachplanId @return/@GetMapping(value="/getmedia/{teachplanId}")@Overridepublic TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId) {//为了service的拓展性,所以我们service接收的是数组作为参数,以便后续开发查询多个ID的接口String[] teachplanIds = new String[]{teachplanId};//通过service查询ES获取课程媒资信息QueryResponseResult<TeachplanMediaPub> mediaPubQueryResponseResult = esCourseService.getmedia(teachplanIds);QueryResult<TeachplanMediaPub> queryResult = mediaPubQueryResponseResult.getQueryResult();if(queryResult!=null&& queryResult.getList()!=null&& queryResult.getList().size()>0){//返回课程计划对应课程媒资return queryResult.getList().get(0);} return new TeachplanMediaPub();} 测试 使用 swagger-ui 和 postman 测试课程媒资查询接口。 三、在线学习:接口开发 0x01 需求分析 根据下边的业务流程,本章节完成前端学习页面请求学习服务获取课程视频地址,并自动播放视频。 0x02 搭建开发环境 1、创建数据库 创建 xc_learning 数据库,学习数据库将记录学生的选课信息、学习信息。 导入:资料/xc_learning.sql 2、创建学习服务工程 参考课程管理服务工程结构,创建学习服务工程: 导入:资料/xc-service-learning.zip 项目工程结构如下 0x03 Api接口 此 api 接口是课程学习页面请求学习服务获取课程学习地址。 定义返回值类型: package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResponseResult;import com.xuecheng.framework.model.response.ResultCode;import lombok.Data;import lombok.NoArgsConstructor;import lombok.ToString;@Data@ToString@NoArgsConstructorpublic class GetMediaResult extends ResponseResult {public GetMediaResult(ResultCode resultCode, String fileUrl) {super(resultCode);this.fileUrl = fileUrl;}//媒资文件播放地址private String fileUrl;} 定义接口,学习服务根据传入课程 ID、章节 Id(课程计划 ID)来取学习地址。 @Api(value = "录播课程学习管理",description = "录播课程学习管理")public interface CourseLearningControllerApi {@ApiOperation("获取课程学习地址")public GetMediaResult getMediaPlayUrl(String courseId,String teachplanId);} 0x04 服务端开发 需求分析 学习服务根据传入课程ID、章节Id(课程计划ID)请求搜索服务获取学习地址。 搜索服务注册Eureka 学习服务要调用搜索服务查询课程媒资信息,所以需要将搜索服务注册到 eureka 中。 1、查看服务名称是否为 xc-service-search 注意修改application.xml中的服务名称:spring:application:name: xc‐service‐search 2、配置搜索服务的配置文件 application.yml,加入 Eureka 配置 如下: eureka:client:registerWithEureka: true 服务注册开关fetchRegistry: true 服务发现开关serviceUrl: Eureka客户端与Eureka服务端进行交互的地址,多个中间用逗号分隔defaultZone: ${EUREKA_SERVER:http://localhost:50101/eureka/,http://localhost:50102/eureka/}instance:prefer-ip-address: true 将自己的ip地址注册到Eureka服务中ip-address: ${IP_ADDRESS:127.0.0.1}instance-id: ${spring.application.name}:${server.port} 指定实例idribbon:MaxAutoRetries: 2 最大重试次数,当Eureka中可以找到服务,但是服务连不上时将会重试,如果eureka中找不到服务则直接走断路器MaxAutoRetriesNextServer: 3 切换实例的重试次数OkToRetryOnAllOperations: false 对所有操作请求都进行重试,如果是get则可以,如果是post,put等操作没有实现幂等的情况下是很危险的,所以设置为falseConnectTimeout: 5000 请求连接的超时时间ReadTimeout: 6000 请求处理的超时时间 3、添加 eureka 依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring‐cloud‐starter‐netflix‐eureka‐client</artifactId></dependency> 4、修改启动类,在class上添加如下注解: @EnableDiscoveryClient 搜索服务客户端 在 学习服务 创建搜索服务的客户端接口,此接口会生成代理对象,调用搜索服务: package com.xuecheng.learning.client;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import org.springframework.cloud.openfeign.FeignClient;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.PathVariable;@FeignClient(value = "xc‐service‐search")public interface CourseSearchClient {@GetMapping(value="/getmedia/{teachplanId}")public TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId);} 自定义错误代码 我们在 com.xuecheng.framework.domain.learning.response 包下自定义一个错误消息模型 package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResultCode;import lombok.ToString;@ToStringpublic enum LearningCode implements ResultCode {LEARNING_GET_MEDIA_ERROR(false,23001,"学习中心获取媒资信息错误!");//操作代码boolean success;//操作代码int code;//提示信息String message;private LearningCode(boolean success, int code, String message){this.success = success;this.code = code;this.message = message;}@Overridepublic boolean success() {return success;}@Overridepublic int code() {return code;}@Overridepublic String message() {return message;} } 该消息模型基于 ResultCode 来实现,代码如下 package com.xuecheng.framework.model.response;/ Created by mrt on 2018/3/5. 10000-- 通用错误代码 22000-- 媒资错误代码 23000-- 用户中心错误代码 24000-- cms错误代码 25000-- 文件系统/public interface ResultCode {//操作是否成功,true为成功,false操作失败boolean success();//操作代码int code();//提示信息String message(); 从 ResultCode 中我们可以看出,我们约定了用户中心的错误代码使用 23000,所以我们定义的一些错误信息的代码就从 23000 开始计数。 Service 在学习服务中定义 service 方法,此方法远程请求课程管理服务、媒资管理服务获取课程学习地址。 package com.xuecheng.learning.service.impl;import com.netflix.discovery.converters.Auto;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import com.xuecheng.framework.domain.learning.response.GetMediaResult;import com.xuecheng.framework.exception.ExceptionCast;import com.xuecheng.framework.model.response.CommonCode;import com.xuecheng.learning.client.CourseSearchClient;import com.xuecheng.learning.service.LearningService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;@Servicepublic class LearningServiceImpl implements LearningService {@AutowiredCourseSearchClient courseSearchClient;/ 远程调用搜索服务获取已发布媒体信息中的url @param courseId 课程id @param teachplanId 媒体信息id @return/@Overridepublic GetMediaResult getMediaPlayUrl(String courseId, String teachplanId) {//校验学生权限,是否已付费等//远程调用搜索服务进行查询媒体信息TeachplanMediaPub mediaPub = courseSearchClient.getmedia(teachplanId);if(mediaPub == null) ExceptionCast.cast(CommonCode.FAIL);return new GetMediaResult(CommonCode.SUCCESS, mediaPub.getMediaUrl());} } Controller 调用 service 根据课程计划 id 查询视频播放地址: @RestController@RequestMapping("/learning/course")public class CourseLearningController implements CourseLearningControllerApi {@AutowiredLearningService learningService;@Override@GetMapping("/getmedia/{courseId}/{teachplanId}")public GetMediaResult getMediaPlayUrl(@PathVariable String courseId, @PathVariable String teachplanId) {//获取课程学习地址return learningService.getMedia(courseId, teachplanId);} } 测试 使用 swagger-ui 或postman 测试学习服务查询课程视频地址接口。 0x05 前端开发 需求分析 需要在学习中心前端页面需要完成如下功能: 1、进入课程学习页面需要带上 课程 Id参数及课程计划Id的参数,其中 课程 Id 参数必带,课程计划 Id 可以为空。 2、进入页面根据 课程 Id 取出该课程的课程计划显示在右侧。 3、进入页面后判断如果请求参数中有课程计划 Id 则播放该章节的视频。 4、进入页面后判断如果 课程计划id 为0则需要取出本课程第一个 课程计划的Id,并播放第一个课程计划的视频。 进入到模块 xc-ui-pc-leanring/src/module/course api方法 let sysConfig = require('@/../config/sysConfig')let apiUrl = sysConfig.xcApiUrlPre;/获取播放地址/export const get_media = (courseId,chapter) => {return http.requestGet(apiUrl+'/api/learning/course/getmedia/'+courseId+'/'+chapter);} 配置代理 在 Nginx 中的 ucenter.xuecheng.com 虚拟主机中配置 /api/learning/ 的路径转发,此url 请转发到学习服务。 学习服务upstream learning_server_pool{server 127.0.0.1:40600 weight=10;}学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/; }学习服务location ^~ /api/learning/ {proxy_pass http://learning_server_pool/learning/;} } 视频播放页面 1、如果传入的课程计划id为0则取出第一个课程计划id 在 created 钩子方法中完成 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;}let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){console.log("准备开始播放视频")let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;//开始学习if(this.chapter == "0" || !this.chapter){//取出第一个教学计划this.chapter = this.getFirstTeachplan();console.log("第一个教学计划id为 ",this.chapter);this.study(this.chapter);}else{this.study(this.chapter);} }})}, 取出第一个章节 id,用户未输入课程计划 id 或者输入为 0 时,播放第一个。 //取出第一个章节getFirstTeachplan(){for(var i=0;i<this.teachplanList.length;i++){let firstTeachplan = this.teachplanList[i];//如果当前children存在,则取出第一个返回if(firstTeachplan.children && firstTeachplan.children.length>0){let secondTeachplan = firstTeachplan.children[0];return secondTeachplan.id;} }return ;}, 开始学习: //开始学习study(chapter){// 获取播放地址courseApi.get_media(this.courseId,chapter).then((res)=>{if(res.success){let fileUrl = sysConfig.videoUrl + res.fileUrl//播放视频this.playvideo(fileUrl)}else if(res.message){this.$message.error(res.message)}else{this.$message.error("播放视频失败,请刷新页面重试")} }).catch(res=>{this.$message.error("播放视频失败,请刷新页面重试")});}, 2、点击右侧课程章节切换播放 在原有代码基础上添加 click 事件,点击调用开始学习方法(study)。 <li v‐if="teachplan_first.children!=null" v‐for="(teachplan_second, index) inteachplan_first.children"><i class="glyphicon glyphicon‐check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li> 3、地址栏路由url变更 这里需要注意一个问题,在用户点击课程章节切换播放时,地址栏的 url 也应该同步改变为当前所选择的课程计划 id 4、在线学习按钮 将 learnstatus 默认更改为 1,这样就能显示出马上学习的按钮,方便我们后续的集成测试。 文件路径为 xc-ui-pc-static-portal/include/course_detail_dynamic.html 部分代码块如下 <script>var body= new Vue({ //创建一个Vue的实例el: "body", //挂载点是id="app"的地方data: {editLoading: false,title:'测试',courseId:'',charge:'',//203001免费,203002收费learnstatus: 1 ,//课程状态,1:马上学习,2:立即报名、3:立即购买course:{},companyId:'template',company_stat:[],course_stat:{"s601001":"","s601002":"","s601003":""} }, 简单的测试 访问在线学习页面:http://ucenter.xuecheng.com//learning/课程id/课程计划id 通过 url 传入两个参数:课程id 和 课程计划id 如果没有课程计划则传入0 测试项目如下: 1、传入正确的课程id、课程计划id,自动播放本章节的视频 2、传入正确的课程id、课程计划id传入0,自动播放第一个视频 3、传入错误的课程id 或 课程计划id,提示错误信息。 4、通过右侧章节目录切换章节及播放视频。 访问: http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/4028e58161bd18ea0161bd1f73190008 传入正确的课程id、课程计划id,自动播放本章节的视频 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ef0xxym7-1595567273153)(https://qnoss.codeyee.com/20200704_15/image17)] 传入正确的课程id、课程计划id传入0,自动播放第一个视频 访问 http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/0 识别出第一个课程计划的 id 需要注意的是这里的 chapter 参数是我自己在 study 函数里加上去的,可以忽略。 传入错误的课程id或课程计划id,提示错误信息。 通过右侧章节目录切换章节及播放视频。 点击章节即可播放,但是点击制定章节后 url 没有发生改变,这个问题暂时还没有解决,关注笔记后面的内容。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TOGdxwb4-1595567273158)(https://qnoss.codeyee.com/20200704_15/image20)] 完整的测试 准备工作 启动 RabbitMQ,启动 Logstash、ElasticSearch 建议把所有后端服务都开起来 启动 前端静态门户、启动 nginx 、启动课程管理前端 我们整理一下测试的流程 上传两个媒资视频文件,用于测试 进入到课程管理,为课程计划选择媒资信息 发布课程,等待 logstash 将数据采集到 ElasticSearch 的索引库中 进入学成网主页,点击课程,进入到搜索门户页面 搜索课程,进入到课程详情页面 点击开始学习,进入到课程学习页面,选择课程计划中的一个章节进行学习。 1、上传文件 首先我们使用之前开发的媒资管理模块,上传两个视频文件用于测试。 第一个文件上传成功 一些问题 在上传第二个文件时,发生了错误,我们来检查一下问题出在了哪里 在媒体服务的控制台中可以看到,在 mergeChunks 方法在校验文件 md5 时候抛出了异常 我们在 MD5 校验这里打个断点,重新上传文件,分析一下问题所在。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpEMZGI8-1595567273166)(https://qnoss.codeyee.com/20200704_15/image23)] 单步调试后发现,合并文件后的MD5值与用户上传的源文件值不相等 方案1:删除本地分块文件重新尝试上传 考虑到可能是在用户上传完 视频的分块文件时发生了一些问题,导致合并文件后与源文件的大小不等,导致MD5也不相同,这里我们把这个视频上传到本地的文件全部删除,在媒资上传页面重新上传文件。 对比所有分块文件的字节大小和本地源文件的大小,完全是相等的 删除所有文件后重新上传,md5值还是不等,考虑从调试一下文件合并的代码。 方案2:检查前端提交的MD5值是否正确 在查阅是否有其他的MD5值获取方案时,发现了一个使用 windows 本地命令获取文件MD5值的方法 certutil -hashfile .\19-在线学习接口-集成测试.avi md5 惊奇的发现,TM的原来是前端那边转换的MD5值不正确,后端这边是没有问题的。 从前面的图可以看出,本地和后端转换的都是以一个 f6f0 开头的MD5值 那么问题就出现在前端了,还需要花一些时间去分析一下,这里暂时就先告一段落,因为上传了几个文件测试中只有这一个文件出现了问题。 2、为课程计划选择媒资信息 进入到一个课程的管理页面 http://localhost:12000//course/manage/baseinfo/4028e58161bcf7f40161bcf8b77c0000 将刚才我们上传的媒资文件的信息和课程计划绑定 选择效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-epKaqzCD-1595567273178)(https://qnoss.codeyee.com/20200704_15/image29)] 2、发布课程,等待 logstash 从 course_pub 以及 teachplan_media_pub 表中采集数据到 ElasticSearch 当中 发布成功后,我们可以从 teachplan_media_pub 表中看到刚才我们发布的媒资信息 再观察 Logstash 的控制台,发现两个 Logstash 的实例都对更新的课程发布信息进行了采集 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTUve2ik-1595567273183)(https://qnoss.codeyee.com/20200704_15/image32)] 3、前端门户测试 打开我们的门户主站 http://www.xuecheng.com/ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4wZe9R84-1595567273185)(https://qnoss.codeyee.com/20200704_15/image33)] 点击导航栏的课程,进入到我们的搜索门户页面 如果无法进入到搜索门户,请检查你的 xc-ui-pc-portal 前端工程是否已经启动 进入到搜索门户后,可以看到一些初始化时搜索的课程数据,默认是搜索第一页的数据,每页2个课程。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BJ1AKoJb-1595567273187)(https://qnoss.codeyee.com/20200704_15/image34)] 我们可以测试搜索一下前面我们选择媒资信息时所用的课程 点击课程,进入到课程详情页面,然后再点击开始学习。 点击马上学习后,会进入到该课程的在线学习页面,默认自动播放我们第一个课程计划中的视频。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tcuLWnf2-1595567273193)(https://qnoss.codeyee.com/20200704_15/image37)] 我们可以在右侧的目录中选择第二个课程计划,会自动播放所选的课程计划所对应的媒资视频播放地址,该 播放地址正是我们刚才通过 Logstash 自动采集到 ElasticSearch 的索引信息,效果图如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cvi9Dr0Y-1595567273195)(https://qnoss.codeyee.com/20200704_15/image38)] 四、待完善的一些功能 课程发布前,校验课程计划里面是否包含二级课程计划 课程发布前,校验课程计划信息里面是否全部包含媒资信息 删除媒资信息,并且同步删除ES中的索引 在获取该课程的播放地址时校验用户的合法、 在线学习页面,点击右侧目录中的课程计划同时改变url中的课程计划地址 视频文件 19-在线学习接口-集成测试.avi 前端上传时提交的MD5值不正确 😁 认识作者 作者:👦 LCyee ,全干型代码🐕 自建博客:https://www.codeyee.com 记录学习以及项目开发过程中的笔记与心得,记录认知迭代的过程,分享想法与观点。 CSDN 博客:https://blog.csdn.net/codeyee 记录和分享一些开发过程中遇到的问题以及解决的思路。 欢迎加入微服务练习生的队伍,一起交流项目学习过程中的一些问题、分享学习心得等,不定期组织一起刷题、刷项目,共同见证成长。 本篇文章为转载内容。原文链接:https://blog.csdn.net/codeyee/article/details/107558901。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 12:41:01
73
转载
Hibernate
Hibernate ORM 数据库持久层工具篇 一、Introduction ORM(Object-Relational Mapping)是将对象与关系数据之间进行映射的技术。这是一种编程招数,让程序员们能够像操作对象一样轻松玩转数据库,运用的就是面向对象的编程思维。 Hibernate 是一个开源的 Java 库,它是目前最流行的 ORM 框架之一。它的主要目标是使开发人员能够更容易地管理对象状态和关系。 二、Hibernate 的基本概念 Hibernate 中的核心概念是 Session。在Hibernate的世界里,Session可真是个大忙人,它实际上是个接口,但你可别小瞧这个接口,人家可是掌管着数据库操作的“大管家”。无论是创建、读取、更新还是删除(也就是我们常说的CRUD操作),还是处理那些复杂的事务问题,全都在它的职责范围内,可以说是数据库操作的核心工具了。 此外,Hibernate 还提供了几个重要的对象:SessionFactory、Transaction 和 Query。 SessionFactory 是用于创建 Session 的工厂类,我们可以通过调用它的 openSession() 方法来打开一个新的 Session。 Transaction 是 Hibernate 提供的一种事务处理机制,我们可以使用 Transaction 来管理多个 SQL 语句的操作,保证操作的一致性和完整性。 Query 是 Hibernate 提供的一个查询 API,我们可以使用它来执行 HQL 或 SQL 查询。 三、Problem and Solution 在使用 Hibernate 时,我们经常会遇到一些错误。本文将以 "org.hibernate.ObjectDeletedException: deleted instance passed to merge" 为例,介绍其原因及解决方案。 当我们试图将已删除的对象重新合并到 Session 中时,Hibernate 就会抛出这个异常。 这是因为在 Hibernate 中,对象的状态是被 Session 管理的。当你决定删掉一个对象时,Hibernate 这个小机灵鬼就会给这个对象打上“待删除”的标签,并且麻溜地把它从 Session 的列表里踢出去。 如果我们试图将一个已被删除的对象再次提交到 Session 中,Hibernate 就会抛出 ObjectDeletedException 异常。 解决这个问题的方法是在操作对象之前先检查其状态。如果对象已经被删除,我们就不能再次提交它。 四、Example Code 以下是一个简单的示例,展示了如何在 Hibernate 中使用 Session。 java import org.hibernate.Session; import org.hibernate.Transaction; import org.hibernate.cfg.Configuration; public class HibernateExample { public static void main(String[] args) { Configuration config = new Configuration(); config.configure("hibernate.cfg.xml"); Session session = config.getCurrent_session(); Transaction tx = null; try { tx = session.beginTransaction(); User user = new User("John Doe", "john.doe@example.com"); session.save(user); tx.commit(); } catch (Exception e) { if (tx != null) { tx.rollback(); } e.printStackTrace(); } finally { session.close(); } } } 在这个示例中,我们首先配置了一个 Hibernate 配置文件(hibernate.cfg.xml),然后打开了一个新的 Session。接着,我们开始了一个新的事务,然后保存了一个 User 对象。最后,我们提交了事务并关闭了 Session。 五、Conclusion Hibernate 是一个强大的 ORM 框架,它可以帮助我们更轻松地管理对象状态和关系。虽然在用 Hibernate 这个工具的时候,免不了会遇到一些让人头疼的小错误,不过别担心,只要我们把它的基本操作和内在原理摸清楚了,就能像变魔术一样轻松解决这些问题啦。通过持续地学习和动手实践,咱们能更溜地掌握 Hibernate 这门手艺,让我们的工作效率蹭蹭上涨,代码质量也更上一层楼。
2023-05-06 21:55:27
478
笑傲江湖-t
Hibernate
Hibernate如何处理SQL方言?——理解与实践 1. 引言 在开发企业级应用程序时,数据库的多样性是一个无法忽视的问题。Hibernate作为一款强大的Java ORM框架,其核心价值之一就是为开发者提供了一层与底层数据库无关的抽象层。不过,各个数据库系统都有自己的SQL语法“小脾气”,这就引出了Hibernate如何巧妙地应对这些“方言”问题的关键机制。你看,就像咱们平时各地的方言一样,Hibernate也得学会跟各种SQL方言打交道,才能更好地服务大家伙儿。本文将深入探讨Hibernate如何通过SQL方言来适应不同数据库环境,并结合实例代码带你走进实战世界。 2. SQL方言 概念与作用 SQL方言,在Hibernate中,是一种特定于数据库的类,它负责将Hibernate生成的标准HQL或SQL-Query转换为特定数据库可以理解和执行的SQL语句。比如说吧,MySQL、Oracle、PostgreSQL还有DB2这些数据库,它们各有各的小脾气和小个性,都有自己特有的SQL扩展功能和一些限制。这就像是每种数据库都有自己的方言一样。而Hibernate这个家伙呢,它就像个超级厉害的语言翻译官,甭管你的应用要跟哪种数据库打交道,它都能确保你的查询操作既准确又高效地执行起来。这样一来,大家伙儿就不用担心因为“方言”不同而沟通不畅啦! 3. Hibernate中的SQL方言配置 配置SQL方言是使用Hibernate的第一步。在hibernate.cfg.xml或persistence.xml配置文件中,通常会看到如下设置: xml org.hibernate.dialect.MySQL57InnoDBDialect 在这个例子中,我们选择了针对MySQL 5.7版且支持InnoDB存储引擎的方言类。Hibernate内置了多种数据库对应的方言实现,可以根据实际使用的数据库类型选择合适的方言。 4. SQL方言的内部工作机制 当Hibernate执行一个查询时,会根据配置的SQL方言进行如下步骤: - 解析和转换HQL:首先,Hibernate会解析应用层发出的HQL查询,将其转化为内部表示形式。 - 生成SQL:接着,基于内部表示形式和当前配置的SQL方言,Hibernate会生成特定于目标数据库的SQL语句。 - 发送执行SQL:最后,生成的SQL语句被发送至数据库执行,并获取结果集。 5. 实战举例 SQL方言差异及处理 下面以分页查询为例,展示不同数据库下SQL方言的差异以及Hibernate如何处理: (a)MySQL方言示例 java String hql = "from Entity e"; Query query = session.createQuery(hql); query.setFirstResult(0).setMaxResults(10); // 分页参数 // MySQL方言下,Hibernate会自动生成类似LIMIT子句的SQL List entities = query.list(); (b)Oracle方言示例 对于不直接支持LIMIT关键字的Oracle数据库,Hibernate的Oracle方言则会生成带有ROWNUM伪列的查询: java // 配置使用Oracle方言 org.hibernate.dialect.Oracle10gDialect // Hibernate会生成如"SELECT FROM (SELECT ..., ROWNUM rn FROM ...) WHERE rn BETWEEN :offset AND :offset + :limit" 6. 结论与思考 面对多样的数据库环境,Hibernate通过SQL方言机制实现了对数据库特性的良好适配。这一设计不仅极大地简化了开发者的工作,还增强了应用的可移植性。不过,在实际做项目的时候,我们可能还是得根据具体的场景,对SQL的“土话”进行个性化的定制或者优化,这恰好就展现了Hibernate那牛哄哄的灵活性啦!作为开发者,我们得像个侦探一样,深入挖掘所用数据库的各种小秘密和独特之处。同时,咱们还得把Hibernate这位大神的好本领充分利用起来,才能稳稳地掌控住那些复杂的数据操作难题。这样一来,我们的程序不仅能跑得更快更流畅,代码也会变得既容易看懂,又方便后期维护,可读性和可维护性妥妥提升!
2023-12-01 18:18:30
613
春暖花开
Hibernate
Hibernate , Hibernate是一个广泛使用的Java持久化框架,它遵循对象关系映射(ORM)的设计模式。在本文的语境中,Hibernate帮助开发者将Java对象与关系型数据库的数据表进行映射,使得开发者可以使用面向对象的方式来操作数据库,而无需直接编写SQL语句,从而极大地简化了数据访问层的开发工作。 ORM(Object-Relational Mapping) , ORM是一种程序设计技术,用于将关系型数据库中的数据表结构与应用程序中的对象模型建立对应关系。在Hibernate框架中,ORM允许我们将实体类与数据库表相对应,实体类的属性映射为表中的字段,实体间的关系则反映为表间的关联。通过这种方式,Hibernate将复杂的SQL查询和结果集转换过程隐藏起来,让开发者能够以更直观、更符合面向对象思维的方式来处理数据。 缓存(Cache) , 在Hibernate框架中,缓存是指一种存储机制,用于暂时保存从数据库获取的数据,以提高数据访问速度并减少对数据库的访问压力。Hibernate支持一级缓存(Session级别的缓存,也称为事务级缓存)和二级缓存(SessionFactory级别的全局缓存)。当出现“org.hibernate.MappingException: Unknown entity”异常时,可能是由于Hibernate缓存配置不当,导致系统无法从缓存或数据库中正确找到对应的实体类信息。通过调整Hibernate的缓存设置,如启用或禁用二级缓存以及配置合适的缓存策略,可以帮助解决这类问题,优化系统的性能表现。
2023-10-12 18:35:41
463
红尘漫步-t
Flink
...,你知道吗?动态表的JOIN操作可真是个了不得的功能。这玩意儿就像个超级小助手,能让我们轻轻松松地处理那些复杂得让人挠头的数据分析工作,让数据处理变得简单又便捷,真可谓是我们的好帮手啊!本文将会详细介绍如何在Flink中实现动态表JOIN操作。 二、什么是动态表JOIN? 动态表JOIN是一种特殊类型的JOIN操作,它可以让我们更加灵活地处理动态数据流。跟老式的静态表格JOIN玩法不一样,动态表JOIN更酷炫,它能在运行时灵活应变。就像个聪明的小助手,会根据输入数据的实时变化自动调整JOIN操作的结果,给你最准确、最新的信息。这种灵活性使得动态表JOIN非常适合处理那些不断变化的数据流。 三、如何在Flink中实现动态表JOIN? 要实现动态表JOIN,我们需要做以下几个步骤: 1. 创建两个动态表 首先,我们需要创建两个动态表,这两个表可以是任何类型的表,例如关系型表、序列文件表或者是Parquet文件表等。 2. 定义JOIN条件 接下来,我们需要定义JOIN条件,这个条件可以是任意的条件,只要它满足动态表JOIN的要求即可。一般情况下,我们常常会借助一些比较基础的条件来进行操作,就像是拿主键做个配对游戏,或者根据时间戳来个精准的时间比对什么的。 3. 使用JOIN操作 最后,我们可以使用Flink的JOIN操作来实现动态表JOIN。Flink提供了多种JOIN操作,例如Inner Join、Left Join、Right Join以及Full Join等。我们可以根据实际情况选择合适的JOIN操作。 四、代码示例 下面是一个使用Flink实现动态表JOIN的简单示例。在本次实例里,我们要用两个活灵活现的动态表格来演示JOIN操作,一个叫“users”,另一个叫“orders”。想象一下,这就像是把这两本会不断更新变化的花名册和订单簿对齐合并一样。 java // 创建两个动态表 DataStream users = ...; DataStream orders = ...; // 定义JOIN条件 MapFunction userToOrderKeyMapper = new MapFunction() { @Override public OrderKey map(User value) throws Exception { return new OrderKey(value.getId(), value.getCountry()); } }; DataStream orderKeys = users.map(userToOrderKeyMapper); // 使用JOIN操作 DataStream> joined = orders.join(orderKeys) .where(new KeySelector() { @Override public OrderKey getKey(OrderKey value) throws Exception { return value; } }) .equalTo(new KeySelector() { @Override public User getKey(User value) throws Exception { return value; } }) .window(TumblingEventTimeWindows.of(Time.minutes(5))) .apply(new ProcessWindowFunction, Tuple2, TimeWindow>() { @Override public void process(TimeWindow window, Context context, Iterable> values, Collector> out) throws Exception { int count = 0; for (Tuple2 value : values) { if (value.f1.getUserId() == value.f0.getId()) { count++; } } if (count > 1) { out.collect(new Tuple2<>(value.f0, value.f1)); } } }); 在这个示例中,我们首先创建了两个动态表users和orders。然后,我们捣鼓出了一个叫userToOrderKeyMapper的神奇小函数,它的任务就是把用户对象摇身一变,变成订单键对象。接着,我们使用这个映射函数将users表转换为orderKeys表。 接下来,我们使用JOIN操作将orders表和orderKeys表进行JOIN。在JOIN操作这个环节,我们搞了个挺实用的小玩意儿叫键选择器where,它就像是个挖掘工,专门从那个orders表格里头找出来每个订单的关键信息。我们也定义了一个键选择器equalTo,它从users表中提取出用户对象。
2023-02-08 23:59:51
369
秋水共长天一色-t
转载文章
...的网站看上去更像原生应用的感觉。注意,这种方式我们并不推荐所有网站使用,还是要看你自己的情况而定! 1.2 Normalize.css BootStrap内置了Normalize.css 1.3 布局容器 Bootstrap 需要为页面内容和栅格系统包裹一个 .container 容器。我们提供了两个作此用处的类。注意,由于 padding 等属性的原因,这两种 容器类不能互相嵌套。 .container 类用于固定宽度并支持响应式布局的容器。 <div class="container">...</div> .container-fluid 类用于 100% 宽度,占据全部视口(viewport)的容器。 <div class="container-fluid">...</div> 2 栅格系统 Bootstrap 提供了一套响应式、移动设备优先的流式栅格系统,随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多12列 2.1 栅格系统简介 栅格系统用于通过一系列的行(row)与列(column)的组合来创建页面布局,你的内容就可以放入这些创建好的布局中。下面就介绍一下 Bootstrap 栅格系统的工作原理: “行(row)”必须包含在 .container (固定宽度)或 .container-fluid (100% 宽度)中,以便为其赋予合适的排列(aligment)和内补(padding)。 通过“行(row)”在水平方向创建一组“列(column)”。 你的内容应当放置于“列(column)”内,并且,只有“列(column)”可以作为行(row)”的直接子元素。 类似 .row 和 .col-xs-4 这种预定义的类,可以用来快速创建栅格布局。Bootstrap 源码中定义的 mixin 也可以用来创建语义化的布局。 通过为“列(column)”设置 padding 属性,从而创建列与列之间的间隔(gutter)。通过为 .row 元素设置负值 margin 从而抵消掉为 .container 元素设置的 padding,也就间接为“行(row)”所包含的“列(column)”抵消掉了padding。 负值的 margin就是下面的示例为什么是向外突出的原因。在栅格列中的内容排成一行。 栅格系统中的列是通过指定1到12的值来表示其跨越的范围。例如,三个等宽的列可以使用三个 .col-xs-4 来创建。 如果一“行(row)”中包含了的“列(column)”大于 12,多余的“列(column)”所在的元素将被作为一个整体另起一行排列。 栅格类适用于与屏幕宽度大于或等于分界点大小的设备 , 并且针对小屏幕设备覆盖栅格类。 因此,在元素上应用任何 .col-md-栅格类适用于与屏幕宽度大于或等于分界点大小的设备 , 并且针对小屏幕设备覆盖栅格类。 因此,在元素上应用任何 .col-lg-不存在, 也影响大屏幕设备。 2.2 栅格参数 超小屏幕 手机 (<768px) 小屏幕 平板 (≥768px) 中等屏幕 桌面显示器 (≥992px) 大屏幕 大桌面显示器 (≥1200px) .container 最大宽度 None (自动) 750px 970px 1170px 类前缀 .col-xs- .col-sm- .col-md- .col-lg- 最大列(column)宽 自动 ~62px ~81px ~97px 2.3 栅格系统使用 使用单一的一组 .col-md- 栅格类,就可以创建一个基本的栅格系统,在手机和平板设备上一开始是堆叠在一起的(超小屏幕到小屏幕这一范围),在桌面(中等)屏幕设备上变为水平排列。所有“列(column)必须放在 ” .row 内。 <div class="row"><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div></div><div class="row"><div class="col-md-8">.col-md-8</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-6">.col-md-6</div><div class="col-md-6">.col-md-6</div></div> 2.4 不同屏幕设置不同宽度 <div class="row"><div class="col-xs-12 col-sm-6 col-md-8">.col-xs-12 .col-sm-6 .col-md-8</div><div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div></div><div class="row"><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><!-- Optional: clear the XS cols if their content doesn't match in height --><div class="clearfix visible-xs-block"></div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div></div> 2.5 列偏移 使用 .col-md-offset- 类可以将列向右侧偏移。这些类实际是通过使用 选择器为当前元素增加了左侧的边距(margin)。例如,.col-md-offset-4 类将 .col-md-4 元素向右侧偏移了4个列(column)的宽度。 <div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4 col-md-offset-4">.col-md-4 .col-md-offset-4</div></div><div class="row"><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div></div><div class="row"><div class="col-md-6 col-md-offset-3">.col-md-6 .col-md-offset-3</div></div> 2.6 列位置移动 通过使用 .col-md-push- 和 .col-md-pull- 类就可以很容易的改变列(column)的顺序。 <div class="row"><div class="col-md-9 col-md-push-3">.col-md-9 .col-md-push-3</div><div class="col-md-3 col-md-pull-9">.col-md-3 .col-md-pull-9</div></div> 3 排版 3.1 标题 HTML 中的所有标题标签,<h1> 到 <h6> 均可使用。另外,还提供了 .h1 到 .h6 类,为的是给内联(inline)属性的文本赋予标题的样式。 <h1>h1. Bootstrap heading</h1><h2>h2. Bootstrap heading</h2><h3>h3. Bootstrap heading</h3><h4>h4. Bootstrap heading</h4><h5>h5. Bootstrap heading</h5><h6>h6. Bootstrap heading</h6> 在标题内还可以包含 <small> 标签或赋予 .small 类的元素,可以用来标记副标题。 <h1>h1. Bootstrap heading <small>Secondary text</small></h1><h2>h2. Bootstrap heading <small>Secondary text</small></h2><h3>h3. Bootstrap heading <small>Secondary text</small></h3><h4>h4. Bootstrap heading <small>Secondary text</small></h4><h5>h5. Bootstrap heading <small>Secondary text</small></h5><h6>h6. Bootstrap heading <small>Secondary text</small></h6> 3.2 突出显示 通过添加 .lead 类可以让段落突出显示。 <p class="lead">...</p> 3.3 对齐 <p class="text-left">Left aligned text.</p><p class="text-center">Center aligned text.</p><p class="text-right">Right aligned text.</p><p class="text-justify">Justified text.</p><p class="text-nowrap">No wrap text.</p> 3.4 改变大小写 <p class="text-lowercase">Lowercased text.</p><p class="text-uppercase">Uppercased text.</p><p class="text-capitalize">Capitalized text.</p> 3.5 引用 <blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p></blockquote><blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p><footer>Someone famous in <cite title="Source Title">Source Title</cite></footer></blockquote><blockquote class="blockquote-reverse">...</blockquote> 3.6 列表 无样式列表 <ul class="list-unstyled"><li>...</li></ul> 内联列表 <ul class="list-inline"><li>...</li></ul> 水平排列的内联列表 <dl class="dl-horizontal"><dt>...</dt><dd>...</dd></dl> 4 代码 4.1 内联代码 通过 <code> 标签包裹内联样式的代码片段。 For example, <code><section></code> should be wrapped as inline. 4.2 用户输入 通过 <kbd> 标签标记用户通过键盘输入的内容。 To switch directories, type <kbd>cd</kbd> followed by the name of the directory.<br>To edit settings, press <kbd><kbd>ctrl</kbd> + <kbd>,</kbd></kbd> 4.3 代码块 多行代码可以使用 <pre> 标签。为了正确的展示代码,注意将尖括号做转义处理。 <pre><p>Sample text here...</p></pre> 还可以使用 .pre-scrollable 类,其作用是设置 max-height 为 350px ,并在垂直方向展示滚动条。 4.3 变量 通过 <var> 标签标记变量。 <var>y</var> = <var>m</var><var>x</var> + <var>b</var> 4.4 程序输出 通过 <samp> 标签来标记程序输出的内容。 <samp>This text is meant to be treated as sample output from a computer program.</samp> 5 表格 5.1 基本 为任意 <table> 标签添加 .table 类可以为其赋予基本的样式 <table class="table">...</table> 5.2 条纹状表格 <table class="table table-striped">...</table> 5.3 带边框的表格 <table class="table table-bordered">...</table> 5.4 鼠标悬停 <table class="table table-hover">...</table> 5.5 紧缩表格 <table class="table table-condensed">...</table> 5.6 状态类 通过这些状态类可以为行或单元格设置颜色。 Class 描述 .active 鼠标悬停在行或单元格上时所设置的颜色 .success 标识成功或积极的动作 .info 标识普通的提示信息或动作 .warning 标识警告或需要用户注意 .danger 标识危险或潜在的带来负面影响的动作 5.7 响应式表格 将任何 .table 元素包裹在 .table-responsive 元素内,即可创建响应式表格,其会在小屏幕设备上(小于768px)水平滚动。当屏幕大于 768px 宽度时,水平滚动条消失。 6 表单 6.1 基本实例 单独的表单控件会被自动赋予一些全局样式。所有设置了 .form-control 类的 <input>、<textarea> 和 <select> 元素都将被默认设置宽度属性为 width: 100%;。 将 label 元素和前面提到的控件包裹在 .form-group 中可以获得最好的排列。 <form><div class="form-group"><label for="exampleInputEmail1">Email address</label><input type="email" class="form-control" id="exampleInputEmail1" placeholder="Email"></div><div class="form-group"><label for="exampleInputPassword1">Password</label><input type="password" class="form-control" id="exampleInputPassword1" placeholder="Password"></div><div class="form-group"><label for="exampleInputFile">File input</label><input type="file" id="exampleInputFile"><p class="help-block">Example block-level help text here.</p></div><div class="checkbox"><label><input type="checkbox"> Check me out</label></div><button type="submit" class="btn btn-default">Submit</button></form> 6.2 内联表单 为 <form> 元素添加 .form-inline 类可使其内容左对齐并且表现为 inline-block 级别的控件。只适用于视口(viewport)至少在 768px 宽度时(视口宽度再小的话就会使表单折叠) 6.3 水平排列的表单 通过为表单添加 .form-horizontal 类,并联合使用 Bootstrap 预置的栅格类,可以将 label 标签和控件组水平并排布局。这样做将改变 .form-group 的行为,使其表现为栅格系统中的行(row),因此就无需再额外添加 .row 了 <form class="form-horizontal"><div class="form-group"><label for="inputEmail3" class="col-sm-2 control-label">Email</label><div class="col-sm-10"><input type="email" class="form-control" id="inputEmail3" placeholder="Email"></div></div><div class="form-group"><label for="inputPassword3" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword3" placeholder="Password"></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><div class="checkbox"><label><input type="checkbox"> Remember me</label></div></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><button type="submit" class="btn btn-default">Sign in</button></div></div></form> 6.4 表单控件 输入框 包括大部分表单控件、文本输入域控件,还支持所有 HTML5 类型的输入控件: text、password、datetime、datetime-local、date、month、time、week、number、email、url、search、tel 和 color。 只有正确设置了 type 属性的输入控件才能被赋予正确的样式。 文本域 支持多行文本的表单控件。可根据需要改变 rows 属性。 多选和单选框 默认样式 <div class="checkbox"><label><input type="checkbox" value="">Option one is this and that—be sure to include why it's great</label></div><div class="checkbox disabled"><label><input type="checkbox" value="" disabled>Option two is disabled</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios1" value="option1" checked>Option one is this and that—be sure to include why it's great</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios2" value="option2">Option two can be something else and selecting it will deselect option one</label></div><div class="radio disabled"><label><input type="radio" name="optionsRadios" id="optionsRadios3" value="option3" disabled>Option three is disabled</label></div> 内联单选和多选框 <label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox1" value="option1"> 1</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox2" value="option2"> 2</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox3" value="option3"> 3</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio1" value="option1"> 1</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio2" value="option2"> 2</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio3" value="option3"> 3</label> 不带文本的Checkbox 和 radio <label><input type="checkbox" id="blankCheckbox" value="option1" aria-label="..."></label></div><div class="radio"><label><input type="radio" name="blankRadio" id="blankRadio1" value="option1" aria-label="..."></label></div> 下拉列表 <select class="form-control"><option>1</option><option>2</option><option>3</option><option>4</option><option>5</option></select> 静态内容 如果需要在表单中将一行纯文本和 label 元素放置于同一行,为 <p> 元素添加 .form-control-static 类即可 <form class="form-horizontal"><div class="form-group"><label class="col-sm-2 control-label">Email</label><div class="col-sm-10"><p class="form-control-static">email@example.com</p></div></div><div class="form-group"><label for="inputPassword" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword" placeholder="Password"></div></div></form> 帮助文字 <label class="sr-only" for="inputHelpBlock">Input with help text</label><input type="text" id="inputHelpBlock" class="form-control" aria-describedby="helpBlock">...<span id="helpBlock" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span> 校验状态 Bootstrap 对表单控件的校验状态,如 error、warning 和 success 状态,都定义了样式。使用时,添加 .has-warning、.has-error或 .has-success 类到这些控件的父元素即可。任何包含在此元素之内的 .control-label、.form-control 和 .help-block 元素都将接受这些校验状态的样式。 <div class="form-group has-success"><label class="control-label" for="inputSuccess1">Input with success</label><input type="text" class="form-control" id="inputSuccess1" aria-describedby="helpBlock2"><span id="helpBlock2" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span></div><div class="form-group has-warning"><label class="control-label" for="inputWarning1">Input with warning</label><input type="text" class="form-control" id="inputWarning1"></div><div class="form-group has-error"><label class="control-label" for="inputError1">Input with error</label><input type="text" class="form-control" id="inputError1"></div><div class="has-success"><div class="checkbox"><label><input type="checkbox" id="checkboxSuccess" value="option1">Checkbox with success</label></div></div><div class="has-warning"><div class="checkbox"><label><input type="checkbox" id="checkboxWarning" value="option1">Checkbox with warning</label></div></div><div class="has-error"><div class="checkbox"><label><input type="checkbox" id="checkboxError" value="option1">Checkbox with error</label></div></div> 添加额外的图标 你还可以针对校验状态为输入框添加额外的图标。只需设置相应的 .has-feedback 类并添加正确的图标即可 <div class="form-group has-success has-feedback"><label class="control-label" for="inputSuccess2">Input with success</label><input type="text" class="form-control" id="inputSuccess2" aria-describedby="inputSuccess2Status"><span class="glyphicon glyphicon-ok form-control-feedback" aria-hidden="true"></span><span id="inputSuccess2Status" class="sr-only">(success)</span></div> 控件尺寸 通过 .input-lg 类似的类可以为控件设置高度,通过 .col-lg- 类似的类可以为控件设置宽度。 高度尺寸 创建大一些或小一些的表单控件以匹配按钮尺寸 <input class="form-control input-lg" type="text" placeholder=".input-lg"><input class="form-control" type="text" placeholder="Default input"><input class="form-control input-sm" type="text" placeholder=".input-sm"><select class="form-control input-lg">...</select><select class="form-control">...</select><select class="form-control input-sm">...</select> 水平排列的表单组的尺寸 通过添加 .form-group-lg 或 .form-group-sm 类,为 .form-horizontal 包裹的 label 元素和表单控件快速设置尺寸。 <form class="form-horizontal"><div class="form-group form-group-lg"><label class="col-sm-2 control-label" for="formGroupInputLarge">Large label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputLarge" placeholder="Large input"></div></div><div class="form-group form-group-sm"><label class="col-sm-2 control-label" for="formGroupInputSmall">Small label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputSmall" placeholder="Small input"></div></div></form> 7 按钮 7.1 可作为按钮使用的标签或元素 为 <a>、<button> 或 <input> 元素添加按钮类(button class)即可使用 Bootstrap 提供的样式 <a class="btn btn-default" href="" role="button">Link</a><button class="btn btn-default" type="submit">Button</button><input class="btn btn-default" type="button" value="Input"><input class="btn btn-default" type="submit" value="Submit"> 7.2 预定义样式 <!-- Standard button --><button type="button" class="btn btn-default">(默认样式)Default</button><!-- Provides extra visual weight and identifies the primary action in a set of buttons --><button type="button" class="btn btn-primary">(首选项)Primary</button><!-- Indicates a successful or positive action --><button type="button" class="btn btn-success">(成功)Success</button><!-- Contextual button for informational alert messages --><button type="button" class="btn btn-info">(一般信息)Info</button><!-- Indicates caution should be taken with this action --><button type="button" class="btn btn-warning">(警告)Warning</button><!-- Indicates a dangerous or potentially negative action --><button type="button" class="btn btn-danger">(危险)Danger</button><!-- Deemphasize a button by making it look like a link while maintaining button behavior --><button type="button" class="btn btn-link">(链接)Link</button> 7.3 尺寸 需要让按钮具有不同尺寸吗?使用 .btn-lg、.btn-sm 或 .btn-xs 就可以获得不同尺寸的按钮。 通过给按钮添加 .btn-block 类可以将其拉伸至父元素100%的宽度,而且按钮也变为了块级(block)元素。 7.4 激活状态 添加 .active 类 7.5 禁用状态 为 <button> 元素添加 disabled 属性,使其表现出禁用状态。 为基于 <a> 元素创建的按钮添加 .disabled 类。 8 图片 8.1 响应式图片 在 Bootstrap 版本 3 中,通过为图片添加 .img-responsive 类可以让图片支持响应式布局。其实质是为图片设置了 max-width: 100%;、 height: auto; 和 display: block; 属性,从而让图片在其父元素中更好的缩放。 如果需要让使用了 .img-responsive 类的图片水平居中,请使用 .center-block 类,不要用 .text-center <img src="..." class="img-responsive" alt="Responsive image"> 8.2 图片形状 <img src="..." alt="..." class="img-rounded"><img src="..." alt="..." class="img-circle"><img src="..." alt="..." class="img-thumbnail"> 9 辅助类 9.1 文本颜色 <p class="text-muted">...</p><p class="text-primary">...</p><p class="text-success">...</p><p class="text-info">...</p><p class="text-warning">...</p><p class="text-danger">...</p> 9.2 背景色 <p class="bg-primary">...</p><p class="bg-success">...</p><p class="bg-info">...</p><p class="bg-warning">...</p><p class="bg-danger">...</p> 9.3 三角符号 <span class="caret"></span> 9.4 浮动 <div class="pull-left">...</div><div class="pull-right">...</div> 9.5 让内容块居中 <div class="center-block">...</div> 9.6 清除浮动 通过为父元素添加 .clearfix 类可以很容易地清除浮动(float) <!-- Usage as a class --><div class="clearfix">...</div> 9.7 显示或隐藏内容 <div class="show">...</div><div class="hidden">...</div> 9.10 图片替换 使用 .text-hide 类或对应的 mixin 可以用来将元素的文本内容替换为一张背景图。 <h1 class="text-hide">Custom heading</h1> 10 响应式工具 10.1 不同视口下隐藏显示 .visible-xs- .visible-sm- .visible-md- .visible-lg- .hidden-xs .hidden-sm .hidden-md .hidden-lg.visible--block .visible--inline .visible--inline-block 10.2 打印类 .visible-print-block.visible-print-inline.visible-print-inline-block.hidden-print 打印机下隐藏 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_67155975/article/details/123351126。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-18 14:41:25
150
转载
转载文章
... Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
JQuery
...cript数组的.join()方法如何有效地将数字拼接为字符串之后,我们发现其在前端开发中扮演了至关重要的角色。特别是在处理大量数据时,如动态生成网页元素内容、构建查询字符串以及进行AJAX请求参数序列化等场景。 最近,随着WebAssembly和高性能JavaScript库的兴起,原生JavaScript性能优化的重要性更为凸显。例如,在Vue 3或React最新版本的应用中,为了提高渲染效率,开发者们更倾向于使用原生JavaScript方法而非框架提供的便捷工具。.join()凭借其高效的内存管理和运行速度,在此类优化实践中发挥了关键作用。 另外,在大数据处理与可视化领域,.join()方法同样被广泛应用。例如,在D3.js库中创建SVG路径时,需要将坐标点数组转换为连续的路径数据字符串,此时.join()就能派上用场,实现高效的数据格式转化。 不仅如此,.join()方法还揭示了JavaScript对Unicode字符集的良好支持,当数组元素包含非ASCII字符时,它依然能准确无误地拼接成字符串,这对于国际化应用开发具有重要意义。 因此,对于前端开发者而言,不仅需要掌握jQuery等库的便捷功能,更要深入了解JavaScript原生API,如.join()这样的基础函数,以应对不断变化的技术趋势和实际应用场景的需求。同时,持续关注ECMAScript新标准的发展,了解并掌握新的字符串处理方式,也是提升开发效能的关键所在。
2023-04-28 20:55:09
44
码农
HTML
...x; margin-right: 10px; } logo p { margin: 0; padding: 0; } 以上是一个简单的利用HTML和CSS创建冰墩墩网站图标的代码。我们首先创建了一个div标记,并设定标识符为logo。在div标记内部,我们添加了一个img标记,并指定了图片文件路径和alt文字描述,还有一个p标记来显示文字内容。在CSS代码中,我们将logo div的display属性设定为flex,并利用align-items和justify-content将其中的组件横向和纵向中央对齐。我们还设定了加重字体和字号,保证了文字的可读性。而对于img和p标记,则分别设定了图片的宽度、高度和文字的margin和padding属性,使其能够显示效果更为美观。
2023-07-30 08:03:59
729
电脑达人
Ruby
... 4. 更复杂的应用场景 当然,链式调用不仅仅局限于简单的属性设置。我们还可以用它来做一些更复杂的操作,比如构建复杂的查询语句。下面是一个例子: ruby class QueryBuilder attr_accessor :conditions def initialize @conditions = [] end def where(condition) @conditions << condition self 返回当前对象实例 end def to_sql "SELECT FROM users WHERE {conditions.join(' AND ')}" end end 使用 query = QueryBuilder.new sql = query.where("age > 20").where("name = 'Alice'").to_sql puts sql 输出: SELECT FROM users WHERE age > 20 AND name = 'Alice' 在这个例子中,我们通过链式调用不断添加条件,最终生成了一个SQL查询语句。是不是很有成就感? 5. 总结与思考 链式调用真的是一种非常强大的工具,可以让你的代码更加简洁和易读。当然了,别忘了适度使用啊,毕竟链式调用用多了,代码可能会变得像迷宫一样,自己和别人都看不懂。希望这篇教程能帮到你,如果有什么问题或者更好的想法,欢迎留言交流! 好了,今天的分享就到这里啦。希望你也能动手试试这些代码,感受一下链式调用的魅力吧!
2024-12-28 15:41:57
21
梦幻星空
转载文章
...gned char RIGHT = 0X4D; const unsigned char DOWN = 0X50; const unsigned char UP = 0X48; int men2[2] = {0,0}; int women2[2]={10,10}; int Game(); void gotoxy( int x, int y ) //光标移动到(x,y)位置 { HANDLE handle = GetStdHandle(STD_OUTPUT_HANDLE); COORD pos; pos.X = x; pos.Y = y; SetConsoleCursorPosition(handle,pos); } int clean( int mm, int nn ) { gotoxy ( mm, nn ); printf ( " " ); gotoxy ( mm,nn+1); printf ( " " ); gotoxy ( mm,nn+2); printf (" "); } int men( int x, int y ) { SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSITY|FOREGROUND_BLUE|FOREGROUND_GREEN); gotoxy( x, y ); printf(" O"); gotoxy( x, y+1 ); printf("<H>"); gotoxy( x, y+2 ); printf("I I"); } int women( int i, int j ) { SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSITY|FOREGROUND_RED); gotoxy( i+1,j ); printf(" O"); gotoxy( i+1,j+1 ); printf("<H>"); gotoxy( i,j+2 ); printf("/I I\\"); } int m=10, n=10; int x=0;int y=0; int TorF() { if ( x == m && y == n ) return 1; else return 0; } int womenmove() { int turn; int YNbreak=0; while( YNbreak == 0 ) { YNbreaak = TorF(); turn=rand()%3; clean( m, n ); if( m < x ) m++; else m--; if( m == x ) { if( n < y ) n++; else n--; } if ( m < 0 ) m = 0; if ( m >= 75 ) m = 75; if ( n < 0 ) n = 0; if ( n >= 22 ) n = 22; women( m,n ); women2[0]=m; women2[1]=n; Sleep(100); } system ( "cls" ); gotoxy ( 28, 10 ); printf ( "You died!!!\n" ); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSITY|FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_BLUE); system ( "pause" ); exit(0); return 0; } int menmove() { system( "cls" ); while (1) { switch( getch()) { case UP:y--;break; case DOWN:y++;break; case LEFT:x--;break; case RIGHT:x++;break; } system( "cls" ); if ( x < 0 ) x = 0; if ( x > 77 ) x = 77; if ( y < 0 ) y = 0; if ( y > 22 ) y = 22; men( x, y ); men2[0] = x; men2[1] = y; } } int Game() { women( 10, 10 ); men( 0, 0 ); int t = 0; thread qq( womenmove ); menmove(); qq.join(); return 0; } int main() { system( "mode con cols=80 lines=25" ); printf ( "游戏开始后,随机按下一个键,唤醒你的蓝色小人.如果你被红色的老女人碰到了,那么你就死了\n" ); printf ( "方向键操控小人\n" ); system ( "pause" ); system ( "cls" ); Game(); return 0; } 留赞再走 本篇文章为转载内容。原文链接:https://blog.csdn.net/LDXX31/article/details/130271069。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-20 23:02:16
133
转载
c#
... = String.Join(",", values.Keys); string parameters = String.Join(",", values.Keys.Select(k => "@" + k)); string sql = $"INSERT INTO {tableName} ({columns}) VALUES ({parameters})"; using (SqlCommand cmd = new SqlCommand(sql, connection)) { foreach (var pair in values) { cmd.Parameters.AddWithValue("@" + pair.Key, pair.Value); } return cmd.ExecuteNonQuery(); } } } 上述代码中,我们尝试构建一个动态SQL语句来插入数据。但在实际使用过程中,可能会出现如下问题: - SQL注入风险:由于直接拼接用户输入的数据生成SQL语句,存在SQL注入的安全隐患。 - 类型转换异常:AddWithValue方法可能因为参数值与数据库列类型不匹配而导致类型转换错误。 - 空值处理不当:当字典中的某个键值对的值为null时,可能导致插入失败或结果不符合预期。 3. 解决方案与优化策略 3.1 防止SQL注入 为了避免SQL注入,我们可以使用参数化查询,确保即使用户输入包含恶意SQL片段,也不会影响到最终执行的SQL语句: csharp string sql = "INSERT INTO {0} ({1}) VALUES ({2})"; sql = string.Format(sql, tableName, string.Join(",", values.Keys), string.Join(",", values.Keys.Select(k => "@" + k))); using (SqlCommand cmd = new SqlCommand(sql, connection)) { // ... } 3.2 明确指定参数类型 为了防止因类型转换导致的异常,我们应该明确指定参数类型: csharp foreach (var pair in values) { var param = cmd.CreateParameter(); param.ParameterName = "@" + pair.Key; param.Value = pair.Value ?? DBNull.Value; // 处理空值 // 根据数据库表结构,明确指定param.DbType cmd.Parameters.Add(param); } 3.3 空值处理 在向数据库插入数据时,对于可以接受NULL值的字段,我们应该将C中的null值转换为DBNull.Value: csharp param.Value = pair.Value ?? DBNull.Value; 4. 总结与思考 封装SqlHelper类确实大大提高了开发效率,但同时也要注意在实际应用中可能出现的各种问题。在我们往数据库里插数据的时候,可能会遇到一些捣蛋鬼,像是SQL注入啊、类型转换出岔子啊,还有空值处理这种让人头疼的问题。所以呢,咱们得采取一些应对策略和优化手段,把这些隐患通通扼杀在摇篮里。在实际编写代码的过程中,只有不断挠头琢磨、反复试验改进,才能让我们的工具箱越来越结实耐用,同时也更加得心应手,好用到飞起。 最后,尽管上述改进已极大地提升了安全性与稳定性,但我们仍需时刻关注数据库操作的最佳实践,如事务处理、并发控制等,以适应更为复杂的应用场景。毕竟,编程不仅仅是解决问题的过程,更是人类智慧和技术理解力不断提升的体现。
2024-01-17 13:56:45
538
草原牧歌_
Hibernate
...onFactory在Hibernate框架中是一个工厂类,负责创建并初始化Session对象。它是整个Hibernate应用的核心组件之一,通过加载配置文件(如hibernate.cfg.xml)获取数据库连接、实体映射等信息,并基于这些信息构建出能够执行持久化操作的Session实例。SessionFactory在整个应用生命周期内通常只需创建一次,且线程安全,可为多个线程提供Session实例。 对象关系映射(ORM, Object-Relational Mapping) , 在Java开发领域,尤其是数据库编程中,对象关系映射是一种程序技术,用于将对象模型表示的对象与数据库中的关系数据表结构进行转换和对应。Hibernate作为一款强大的ORM框架,实现了Java对象与数据库记录之间的自动映射,使得开发者可以使用面向对象的方式来操作数据库,极大地简化了数据库操作的复杂性。 持久化(Persistence) , 在计算机科学中,特别是数据库系统和企业级应用开发中,持久化是指将程序运行时的状态或数据转化为可在系统重启后继续存在的存储形式的过程。在Hibernate框架中,Session对象负责处理所有的持久化操作,例如保存、更新、删除和查询对象状态到数据库中,从而实现对象的持久化存储。
2023-07-29 23:00:44
491
半夏微凉-t
Hibernate
Hibernate中的TransactionRequiredException:执行更新/删除查询时的深入解析与应对策略 1. 引言 在我们日常开发中,Hibernate作为Java世界中最受欢迎的对象关系映射(ORM)框架之一,极大地简化了数据库操作。然而,在使用过程中,我们可能会遇到一些棘手的问题,比如“TransactionRequiredException: Executing an update/delete query”异常。这篇文章将带领大家深入剖析这个问题的根源,并通过实例代码进行演示和探讨解决方案。 2. 问题初识 在使用Hibernate执行更新或删除操作时,如果你没有正确地在一个事务上下文中执行这些操作,Hibernate将会抛出一个org.hibernate.TransactionRequiredException异常。这个状况常常意味着,你正打算进行的SQL更新或删除操作,就像是在跟数据库玩一场“原子游戏”,需要在一个完整的“交易回合”里完成。而现在呢,就像你两手空空,发现并没有一个有效的“交易回合”正在进行,所以游戏暂时没法玩下去啦。 例如,假设我们有一个简单的User实体类,并尝试在没有开启事务的情况下直接删除: java Session session = sessionFactory.openSession(); session.createQuery("delete from User where id = :id").setParameter("id", userId).executeUpdate(); 运行上述代码,你会遭遇TransactionRequiredException,这是因为Hibernate要求对数据库状态修改的操作必须在一个事务中进行,以确保数据的一致性和完整性。 3. 事务的重要性 为什么Hibernate要求在事务中执行更新/删除操作? 在数据库领域,事务是一个非常重要的概念,它保证了数据库操作的ACID特性(原子性、一致性、隔离性和持久性)。当你在进行更新或者删除这类操作的时候,如果没有事务安全机制保驾护航,一旦碰上个啥意外状况,比如程序突然罢工、网络说断就断,很可能出现的情况就是:有的操作成功了,有的却失败了。这样一来,数据的一致性可就被破坏得乱七八糟啦。 因此,Hibernate强制要求我们必须在一个开启的事务内执行这类可能改变数据库状态的操作,确保即使在出现问题时,也能通过事务的回滚机制恢复到一个一致的状态。 4. 解决方案及示例代码 如何正确地在Hibernate中开启并管理事务? 对于上述问题,我们需要在执行更新/删除操作前显式地开启一个事务,并在操作完成后根据业务需求提交或回滚事务。 下面是一个使用Hibernate Session API手动管理事务的例子: java Session session = sessionFactory.openSession(); Transaction transaction = null; try { // 开启事务 transaction = session.beginTransaction(); // 执行删除操作 session.createQuery("delete from User where id = :id").setParameter("id", userId).executeUpdate(); // 提交事务,确认更改 transaction.commit(); } catch (Exception e) { if (transaction != null && transaction.isActive()) { // 如果有异常发生,回滚事务 transaction.rollback(); } throw e; } finally { // 关闭Session session.close(); } 另外,对于更复杂的场景,我们可以借助Spring框架提供的事务管理功能,让事务管理变得更加简洁高效: java @Transactional public void deleteUser(Long userId) { Session session = sessionFactory.getCurrentSession(); session.createQuery("delete from User where id = :id").setParameter("id", userId).executeUpdate(); } 在此例子中,通过Spring的@Transactional注解,我们可以在方法级别自动管理事务,无需手动控制事务的开启、提交和回滚。 5. 结论 理解并正确处理Hibernate中的TransactionRequiredException异常是每个Hibernate开发者必备技能之一。通过妥善处理各项事务,咱们不仅能有效防止这类异常情况的发生,更能稳稳地保证系统数据的完整无缺和一致性,这样一来,整个应用程序就会健壮得像头牛,坚如磐石。希望本文能帮助你在面对类似问题时,能够迅速定位原因并采取恰当措施解决。记住,无论何时,当你打算修改数据库状态时,请始终不忘那个守护数据安全的“金钟罩”——事务。
2023-05-10 14:05:31
574
星辰大海
SpringBoot
...于简化新Spring应用的初始搭建以及开发过程。它整合了大量常用的第三方库配置,并通过自动配置功能使得开发者能够快速启动项目,专注于业务逻辑开发,无需处理大量的XML配置文件。在本文中,SpringBoot作为部署应用程序的关键工具,帮助开发者构建和部署基于Java的应用程序。 数据库迁移 , 数据库迁移是指将数据库从一个版本或状态迁移到另一个版本或状态的过程。在软件开发领域中,当应用程序依赖的新特性只在更高版本的数据库中提供时,就需要进行数据库迁移以保持与应用程序的兼容性。文中提到的Flyway和Liquibase就是两种广泛使用的数据库迁移工具,它们可以帮助开发者管理和自动化执行数据库模式的变更,确保数据在不同版本之间的平稳过渡。 Hibernate DDL-auto , Hibernate DDL-auto是Spring Boot集成Hibernate ORM框架时的一个配置属性,它控制着Hibernate如何管理数据库表结构。例如,设置为\ create\ 时,每次应用程序启动时,Hibernate会根据实体类信息重新创建数据库表结构,这对于开发阶段快速迭代非常有用。在本文给出的代码示例中,通过设置spring.jpa.hibernate.ddl-auto=create,确保在内存数据库HSQLDB上初始化User实体对应的表结构。
2023-12-01 22:15:50
62
夜色朦胧_t
HTML
...开发Electron应用时,特别是在复杂的渲染进程中,日志管理显得尤为重要。它可以帮助我们追踪代码执行过程,定位并解决问题。你知道嘛,这个叫做electron-log的小工具可厉害了,它就像是咱们在Electron主进程和渲染进程中的贴心小秘书,能轻松帮我们把各种日志消息记录得清清楚楚,然后乖乖地把它们送到文件里去,让咱管理起日志来就和玩儿似的!今天,我们将一起探讨如何在渲染进程中使用electron-log输出日志。 1. 引入与初始化 electron-log 首先,确保你已经在项目中安装了electron-log库,可以通过npm或yarn进行安装: bash npm install electron-log --save-dev 或者 yarn add electron-log -D 然后,在渲染进程中引入并初始化electron-log: javascript // 在渲染进程中(如renderer.js) const log = require('electron-log'); // 设置默认的日志级别,例如 'info' log.transports.file.level = 'info'; // 初始化,使其可以在渲染进程中工作 log.init({ showLogs: false, // 是否在控制台显示日志 electronRenderer: true, }); 2. 输出日志至文件 现在,我们可以开始在渲染进程中愉快地编写日志了! javascript // 假设在一个用户交互事件中需要记录操作日志 document.getElementById('myButton').addEventListener('click', () => { log.info('User clicked on the button!'); log.error('An unexpected error occurred during the click event!', new Error('Error details')); }); 上述代码中,我们分别用log.info()和log.error()记录了不同级别的信息。这些日志会自动乖乖地蹦进默认的日志文件里头,这个文件一般都藏在你电脑的AppData目录下,具体哪个小角落就得看你的操作系统啦。 3. 自定义日志文件路径及格式 如果你希望自定义日志文件的位置和名称,可以通过以下方式设置: javascript log.transports.file.getFile().path = path.join(app.getPath('userData'), 'custom-log.log'); 同时,electron-log也支持多种格式化选项,包括JSON、pretty-print等,可以根据需求调整: javascript log.transports.file.format = '{h}:{i}:{s} {level}: {text}'; 4. 思考与讨论 值得注意的是,虽然我们在渲染进程中直接调用了electron-log,但实际上所有的日志都通过IPC通信机制传递给主进程,再由主进程负责实际的写入文件操作。这么干,既能确保安全,防止渲染进程直接去摆弄磁盘,还能让日志管理变得简单省事儿多了。 在整个过程中,electron-log不仅充当了开发者的眼睛,洞察每一处可能的问题点,还像一本详尽的操作手册,忠实记录着应用运行的每一步足迹。这种实时、细致入微的日志系统,绝对是我们Electron应用背后的强大后盾,让我们的应用跑得既稳又强。 总的来说,通过electron-log,我们在 Electron 渲染进程中记录和输出日志变得轻松易行,大大提高了调试效率和问题定位的速度。每一个开发者都该好好利用这些工具,让咱们的应用程序像人一样“开口说话”,把它们的“心里话”都告诉我们。
2023-10-02 19:00:44
552
岁月如歌_
Bootstrap
...; padding-right: 0; } / 或者仅覆盖特定列 / .col-md-4 { padding-left: 10px; padding-right: 10px; } 这种方法的优点是灵活且易于管理,但缺点是需要额外编写和维护CSS代码。 3.2 利用负外边距(Negative Margin) 另一种方法是利用负外边距来抵消Bootstrap默认的内边距效果。这种方法相对复杂一些,但可以实现非常精细的控制。 html 这是第一列 这是第二列 这是第三列 不过需要注意的是,这种方法可能会对其他元素造成影响,因此使用时要小心。 3.3 自定义栅格系统 如果你对Bootstrap的默认栅格系统不满意,还可以考虑使用自定义栅格系统。这通常涉及到修改Bootstrap的源代码或者使用第三方库来替代原生的栅格系统。虽然这种方法比较极端,但对于追求极致定制化体验的项目来说可能是最好的选择。 4. 总结与反思 通过今天的讨论,我们可以看到,尽管Bootstrap的网格系统提供了强大的布局能力,但在处理某些细节问题时仍需额外努力。不管是用CSS盖掉默认样式,还是玩儿负外边距,或者是搞个自定义栅格系统,最重要的是找到最适合你项目的办法。希望这篇文章能帮助大家更好地理解和解决Bootstrap中遇到的列间距问题,让我们的网页设计更加完美! 最后,如果你在实际操作过程中遇到了其他问题或有更多见解,欢迎留言交流。前端的世界永远充满可能性,让我们一起探索吧!
2024-11-08 15:35:49
46
星辰大海
MemCache
...据库负载,提高Web应用的速度。不过嘛,当你的应用程序开始应付海量的数据请求时,一股脑儿地把所有数据都拉进来,可能会让程序卡得像蜗牛爬,严重的时候甚至会直接给你崩掉。这时,就需要我们的主角——客户端实现数据的分批读取。 想象一下,你正在运营一个大型电商平台,每到购物节高峰期,网站上的商品数量高达百万级别。要是每次请求都一股脑儿地把所有商品信息都拉下来,那服务器准得累趴下,用户看着也得抓狂。因此,学会如何高效地分批次读取数据,是提升系统稳定性和用户体验的关键一步。 2. 分批读取的必要性与优势 那么,为什么要采用分批读取的方式呢?这背后其实隐藏着一系列的技术考量和实际需求: - 减轻服务器压力:一次性请求大量数据对服务器资源消耗巨大,容易造成服务器过载。分批读取可以有效降低这种风险。 - 优化用户体验:用户往往不喜欢等待太久。通过分批次展示内容,可以让用户更快看到结果,提升满意度。 - 灵活应对动态变化的数据量:随着时间推移,你的数据量可能会不断增长。分批读取使得系统能够更灵活地适应不同规模的数据集。 - 提高查询效率:分批读取可以帮助我们更有效地利用索引和缓存机制,从而加快查询速度。 3. 实现数据分批读取的基本思路 了解了分批读取的重要性后,接下来我们就来看看具体怎么操作吧! 3.1 设定合理的批量大小 首先,你需要根据实际情况来设定每次读取的数据量。这个数值可别太大也别太小,一般情况下,根据你的使用场景和Memcached服务器的配置,设成几百到几千都行。 python 示例代码:设置批量大小 batch_size = 500 3.2 利用偏移量进行分批读取 在Memcached中,我们可以通过指定键值的偏移量来实现数据的分批读取。每次读完一部分数据,就更新下一次要读的位置,这样就能连续地一批一批拿到数据了。 python 示例代码:利用偏移量读取数据 def fetch_data_in_batches(key, start, end): batch_data = [] for offset in range(start, end, batch_size): 假设get_items函数用于从Memcached中获取指定范围的数据 items = get_items(key, offset, min(offset + batch_size - 1, end)) batch_data.extend(items) return batch_data 这里假设get_items函数已经实现了根据偏移量从Memcached中获取指定范围内数据的功能。当然,实际开发中可能需要根据具体的库或框架调整这部分逻辑。 3.3 考虑并发与异步处理 为了进一步提升效率,你可以考虑引入多线程或异步I/O技术来并行处理多个数据批次。这样不仅能够加快整体处理速度,还能更好地利用现代计算机的多核优势。 python import threading def async_fetch_data(key, start, end): threads = [] for offset in range(start, end, batch_size): thread = threading.Thread(target=fetch_data_in_batches, args=(key, offset, min(offset + batch_size - 1, end))) threads.append(thread) thread.start() for thread in threads: thread.join() 使用异步方法读取数据 async_fetch_data('my_key', 0, 10000) 这段代码展示了如何通过多线程方式加速数据读取过程。当然,如果你的程序用的是异步编程(比如Python里的asyncio),那就可以试试异步IO,这样处理任务时会更高效,也不会被卡住。 4. 结语 通过上述讨论,我们可以看出,在Memcached中实现客户端的数据分批读取是一项既实用又必要的技术。这东西不仅能帮我们搭建个更稳当、更快的系统,还能让咱们用户用起来特爽!希望这篇文章能为你提供一些灵感和帮助,让我们一起努力打造更好的软件产品吧! 最后,别忘了在实际项目中根据具体情况调整策略哦。技术总是在不断进步,保持学习的心态,才能跟上时代的步伐!
2024-10-25 16:27:27
122
海阔天空
Hibernate
Hibernate与数据库表访问权限问题深度解析 1. 引言 在企业级应用开发中,Hibernate作为一款强大的ORM框架,极大地简化了Java对象与关系型数据库之间的映射操作。然而,在实际做项目的时候,我们常常会碰到关于数据库表权限分配的难题,尤其在那种用户多、角色乱七八糟的复杂系统里头,这个问题更是频繁出现。这篇文儿,咱们要接地气地聊聊Hibernate究竟是怎么巧妙应对和化解这类权限问题的,并且会结合实际的代码例子,掰开了揉碎了给你细细道来。 2. Hibernate与数据库权限概述 在使用Hibernate进行持久化操作时,开发者需要理解其底层是如何与数据库交互的。默认情况下,Hibernate是通过连接数据库的用户身份执行所有CRUD(创建、读取、更新、删除)操作的。这就意味着,这个用户的数据库权限将直接影响到应用能否成功完成业务逻辑。 3. 权限控制的重要性 假设我们的系统中有不同角色的用户,如管理员、普通用户等,他们对同一张数据表的访问权限可能大相径庭。例如,管理员可以完全操作用户表,而普通用户只能查看自己的信息。这个时候,咱们就得在Hibernate这个环节上动点小心思,搞个更精细化的权限管理,确保不会因为权限不够而整出什么操作失误啊,数据泄露之类的问题。 4. Hibernate中的权限控制实现策略 (a) 配置文件控制 首先,最基础的方式是通过配置数据库连接参数,让不同的用户角色使用不同的数据库账号登录,每个账号具有相应的权限限制。在Hibernate的hibernate.cfg.xml配置文件中,我们可以设置如下: xml admin secret (b) 动态SQL与拦截器 对于更复杂的场景,可以通过自定义拦截器或者HQL动态SQL来实现权限过滤。例如,当我们查询用户信息时,可以添加一个拦截器判断当前登录用户是否有权查看其他用户的数据: java public class AuthorizationInterceptor extends EmptyInterceptor { @Override public String onPrepareStatement(String sql) { // 获取当前登录用户ID Long currentUserId = getCurrentUserId(); return super.onPrepareStatement(sql + " WHERE user_id = " + currentUserId); } } (c) 数据库视图与存储过程 另外,还可以结合数据库自身的安全性机制,如创建只读视图或封装权限控制逻辑于存储过程中。Hibernate照样能搞定映射视图或者调用存储过程来干活儿,这样一来,我们就能在数据库这一层面对权限实现滴水不漏的管控啦。 5. 实践中的思考与挑战 尽管Hibernate提供了多种方式实现权限控制,但在实际应用中仍需谨慎对待。比如,你要是太过于依赖那个拦截器,就像是把所有鸡蛋放在一个篮子里,代码的侵入性就会蹭蹭上涨,维护起来能让你头疼到怀疑人生。而如果选择直接在数据库层面动手脚做权限控制,虽然听起来挺高效,但特别是在那些视图或者存储过程复杂得让人眼花缭乱的情况下,性能可是会大打折扣的。 因此,在设计权限控制系统时,我们需要根据系统的具体需求,结合Hibernate的功能特性以及数据库的安全机制,综合考虑并灵活运用各种策略,以达到既能保证数据安全,又能优化性能的目标。 6. 结语 总之,数据库表访问权限管理是构建健壮企业应用的关键一环,Hibernate作为 ORM 框架虽然不能直接提供全面的权限控制功能,但通过合理利用其扩展性和与数据库的良好配合,我们可以实现灵活且高效的权限控制方案。在这个历程里,理解、探索和实践就像是我们不断升级打怪的“能量饮料”,让我们一起在这场技术的大冒险中并肩前进,勇往直前。
2023-09-21 08:17:56
418
夜色朦胧
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -f /var/log/messages
- 实时监控日志文件末尾的新内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"