前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[确定机与概率机模型 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
...是衡量一个信息源的不确定性或信息量的一种度量方式。它以概率论为基础,通过计算所有可能事件发生的概率和每个事件的信息量(通常以比特为单位),反映了一组数据的混乱程度或信息的不纯度。在Python中使用SciPy库计算信息熵时,对于给定的数据分布,信息熵值越大,表示该数据集的不确定性越高。 SciPy库 , SciPy是Python编程语言的一个开源科学计算库,提供了众多高级数学函数、优化算法以及用于处理各种科学任务的工具箱。在本文的语境下,特别提到了SciPy库中的scipy.stats模块,其中包含了一个名为entropy的函数,可以用来方便地计算信息熵以及其他与信息论相关的指标。 相对熵 , 也称为KL散度(Kullback-Leibler divergence),是衡量两个概率分布之间差异的一种方法,在信息论中有着重要应用。相对熵是非负的,并且当两个概率分布完全相同时,其值为零。在Python的SciPy库中,虽然文章未直接展示如何计算相对熵,但entropy函数实际上也能支持计算相对熵,即比较一个实际的概率分布与另一个参考分布之间的距离或者信息增益。在机器学习等领域中,相对熵常被用作损失函数来评估模型预测结果与真实分布的接近程度。
2023-08-02 10:52:00
222
数据库专家
Flink
...时,Flink就无法确定T的具体类型,从而引发"TypeInformationException"。因为?通配符表示任何类型,Flink无法从Event推导出确切的TypeInformation。 为了解决这个问题,我们需要显式地提供TypeInformation: java TypeInformation> stringTypeInfo = TypeInformation.of(new TypeHint>() {}); DataStream> stream = env.addSource(new FlinkSource<>(stringTypeInfo)); 四、深入解决方案(≈250字 + 代码示例 ≈ 150字) 另一种更为通用的方法是使用TypeInformation.of()或TypeExtractor.createTypeInfo()方法,结合TypeHint或自定义的TypeInformation子类来明确指定泛型参数的类型: java // 使用TypeHint方式 TypeInformation> integerTypeInfo = TypeInformation.of(new TypeHint>() {}); DataStream> integerStream = env.addSource(new FlinkSource<>(integerTypeInfo)); // 或者使用TypeExtractor方式 TypeInformation> doubleTypeInfo = TypeExtractor.getForClass(Event.class) .forGenericTypes(Double.class); DataStream> doubleStream = env.addSource(new FlinkSource<>(doubleTypeInfo)); 五、思考与总结(≈200字) 面对“Missing type information for generic type parameter”这类异常,我们需要理解其背后的原理:Flink为了确保数据处理的正确性和效率,必须清楚每种数据类型的细节。所以,说到泛型这事儿,开发者们最好积极拥抱Flink的类型系统,明确地提供各类类型信息,别藏着掖着~此外,在设计数据模型时,尽可能避免过度复杂的泛型结构也能降低此类问题的发生概率。记住了啊,编程不只是敲出能跑起来的代码那么简单,更重要的是要深入理解并完全掌握系统的底层运作机制。这样一来,无论遇到什么难题挑战,都能像庖丁解牛那样游刃有余地应对处理。
2023-05-11 12:38:53
556
断桥残雪
NodeJS
...具 如果我们还是无法确定错误的原因,可以尝试使用一些调试工具,例如Chrome DevTools,来查看代码的执行情况,从而找到错误的源头。 四、总结 总的来说,require错误是在使用NodeJS时经常遇到的一种问题。这种错误通常是由于代码中的语法错误或者是引用模块的路径错误引起的。所以呢,咱们得时刻打起十二分精神,瞪大眼睛仔仔细细检查咱的代码还有引用模块的路径,这样一来才能确保不会让require错误这个小家伙钻了空子。同时,我们也应该学会利用一些调试工具来帮助我们定位和解决问题。相信只要我们用心去学,总能掌握好NodeJS这门强大而又复杂的语言。
2023-12-17 19:06:53
58
梦幻星空-t
转载文章
在深入理解数理统计与概率论的基本概念后,进一步探索这些理论在实际应用中的最新动态和研究进展至关重要。近日,《Nature》杂志发表了一项关于利用贝叶斯推断和共轭先验进行复杂疾病风险评估的研究(引用时效性)。科研团队借助最大似然估计方法,成功地从大规模基因数据集中挖掘出与特定疾病关联的遗传变异位点,并通过选取合适的共轭先验分布,如Dirichlet-Multinomial模型,对患者群体的风险概率进行了精准预测。 此外,在机器学习领域,概率密度函数和概率质量函数的应用日益广泛。《IEEE Transactions on Pattern Analysis and Machine Intelligence》上的一篇论文报道了如何将连续型随机变量的概率密度函数应用于深度生成模型,以实现更高质量的数据生成和更准确的不确定性量化(引用时效性和针对性)。 同时,条件概率和贝叶斯公式在大数据分析和人工智能决策过程中发挥着关键作用。例如,Google最近的一项研究成果展示了如何结合条件概率和贝叶斯网络构建强大的推荐系统,能够实时更新用户兴趣偏好,提供个性化服务(时效性和针对性)。 总的来说,随着科技的发展,数理统计与概率论在解决实际问题时展现出越来越强的生命力,不仅在基础科学研究中扮演核心角色,也在诸多前沿技术领域,如生物信息学、机器学习、以及互联网服务等领域提供了坚实的理论支撑。读者可以进一步关注相关领域的学术期刊、会议论文及业界报告,以及时获取最新的理论突破与实践成果。
2024-02-26 12:45:04
517
转载
转载文章
...简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...龄、性别等,还有很多模型刻划出的隐式用户兴趣等。 第三个维度是环境特征。这是移动互联网时代推荐的特点,用户随时随地移动,在工作场合、通勤、旅游等不同的场景,信息偏好有所偏移。 结合三方面的维度,模型会给出一个预估,即推测推荐内容在这一场景下对这一用户是否合适。 这里还有一个问题,如何引入无法直接衡量的目标? 推荐模型中,点击率、阅读时间、点赞、评论、转发包括点赞都是可以量化的目标,能够用模型直接拟合做预估,看线上提升情况可以知道做的好不好。 但一个大体量的推荐系统,服务用户众多,不能完全由指标评估,引入数据指标以外的要素也很重要。 比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。 此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。 下面我将简单介绍在上述算法目标的基础上如何对其实现。 前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。 一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...描、动态规划查找最大概率路径以及HMM模型处理未登录词等技术,旨在准确高效地识别和切分出文本中的词汇单元。 TextRank算法 , TextRank是一种基于图排序理论的关键词抽取算法,其基本思想来源于PageRank算法,常用于信息检索和文本摘要等领域。在jieba库中,TextRank算法被应用于提取句子或文档中的关键词,通过统计词语间的共现关系构建网络,并计算节点的PageRank值来确定关键词的重要性。 PaddlePaddle , PaddlePaddle是由百度公司研发的开源深度学习框架,全称为“PArallel Distributed Deep LEarning”,适用于大规模数据训练和高性能推理场景。在jieba分词组件中,paddle模式利用PaddlePaddle框架训练序列标注模型(如双向GRU),实现更高级别的中文分词功能,同时支持词性标注,提升了对复杂语境下词汇切分与理解的能力。 TF-IDF算法 , TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用的文本挖掘技术,用于评估一个词语对于一份文档或者一组文档集的重要性。在jieba.analyse模块中,通过TF-IDF算法可以为文本中的词语计算权重,从而有效地从大量文本中提取最具代表性和区分度的关键词,帮助用户快速了解文本主题和关键信息。
2023-12-02 10:38:37
500
转载
CSS
...中一个重要的观念,它确定了当多个格式应用于同一个组件时哪个格式将被应用。当有多个格式同时应用于同一个组件时,这些格式将根据它们的重要性进行排列,重要性高的格式将取代重要性低的格式。 重要性的计算规则如下: 1. 使用!important定义的格式重要性最高,无法被取代。 2. 根据选择器的类型、ID特性、类特性和组件名依次计算,每多出一个ID特性或类特性,重要性加100,每多出一个组件名,重要性加10,选择器类型不计算重要性。 3. 当多个选择器重要性相同时,后定义的格式将取代先定义的格式。 例如,以下CSS代码中有两个格式应用于同一个组件: p { color: red; font-size: 14px; } content p { color: blue; } 其中第一个格式选择器为p,第二个格式选择器为content p。由于第二个格式选择器中包含了ID特性,因此它的重要性比第一个格式选择器高100,即总重要性为101。因此在应用格式时,组件的文字颜色为蓝色。 需要注意的是,CSS格式选择器的重要性只确定了格式的应用顺序,不代表效果的重要性。在编写CSS格式表时,应根据页面需求和设计风格合理使用格式,而不是纠结于重要性的细节。
2023-11-06 08:37:41
535
键盘勇士
JQuery
...的方式来操控文档对象模型、处置事情以及操控数组等,而今天我们就要来探讨如何使用Jquery判定一个数组中是否含有明确项。 var myArray = ["apple", "banana", "orange", "grape"]; if ($.inArray("banana", myArray) !== -1){ //含有 } else { //不含有 } 如上所示,我们可以使用Jquery供给的$.inArray()方式来判定一个数组中是否含有明确项,如果含有则返回该项所在的下标,相反则返回 -1。通过判定返回值是否为 -1 就可以确定明确项是否含有于该数组中。 当然,我们也可以将判定打包成一个Jquery插件,以便于代码的重用: $.fn.isInArray = function(value){ return $.inArray(value, this) !== -1; } var myArray = ["apple", "banana", "orange", "grape"]; if (myArray.isInArray("banana")){ //含有 } else { //不含有 } 如上所示,我们将判定数组中是否含有明确项的方式打包成了一个Jquery插件,并将该方式绑定在数组对象的原型上。这样我们就可以通过调用该方式来判定明确项是否含有于该数组中了。 总之,Jquery供给了很多简便的方式来操控数组。我们可以使用 $.inArray() 来判定一个项是否含有于明确数组中,也可以将该方式打包成一个Jquery插件来方便代码的重用。
2023-06-16 18:33:25
110
软件工程师
CSS
...顶部或者底端为参照来确定位置。然而,在某些情况下,我们可能须要依据底端并非顶部来定位元素。 例如,如果我们要创建一个满屏的背景图,同时希望背景图的底端能够与屏幕底端排列整齐,那么就须要用到依据底端定位的方法。 body { position: relative; height: 100vh; / 确保body占满整个屏幕 / } .bg { position: absolute; bottom: 0; / 此时bottom属性是相对于body元素的底端来确定位置 / left: 0; width: 100%; height: auto; z-index: -1; } 上述代码中,我们通过将body元素设定为相对布局来给后代元素(即背景图)提供相对布局的参照。接着,我们将背景图的底端位置设定为相对于body元素的底端,这样就能够实现依据底端来定位元素。 须要注意的是,我们须要将背景图的z-index设定为负数,以确保它在文档流中处于最底层。 总之,依据底端并非顶部定位元素可以在某些情况下提供更好的灵活性。在使用时,须要注意设定好参照元素,以及使用相应的CSS属性来实现定位。
2023-03-13 10:55:41
529
代码侠
Python
...,在Word2Vec模型中,每个词都被映射为一个高维空间的单位向量,这些向量不仅保留了词语之间的语义关系,而且其单位化属性确保了相似度比较的有效性和准确性。此外,单位向量在计算机图形学中也有着至关重要的作用,如在三维渲染、游戏开发等领域,方向性的表示通常采用单位向量形式,以实现光照、反射等物理效果的模拟。 另外,值得注意的是,单位向量在优化问题中也扮演着重要角色,尤其是在梯度下降法中,通过计算梯度的单位向量来确定搜索方向,从而有效地最小化损失函数。近期的研究工作甚至将单位向量扩展到了量子计算领域,研究人员发现特定类型的量子比特状态可以表达为单位向量,这为构建高效的量子算法提供了新的思路。 综上所述,了解并掌握向量单位化的计算方法不仅能帮助我们解决数学和编程问题,还能为我们理解和参与前沿科技领域的研究与应用提供有力支持。对于有志于进一步钻研的读者来说,推荐阅读《线性代数及其应用》(作者:Gilbert Strang)以深入理解单位向量背后的数学原理,同时关注相关科研论文和技术博客,以便及时跟进单位向量在各领域尤其是AI、图形学和量子计算等前沿技术中的最新应用动态。
2023-03-29 15:10:37
50
算法侠
Python
...定的棋盘格数(n)来确定需要放置的麦粒总数。 科学计算 , 科学计算是利用计算机解决科学研究和工程技术中的数学问题的过程。在本文语境下,使用Python编程语言实现棋盘麦粒数量的计算,可以视为科学计算的一个具体应用实例,因为它涉及到了数学模型的建立与算法实现,以及对大规模数值计算的支持。 参数 , 在计算机程序设计中,参数是指在定义或调用函数时传递给函数的具体值或变量。在文章中提及的wheat_on_board(n)函数中,n就是一个参数,代表棋盘上的格子编号,通过改变这个参数值,我们可以计算不同大小棋盘所需的麦粒总数。
2024-01-21 13:31:34
253
码农
Java
...现线程同步的银行账户模型后,我们可以进一步探讨现代并发编程中的其他高级同步机制及其在实际场景中的应用。例如,Java 5引入了java.util.concurrent包,其中提供了多种高效的并发工具类,如Semaphore(信号量)、ReentrantLock(可重入锁)以及BlockingQueue(阻塞队列),它们为复杂多线程环境下的资源控制提供了更强大的支持。 具体来说,在银行账户模型中,如果考虑更多的并发操作,如转账交易,那么显式锁(如ReentrantLock)可以提供更细粒度的控制,允许公平锁、非公平锁的选择,并且具备tryLock等灵活方法,以增强系统的响应能力和处理能力。另外,通过结合使用BlockingQueue,可以构建出生产者消费者模式,有效解决线程间数据交换的问题,确保存款请求与取款请求按照先进先出(FIFO)或其他策略有序进行处理。 同时,随着JDK版本的更新,Java内存模型(JMM)的完善以及对原子变量类(AtomicInteger、AtomicLong等)的支持,使得我们能够更好地理解和利用这些底层机制优化并行计算性能,降低死锁概率,提高系统整体并发效率。 此外,对于分布式系统中的银行账户模型,还可以研究分布式锁服务(如Redis或ZooKeeper提供的分布式锁机制),以应对集群环境下多个节点间的并发控制挑战,确保全局一致性。 综上所述,尽管基于wait和notify的经典线程同步方式在特定场合下依然适用,但不断发展的Java并发库为我们提供了更多与时俱进、更为高效且功能丰富的工具,帮助开发者构建更为稳健且高性能的并发程序。
2023-09-21 14:29:58
387
电脑达人
Python
Tesseract
...,因为它可以帮助我们确定哪些部分是文本,哪些部分不是。这对于进行文本识别是非常关键的。如果没找到文本行的边界,那我们就没法准确地认出这些字来,就像在没有标点符号和段落分隔的情况下读一本天书一样。 四、如何解决“找不到有效的文本行边界”问题? 1. 使用Tesseract自带的参数调整功能 在使用Tesseract进行文本识别时,我们可以使用一些参数来调整其行为。比如说,我们可以通过调整--psm这个小开关,来告诉程序识别页面时应该按照横向还是纵向来识别。再比如,使用--oem参数,我们可以像选择赛车引擎那样,挑选出适合这次任务的OCR引擎进行工作。 bash tesseract image.png output.txt --psm 6 在这个例子中,我们使用了--psm参数来指定要识别的页面方向为横向。 2. 调整图像处理步骤 我们也可以通过调整图像处理步骤来改善文本行边界的识别效果。例如,我们可以先对图像进行灰度转换,然后再进行边缘检测。这样可以有效地增强图像中的文本信息,从而提高文本行边界的识别率。 3. 使用深度学习方法 最近几年,深度学习已经在图像识别领域取得了巨大的成功。我们完全可以琢磨琢磨用深度学习技术来对付这个“文本行边界识别不给力”的问题。例如,我们可以使用卷积神经网络(CNN)来进行文本行边界的识别。 五、结论 总的来说,“找不到有效的文本行边界”是一个很常见的问题,但只要我们使用正确的方法,就可以有效地解决这个问题。希望这篇技术文章能够帮助你更好地理解和解决这个问题。如果你有任何问题或建议,欢迎随时向我提问!
2023-07-23 18:49:51
116
素颜如水-t
MySQL
...统的内存使用情况,以确定MySQL是否使用了虚拟存储。 top 在这个命令下,我们可以看到进程的信息、内存使用情况和处理器使用率。如果MySQL使用了虚拟存储,将会由系统显示相应的信息。 4. 使用以下命令查看MySQL的状态: show status like '%memory%'; 这个命令将返回关于MySQL内存使用情况的详细信息。其中一个参数是“key_blocks_used”,表示使用的MyISAM索引块的数量。如果这个值与我们之前查看的操作系统的虚拟存储使用量相同,就可能表示MySQL正在使用虚拟存储。 概述: 通过上述步骤,我们可以查看MySQL虚拟存储情况,以及系统现有的内存使用情况。这将有助于我们了解数据库的性能瓶颈,并优化系统来提高数据库的响应速度。
2023-03-15 10:31:00
95
程序媛
转载文章
...学和机器学习中的分类模型,尽管名字中包含“回归”,但它主要应用于二分类问题,也可以扩展到多分类问题。在文中提到的场景下,逻辑回归被用作预测肿瘤类型的预估器,它基于输入的肿瘤医学特征估计样本属于某一特定肿瘤类型的概率。 缺失值处理(Missing Value Handling) , 在数据挖掘和机器学习过程中,经常遇到数据集中某些观测值缺失的情况。缺失值处理是指采取一定的策略对这些缺失的数据进行填充、插补或者删除等操作,以确保后续分析的准确性和完整性。在本文讨论的数据集中,有16个缺失值用“?”表示,这意味着在进行数据分析之前,需要采用合适的方法来处理这些缺失的医学特征信息。可能的处理方式包括平均值填充、中位数填充、最近邻插补或使用专门的插补算法等。
2023-08-10 11:21:12
361
转载
ActiveMQ
...存在等问题引发异常的概率。 另外,随着微服务架构和云原生技术的广泛应用,Kafka和RabbitMQ等现代消息队列系统的容错机制与自我修复功能也日益成熟。例如,Kafka提供了自动创建Topic的功能,并能在分布式环境下确保消息的持久化和顺序性,从而避免了类似UnknownTopicException的问题。 对于系统设计者而言,除了熟悉各类消息队列产品的特性和异常处理机制外,还需要根据业务需求选择合适的消息模型(如发布/订阅或点对点),并在编码阶段就考虑好资源的初始化与验证逻辑,遵循“设计时预防问题胜于运行时解决问题”的原则。 同时,参考《Enterprise Integration Patterns》一书中的消息通道模式与保证消息传递的相关理论,可以更好地指导我们在实际项目中设计健壮的消息队列体系,以应对包括UnknownTopicException在内的各种潜在问题,从而提升整个系统的稳定性和可靠性。
2023-09-27 17:44:20
476
落叶归根-t
Python
...Means 模糊分类模型实例 class FuzzyKMeans: def __init__(self, n_clusters=4, m=2, max_iter=100): self.n_clusters = n_clusters self.m = m self.max_iter = max_iter def fit(self, X): N = X.shape[0] C = self.n_clusters kmeans = KMeans(n_clusters=C) labels = kmeans.fit_predict(X) centroids = kmeans.cluster_centers_ 设定初始值隶属度二维数组 U = np.random.rand(N, C) U = np.divide(U, np.sum(U, axis=1, keepdims=True)) for i in range(self.max_iter): 求解中心点 centroids = np.dot(U.T, X) / np.sum(U, axis=0, keepdims=True) 求解隶属度二维数组 d = np.power(np.sum(np.power(X[:, np.newaxis] - centroids, 2), axis=2), 1 / (self.m - 1)) U = np.divide(1, np.power(np.add(np.divide(d[:, np.newaxis], d[:, np.newaxis] - U), 1), 1 / (self.m - 1))) self.labels_ = np.argmax(U, axis=1) self.cluster_centers_ = centroids 对随机数据进行模糊分类 fkm = FuzzyKMeans(n_clusters=4, m=2) fkm.fit(X) print(fkm.labels_) print(fkm.cluster_centers_) 以上代码是利用Python实现模糊分类算法的简单示例。算法主要分为两部分:确定中心点和求解隶属度二维数组。中心点的确定类似于K-Means算法,而求解隶属度二维数组则需要使用模糊数理中的公式进行求解。
2023-05-25 19:43:33
307
程序媛
c#
...ll检查 另外,在不确定对象是否初始化的情况下,可以通过条件判断语句进行null检查: csharp public static void Main(string[] args) { MyClass myObject = null; if (myObject != null) { Console.WriteLine(myObject.MyProperty); } else { Console.WriteLine("Object is null."); } } 4. 深入思考与预防措施 每次遇到这样的错误,我们都应该深入理解背后的原因,避免重复犯同样的错误。对于C而言,养成良好的编程习惯是至关重要的,比如总是初始化变量、尽量减少null值的使用,以及采用C 8.0及更高版本引入的可空引用类型特性等,这些都可以显著降低这类错误的发生概率。 5. 结语 面对C运行时报错,我们要像侦探破案一样,抽丝剥茧地找到问题所在,然后对症下药。这样才行,咱们才能在实际解决一连串的小问题时,不断积攒经验,让自己的编程手艺蹭蹭上涨。记住,每一次错误都是进步的垫脚石,希望这篇文章能帮助你在C的世界中更加游刃有余! 以上只是一个简单的示例,实际开发过程中可能会遇到各种各样的错误,但只要我们保持冷静、耐心寻找问题根源,并善于利用资源学习,就没有什么问题是不能解决的。加油,我的朋友们,让我们在C的广阔天地中共同探索、共同进步吧!
2024-01-07 23:41:51
573
心灵驿站_
Oracle
...记录 首先,我们需要确定哪些记录是重复的。这里,假设我们有一个名为Employees的数据表,其中可能存在ID和Email字段重复的情况: sql CREATE TABLE Employees ( ID INT PRIMARY KEY, Name VARCHAR2(50), Email VARCHAR2(50), JobTitle VARCHAR2(50) ); 为了找出所有Email字段重复的记录,我们可以使用GROUP BY和HAVING子句: sql SELECT Email, COUNT() FROM Employees GROUP BY Email HAVING COUNT() > 1; 这段SQL会返回所有出现次数大于1的邮箱地址,这就意味着这些邮箱存在重复记录。 2. 删除重复记录 识别出重复记录后,我们需要谨慎地删除它们,确保不破坏数据完整性。一种策略是保留每个重复组的第一条记录,并删除其他重复项。为此,我们可以创建临时表,并用ROW_NUMBER()窗口函数来标识每组重复记录的顺序: sql -- 创建临时表并标记重复记录的顺序 CREATE TABLE Temp_Employees AS SELECT ID, Name, Email, JobTitle, ROW_NUMBER() OVER(PARTITION BY Email ORDER BY ID) as RowNum FROM Employees; -- 删除临时表中RowNum大于1的重复记录 DELETE FROM Temp_Employees WHERE RowNum > 1; -- 将无重复记录的临时表数据回迁到原表 INSERT INTO Employees (ID, Name, Email, JobTitle) SELECT ID, Name, Email, JobTitle FROM Temp_Employees; -- 清理临时表 DROP TABLE Temp_Employees; 上述代码流程中,我们首先创建了一个临时表Temp_Employees,为每个Email字段相同的组分配行号(根据ID排序)。然后删除行号大于1的记录,即除每组第一条记录以外的所有重复记录。最后,我们将去重后的数据重新插入原始表并清理临时表。 3. 防止未来新增重复记录 为了避免将来再次出现此类问题,我们可以为容易重复的字段添加唯一约束。例如,对于上面例子中的Email字段: sql ALTER TABLE Employees ADD CONSTRAINT Unique_Email UNIQUE (Email); 这样,在尝试插入新的具有已存在Email值的记录时,Oracle将自动阻止该操作。 总结 处理Oracle数据库中的重复记录问题是一个需要细心和策略的过程。在这个过程中,咱们得把数据结构摸得门儿清,像老朋友一样灵活运用SQL查询和DML语句。同时呢,咱们也得提前打个“预防针”,确保以后不再犯同样的错误。在这一整个寻觅答案和解决问题的旅程中,我们不停地琢磨、动手实践、灵活变通,这恰恰就是人与科技亲密接触所带来的那种无法抗拒的魅力。希望本文中给出的实例和小窍门,能真正帮到您,让管理维护您的Oracle数据库变得轻轻松松,确保数据稳稳妥妥、整整齐齐的。
2023-02-04 13:46:08
48
百转千回
转载文章
...殖能力的兔子cony模型后,我们可以进一步思考生物繁殖速率与资源分配之间的复杂关系。近期,一项发表在《生态学》杂志上的研究揭示了动物种群增长与其生存环境承载力的关系,研究人员模拟了不同繁殖率下物种数量的变化,并分析了当资源有限时如何实现最优管理以维持生态平衡。 实验中的cony兔子模型恰好映射了现实世界中许多快速增长物种面临的挑战。例如,在澳大利亚,由于引进的兔子种群繁殖能力强、缺乏天敌,一度对当地生态环境造成严重影响。科学家们采取了多种策略来控制其数量,包括引入疾病、修建防兔篱以及调整土地利用方式等。 此外,这一问题也与计算机科学中的动态规划和优化算法紧密相关。类似上述编程题所采用的方法,数学家和计算机科学家经常通过构建递归模型或使用模运算来解决类似的资源分配问题,特别是在处理大数据集和模拟复杂系统时。 再者,此话题还关联到更深层次的哲学和社会伦理问题——人类在干预自然生态系统过程中应如何权衡保护与利用,以及在实验室条件下的人工生物繁殖研究是否会对未来生物科技发展带来伦理困境。 总之,Dante的兔子cony模型不仅是一个有趣的数学和编程问题实例,它更引发了我们对现实世界中生物繁殖策略、资源限制下的种群管理及科技伦理等多个领域的深入思考。
2023-10-07 17:12:52
146
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 显示当前目录下所有文件和目录大小。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"