前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[ http服务]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Ruby
...虚拟化技术,旨在为无服务器计算提供更高的性能和安全性。这项技术利用轻量级虚拟化容器来运行多个任务,极大地提高了资源利用率。然而,这种高度并发的环境也带来了新的挑战,比如如何确保不同任务之间的数据隔离性和一致性。 在国内,阿里巴巴集团也在积极布局并发编程相关的技术研究。阿里云推出了基于Go语言的高性能微服务框架“MOSN”,该框架支持大规模分布式系统的构建,特别适合处理高并发场景下的请求分发和负载均衡。MOSN的设计理念强调模块化和可扩展性,使得开发者能够轻松应对复杂的业务逻辑。不过,随着越来越多的企业采用类似的架构,如何有效管理线程池大小、避免死锁等问题成为了新的关注焦点。 此外,近期一篇发表在《ACM Transactions on Programming Languages and Systems》上的论文引起了广泛关注。这篇论文探讨了现代编程语言在并发模型设计上的差异,并提出了一种新型的“乐观并发控制”算法。该算法通过预测线程间的冲突概率,动态调整同步策略,从而在一定程度上减少了锁的使用频率。这一方法不仅提升了程序的执行效率,还降低了开发者的维护成本。 从哲学角度来看,无论是技术层面还是理论层面,人类对于并发编程的追求始终未曾停歇。正如古希腊哲学家赫拉克利特所言:“人不能两次踏进同一条河流。”同样,在并发编程的世界里,每一次尝试都是一次全新的探索,而每一次成功都离不开对失败教训的深刻反思。未来,随着量子计算等前沿科技的发展,我们或许将迎来一场关于并发编程范式的革命,而这无疑将为软件工程领域带来前所未有的机遇与挑战。
2025-04-25 16:14:17
32
凌波微步
转载文章
...转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 原文地址为: 大数据——海量数据处理的基本方法总结 声明: 原文引用参考July大神的csdn博客文章 => 海量处理面试题 海量数据处理概述 所谓海量数据处理,就是数据量太大,无法在较短时间内迅速解决,无法一次性装入内存。本文在前人的基础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 安全,是一个操作系统必须具备的根本特性。我们的系统发展到现在,安全性能上当然不可能与专业系统同日而语,但该做到的,系统内核都应该努力完善。前几期课程,我们给系统内核增加了中断处理,于是当应用程序妄图执行特权指令,想要染指内核运行时,中断会把程序强行切断,内核从中断中重新获得CPU的执行权限。 虽说恶意用户程序难以攻击内核,但是系统当前还存在一个漏洞,使得恶意程序能取攻击另一个程序,我们看看这个问题到底是怎么实现的。我们先在内核C语言部分做简单修改,把原来的cmd_hlt函数改为cmd_execute_program: nt show_pos = 179;void cmd_execute_program(char file) {io_cli();struct Buffer appBuffer = (struct Buffer)memman_alloc(memman, 16);struct TASK task = task_now();task->pTaskBuffer = appBuffer;file_loadfile(file, appBuffer);struct SEGMENT_DESCRIPTOR gdt =(struct SEGMENT_DESCRIPTOR )get_addr_gdt();//select is multiply of 8, divided by 8 get the original valueint code_seg = 21 + (task->sel - first_task_cons_selector) / 8;//change hereint mem_seg = 30 + (task->sel - first_task_cons_selector) / 8;//22;char p = intToHexStr(mem_seg);showString(shtctl, sht_back, 0, show_pos, COL8_FFFFFF, p); show_pos += 16;set_segmdesc(gdt + code_seg, 0xfffff, (int) appBuffer->pBuffer, 0x409a + 0x60);//new memory char q = (char ) memman_alloc_4k(memman, 641024);appBuffer->pDataSeg = (unsigned char)q;set_segmdesc(gdt + mem_seg, 64 1024 - 1,(int) q ,0x4092 + 0x60);task->tss.esp0 = 0;io_sti();start_app(0, code_seg8,641024, mem_seg8, &(task->tss.esp0));io_cli();memman_free_4k(memman,(unsigned int) appBuffer->pBuffer, appBuffer->length);memman_free_4k(memman, (unsigned int) q, 64 1024);memman_free(memman,(unsigned int)appBuffer, 16);task->pTaskBuffer = 0;io_sti();}void console_task(struct SHEET sheet, int memtotal) {....for(;;) { ....else if (i == KEY_RETURN) {....} else if (strcmp(cmdline, "hlt") == 1) {//change herecmd_execute_program("abc.exe");}....}...} 原来的cmd_hlt函数默认加载并执行软盘中的abc.exe程序,现在我们把cmd_hlt改名为cmd_execute_program,并且函数需要传入一个字符串,用于表明要加载执行的程序名字。在该函数的代码实现中,我们使用showString函数把被加载执行的用户进程数据段所对应的全局描述符号给显示到桌面上,上面代码执行后情况如下: 我们看到,在控制台中执行hlt命令后,内核加载了用户进程,同时在控制台下方输出了一个字符串,也就是0x1E,这个数值对应的就是当前运行用户进程其数据段对应的全局描述符号。一旦有这个信息之后,另一个进程就可以有机可乘了。 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
Spark
...rator(DAX)服务,这是一种托管的缓存解决方案,专为高吞吐量、低延迟的数据库查询设计。DAX能够将响应时间缩短至毫秒级别,这对于实时数据分析和大规模用户交互场景至关重要。这一举措不仅展示了云服务商在提升数据处理效率上的持续投入,也为开发者提供了更多灵活的选择。 与此同时,国内互联网巨头阿里巴巴也宣布对其自主研发的Tair缓存系统进行全面升级。新版Tair支持更高的并发能力,并引入了更先进的冷热数据分离机制,大幅降低了内存占用率。这一改进尤其适用于电商促销活动期间的流量洪峰场景,有效缓解了服务器的压力。 此外,学术界对于分布式缓存的研究也在不断深入。一篇发表于《IEEE Transactions on Parallel and Distributed Systems》的论文提出了一种基于机器学习的缓存预取算法,可以根据历史访问模式预测未来的请求热点,从而提前将数据加载到缓存中。这种方法理论上可以进一步降低查询延迟,但实际部署仍面临模型训练成本高昂等问题。 值得注意的是,尽管分布式缓存带来了诸多便利,但它并非没有挑战。隐私保护、数据一致性以及跨地域同步等问题仍然是业界亟待解决的难题。随着GDPR等法规的出台,企业在使用缓存技术时还需格外注意合规性,确保用户数据的安全与合法使用。在未来,我们或许可以看到更多结合区块链技术的去中心化缓存解决方案,为用户提供更加透明和安全的服务体验。
2025-05-02 15:46:14
81
素颜如水
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 前言 1. 安装TVM 1.1 下载源码 1.2 创建虚拟环境及安装依赖库 1.3 编译TVM源码 1.4 验证安装是否成功 2. 配置vscode 3. 安装FFI Navigator 结束语 前言 本篇文章介绍一下 tvm 在linux环境下的安装与编译,以及如何使用vscode来配置tvm的远程连接调试环境。 所需软硬件环境: 环境 版本 local system windows 10 service system ubuntu 18.04 tvm latest(0.9.dev0) python(conda) python 3.8.13 local IDE vscode 1. 安装TVM 1.1 下载源码 从github上拉取源码git clone --recursive https://github.com/apache/tvm tvm --recursive指令:由于tvm依赖了很多第三方的开源库(子模块) 加入该参数之后也将相应的子模块一起进行clone 或者直接下载源码https://tvm.apache.org/download 1.2 创建虚拟环境及安装依赖库 使用conda创建tvm的虚拟python环境,python版本为3.8,虚拟环境名为tvmenv: conda create -n tvmenv python=3.8 编辑tvm目录下的conda/build-environment.yaml文件: conda/build-environment.yaml Build environment that can be used to build tvm.name: tvmenv The conda channels to lookup the dependencieschannels:- anaconda- conda-forge 将name的值改为刚刚创建的虚拟环境名tvmenv 执行下面的指令,将构建tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 一、建模背景及目的及数据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
Kafka
...afka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
95
彩虹之上
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 卡表(CardTable)在CMS中是最常见的概念之一,G1中不仅保留了这个概念,还引入了RSet。卡表到底是一个什么东西?GC最早引入卡表的目的是为了对内存的引用关系做标记,从而根据引用关系快速遍历活跃对象。举个简单的例子,有两个分区,假设分区大小都为1MB,分别为A和B。如果A中有一个对象objA,B中有一个对象objB,且objA.field=objB,那么这两个分区就有引用关系了,但是如果我们想找到分区A,要如何引用分区B?做法有两种:·遍历整个分区A,一个字一个字的移动(为什么以字为单位?原因是JVM中对象会对齐,所以不需要按字节移动),然后查看内存里面的值到底是不是指向B,这种方法效率太低,可以优化为一个对象一个对象地移动(这里涉及JVM如何识别对象,以及如何区分指针和立即数),但效率还是太低。 ·借助额外的数据结构描述这种引用关系,例如使用类似位图(bitmap)的方法,记录A和B的内存块之间的引用关系,用一个位来描述一个字,假设在32位机器上(一个字为32位),需要32KB(32KB×32=1M)的空间来描述一个分区。那么我们就可以在这个对象ObjA所在分区A里面添加一个额外的指针,这个指针指向另外一个分区B的位图,如果我们可以把对象ObjA和指针关系进行映射,那么当访问ObjA的时候,顺便访问这个额外的指针,从这个指针指向的位图就能找到被ObjA引用的分区B对应的内存块。通常我们只需要判定位图里面对应的位是否有1,有的话则认为发生了引用。 class CardTable: public CHeapObj<mtGC> {friend class VMStructs;public:typedef uint8_t CardValue;// All code generators assume that the size of a card table entry is one byte.// They need to be updated to reflect any change to this.// This code can typically be found by searching for the byte_map_base() method.STATIC_ASSERT(sizeof(CardValue) == 1);protected:// The declaration order of these const fields is important; see the// constructor before changing.const MemRegion _whole_heap; // the region covered by the card tableconst size_t _page_size; // page size used when mapping _byte_mapsize_t _byte_map_size; // in bytesCardValue _byte_map; // the card marking arrayCardValue _byte_map_base;// Some barrier sets create tables whose elements correspond to parts of// the heap; the CardTableBarrierSet is an example. Such barrier sets will// normally reserve space for such tables, and commit parts of the table// "covering" parts of the heap that are committed. At most one covered// region per generation is needed.static constexpr int max_covered_regions = 2;// The covered regions should be in address order.MemRegion _covered[max_covered_regions];// The last card is a guard card; never committed.MemRegion _guard_region;inline size_t compute_byte_map_size(size_t num_bytes);enum CardValues {clean_card = (CardValue)-1,dirty_card = 0,CT_MR_BS_last_reserved = 1};// a word's worth (row) of clean card valuesstatic const intptr_t clean_card_row = (intptr_t)(-1);// CardTable entry sizestatic uint _card_shift;static uint _card_size;static uint _card_size_in_words;size_t last_valid_index() const {return cards_required(_whole_heap.word_size()) - 1;}private:void initialize_covered_region(void region0_start, void region1_start);MemRegion committed_for(const MemRegion mr) const;public:CardTable(MemRegion whole_heap);virtual ~CardTable() = default;void initialize(void region0_start, void region1_start);// Barrier set functions.// Initialization utilities; covered_words is the size of the covered region// in, um, words.inline size_t cards_required(size_t covered_words) const {assert(is_aligned(covered_words, _card_size_in_words), "precondition");return covered_words / _card_size_in_words;}// Dirty the bytes corresponding to "mr" (not all of which must be// covered.)void dirty_MemRegion(MemRegion mr);// Clear (to clean_card) the bytes entirely contained within "mr" (not// all of which must be covered.)void clear_MemRegion(MemRegion mr);// Return true if "p" is at the start of a card.bool is_card_aligned(HeapWord p) {CardValue pcard = byte_for(p);return (addr_for(pcard) == p);}// Mapping from address to card marking array entryCardValue byte_for(const void p) const {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));CardValue result = &_byte_map_base[uintptr_t(p) >> _card_shift];assert(result >= _byte_map && result < _byte_map + _byte_map_size,"out of bounds accessor for card marking array");return result;}// The card table byte one after the card marking array// entry for argument address. Typically used for higher bounds// for loops iterating through the card table.CardValue byte_after(const void p) const {return byte_for(p) + 1;}void invalidate(MemRegion mr);// Provide read-only access to the card table array.const CardValue byte_for_const(const void p) const {return byte_for(p);}const CardValue byte_after_const(const void p) const {return byte_after(p);}// Mapping from card marking array entry to address of first wordHeapWord addr_for(const CardValue p) const {assert(p >= _byte_map && p < _byte_map + _byte_map_size,"out of bounds access to card marking array. p: " PTR_FORMAT" _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));// As _byte_map_base may be "negative" (the card table has been allocated before// the heap in memory), do not use pointer_delta() to avoid the assertion failure.size_t delta = p - _byte_map_base;HeapWord result = (HeapWord) (delta << _card_shift);assert(_whole_heap.contains(result),"Returning result = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return result;}// Mapping from address to card marking array index.size_t index_for(void p) {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return byte_for(p) - _byte_map;}CardValue byte_for_index(const size_t card_index) const {return _byte_map + card_index;}// Resize one of the regions covered by the remembered set.void resize_covered_region(MemRegion new_region);// Card-table-RemSet-specific things.static uintx ct_max_alignment_constraint();static uint card_shift() {return _card_shift;}static uint card_size() {return _card_size;}static uint card_size_in_words() {return _card_size_in_words;}static constexpr CardValue clean_card_val() { return clean_card; }static constexpr CardValue dirty_card_val() { return dirty_card; }static intptr_t clean_card_row_val() { return clean_card_row; }// Initialize card sizestatic void initialize_card_size();// Card marking array base (adjusted for heap low boundary)// This would be the 0th element of _byte_map, if the heap started at 0x0.// But since the heap starts at some higher address, this points to somewhere// before the beginning of the actual _byte_map.CardValue byte_map_base() const { return _byte_map_base; }virtual bool is_in_young(const void p) const = 0;}; class G1CardTable : public CardTable {friend class VMStructs;friend class G1CardTableChangedListener;G1CardTableChangedListener _listener;public:enum G1CardValues {g1_young_gen = CT_MR_BS_last_reserved << 1,// During evacuation we use the card table to consolidate the cards we need to// scan for roots onto the card table from the various sources. Further it is// used to record already completely scanned cards to avoid re-scanning them// when incrementally evacuating the old gen regions of a collection set.// This means that already scanned cards should be preserved.//// The merge at the start of each evacuation round simply sets cards to dirty// that are clean; scanned cards are set to 0x1.//// This means that the LSB determines what to do with the card during evacuation// given the following possible values://// 11111111 - clean, do not scan// 00000001 - already scanned, do not scan// 00000000 - dirty, needs to be scanned.//g1_card_already_scanned = 0x1};static const size_t WordAllClean = SIZE_MAX;static const size_t WordAllDirty = 0;STATIC_ASSERT(BitsPerByte == 8);static const size_t WordAlreadyScanned = (SIZE_MAX / 255) g1_card_already_scanned;G1CardTable(MemRegion whole_heap): CardTable(whole_heap), _listener() {_listener.set_card_table(this);}static CardValue g1_young_card_val() { return g1_young_gen; }static CardValue g1_scanned_card_val() { return g1_card_already_scanned; }void verify_g1_young_region(MemRegion mr) PRODUCT_RETURN;void g1_mark_as_young(const MemRegion& mr);size_t index_for_cardvalue(CardValue const p) const {return pointer_delta(p, _byte_map, sizeof(CardValue));}// Mark the given card as Dirty if it is Clean. Returns whether the card was// Clean before this operation. This result may be inaccurate as it does not// perform the dirtying atomically.inline bool mark_clean_as_dirty(CardValue card);// Change Clean cards in a (large) area on the card table as Dirty, preserving// already scanned cards. Assumes that most cards in that area are Clean.inline void mark_range_dirty(size_t start_card_index, size_t num_cards);// Change the given range of dirty cards to "which". All of these cards must be Dirty.inline void change_dirty_cards_to(CardValue start_card, CardValue end_card, CardValue which);inline uint region_idx_for(CardValue p);static size_t compute_size(size_t mem_region_size_in_words) {size_t number_of_slots = (mem_region_size_in_words / _card_size_in_words);return ReservedSpace::allocation_align_size_up(number_of_slots);}// Returns how many bytes of the heap a single byte of the Card Table corresponds to.static size_t heap_map_factor() { return _card_size; }void initialize(G1RegionToSpaceMapper mapper);bool is_in_young(const void p) const override;}; 以位为粒度的位图能准确描述每一个字的引用关系,但是一个位通常包含的信息太少,只能描述2个状态:引用还是未引用。实际应用中JVM在垃圾回收的时候需要更多的状态,如果增加至一个字节来描述状态,则位图需要256KB的空间,这个数字太大,开销占了25%。所以一个可能的做法位图不再描述一个字,而是一个区域,JVM选择512字节为单位,即用一个字节描述512字节的引用关系。选择一个区域除了空间利用率的问题之外,实际上还有现实的意义。我们知道Java对象实际上不是一个字能描述的(有一个参数可以控制对象最小对齐的大小,默认是8字节,实际上Java在JVM中还有一些附加信息,所以对齐后最小的Java对象是16字节),很多Java对象可能是几十个字节或者几百个字节,所以用一个字节描述一个区域是有意义的。但是我没有找到512的来源,为什么512效果最好?没有相应的数据来支持这个数字,而且这个值不可以配置,不能修改,但是有理由相信512字节的区域是为了节约内存额外开销。按照这个值,1MB的内存只需要2KB的额外空间就能描述引用关系。这又带来另一个问题,就是512字节里面的内存可能被引用多次,所以这是一个粗略的关系描述,那么在使用的时候需要遍历这512字节。 再举一个例子,假设有两个对象B、C都在这512字节的区域内。为了方便处理,记录对象引用关系的时候,都使用对象的起始位置,然后用这个地址和512对齐,因此B和C对象的卡表指针都指向这一个卡表的位置。那么对于引用处理也有可有两种处理方法:·处理的时候会以堆分区为处理单位,遍历整个堆分区,在遍历的时候,每次都会以对象大小为步长,结合卡表,如果该卡表中对应的位置被设置,则说明对象和其他分区的对象发生了引用。具体内容在后文中介绍Refine的时候还会详细介绍。·处理的时候借助于额外的数据结构,找到真正对象的位置,而不需要从头开始遍历。在后文的并发标记处理时就使用了这种方法,用于找到第一个对象的起始位置。在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。 在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。G1在混合收集算法中用到了并发标记。在并发标记的时候使用了bitMap来描述对象的分配情况。例如1MB的分区可以用16KB(16KB×ObjectAlignmentInBytes×8=1MB)来描述,即16KB额外的空间。其中ObjectAlignmentInBytes是8字节,指的是对象对齐,第二个8是指一个字节有8位。即每一个位可以描述64位。例如一个对象长度对齐之后为24字节,理论上它占用3个位来描述这个24字节已被使用了,实际上并不需要,在标记的时候只需要标记这3个位中的第一个位,再结合堆分区对象的大小信息就能准确找出。其最主要的目的是为了效率,标记一个位和标记3个位相比能节约不少时间,如果对象很大,则更划算。这些都是源码的实现细节,大家在阅读源码时需要细细斟酌。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 20:37:50
246
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_42620202/article/details/119158423。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 【www.shanpow.com--工作计划】 【一】:电脑小常识 xp调网速 开始~运行~输入gpedit.msc~计算机配置~管理模板~网络~Qos数据计划程序~限制保留宽带~属 性~已启用~将宽带限制改为0%~选应用~确定 网页地址栏里有很多记录 只删其中某个,不是全部删:在注册表中修改:单击“开始”菜单-->运行,输入regedit,依次找到: HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\TypedURLs 在右空格中删除你想删的对应 网页的键值即可。 全删除: 1、打开IE选工具/Internet选项/高级/勾选“清除地址栏下拉列表中显示的历史记录”按应用。 2、打开IE选工具/Internet选项/常规/选“清除历史记录”按应用。 3、打开IE选工具/Internet选项/内容/自动完成/点击“清除表单”或“清除密码”,按确定。 误删资料恢复 步骤: 1、单击“开始——运行,然后输入regedit (打开注册表) 2、依次展开:EKEY——LOCAL——MACHIME/SOFTWARE/microsoft/WINDOWS/CURRENTVERSION/ EXPLORER/DESKTO P/NAMESPACE 在左边空白外点击“新建” ,选择:“主键”, 把它命名为 “645FFO40——081——101B——9F08——00AA002F954E” 再把右边的“默认”的主键的键值设 为“回收站”,然后退出注册表。就OK啦。 3、要重启计算机。只要机器没有运行过磁盘整理。系统完好.任何时候的文件都可以找回来。 win7清除任务栏无意义图标:www.shanpow.com_删除Download和DataStore文件夹中的所有文件。 1、输入“regedit”打开注册表编辑器,然后打开如下键值: HKEY_CLASSES_ROOT\Local Settings\Software\Microsoft\Windows\CurrentVersion\TrayNotify 在右边你可以看到两个键值IconStreams和PastIconsStream,将它们的值删除。 2、然后调出任务管理器将进程“explorer.exe”终止,再在任务管理器中点击“文件——新建任务”, 输入“explorer”——确定 Win7安全中心服务启用不了时: 开始----运行-----输入“services.msc "确定-----找到(windows)security center 启动类型设置为自动并启动它 或者 右键单击计算机---管理----服务和应用程序----服务---找到(windows)security centerwww.shanpow.com_删除Download和DataStore文件夹中的所有文件。 ----双击-----启动类型设置为“自动”。 1.在服务管理中,关闭Windows Update服务 2.打开C:\Windows\SoftwareDistribution文件夹 3.删除DataStore和Download文件夹下的所有文件 4.启动Windows Update服务 5.进入Windows Update查看一下,Windows更新记录已经清除了。 如何用B电脑远程登录A电脑 注意:AB电脑都连接上了互联网 A电脑: 1添加一个用户名,设置登录密码。2我的电脑→属性→远程→允许用户远程连接到此计算机前 打√确定3网上邻居→属性→本地连接状态→支持→记下IP 地址XXX.XXX.XXX.XXX。 B电脑登录过程4 开始→所有程序→附件→通讯→远程桌面连→在弹出的窗口里输入A电脑的IP 地址 →连接。连接成功后会变成一个黑屏幕的画面,在屏幕的最上方有一个指示条,指示着机器是在远程登 录状态。当A电脑响应了B电脑的远程登录请求后,会给你返回一个画面,要求你输入用户名,密码。 5输入用户名和密码→确定。验证的用户名和密码是对的,他就会把其A桌面画面全传送到B电脑的屏 幕上来,稳定后就成功了! 有一事你不能作:关机。因为B电脑左下角的开始,是指挥自己用的,没 法指挥A电脑。 想使用B电脑控制A电脑关机,得在A电脑上设置:附件→windows 资源管理器→ WINDOWS 的文件夹→SYSTEM32文件夹→taskmgr.exe文件,右击把他发送到桌面上建一“桌面快捷方式”。 你在要关掉A电脑时,只要双击这个快捷方式,就会弹出来一个“WINDWOS任务管理器”窗口,上面有 “关机”命令,点“关机”就行了,当A电脑电源关闭以后,连接自然就断开了。 但这样的远程连接, 是有条件的:A电脑须有独立的 IP ,就是说,A电脑不能是局域网的内部保留 IP,所谓保留IP是指 如 10.XXX.XXX.XXX 或 192.168.XXX.XXX 等地址。如A电脑用的是ADSL,一般来说都是独立的IP,但 如果A用户是几户人家共用一个 ADSL宽带连接,通过一个ADSL共同上网的,那或许就不行了。须在路 由器上作一个“端口映射”设置。注意:A电脑防火墙的影响,有可能连不通。防火墙的缺省设置,一 般是禁止 INTERNET 上的电脑访问它的资源的。因而须开启防火墙的这个设置:允许 INTERNET上的机 器访问本机(A电脑)资源。[shutdown –s –t 0]此命令强制关机,一般不要用, WIN7远程连接前几步设置与WinXP一样。 开始→搜索框中输入MSTSC回车→在弹出的对话框中输入需要连接的计算机的IP→连接→账户密码 →确定不久显示器上出现了另一计算机的桌面,远程桌面连接成功。 教你怎样解除电脑开机密码。此方法仅供交流,严禁作为非法手段使用 方法1在开机时按下F8进入带命令提示符的安全模式输入NET USER+用户名+123456/ADD 可把某用户的密码强行设置为123456 方法2如用户忘记登录密码可 按下方法解决 此法不适用于忘记安装时所设定〔administrator〕的密码 1.在计算机启动时按F8及选Safe Mode With Command Prompt 2.选Administrator后便会跳出Command Prompt的窗口 3.用Net的命令增加一个用户,例:增加一个用户名为alanhkg888,命令语法如下: net user alanhkg888/add 4.将新增用户提升至Administrator的权力,例:提升刚才增 加用户alanhkg888的权力,命令语法如下 net localgroup administrators alanhkg888/add 5.完成上列步骤后重新启动计算机,在 启动画面上便增加了一个用户alanhkg888了,选alanhkg888进入www.shanpow.com_删除Download和DataStore文件夹中的所有文件。 6.登入后在控制台→使用者账户→选忘记密码的用户,然后选移除密码 7.在登入画面中选原来的用户便可不需密码情况下等入(因已移除了) 8.删除刚才新增的用户:在控制台→使用者账户→选alanhkg888,然后选移除账户便可 方法3 1、重新启动Windows XP,在启动画面出现后的瞬间按F8,选择带命令行的安全模 式运行。 2、运行过程停止时,系统列出了超级用户administrator和本地用户owner的选择菜单, 点击administrator,进入命令行模式。 3、键入命令:net user owner 123456/add,强制性将owner用户的口令更改为123456。 若想在此添加某一用户:用户名为abcdef,口令为123456的话,请输入net user abcdef 123456/add,添加后可用net localgroup administrators abcdef/add命令将用户提升为 系统管理组administrators用户,具有超级权限。 4.DOS下删windows\system32\config里面的SAM档就可以了 5.开机后按键盘的Delete键进入BIOS界面。找到User Password选项,其默认为关闭状 态。启动并输入用户密码(1~8位英文或数字)。计算机提示请再输入一遍以确认密码无误, 保存退出后重新启动机器,这时就会在开机时出现密码菜单 方法4我们知道在安装Windows XP过程中,首先是以administrator默认登录,然后会要 求创建一个新账户,以便进入Windows XP时使用此新建账户登录,而且在Windows XP的 登录接口中也只会出现创建的这个用户账号,不会出现administrator,但实际上该 administrator账号还是存在的,且密码为空。 【二】:Windows 7实战经验 Windows 7实战经验:完美解决Windows 7更新失败(Windows Update 错误 80070003) 很多用户反映,为什么Windows 7的自动更新会出显未知错误,导致很多更新都不能正确安装?针对这个问题,在我对自己的Windows 7进行更新的时候,有时也会发生类似的问题,经过研究,已经完美解决,下面给大家解决方案! 如果在检查更新时收到Windows Update错误80070003,则需要删除Windows用于标识计算机更新的临时文件。若要删除临时文件,请停止Windows Update服务,删除临时更新文件,重新启动Windows Update服务,然后再次尝试检查Windows更新。 以下步骤为解决Windows 7更新错误方法,本博客亲测有效。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(通过单击“开始”按钮,再依次单击“控制面板”,然后单击“管理工具”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“停止”。 1.打开“计算机”。 2.双击安装Windows的本地硬盘(通常是驱动器C)。 3.双击Windows文件夹,然后双击SoftwareDistribution文件夹。 4.双击打开DataStore文件夹,然后删除该文件夹中的所有文件。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 5.单击“后退”按钮。在SoftwareDistribution文件夹中,双击打开Download文件夹,删除该文件夹中的所有文件,然后关闭窗口。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(方法同上)”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“启动”。 4.关闭“服务”窗口和“管理工具”窗口。 完成上面操作,你需要重新更新看看可以成功更新了吗,一般因为我们删除了自动更新的一些文件,如果你仔细观察的话,那些文件大小并不是很小,所以我们再更新的时候等待的时间可能会长一些! 【三】:Win10系统提示“无法完成更新正在撤销更改” 更新win10系统补丁之后,系统会提示“window10无法更新,正在撤销”,需要重启好几次,这该怎么办呢?下面小编就向大家介绍一下windows10系统无法完成更新正在撤销更改的解决方法,欢迎大家参考和学习。 系统更新失败,反复重启还是不行,那是不是下载下来的补丁没用了呢??所以我们先要删除Windows更新的缓存文件!在做以下操作之前,首先我们要确认系统内的windows update & BITS服务设置是否开启。 检查方法: 1、按“Win+R”组合键打开运行,输入“services.msc”,点击确定(如果弹出用户账户控制窗口,我们点击“继续”)。 2、双击打开“Background Intelligent Transfer Services”服务。 3、在选项卡点击“常规”,要保证“启动类型”是“自动”或者“手动”。然后点击“服务状态”“启用”按钮。 4. 重复步骤3分别对“Windows Installer”,“Cryptographic Services”, “software licensing service” 以及“Windows Update”这四项服务进行检查。 解决办法: 1、按“Windows+X”打开“命令提示符(管理员)”。 2、输入“net stop wuauserv”回车(我们先把更新服务停止)。 3、输入”%windir%\SoftwareDistribution“回车(删除Download和DataStore文件夹中的所有文件)。 4、最后输入“net start wuauserv”回车(重新开启系统更新服务)。 完成以上的步骤之后,我们就可以在“Windows Update”中再次尝试检查更新即可。 以上就是windows10系统无法完成更新正在撤销更改的解决方法介绍了。遇到同样问题的用户,可以尝试一下这个方法,如果不行,可以留言,小编会继续寻找其他的解决办法。 【四】:Windows更新失败提示错误码80070003怎么办 Windows7,Windows8.1,Windows10在更新过程中,所更新的程序无法安装,导致更新失败,提示错误码80070003。遇到这种情况,无论再试一次,或重启电脑,更新程序仍无法安装,出现错误码80070003提示。关于这个故障,下面小编就为大家介绍一下具体的解决方法吧,欢迎大家参考和学习。 具体解决方法步骤: 1、在电脑更新过程中,更新失败,程序无法安装,出现错误码80070003的提示。如图1 2、打开控制面板,点击“系统和安全”,打开对话框。如图2 3、在打开的对话框中,点击“管理工具”-双击“服务”,在打开的对话框的下方找到“Windows Update"。(如图3),选择Windows Update,点击界面左上角的”停止“按键,或是单击右键选择”停止“。(如图4),以管理员身份进入,如果提示需要输入秘码,则输入秘码。 4、在C盘,打开”Windows"文件夹,-双击打开“SoftwareDistribution"文件夹,找到下面的2个文件夹。打开”DataStore"文件夹,删除里面所有的文件。反回上一步。如图5.1,再打开"Download"文件夹,删除里面所有的文件。(如图5.2) 5、返回第三步的操作,选择Windows Update,右键单击,选择“启动”。 6、做完上面操作后,安装更新文件就会顺利了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42620202/article/details/119158423。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-16 16:18:33
136
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 类中有一些可自定义的特殊方法,它们中的一些有预定义的默认行为,而其它一些则没有,留到需要的时候去实现。这些特殊方法是Python中用来扩充类的强有力的方式。它们可以实现模拟标准类型和重载操作符等。比如__init__()和__del__()就分别充当了构造器和析够器的功能。 这些特殊这些方法都是以双下划线(__)开始及结尾的。下表进行了总结: 基本定制型 C.__init__(self[, arg1, ...]) 构造器(带一些可选的参数) C.__new__(self[, arg1, ...]) 构造器(带一些可选的参数);通常用在设置不变数据类型的子类。 C.__del__(self) 解构器 C.__str__(self) 可打印的字符输出;内建str()及print 语句 C.__repr__(self) 运行时的字符串输出;内建repr() 和操作符 C.__unicode__(self) Unicode 字符串输出;内建unicode() C.__call__(self, args) 表示可调用的实例 C.__nonzero__(self) 为object 定义False 值;内建bool() (从2.2 版开始) C.__len__(self) “长度”(可用于类);内建len() 对象(值)比较 C.__cmp__(self, obj) 对象比较;内建cmp() C.__lt__(self, obj) C.__le__(self, obj) 小于/小于或等于;对应 C.__gt__(self, obj) C.__ge__(self, obj) 大于/大于或等于;对应>及>=操作符 C.__eq__(self, obj) C.__ne__(self, obj) 等于/不等于;对应==,!=及<>操作符 属性 C.__getattr__(self, attr) 获取属性;内建getattr();仅当属性没有找到时调用 C.__setattr__(self, attr, val) 设置属性 C.__delattr__(self, attr) 删除属性 C.__getattribute__(self, attr) 获取属性;内建getattr();总是被调用 C.__get__(self, attr) (描述符)获取属性 C.__set__(self, attr, val) (描述符)设置属性 C.__delete__(self, attr) (描述符)删除属性 数值类型:二进制操作符 C.__add__(self, obj) 加;+操作符 C.__sub__(self, obj) 减;-操作符 C.__mul__(self, obj) 乘;操作符 C.__div__(self, obj) 除;/操作符 C.__truediv__(self, obj) True 除;/操作符 C.__floordiv__(self, obj) Floor 除;//操作符 C.__mod__(self, obj) 取模/取余;%操作符 C.__divmod__(self, obj) 除和取模;内建divmod() C.__pow__(self, obj[, mod]) 乘幂;内建pow();操作符 C.__lshift__(self, obj) 左移位;< 数值类型:二进制操作符 C.__rshift__(self, obj) 右移;>>操作符 C.__and__(self, obj) 按位与;&操作符 C.__or__(self, obj) 按位或;|操作符 C.__xor__(self, obj) 按位与或;^操作符 数值类型:一元操作符 C.__neg__(self) 一元负 C.__pos__(self) 一元正 C.__abs__(self) 绝对值;内建abs() C.__invert__(self) 按位求反;~操作符 数值类型:数值转换 C.__complex__(self, com) 转为complex(复数);内建complex() C.__int__(self) 转为int;内建int() C.__long__(self) 转 .long;内建long() C.__float__(self) 转为float;内建float() 数值类型:基本表示法(String) C.__oct__(self) 八进制表示;内建oct() C.__hex__(self) 十六进制表示;内建hex() 数值类型:数值压缩 C.__coerce__(self, num) 压缩成同样的数值类型;内建coerce() C.__index__(self) 在有必要时,压缩可选的数值类型为整型(比如:用于切片索引等等) 序列类型 C.__len__(self) 序列中项的数目 C.__getitem__(self, ind) 得到单个序列元素 C.__setitem__(self, ind,val) 设置单个序列元素 C.__delitem__(self, ind) 删除单个序列元素 C.__getslice__(self, ind1,ind2) 得到序列片断 C.__setslice__(self, i1, i2,val) 设置序列片断 C.__delslice__(self, ind1,ind2) 删除序列片断 C.__contains__(self, val) 测试序列成员;内建in 关键字 C.__add__(self,obj) 串连;+操作符 C.__mul__(self,obj) 重复;操作符 C.__iter__(self) 创建迭代类;内建iter() 映射类型 C.__len__(self) mapping 中的项的数目 C.__hash__(self) 散列(hash)函数值 C.__getitem__(self,key) 得到给定键(key)的值 C.__setitem__(self,key,val) 设置给定键(key)的值 C.__delitem__(self,key) 删除给定键(key)的值 C.__missing__(self,key) 给定键如果不存在字典中,则提供一个默认值 一:简单定制 classRoundFloatManual(object):def __init__(self, val):assert isinstance(val, float), "Value must be a float!"self.value= round(val, 2)>>> rfm =RoundFloatManual(42) Traceback (mostrecent call last): File"", line 1, in? File"roundFloat2.py", line 5, in __init__assertisinstance(val, float), \ AssertionError: Value must be a float!>>> rfm =RoundFloatManual(4.2)>>>rfm >>> printrfm 它因输入非法而异常,但如果输入正确时,就没有任何输出了。在解释器中,我们得到一些信息,却不是我们想要的。print(使用str())和真正的字符串对象表示(使用repr())都没能显示更多有关我们对象的信息。这就需要实现__str__()和__repr__()二者之一,或者两者都实现。加入下面的方法: def __str__(self):return str(self.value) 现在我们得到下面的: >>> rfm = RoundFloatManual(5.590464)>>>rfm >>> printrfm5.59 >>> rfm = RoundFloatManual(5.5964)>>> printrfm5.6 但是在解释器中转储(dump)对象时,仍然显示的是默认对象符号,要修复它,只需要覆盖__repr__()。可以让__repr__()和__str__()具有相同的代码,但最好的方案是:__repr__ = __str__ 在带参数5.5964的第二个例子中,我们看到它舍入值刚好为5.6,但我们还是想显示带两位小数的数。可以这样修改: def __str__(self):return '%.2f' % self.value 这里就同时具备str()和repr()的输出了: >>> rfm =RoundFloatManual(5.5964)>>>rfm5.60 >>>printrfm5.60 所有代码如下: classRoundFloatManual(object):def __init__(self,val):assert isinstance(val, float), "Valuemust be a float!"self.value= round(val, 2)def __str__(self):return '%.2f' %self.value__repr__ = __str__ 二:数值定制 定义一个Time60,其中,将整数的小时和分钟作为输入传给构造器: classTime60(object):def __init__(self, hr, min): self.hr=hr self.min= min 1:显示 需要在显示实例的时候,得到一个有意义的输出,那么就要覆盖__str__()(如果有必要的话,__repr__()也要覆盖): def __str__(self):return '%d:%d' % (self.hr, self.min) 比如: >>> mon =Time60(10, 30)>>> tue =Time60(11, 15)>>> >>> printmon, tue10:30 11:15 2:加法 Python中的重载操作符很简单。像加号(+),只需要重载__add__()方法,如果合适,还可以用__radd__()及__iadd__()。注意,实现__add__()的时候,必须认识到它返回另一个Time60对象,而不修改原mon或tue: def __add__(self, other):return self.__class__(self.hr + other.hr, self.min + other.min) 在类中,一般不直接调用类名,而是使用self 的__class__属性,即实例化self 的那个类,并调用它。调用self.__class__()与调用Time60()是一回事。但self.__class__()的方式更好。 >>> mon = Time60(10, 30)>>> tue = Time60(11, 15)>>> mon +tue >>> print mon +tue21:45 如果没有定义相对应的特殊方法,但是却使用了该方法对应的运算,则会引起一个TypeError异常: >>> mon -tue Traceback (mostrecent call last): File"", line 1, in? TypeError:unsupported operand type(s)for -: 'Time60' and 'Time60' 3:原位加法 __iadd__(),是用来支持像mon += tue 这样的操作符,并把正确的结果赋给mon。重载一个__i__()方法的唯一秘密是它必须返回self: def __iadd__(self, other): self.hr+=other.hr self.min+=other.minreturn self 下面是结果输出: >>> mon = Time60(10,30)>>> tue = Time60(11,15)>>>mon10:30 >>>id(mon)401872 >>> mon +=tue>>>id(mon)401872 >>>mon21:45 下面是Time60的类的完全定义: classTime60(object):'Time60 - track hours and minutes' def __init__(self,hr, min):'Time60 constructor - takes hours andminutes'self.hr=hr self.min=mindef __str__(self):'Time60 - string representation' return '%d:%d' %(self.hr, self.min)__repr__ = __str__ def __add__(self, other):'Time60 - overloading the additionoperator' return self.__class__(self.hr + other.hr,self.min +other.min)def __iadd__(self,other):'Time60 - overloading in-place addition'self.hr+=other.hr self.min+=other.minreturn self 4:升华 在这个类中,还有很多需要优化和改良的地方。首先看下面的例子: >>> wed =Time60(12, 5)>>>wed12:5 正确的显示应该是:“12:05” >>> thu =Time60(10, 30)>>> fri =Time60(8, 45)>>> thu +fri18:75 正确的显示应该是:19:15 可以做出如下修改: def __str__(self):return '%02d:%02d'%(self.hr, self.min)__repr__ = __str__ def __add__(self, othertime): tmin= self.min +othertime.min thr= self.hr +othertime.hrreturn self.__class__(thr + tmin/60, tmin%60)def __iadd__(self, othertime): self.min+=othertime.min self.hr+=othertime.hr self.hr+= self.min/60self.min%= 60 return self 三:迭代器 迭代器对象本身需要支持以下两种方法,它们组合在一起形成迭代器协议: iterator.__iter__() 返回迭代器对象本身。 iterator.next() 从容器中返回下一个元素。 实现了__iter__()和next()方法的类就是一个迭代器。自定义迭代器的例子如下: RandSeq(Random Sequence),传入一个初始序列,__init__()方法执行前述的赋值操作。__iter__()仅返回self,这就是如何将一个对象声明为迭代器的方式,最后,调用next()来得到迭代器中连续的值。这个迭代器唯一的亮点是它没有终点。代码如下: classRandSeq(object):def __init__(self, seq): self.data=seqdef __iter__(self):returnselfdefnext(self):return choice(self.data) 运行它,将会看到下面的输出: >>> from randseq importRandSeq>>> for eachItem in RandSeq(('rock', 'paper', 'scissors')): ...printeachItem ... scissors scissors rock paper paper scissors ...... 四:多类型定制 现在创建另一个新类,NumStr,由一个数字-字符对组成,记为n和s,数值类型使用整型(integer)。用[n::s]来表示它,这两个数据元素构成一个整体。NumStr有下面的特征: 初始化: 类应当对数字和字符串进行初始化;如果其中一个(或两)没有初始化,则使用0和空字符串,也就是, n=0 且s=''作为默认。 加法: 定义加法操作符,功能是把数字加起来,把字符连在一起;比如,NumStr1=[n1::s1]且NumStr2=[n2::s2]。则NumStr1+NumStr2 表示[n1+n2::s1+s2],其中,+代表数字相加及字符相连接。 乘法: 类似的, 定义乘法操作符的功能为, 数字相乘,字符累积相连, 也就是,NumStr1NumStr2=[n1n::s1n]。 False 值:当数字的数值为 0 且字符串为空时,也就是当NumStr=[0::'']时,这个实体即有一个false值。 比较: 比较一对NumStr对象,比如,[n1::s1] vs. [n2::s2],有九种不同的组合。对数字和字符串,按照标准的数值和字典顺序的进行比较。 如果obj1< obj2,则cmp(obj1, obj2)的返回值是一个小于0 的整数, 当obj1 > obj2 时,比较的返回值大于0, 当两个对象有相同的值时, 比较的返回值等于0。 我们的类的解决方案是把这些值相加,然后返回结果。为了能够正确的比较对象,我们需要让__cmp__()在 (n1>n2) 且 (s1>s2)时,返回 1,在(n1s2),或相反),返回0. 反之亦然。代码如下: classNumStr(object):def __init__(self, num=0, string=''): self.__num =num self.__string =stringdef __str__(self):return '[%d :: %r]' % (self.__num, self.__string)__repr__ = __str__ def __add__(self, other):ifisinstance(other, NumStr):return self.__class__(self.__num + other.__num, self.__string + other.__string)else:raise TypeError, 'Illegal argument type for built-in operation' def __mul__(self, num):ifisinstance(num, int):return self.__class__(self.__num num, self.__string num)else:raise TypeError, 'Illegal argument type for built-inoperation' def __nonzero__(self):return self.__num or len(self.__string)def __norm_cval(self, cmpres):returncmp(cmpres, 0)def __cmp__(self, other):return self.__norm_cval(cmp(self.__num, other.__num))+\ self.__norm_cval(cmp(self.__string,other.__string)) 执行一些例子: >>> a =NumStr(3, 'foo')>>> b =NumStr(3, 'goo')>>> c =NumStr(2, 'foo')>>> d =NumStr()>>> e =NumStr(string='boo')>>> f =NumStr(1)>>>a [3 :: 'foo']>>>b [3 :: 'goo']>>>c [2 :: 'foo']>>>d [0 ::'']>>>e [0 ::'boo']>>>f [1 :: '']>>> a True>>> b False>>> a ==a True>>> b 2[6 :: 'googoo']>>> a 3[9 :: 'foofoofoo']>>> b +e [3 :: 'gooboo']>>> e +b [3 :: 'boogoo']>>> if d: 'not false'...>>> if e: 'not false'...'not false' >>>cmp(a, b)-1 >>>cmp(a, c)1 >>>cmp(a, a) 0 如果在__str__中使用“%s”,将导致字符串没有引号: return '[%d :: %s]' % (self.__num, self.__string)>>> printa [3 :: foo] 第二个元素是一个字符串,如果用户看到由引号标记的字符串时,会更加直观。要做到这点,使用“repr()”表示法对代码进行转换,把“%s”替换成“%r”。这相当于调用repr()或者使用单反引号来给出字符串的可求值版本--可求值版本的确要有引号: >>> printa [3 :: 'foo'] __norm_cval()不是一个特殊方法。它是一个帮助我们重载__cmp__()的助手函数:唯一的目的就是把cmp()返回的正值转为1,负值转为-1。cmp()基于比较的结果,通常返回任意的正数或负数(或0),但为了我们的目的,需要严格规定返回值为-1,0 和1。 对整数调用cmp()及与 0 比较,结果即是我们所需要的,相当于如下代码片断: def __norm_cval(self, cmpres):if cmpres<0:return -1 elif cmpres>0:return 1 else:return 0 两个相似对象的实际比较是比较数字,比较字符串,然后返回这两个比较结果的和。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-19 14:30:42
132
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 前言 Annotation——注解,JDK1.5新增加的功能。它能够添加到 Java 源代码的语法元数据。类、方法、变量、参数、包都可以被注解,可用来将信息元数据与程序元素进行关联。目前很多开源库都使用到了注解,最熟悉的ButtonKnife中的@ViewInject(R.id.x)就可以替代findViewId,不懂这一块技术的同学第一眼看上去肯定会一脸懵逼,下面会手把手带大家写出ButtonKnife的注解使用。使用注解可以简化代码,提高开发效率。本文简单介绍下注解的使用,并对几个 Android 开源库的注解使用原理进行简析。 1、作用 标记,用于告诉编译器一些信息 ; 编译时动态处理,如动态生成代码 ; 运行时动态处理,如得到注解信息。 2、分类 标准 Annotation, 包括 Override, Deprecated, SuppressWarnings。也都是Java自带的几个 Annotation,上面三个分别表示重写函数,不鼓励使用(有更好方式、使用有风险或已不在维护),忽略某项 Warning; 元 Annotation ,@Retention, @Target, @Inherited, @Documented。元 Annotation 是指用来定义 Annotation 的 Annotation,在后面 Annotation 自定义部分会详细介绍含义; 自定义 Annotation , 表示自己根据需要定义的 Annotation,定义时需要用到上面的元 Annotation 这里只是一种分类而已,也可以根据作用域分为源码时、编译时、运行时 Annotation。通过 @interface 定义,注解名即为自定义注解名。 一、自定义注解 例如,注解@MethodInfo: @Documented@Retention(RetentionPolicy.RUNTIME)@Target(ElementType.METHOD)@Inheritedpublic @interface MethodInfo {String author() default "annotation@gmail.com";String date();int version() default 1;} 使用到了元Annotation: @Documented 是否会保存到 Javadoc 文档中 ; @Retention 保留时间,可选值 SOURCE(源码时),CLASS(编译时),RUNTIME(运行时),默认为 CLASS,值为 SOURCE 大都为 Mark Annotation,这类 Annotation 大都用来校验,比如 Override, Deprecated, SuppressWarnings ; @Target 用来指定修饰的元素,如 CONSTRUCTOR:用于描述构造器、FIELD:用于描述域、LOCAL_VARIABLE:用于描述局部变量、METHOD:用于描述方法、PACKAGE:用于描述包、PARAMETER:用于描述参数、TYPE:用于描述类、接口(包括注解类型) 或enum声明。 @Inherited 是否可以被继承,默认为 false。 注解的参数名为注解类的方法名,且: 所有方法没有方法体,没有参数没有修饰符,实际只允许 public & abstract 修饰符,默认为 public ,不允许抛异常; 方法返回值只能是基本类型,String, Class, annotation, enumeration 或者是他们的一维数组; 若只有一个默认属性,可直接用 value() 函数。一个属性都没有表示该 Annotation 为 Mark Annotation。 public class App {@MethodInfo(author = “annotation.cn+android@gmail.com”,date = "2011/01/11",version = 2)public String getAppName() {return "appname";} } 调用自定义MethodInfo 的示例,这里注解的作用实际是给方法添加相关信息: author、date、version 。 二、实战注解Butter Knife 首先,先定义一个ViewInject注解。 public @interface ViewInject { int value() default -1;} 紧接着,为刚自定义注解添加元注解。 @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)public @interface ViewInject {int value() default -1;} 再定义一个注解LayoutInject @Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)public @interface LayoutInject {int value() default -1;} 定义一个基础的Activity。 package cn.wsy.myretrofit.annotation;import android.os.Bundle;import android.support.v7.app.AppCompatActivity;import android.util.Log;import java.lang.reflect.Field;public class InjectActivity extends AppCompatActivity {private int mLayoutId = -1;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);displayInjectLayout();displayInjectView();}/ 解析注解view id/private void displayInjectView() {if (mLayoutId <=0){return ;}Class<?> clazz = this.getClass();Field[] fields = clazz.getDeclaredFields();//获得声明的成员变量for (Field field : fields) {//判断是否有注解try {if (field.getAnnotations() != null) {if (field.isAnnotationPresent(ViewInject.class)) {//如果属于这个注解//为这个控件设置属性field.setAccessible(true);//允许修改反射属性ViewInject inject = field.getAnnotation(ViewInject.class);field.set(this, this.findViewById(inject.value()));} }} catch (Exception e) {Log.e("wusy", "not found view id!");} }}/ 注解布局Layout id/private void displayInjectLayout() {Class<?> clazz = this.getClass();if (clazz.getAnnotations() != null){if (clazz.isAnnotationPresent(LayouyInject.class)){LayouyInject inject = clazz.getAnnotation(LayouyInject.class);mLayoutId = inject.value();setContentView(mLayoutId);} }} } 首先,这里是根据映射实现设置控件的注解,java中使用反射的机制效率性能并不高。这里只是举例子实现注解。ButterKnife官方申明不是通过反射机制,因此效率会高点。 package cn.wsy.myretrofit;import android.os.Bundle;import android.widget.TextView;import cn.wsy.myretrofit.annotation.InjectActivity;import cn.wsy.myretrofit.annotation.LayouyInject;import cn.wsy.myretrofit.annotation.ViewInject;@LayoutInject(R.layout.activity_main)public class MainActivity extends InjectActivity {@ViewInject(R.id.textview)private TextView textView;@ViewInject(R.id.textview1)private TextView textview1;@ViewInject(R.id.textview2)private TextView textview2;@ViewInject(R.id.textview3)private TextView textview3;@ViewInject(R.id.textview4)private TextView textview4;@ViewInject(R.id.textview5)private TextView textview5;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);//设置属性textView.setText("OK");textview1.setText("OK1");textview2.setText("OK2");textview3.setText("OK3");textview4.setText("OK4");textview5.setText("OK5");} } 上面直接继承InjectActivity即可,文章上面也有说过:LayouyInject为什么作用域是TYPE,首先在加载view的时候,肯定是优先加载布局啊,ButterKnife也不例外。因此选择作用域在描述类,并且存在运行时。 二、解析Annotation原理 1、运行时 Annotation 解析 (1) 运行时 Annotation 指 @Retention 为 RUNTIME 的 Annotation,可手动调用下面常用 API 解析 method.getAnnotation(AnnotationName.class);method.getAnnotations();method.isAnnotationPresent(AnnotationName.class); 其他 @Target 如 Field,Class 方法类似 。 getAnnotation(AnnotationName.class) 表示得到该 Target 某个 Annotation 的信息,一个 Target 可以被多个 Annotation 修饰; getAnnotations() 则表示得到该 Target 所有 Annotation ; isAnnotationPresent(AnnotationName.class) 表示该 Target 是否被某个 Annotation 修饰; (2) 解析示例如下: public static void main(String[] args) {try {Class cls = Class.forName("cn.trinea.java.test.annotation.App");for (Method method : cls.getMethods()) {MethodInfo methodInfo = method.getAnnotation(MethodInfo.class);if (methodInfo != null) {System.out.println("method name:" + method.getName());System.out.println("method author:" + methodInfo.author());System.out.println("method version:" + methodInfo.version());System.out.println("method date:" + methodInfo.date());} }} catch (ClassNotFoundException e) {e.printStackTrace();} } 以之前自定义的 MethodInfo 为例,利用 Target(这里是 Method)getAnnotation 函数得到 Annotation 信息,然后就可以调用 Annotation 的方法得到响应属性值 。 2、编译时 Annotation 解析 (1) 编译时 Annotation 指 @Retention 为 CLASS 的 Annotation,甴 apt(Annotation Processing Tool) 解析自动解析。 使用方法: 自定义类集成自 AbstractProcessor; 重写其中的 process 函数 这块很多同学不理解,实际是 apt(Annotation Processing Tool) 在编译时自动查找所有继承自 AbstractProcessor 的类,然后调用他们的 process 方法去处理。 (2) 假设之前自定义的 MethodInfo 的 @Retention 为 CLASS,解析示例如下: @SupportedAnnotationTypes({ "cn.trinea.java.test.annotation.MethodInfo" })public class MethodInfoProcessor extends AbstractProcessor {@Overridepublic boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) {HashMap<String, String> map = new HashMap<String, String>();for (TypeElement te : annotations) {for (Element element : env.getElementsAnnotatedWith(te)) {MethodInfo methodInfo = element.getAnnotation(MethodInfo.class);map.put(element.getEnclosingElement().toString(), methodInfo.author());} }return false;} } SupportedAnnotationTypes 表示这个 Processor 要处理的 Annotation 名字。 process 函数中参数 annotations 表示待处理的 Annotations,参数 env 表示当前或是之前的运行环境 process 函数返回值表示这组 annotations 是否被这个 Processor 接受,如果接受后续子的 rocessor 不会再对这个 Annotations 进行处理 三、几个 Android 开源库 Annotation 原理简析 1、Retrofit (1) 调用 @GET("/users/{username}")User getUser(@Path("username") String username); (2) 定义 @Documented@Target(METHOD)@Retention(RUNTIME)@RestMethod("GET")public @interface GET {String value();} 从定义可看出 Retrofit 的 Get Annotation 是运行时 Annotation,并且只能用于修饰 Method (3) 原理 private void parseMethodAnnotations() {for (Annotation methodAnnotation : method.getAnnotations()) {Class<? extends Annotation> annotationType = methodAnnotation.annotationType();RestMethod methodInfo = null;for (Annotation innerAnnotation : annotationType.getAnnotations()) {if (RestMethod.class == innerAnnotation.annotationType()) {methodInfo = (RestMethod) innerAnnotation;break;} }……} } RestMethodInfo.java 的 parseMethodAnnotations 方法如上,会检查每个方法的每个 Annotation, 看是否被 RestMethod 这个 Annotation 修饰的 Annotation 修饰,这个有点绕,就是是否被 GET、DELETE、POST、PUT、HEAD、PATCH 这些 Annotation 修饰,然后得到 Annotation 信息,在对接口进行动态代理时会掉用到这些 Annotation 信息从而完成调用。 因为 Retrofit 原理设计到动态代理,这里只介绍 Annotation。 2、Butter Knife (1) 调用 @InjectView(R.id.user) EditText username; (2) 定义 @Retention(CLASS) @Target(FIELD)public @interface InjectView {int value();} 可看出 Butter Knife 的 InjectView Annotation 是编译时 Annotation,并且只能用于修饰属性 (3) 原理 @Override public boolean process(Set<? extends TypeElement> elements, RoundEnvironment env) {Map<TypeElement, ViewInjector> targetClassMap = findAndParseTargets(env);for (Map.Entry<TypeElement, ViewInjector> entry : targetClassMap.entrySet()) {TypeElement typeElement = entry.getKey();ViewInjector viewInjector = entry.getValue();try {JavaFileObject jfo = filer.createSourceFile(viewInjector.getFqcn(), typeElement);Writer writer = jfo.openWriter();writer.write(viewInjector.brewJava());writer.flush();writer.close();} catch (IOException e) {error(typeElement, "Unable to write injector for type %s: %s", typeElement, e.getMessage());} }return true;} ButterKnifeProcessor.java 的 process 方法如上,编译时,在此方法中过滤 InjectView 这个 Annotation 到 targetClassMap 后,会根据 targetClassMap 中元素生成不同的 class 文件到最终的 APK 中,然后在运行时调用 ButterKnife.inject(x) 函数时会到之前编译时生成的类中去找。 3、ActiveAndroid (1) 调用 @Column(name = “Name") public String name; (2) 定义 @Target(ElementType.FIELD)@Retention(RetentionPolicy.RUNTIME)public @interface Column {……} 可看出 ActiveAndroid 的 Column Annotation 是运行时 Annotation,并且只能用于修饰属性 (3) 原理 Field idField = getIdField(type);mColumnNames.put(idField, mIdName);List<Field> fields = new LinkedList<Field>(ReflectionUtils.getDeclaredColumnFields(type));Collections.reverse(fields);for (Field field : fields) {if (field.isAnnotationPresent(Column.class)) {final Column columnAnnotation = field.getAnnotation(Column.class);String columnName = columnAnnotation.name();if (TextUtils.isEmpty(columnName)) {columnName = field.getName();}mColumnNames.put(field, columnName);} } TableInfo.java 的构造函数如上,运行时,得到所有行信息并存储起来用来构件表信息。 ———————————————————————— 最后一个问题,看看这段代码最后运行结果: public class Person {private int id;private String name;public Person(int id, String name) {this.id = id;this.name = name;}public boolean equals(Person person) {return person.id == id;}public int hashCode() {return id;}public static void main(String[] args) {Set<Person> set = new HashSet<Person>();for (int i = 0; i < 10; i++) {set.add(new Person(i, "Jim"));}System.out.println(set.size());} } 答案:示例代码运行结果应该是 10 而不是 1,这个示例代码程序实际想说明的是标记型注解 Override 的作用,为 equals 方法加上 Override 注解就知道 equals 方法的重载是错误的,参数不对。 本篇文章为转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 22:30:35
104
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 2. MySQL 2.1. 快速参考 维护者:Docker 社区和 MySQL 团队 从哪里获得帮助:Docker 社区论坛、Docker 社区 Slack 或 Stack Overflow 2.2. 支持的标签和各自的 Dockerfile 链接 8.0.28, 8.0, 8, latest 5.7.37, 5.7, 5 2.3. 快速参考(续) 在哪里提交问题:https://github.com/docker-library/mysql/issues 支持的架构:(更多信息)amd64 发布的镜像工件详情:repo-info repo 的 repos/mysql/ 目录(历史)(镜像元数据、传输大小等) 镜像更新:official-images repo 的 library/mysql 标签 官方图像 repo 的库/mysql 文件(历史) 此描述的来源:docs repo 的 mysql/ 目录(历史) 2.4. 如何使用镜像 2.4.1. 启动一个mysql服务器实例 启动 MySQL 实例很简单: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 其中 some-mysql 是您要分配给容器的名称, my-secret-pw 是要为 MySQL root 用户设置的密码,而 tag 是指定您想要的 MySQL 版本的标签。 有关相关标签,请参见上面的列表。 以下是示例(通常要设置时区),注意-v 这里是挂载磁盘,请提前创建目录/var/mysql/data,/var/lib/mysql是容器里的原持久化目录: docker run --name mysql202201 -e MYSQL_ROOT_PASSWORD=123456 -e TZ=Asia/Shanghai -v /var/mysql/data:/var/lib/mysql -d mysql:5.7 2.4.2. 从 MySQL 命令行客户端连接到 MySQL 以下命令启动另一个 mysql 容器实例并针对您的原始 mysql 容器运行 mysql 命令行客户端,允许您针对您的数据库实例执行 SQL 语句: $ docker run -it --network some-network --rm mysql mysql -hsome-mysql -uexample-user -p 其中 some-mysql 是原始 mysql 容器的名称(连接到 some-network Docker 网络)。 此镜像也可以用作非 Docker 或远程实例的客户端: $ docker run -it --rm mysql mysql -hsome.mysql.host -usome-mysql-user -p 有关 MySQL 命令行客户端的更多信息,请参阅 MySQL 文档。 2.4.3. 容器外访问和查看 MySQL 日志 docker exec 命令允许您在 Docker 容器内运行命令。 以下命令行将为您提供 mysql 容器内的 bash shell: $ docker exec -it some-mysql bash 第一次启动一个MySQL容器后,需要对账户进行授权,否则无法远程访问,请先使用上面的命令进入容器内,然后使用以下命令连接到mysql服务: mysql -uroot -p 输入密码回车,进入mysql命令界面mysql> 接着授权root远程访问权限: mysql> GRANT ALL PRIVILEGES ON . TO 'root'@'%' IDENTIFIED BY '123456'; 然后就可以远程用MySQL客户端连接到MySQL容器了。 日志可通过 Docker 的容器日志获得: $ docker logs some-mysql 2.4.4. 使用自定义 MySQL 配置文件 MySQL 的默认配置可以在 /etc/mysql/my.cnf 中找到,其中可能包含额外的目录,例如 /etc/mysql/conf.d 或 /etc/mysql/mysql.conf.d。 请检查 mysql 映像本身中的相关文件和目录以获取更多详细信息。 如果 /my/custom/config-file.cnf 是你的自定义配置文件的路径和名称,你可以这样启动你的 mysql 容器(注意这个命令只使用了自定义配置文件的目录路径): $ docker run --name some-mysql -v /my/custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 这将启动一个新容器 some-mysql,其中 MySQL 实例使用来自 /etc/mysql/my.cnf 和 /etc/mysql/conf.d/config-file.cnf 的组合启动设置,后者的设置优先 . 没有 cnf 文件的配置 许多配置选项可以作为标志传递给 mysqld。 这将使您可以灵活地自定义容器,而无需 cnf 文件。 例如,如果要将所有表的默认编码和排序规则更改为使用 UTF-8 (utf8mb4),只需运行以下命令: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci 如果您想查看可用选项的完整列表,只需运行: $ docker run -it --rm mysql:tag --verbose --help 2.4.5. 环境变量 启动 mysql 镜像时,可以通过在 docker run 命令行中传递一个或多个环境变量来调整 MySQL 实例的配置。 请注意,如果您使用已包含数据库的数据目录启动容器,则以下任何变量都不会产生任何影响:任何预先存在的数据库在容器启动时将始终保持不变。 另请参阅 https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html 以获取 MySQL 的环境变量的文档(尤其是 MYSQL_HOST 等变量,已知与此镜像一起使用时会导致问题)。 MYSQL_ROOT_PASSWORD 此变量是必需的,并指定将为 MySQL root 超级用户帐户设置的密码。 在上面的示例中,它被设置为 my-secret-pw。 MYSQL_DATABASE 此变量是可选的,允许您指定要在映像启动时创建的数据库的名称。 如果提供了用户/密码(见下文),则该用户将被授予对此数据库的超级用户访问权限(对应于 GRANT ALL)。 MYSQL_USER、MYSQL_PASSWORD 这些变量是可选的,用于创建新用户和设置该用户的密码。 该用户将被授予对 MYSQL_DATABASE 变量指定的数据库的超级用户权限(见上文)。 要创建用户,这两个变量都是必需的。 请注意,不需要使用此机制来创建超级用户超级用户,默认情况下会使用 MYSQL_ROOT_PASSWORD 变量指定的密码创建该用户。 MYSQL_ALLOW_EMPTY_PASSWORD 这是一个可选变量。 设置为非空值,例如 yes,以允许使用 root 用户的空白密码启动容器。 注意:除非您真的知道自己在做什么,否则不建议将此变量设置为 yes,因为这将使您的 MySQL 实例完全不受保护,从而允许任何人获得完全的超级用户访问权限。 MYSQL_RANDOM_ROOT_PASSWORD 这是一个可选变量。 设置为非空值,如 yes,为 root 用户生成随机初始密码(使用 pwgen)。 生成的根密码将打印到标准输出(生成的根密码:…)。 MYSQL_ONETIME_PASSWORD 一旦初始化完成,将 root(不是 MYSQL_USER 中指定的用户!)用户设置为过期,强制在第一次登录时更改密码。 任何非空值都将激活此设置。 注意:此功能仅在 MySQL 5.6+ 上受支持。 在 MySQL 5.5 上使用此选项将在初始化期间引发适当的错误。 MYSQL_INITDB_SKIP_TZINFO 默认情况下,入口点脚本会自动加载 CONVERT_TZ() 函数所需的时区数据。 如果不需要,任何非空值都会禁用时区加载。 2.4.6. Docker Secrets 作为通过环境变量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 前言 一、数字识别的模型训练 1.下载训练集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 2.2 将图片按照标签分类到具体文件夹 2.3 数据存在的缺陷 2.4 优化建议(核心) 二、模型训练 三、项目实现 1. 代码实现 2. 采用器件 2. 注意事项 总结 前言 第一次接触OpenMV也是第一次将理论用于实践,是老师让我实现的一个小测验,这几天完成后决定写下完整的过程。本文主要是当缝合怪,借鉴和参考了其他人的代码再根据我个人设备进行了一定的调整,此外还包括了我自身实践过程中的一些小意外。 !!!一定要根据个人器件型号和个人设备来参考 一、数字识别的模型训练 1.下载训练集 研究期间,我发现大部分人以及官网教程采用的都是自己拍摄照片再进行网络训练,存在的缺陷就是数据集较小不全面、操作繁琐。个人认为如果是对标准的数字进行识别,自己手动拍取照片进行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 SQLite损坏修复 问题背景 目前后台服务器应该是不保存聊天记录,口袋助理iOS端的所有聊天记录都存储在一个 SQLite 数据库中,一旦这个数据库损坏,将会丢失用户的聊天记录。 解决思路 预防措施: SQLite 是一个号称每行代码都有对应测试的成熟框架,其代码问题导致的 bug 非常少见。而一般损坏原因主要有3点: 空间不足 设备断电或 AppCrash 文件 sync 失败 针对空间不足: 通过中度的使用和观察,我发现 iOS 端的空间占用是相对合理的,并没有对存储空间的明显浪费。并且 App 会在数据库写入时检查可用空间,如果不足时会抛出空间不足的提示。 针对设备断电或App崩溃: 设备断电属于不可抗力。而 App 崩溃目前我们准备上线 APM 监控平台,预期在一到两个版本的迭代中把崩溃率降低到千分之一以下的行业优秀水平。 针对文件 sync 失败: 调整 synchronous = FULL , 保证每个事务的操作都能写入文件。目前CoreData的默认配置项。 调整 fullfsync = 1 , 保证写入文件顺序和提交顺序一致,拒绝设备重排顺序以优化性能。此项会降低性能。对比得出写入性能大概降低至默认值的25%左右。 优化效果: 根据微信的实践,调整配置项后,损坏率可以降低一半,但并不能完全避免损坏,所以我们还是需要补救措施。 补救措施: 通过查阅 SQLite 的相关资料,发现修复损坏数据库的两种思路和四种方案。 思路一:数据导出 .dump修复 从 master 表中读出一个个表的信息,根据根节点地址和创表语句来 select 出表里的数据,能 select 多少是多少,然后插入到一个新 DB 中。 每个SQLite DB都有一个sqlite_master表,里面保存着全部table和index的信息(table本身的信息,不包括里面的数据哦),遍历它就可以得到所有表的名称和 CREATE TABLE ...的SQL语句,输出CREATE TABLE语句,接着使用SELECT FROM ... 通过表名遍历整个表,每读出一行就输出一个INSERT语句,遍历完后就把整个DB dump出来了。 这样的操作,和普通查表是一样的,遇到损坏一样会返回SQLITE_CORRUPT,我们忽略掉损坏错误, 继续遍历下个表,最终可以把所有没损坏的表以及损坏了的表的前半部分读取出来。将 dump 出来的SQL语句逐行执行,最终可以得到一个等效的新DB。 思路二:数据备份 拷贝: 不能再直白的方式。由于SQLite DB本身是文件(主DB + journal 或 WAL), 直接把文件复制就能达到备份的目的。 .dump备份: 上一个恢复方案用到的命令的本来目的。在DB完好的时候执行.dump, 把 DB所有内容输出为 SQL语句,达到备份目的,恢复的时候执行SQL即可。 Backup API: SQLite自身提供的一套备份机制,按 Page 为单位复制到新 DB, 支持热备份。 综合思路:备份master表+数据导出 WCDB框架: 数据库完整时备份master表,数据库损坏时通过使用已备份的master表读取损坏数据库来恢复数据。成功率大概是70%。缺点在于我们目前项目使用的是CoreData框架,迁移成本非常的高。没有办法使用。 补救措施选型原则: 这么多的方案孰优孰劣?作为一个移动APP,我们追求的就是用户体验,根据资料推断只有万分之一不到的用户会发生DB损坏,不能为了极个别牺牲全体用户的体验。不影响用户体验的方法就是好方案。主要考量指标如下: 一:恢复成功率 由于牵涉到用户核心数据,“姑且一试”的方案是不够的,虽说 100% 成功率不太现实,但 90% 甚至 99% 以上的成功率才是我们想要的。 二:备份大小: 原本用户就可能有2GB 大的 DB,如果备份数据本身也有2GB 大小,用户想必不会接受。 三:备份性能: 性能则主要影响体验和备份成功率,作为用户不感知的功能,占用太多系统资源造成卡顿 是不行的,备份耗时越久,被系统杀死等意外事件发生的概率也越高。 数据导出方案考量: 恢复成功率大概是30%。不需要事先备份,故备份大小和备份性能都是最优的。 备份方案考量: 备份方案的理论恢复成功率都为100%,需要考量的即为备份大小和性能。 拷贝:备份大小等于原文件大小。备份性能最好,直接拷贝文件,不需要运算。 Backup API: 备份大小等于原文件大小。备份性能最差,原因是热备份,需要用到锁机制。 .dump:因为重新进行了排序,备份大小小于原文件。备份性能居中,需要遍历数据库生成语句。 可以看出,比较折中的选择是 Dump ,备份大小具有明显优势,备份性能尚可,恢复性能较差但由于需要恢复的场景较少,算是可以接受的短板。 深入钻研 即使优化后的方案,对于大DB备份也是耗时耗电,对于移动APP来说,可能未必有这样的机会做这样重度的操作,或者频繁备份会导致卡顿和浪费使用空间。 备份思路的高成本迫使我们从另外的方案考虑,于是我们再次把注意力放在之前的Dump方案。 Dump 方案本质上是尝试从坏DB里读出信息,这个尝试一般来说会出现两种结果: DB的基本格式仍然健在,但个别数据损坏,读到损坏的地方SQLite返回SQLITE_CORRUPT错误, 但已读到的数据得以恢复。 基本格式丢失(文件头或sqlite_master损坏),获取有哪些表的时候就返回SQLITE_CORRUPT, 根本没法恢复。 第一种可以算是预期行为,毕竟没有损坏的数据能部分恢复。从成功率来看,不少用户遇到的是第二种情况,这种有没挽救的余地呢? 要回答这个问题,先得搞清楚sqlite_master是什么。它是一个每个SQLite DB都有的特殊的表, 无论是查看官方文档Database File Format,还是执行SQL语句 SELECT FROM sqlite_master;,都可得知这个系统表保存以下信息: 表名、类型(table/index)、 创建此表/索引的SQL语句,以及表的RootPage。sqlite_master的表名、表结构都是固定的, 由文件格式定义,RootPage 固定为 page 1。 正常情况下,SQLite 引擎打开DB后首次使用,需要先遍历sqlite_master,并将里面保存的SQL语句再解析一遍, 保存在内存中供后续编译SQL语句时使用。假如sqlite_master损坏了无法解析,“Dump恢复”这种走正常SQLite 流程的方法,自然会卡在第一步了。为了让sqlite_master受损的DB也能打开,需要想办法绕过SQLite引擎的逻辑。 由于SQLite引擎初始化逻辑比较复杂,为了避免副作用,没有采用hack的方式复用其逻辑,而是决定仿造一个只可以 读取数据的最小化系统。 虽然仿造最小化系统可以跳过很多正确性校验,但sqlite_master里保存的信息对恢复来说也是十分重要的, 特别是RootPage,因为它是表对应的B-tree结构的根节点所在地,没有了它我们甚至不知道从哪里开始解析对应的表。 sqlite_master信息量比较小,而且只有改变了表结构的时候(例如执行了CREATE TABLE、ALTER TABLE 等语句)才会改变,因此对它进行备份成本是非常低的,一般手机典型只需要几毫秒到数十毫秒即可完成,一致性也容易保证, 只需要执行了上述语句的时候重新备份一次即可。有了备份,我们的逻辑可以在读取DB自带的sqlite_master失败的时候 使用备份的信息来代替。 到此,初始化必须的数据就保证了,可以仿造读取逻辑了。我们常规使用的读取DB的方法(包括dump方式恢复), 都是通过执行SQL语句实现的,这牵涉到SQLite系统最复杂的子系统——SQL执行引擎。我们的恢复任务只需要遍历B-tree所有节点, 读出数据即可完成,不需要复杂的查询逻辑,因此最复杂的SQL引擎可以省略。同时,因为我们的系统是只读的, 写入恢复数据到新 DB 只要直接调用 SQLite 接口即可,因而可以省略同样比较复杂的B-tree平衡、Journal和同步等逻辑。 最后恢复用的最小系统只需要: VFS读取部分的接口(Open/Read/Close),或者直接用stdio的fopen/fread、Posix的open/read也可以 B-tree解析逻辑 Database File Format 详细描述了SQLite文件格式, 参照之实现B-tree解析可读取 SQLite DB。 实现了上面的逻辑,就能读出DB的数据进行恢复了,但还有一个小插曲。我们知道,使用SQLite查询一个表, 每一行的列数都是一致的,这是Schema层面保证的。但是在Schema的下面一层——B-tree层,没有这个保证。 B-tree的每一行(或者说每个entry、每个record)可以有不同的列数,一般来说,SQLite插入一行时, B-tree里面的列数和实际表的列数是一致的。但是当对一个表进行了ALTER TABLE ADD COLUMN操作, 整个表都增加了一列,但已经存在的B-tree行实际上没有做改动,还是维持原来的列数。 当SQLite查询到ALTER TABLE前的行,缺少的列会自动用默认值补全。恢复的时候,也需要做同样的判断和支持, 否则会出现缺列而无法插入到新的DB。 解析B-tree方案上线后,成功率约为78%。这个成功率计算方法为恢复成功的 Page 数除以总 Page 数。 由于是我们自己的系统,可以得知总 Page 数,使用恢复 Page 数比例的计算方法比人数更能反映真实情况。 B-tree解析好处是准备成本较低,不需要经常更新备份,对大部分表比较少的应用备份开销也小到几乎可以忽略, 成功恢复后能还原损坏时最新的数据,不受备份时限影响。 坏处是,和Dump一样,如果损坏到表的中间部分,比如非叶子节点,将导致后续数据无法读出。 落地实践: 剥离封装RepairKit: 从WCDB框架中,剥离修复组件,并且封装其C++的原始API为OC管理类。 备份 master 表的时机: 我们发现 SQLite 里面 B+树 算法的实现是 向下分裂 的,也就是说当一个叶子页满了需要分裂时,原来的叶子页会成为内部节点,然后新申请两个页作为他的叶子页。这就保证了根节点一旦下来,是再也不会变动的。master 表只会在新创建表或者删除一个表时才会发生变化,而CoreData的机制表明每一次数据库的变动都要改动版本标识,那么我通过缓存和查询版本标识的变动来确定何时进行备份,避免频繁备份。 备份文件有效性: 既然 DB 可以损坏,那么这个备份文件也会损坏,怎么办呢?我用了双备份,每一个版本备份两个文件,如果一个备份恢复失败,就会启动另一个备份文件恢复。 介入恢复时机: 当CoreData初始化SQLite前,校验SQLite的Head完整性,如果不完整,进行介入修复。 经过我深入研究证明了这已经是最佳做法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 18:22:40
127
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 旧版rem布局 《手机端页面自适应解决方案—rem布局》, 此方案仅适用于移动端web 文章底部常见问题说明第四条,笔者已给出一个相当便捷的解决方案,欢迎留言交流。(2017/9/9) 该方案使用相当简单,把下面这段已压缩过的 原生JS(仅1kb,源码已在文章底部更新,2017/5/3) 放到 HTML 的 head 标签中即可(注:不要手动设置viewport,该方案自动帮你设置) <script>!function(e){function t(a){if(i[a])return i[a].exports;var n=i[a]={exports:{},id:a,loaded:!1};return e[a].call(n.exports,n,n.exports,t),n.loaded=!0,n.exports}var i={};return t.m=e,t.c=i,t.p="",t(0)}([function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var i=window;t["default"]=i.flex=function(normal,e,t){var a=e||100,n=t||1,r=i.document,o=navigator.userAgent,d=o.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i),l=o.match(/U3\/((\d+|\.){5,})/i),c=l&&parseInt(l[1].split(".").join(""),10)>=80,p=navigator.appVersion.match(/(iphone|ipad|ipod)/gi),s=i.devicePixelRatio||1;p||d&&d[1]>534||c||(s=1);var u=normal?1:1/s,m=r.querySelector('meta[name="viewport"]');m||(m=r.createElement("meta"),m.setAttribute("name","viewport"),r.head.appendChild(m)),m.setAttribute("content","width=device-width,user-scalable=no,initial-scale="+u+",maximum-scale="+u+",minimum-scale="+u),r.documentElement.style.fontSize=normal?"50px": a/2sn+"px"},e.exports=t["default"]}]); flex(false,100, 1);</script> 代码原理 这是阿里团队的高清方案布局代码,所谓高清方案就是利用rem的特性(我们知道默认情况下html的1rem = 16px),根据设备屏幕的DPR(设备像素比,又称DPPX,比如dpr=2时,表示1个CSS像素由4个物理像素点组成)根据设备DPR动态设置 html 的font-size为(50 dpr),同时调整页面的压缩比率(即:1/dpr),进而达到高清效果。 有何优势 引用简单,布局简便 根据设备屏幕的DPR,自动设置最合适的高清缩放。 保证了不同设备下视觉体验的一致性。(老方案是,屏幕越大元素越大;此方案是,屏幕越大,看的越多) 有效解决移动端真实1px问题(这里的1px 是设备屏幕上的物理像素) 如何使用 重要的事情说三遍! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 在相当数量的布局情境中(比如底部导航元素平分屏幕宽,大尺寸元素),你必须使用百分比或者flex才能完美布局! 看过 《手机端页面自适应解决方案—rem布局》的朋友,应该对rem有所了解,这里不再赘述, 此方案也是默认 1rem = 100px,所以你布局的时候,完全可以按照设计师给你的效果图写各种尺寸啦。 比如你在效果图上量取的某个按钮元素长 55px, 宽37px ,那你直接可以这样写样式: .myBtn {width: 0.55rem;height: 0.37rem;} rem布局(进阶版)实践应用 iPhone5 下页面效果.png iPhone 6 Plus 下页面效果.png 为了让朋友们更清晰感受此方案的巨大优势,下面是源码和Demo 实践应用1(请在手机端或者手机模式下浏览效果更佳!) 实践应用2(请在手机端或者手机模式下浏览效果更佳!) 线上项目(请在手机端或者手机模式下浏览效果更佳!) 示例源码 在线Demo 常见问题说明,新手很有必要看一下(2017/1/19) 许多同学对该方案存在不少误解导致使用出现各种问题,这里统一回复下。 1.问:为啥手机网页效果图宽度是要640或者750的,我非得弄个666的不行咩? 答:老实说当然可以,不过为了规范,640或者750是相对合适的。 拿Iphone 5s 举例,它的css像素宽度是320px,由于它的dpr=2,所以它的物理像素宽度为320 × 2 = 640px,这也就是为什么,你在5s上截了一张图,在电脑上打开,它的原始宽度是640px的原因。 那 iphone 6 的截图宽度呢? 375 × 2 = 750 那 iphone 6 sp 的截图宽度呢? 414 × 3 = 1242 以此类推,你现在能明白效果图为什么一般是 640 ,750 甚至是 1242 的原因了么?(真没有歧视安卓机的意思。。。) 2.问:宽度用rem写的情况下, 在 iphone6 上没问题, 在 iphone5上会有横向滚动条,何解? 答:假设你的效果图宽度是750,在这个效果图上可能有一个宽度为7rem(高清方案默认 1rem = 100px)的元素。我们知道,高清方案的特点就是几乎完美还原效果图,也就是说,你写了一个宽度为 7rem 的元素,那么在目前主流移动设备上都是7rem。然而,iphone 5 的宽度为640,也就是6.4rem。于是横向滚动条不可避免的出现了。 怎么办呢? 这是我目前推荐的比较安全的方式:如果元素的宽度超过效果图宽度的一半(效果图宽为640或750),果断使用百分比宽度,或者flex布局。就像把等屏宽的图片宽度设为100%一样。 3.问:不是 1rem = 100px吗,为什么我的代码写了一个宽度为3rem的元素,在电脑端的谷歌浏览器上宽度只有150px? 答:先说高清方案代码,再次强调咱们的高清方案代码是根据设备的dpr动态设置html 的 font-size, 如果dpr=1(如电脑端),则html的font-size为50px,此时 1rem = 50px 如果dpr=2(如iphone 5 和 6),则html的font-size为100px,此时 1rem = 100px 如果dpr=3(如iphone 6 sp),则html的font-size为150px,此时 1rem = 150px 如果dpr为其他值,即便不是整数,如3.4 , 也是一样直接将dpr 乘以 50 。 再来说说效果图,一般来讲,我们的效果图宽度要么是640,要么是750,无论哪一个,它们对应设备的dpr=2,此时,1 rem = 50 × 2 = 100px。这也就是为什么高清方案默认1rem = 100px。而将1rem默认100px也是好处多多,可以帮你快速换算单位,比如在750宽度下的效果图,某元素宽度为53px,那么css宽度直接设为53/100=0.53rem了。 然而极少情况下,有设计师将效果图宽定为1242px,因为他手里只有一个iphone 6 sp (dpr = 3),设计完效果图刚好可以在他的iphone 6 sp里查看调整。一切完毕之后,他将这个效果图交给你来切图。由于这个效果图对应设备的dpr=3,也就是1rem = 50 × 3 = 150px。所以如果你量取了一个宽度为90px的元素,它的css宽度应该为 90/150=0.6rem。由于咱们的高清方案默认1rem=100px,为了还原效果图,你需要这样换算。当然,一个技巧就是你可以直接修改咱们的高清方案的默认设置。在代码的最后 你会看到 flex(false, 100, 1) ,将其修改成flex(false, 66.66667, 1)(感谢简友:V旅行指出此处错误! 2017/3/24)就不用那么麻烦的换算了,此时那个90px的直接写成0.9rem就可以了。 4.问:在此方案下,我如果引用了别的UI库,那些UI库的元素会显得特别小,如何解决? 答:可以这样去理解问题的原因,如果不用高清方案,别的UI库的元素在移动设备上(假设这个设备是iphone 5好了)显示是正常的,这没有问题,然后我们在这个设备上将该页面截图放到电脑上看,发现宽度是640(问答1解释过了),根据你的像素眼大致测量,你发现这个设备上的某个字体大小应该是12px,而你在电脑上测量应该是24px。 现在我们使用高清方案去还原这个页面,那么字体大小应该写为 0.24rem 才对! 所以,如果你引用了其他的UI库,为了兼容高清方案,你需要对该UI库里凡是应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
133
转载
Netty
...发者快速构建可扩展的服务器端应用程序。想象一下,你正在开发一个需要处理海量数据的大数据流处理平台,这时候Netty就显得尤为重要了。它不仅能够帮助我们高效地管理网络连接,还能让我们轻松应对高并发场景。 我第一次接触Netty的时候,真的被它的灵活性震撼到了。哎,说到程序员的烦心事,那肯定得提一提怎么让程序在被成千上万的人同时戳的时候还能稳如老狗啊!这事儿真心让人头大,尤其是看着服务器指标噌噌往上涨,心里直打鼓,生怕哪一秒就崩了。而Netty通过非阻塞I/O模型,完美解决了这个问题。这就像是一个超级能干的服务员,能够在同一时间同时服务上万个客人,而且就算有个客人纠结半天点菜(也就是某个请求拖拉),也不会耽误其他客人的服务,更不会让整个餐厅都停下来等他。 举个栗子: java EventLoopGroup bossGroup = new NioEventLoopGroup(); // 主线程组 EventLoopGroup workerGroup = new NioEventLoopGroup(); // 工作线程组 try { ServerBootstrap b = new ServerBootstrap(); // 启动辅助类 b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 使用NIO通道 .childHandler(new ChannelInitializer() { // 子处理器 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder()); // 解码器 ch.pipeline().addLast(new StringEncoder()); // 编码器 ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); ctx.writeAndFlush("Echo: " + msg); // 回显消息 } }); } }); ChannelFuture f = b.bind(8080).sync(); // 绑定端口并同步等待完成 f.channel().closeFuture().sync(); // 等待服务关闭 } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } 这段代码展示了如何用Netty创建一个简单的TCP服务器。话说回来,Netty这家伙简直太贴心了,它的API设计得特别直观,想设置啥处理器或者监听事件都超简单,用起来完全没压力,感觉开发效率直接拉满! 2. 大数据流处理平台中的挑战 接下来,我们聊聊大数据流处理平台面临的挑战。在这个领域,我们通常会遇到以下几个问题: - 高吞吐量:我们需要处理每秒数百万条甚至更多的数据记录。 - 低延迟:对于某些实时应用场景(如股票交易),毫秒级的延迟都是不可接受的。 - 可靠性:数据不能丢失,必须保证至少一次投递。 - 扩展性:随着业务增长,系统需要能够无缝扩容。 这些问题听起来是不是很让人头大?但别担心,Netty正是为此而生的! 让我分享一个小故事吧。嘿,有次我正忙着弄个日志收集系统,结果一测试才发现,这传统的阻塞式I/O模型简直是“人形瓶颈”啊!流量一大就直接崩溃,完全hold不住那个高峰时刻,简直让人头大!于是,我开始研究Netty,并将其引入到项目中。哈哈,结果怎么样?系统的性能直接翻了三倍!这下我可真服了,选对工具真的太重要了,感觉像是找到了开挂的装备一样爽。 为了更好地理解这些挑战,我们可以看看下面这段代码,这是Netty中用来实现高性能读写的示例: java public class HighThroughputHandler extends ChannelInboundHandlerAdapter { private final ByteBuf buffer; public HighThroughputHandler() { buffer = Unpooled.buffer(1024); } @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { for (int i = 0; i < 1024; i++) { buffer.writeByte((byte) i); } ctx.writeAndFlush(buffer.retain()); } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 在这段代码中,我们创建了一个自定义的处理器HighThroughputHandler,它能够在每次接收到数据后立即转发出去,从而实现高吞吐量的传输。 3. Netty如何优化大数据流处理平台? 现在,让我们进入正题——Netty是如何具体优化大数据流处理平台的呢? 3.1 异步非阻塞I/O Netty的核心优势在于其异步非阻塞I/O模型。这就相当于,当有请求进来的时候,Netty可不会给每个连接都专门安排一个“服务员”,而是让这些连接共用一个“服务团队”。这样既能节省人手,又能高效处理各种任务,多划算啊!这样做的好处是显著减少了内存占用和上下文切换开销。 假设你的大数据流处理平台每天要处理数十亿条数据记录,采用传统的阻塞式I/O模型,很可能早就崩溃了。而Netty则可以通过单线程处理数千个连接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 一、写在前面 终于过了9.28,几个月前在和同学吃饭的时候就在说,如果现在是国庆节多好啊,保研就结束了,不用再那么焦虑。保研前就看过网上好多经验帖,就想着等保研结束后把自己的经历与感想写下来,希望能给学弟学妹们一些帮助。在这里十分感谢一路上帮助并鼓励我的家人、老师、学长学姐和同学,是你们对我的帮助让我成功地走下来,走过那段焦虑的时光。 以下是我几个月来的收获与体会,希望能对大家有帮助,如果有问题欢迎私信我交流~~~ 如果对你有帮助记得点个赞哦🙈🙈🙈 PS:以下的个人简历/个人陈述/老师推荐信等材料如果有需要的,欢迎关注我的 微 信 公 号【驭风者小窝】发 送【 保研 】领取大礼包~~ 二、个人情况 学校:末流985 专业排名:5% 四六级:515/449 科研竞赛:学过一些机器学习的知识,有几个简单的科研项目;一些比赛获奖,国奖 最终去向:北航计算机学硕 三、关于保研(前期准备/时间安排/个人材料) 专业知识复习:建议在大三下学期开学初期就开始复习专业课,包括:线代、概率论、数据结构、计网、计组、操作系统等(不用复习的特别深入),有的学校有笔试,大多数在面试时会问到一些基础知识(如果老师问到的基础知识都答上来,老师对你的印象肯定会特别好!)。 信息搜集:各学校/学院官网(研招网);学长学姐;保研论坛,微信公众号(后保研、保研人、保研论坛等);QQ群等。同时也要多与同学交流,互相交换信息。 搜集你想去并且基本能去的学校的要求和特点(南京大学夏令营对机考特别看重,难度也比较大,可以在大三就多刷题好好准备),进行一定的准备,可以在网上搜索相关的经验贴。 个人定位:了解你们学校学长学姐的保研去处,最好多跟本校已经保研的学长学姐交流,根据他们的经历以及自己的实力和研究生规划来对自己进行定位。 方向和选择: 人工智能?CV? NLP? 数据库?分布式系统?其他? 硕士?直博? 小老师?大牛老师? 以上这些选择因人而异,最好自己多了解、多与老师学长学姐交流,根据自己的兴趣、目前的发展以及自己未来的规划进行抉择。 夏令营(4-7月):从四月份开始就有的学校开始了夏令营申请,5-6月是夏令营申请的集中时间;参加夏令营基本都在6-7月份。夏令营的好处:老师名额多;时间比较充裕,可以较好的了解学校以及方向等;大多学校夏令营安排住宿。参加夏令营最重要的是专业排名(这是大多数学校初筛的最重要的依据,科研经历/比赛等都是次要的。当然顶会和ACM大牛除外)。 预推免(7-9月):有的学校夏令营开始后马上就开始预推免的报名与进行(例如哈工大从7月份开始到9月份有四批预推免的面试);大多数学校集中在9月中旬。如果夏令营已经有offer了可以在预推免时冲击更好的offer;如果夏令营没有拿到offer,建议此时以稳重为好。 九推:9月28号在推免系统正式填报推免志愿,录取。 个人简历:建议在寒假期间就把自己大学的经历都整理一遍,写好简历的初始版本;然后再找老师、学长学姐帮忙完善。 个人陈述:包括自己的情况介绍、科研经历、研究生期间的规划等,1000-1500字。网上有模板可以借鉴。 老师推荐信:基本都是自己写好找老师签字,如果老师能帮你手写的话,那太好不过了。 联系老师邮件:建议提前写好一个大概的模板,注意格式、内容以及邮件的标题等(例如XX大学-XXX-保研申请)。建议夏令营前或者初审过了及时联系自己喜欢的老师。 以上只是对各方面的简单介绍,每个方面详细的注意点网上好多资料,多多搜集就好。 PS:以上个人简历/个人陈述/老师推荐信模板如果有需要的私信我分享给你! 建议把以上材料都提前收集整理好,保研结束后发现我的材料文件夹3个多G...... 一年多来整理的保研资料 四、上科大信息学院夏令营(7.3-7.6) 本来没有打算报名上科大,一个同学把上科大宣传单给了我一份,看后感觉上科大实力比较强(虽然不是982/211)就报名了。 校园环境 上科大3号报到,4号-6号有开营活动、参观、自己联系老师面试(后来才知道即使拿到优营九月份也要再来面试,也就是说上科大夏令营拿到优营只是免去了九月预推免面试的初审,但是如果你足够优秀,老师比较中意,九月份就是来走一下过场。) 我参加了三个老师的面试。YY老师只是简单问了几个问题,有点水;HXM老师有一轮笔试(考的概率论比较多,编译原理、操作系统、计网也有涉及)+面试;YJY老师的一轮面试是课题组的学长学姐面的(自我介绍+项目),二轮面试和老师聊。 上科大给我的感觉就是学校小而精;老师比较好(比如YJY/GSH/TKW)、科研氛围浓厚、硬件设施完善(双人宿舍,独立卫浴,中央空调;学校地下全是停车场,下雨不用打伞可以直接走地下),但是由于建立才几年的时间,知名度不高。 学生宿舍 五、北理计算机夏令营(7.8-7.10) 北理今年入营的基本都是985和顶尖211,夏令营去了基本都能拿到优营!入营290+,夏令营参营240+,优营220+。 在北理主楼俯瞰 8号报到,领取宿舍钥匙、校园卡(北理夏令营包括食宿,每人发了一张100元的校园卡,可以在食堂、超市消费)。北理校园比较小、路比较窄;研究生宿舍三栋高层,有电梯,四人间,宿舍空间小、比较挤,大多数宿舍有空调(据说是宿舍的同学自己买或者租的),每一层有一个公共洗澡间。 9号上午宣讲,下午机试。机试两道题目难度不大,老师手动输入三个样例给分(4+3+3,每道题目满分10分)。下午机试结束我找到提前联系的LX老师聊了一个小时,老师人很nice,专心学术(据说她的研究生大都有一篇顶会论文)。 10号上午自己找老师面试。我又参加了院长实验室的面试,比较简单。下午正式面试,分了十多个组一起面试,总共四个小时。面试包括英文自我介绍、项目、研究生规划、是否打算读博、基础知识等,每人大概5-7分钟。面试结束就可以离校了。 六、北航计算机夏令营(7.11-7.14) 北航是不包含食宿的,所以入营人数较多,有600+。北航7.11上午报到+宣讲,下午机试分两组。北航机试类似CSP,可以多次提交,以最后一次为准,但是提交后不能实时出成绩。机试两个小时,包括两道题目,第一道题目比较简单,第二道题目稍微难一些,我第二道题目没有写完但是也过了机试,第二道题目即使没有写完也要能写多少写多少,把代码的思路写出来(有可能会人工判)。北航机试可以用CSP成绩代替,基本250分及以上就没问题,每年具体的情况不一样。11号晚上出机试通过名单(大概500+进340+)。 12号分组面试,每人20分钟,从上午八点一直面试到下午三点。面试包括抽取一道政治题谈看法、抽取一段英文读并翻译、基础知识(数学知识+计算机知识)、项目。政治题和英文翻译感觉大家都差不多(除非你英语特别差),主要的是基础知识面试,北航比较爱问数学问题线代、概率论、离散、高数;如果你的项目比较好的话,老师会着重问你的项目。问到我的问题有梯度、可微和可导、大数定理+中心极限定理等。12号晚上出优营名单,大概340+进180。北航是根据夏令营面试排名来定学硕和专硕的,大概有40个学硕的名额,其他都是专硕,不过北航学硕和专硕培养方式没有区别。 这是在我前面面试同学被问到的部分问题 13号领导师意向表,找导师签字,如果没有找到暑假期间或者九月份也可以再联系老师。 14号校医院体检,夏令营结束。 七、计算所(7.13-7.16) 计算所入营还是比较有难度的,但是即使没入营也可以自己联系老师,如果老师同意可以来参加面试,只是夏令营包括食宿,没入营的不包括食宿。计算所是分实验室面试的,可以参加多个实验室的面试,我参加了网数和智信的笔试+机试+面试。 智信12号笔试,14号机试+面试。笔试包括英文论文理解翻译、概率论题、计算机基础知识题目(操作系统,计网等)、CV题目(智信主要是做CV)。机试五道题目,一个小时,题目代码已经写好了,只需你补全,类似LeetCode,在学长的电脑上完成,有C++和Python可选,两种编程语言题目不同。C++用的是VS2017,会由人给你记每道题目完成的时间,会让你演示调试,结束后打包发送到一个邮箱里。 网数只有机试和面试,13号上午机试,15号面试。机试一个小时七道题目,在自己电脑上写然后拷到老师的优盘上。考察了包括链表、二叉树、图等,偏向于工程,据说今年的题目是计算所一个工程博士出的。机试70人,进入面试60人。面试每人15分钟,包括自我介绍,专业知识,是否读博,项目等。 计算所环境 八、一些建议和感想 一些建议: 提前准备,给自己定位,有针对性的准备,多在网上找经验贴;多和本校保研的学长学姐交流,多和同学交流,多搜集信息; 4月份前把简历、推荐信、个人陈述等写好,再不断修改完善; 最好能提前联系一个老师,以免拿到优营而没有找到好老师; 准备好专业知识,线代、概率论、数据结构、计网、计组、操作系统等; 如果编程能力不是特别强,最好大三开始就刷题,LeetCode的中档题难度基本就够用了; 一些体会与感想: 机会是留给有准备的人的,越努力越幸运! 做最坏的打算,做最好的准备。 保研是一场马拉松,坚持到底就是胜利。 遵道而行,但到半途需努力;会心不远,欲登绝顶莫辞劳。 也送给自己一句话:流年笑掷,未来可期! 以上仅代表个人观点与感想,如果对你有帮助记得点赞哦~如有问题,可以关注我的公主号【驭风者小窝】,我会尽我最大的努力帮助你! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-02 23:03:36
120
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_39929646/article/details/114190817。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 在PC端点击图片,鼠标右键可把图片素材另存到桌面使用,手机端可长按图片保存到本地相册,夏欢和认为有用的话就点个赞,三连就更满足我的期待了 JPanel切换案例 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPink,jpBlueRightBottom1, jpGreenRightBottom2; public static JButton anNiu1,anNiu2; JLabel JLabel1; public static JLabel JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPink=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPink.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPink.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); this.add(jpRed);this.add(jpPink); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } } JTree树形控件点击内容弹出新的窗体 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.Font; import javax.swing.; public class newDengLu extends JFrame{ public static JLabel lb1,lb2,lb3,lb4=null; public static JTextField txt1=null; public static JPasswordField pwd=null; public static JComboBox com=null; public static JButton btn1,btn2=null; public newDengLu(){ this.setTitle("诗书画唱登录页面"); this.setLayout(null); this.setSize(500,400); this.setLocationRelativeTo(null); lb1=new JLabel("用户名"); lb2=new JLabel("用户密码"); lb3=new JLabel("用户类型"); lb4=new JLabel("登录窗体"); Font f=new Font("微软雅黑",Font.BOLD,35); lb4.setFont(f); lb4.setForeground(Color.red); lb4.setBounds(160,30,140,40); lb1.setBounds(100, 100, 70,30); lb2.setBounds(100,140,70,30); lb3.setBounds(100,180,70,30); txt1=new JTextField(); txt1.setBounds(170,100,150,30); pwd=new JPasswordField(); pwd.setBounds(170,140,150,30); com=new JComboBox(); com.addItem("会员用户"); com.addItem("普通用户"); com.setBounds(170,180,150,30); btn1=new JButton("登录"); btn1.setBounds(130,220,70,30); btn2=new JButton("取消"); btn2.setBounds(240,220,70,30); this.add(lb1);this.add(lb2);this.add(lb3); this.add(txt1);this.add(pwd);this.add(com); this.add(btn1);this.add(btn2);this.add(lb4); //this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; import javax.swing.event.TreeSelectionEvent; import javax.swing.event.TreeSelectionListener; import javax.swing.tree.DefaultMutableTreeNode; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPinkLeft,jpBlueRightBottom1, jpGreenRightBottom2; public static JTree JTree1,JTree2; public static JButton anNiu1,anNiu2; public static JLabel JLabel1,JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPinkLeft=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPinkLeft.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPinkLeft.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); DefaultMutableTreeNode dmtn1 = new DefaultMutableTreeNode("图书管理"); DefaultMutableTreeNode dmtn_yonghu = new DefaultMutableTreeNode ("用户管理"); DefaultMutableTreeNode dmtnQieHuan = new DefaultMutableTreeNode ("切换到登录界面"); DefaultMutableTreeNode dmtn_yonghu_insert = new DefaultMutableTreeNode("增加用户"); DefaultMutableTreeNode dmtn_yonghu_update = new DefaultMutableTreeNode("修改用户"); DefaultMutableTreeNode dmtn_yonghu_delete = new DefaultMutableTreeNode("删除用户"); DefaultMutableTreeNode dmtn_yonghu_select = new DefaultMutableTreeNode("查询用户"); DefaultMutableTreeNode dmtn_jieyue = new DefaultMutableTreeNode("借阅管理"); DefaultMutableTreeNode dmtn_jieyue_insert = new DefaultMutableTreeNode("增加借阅信息"); DefaultMutableTreeNode dmtn_jieyue_update = new DefaultMutableTreeNode("修改借阅信息"); DefaultMutableTreeNode dmtn_jieyue_delete = new DefaultMutableTreeNode("删除借阅信息"); DefaultMutableTreeNode dmtn_jieyue_select = new DefaultMutableTreeNode("查询借阅信息"); dmtn_yonghu.add(dmtnQieHuan); dmtn_yonghu.add(dmtn_yonghu_insert); dmtn_yonghu.add(dmtn_yonghu_update); dmtn_yonghu.add(dmtn_yonghu_delete); dmtn_yonghu.add(dmtn_yonghu_select); dmtn_jieyue.add(dmtn_jieyue_insert); dmtn_jieyue.add(dmtn_jieyue_update); dmtn_jieyue.add(dmtn_jieyue_delete); dmtn_jieyue.add(dmtn_jieyue_select); dmtn1.add(dmtn_yonghu); dmtn1.add(dmtn_jieyue); JTree1 = new JTree(dmtn1); JTree1.addTreeSelectionListener(new swingJpanelShiJian(this)); JTree1.setBackground(Color.white); jpPinkLeft.setBackground(Color.white); //JTree1.setBounds(10,170,200,450);在这里是一句没效果的代码 jpPinkLeft.add(JTree1); this.add(jpRed);this.add(jpPinkLeft); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener, TreeSelectionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } @Override public void valueChanged(TreeSelectionEvent arg0) { DefaultMutableTreeNode str = (DefaultMutableTreeNode) jieShou.JTree1 .getLastSelectedPathComponent(); if (str.toString().equals("切换到登录界面")) { new newDengLu(); } else { } } } JTable初始化表格 package swing; public class mains { public static void main(String[] args) { new swingBiaoGe(); } } package swing; import java.util.Vector; import javax.swing.; import javax.swing.table.DefaultTableModel; public class swingBiaoGe extends JFrame{ //要声明 : 装载内容的容器,table的控件, 容器的标题, 容器的具体的内容。 public static JTable biaoGe=null;//JTable为表格的控件 //要声明装载内容的容器,如下: public static DefaultTableModel DTM=null; //Vector中: //一个放标题,一个放内容 //>表示只接受集合的类型 Vector biaoTi; Vector> neiRong; public swingBiaoGe(){ this.setLayout(null); this.setSize(600,600); this.setLocationRelativeTo(null); //给标题赋值: biaoTi=new Vector(); biaoTi.add("编号");biaoTi.add("姓名"); biaoTi.add("性别");biaoTi.add("年龄"); //给内容赋值: neiRong=new Vector>(); for(int i=0;i<5;i++){ Vector v=new Vector(); v.add("编号"+(i+6));v.add("诗书画唱"+(i+6)); v.add("性别"+(i+6));v.add("年龄"+(i+6)); neiRong.add(v); } //将内容添加到装载内容的容器中: DTM=new DefaultTableModel(neiRong,biaoTi); DTM=new DefaultTableModel(neiRong,biaoTi) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe=new JTable(DTM); //设置滚动条: JScrollPane jsp=new JScrollPane(biaoGe); jsp.setBounds(10,10,400,400); this.add(jsp); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } JTable初始化数据,数据要求链接JDBC获取 create database yonghu select from shangpin; select from sp_Type; create table sp_Type( sp_TypeID int primary key identity(1,1), sp_TypeName varchar(100) not null ); insert into sp_Type values('水果'); insert into sp_Type values('零食'); insert into sp_Type values('小吃'); insert into sp_Type values('日常用品'); create table shangpin( sp_ID int primary key identity(1,1), sp_Name varchar(100) not null, sp_Price decimal(10,2) not null, sp_TypeID int, sp_Jieshao varchar(300) ); insert into shangpin values('苹果',12,1,'好吃的苹果'); insert into shangpin values('香蕉',2,1,'好吃的香蕉'); insert into shangpin values('橘子',4,1,'好吃的橘子'); insert into shangpin values('娃哈哈',3,2,'好吃营养好'); insert into shangpin values('牙刷',5,4,'全自动牙刷'); package SwingJdbc; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.MouseEvent; import java.awt.event.MouseListener; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Vector; import javax.swing.JButton; import javax.swing.JComboBox; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.JPanel; import javax.swing.JScrollPane; import javax.swing.JTable; import javax.swing.JTextField; import javax.swing.table.DefaultTableModel; public class biaoGe extends JFrame { class shiJian implements MouseListener, ActionListener { public biaoGe jieShou = null; public shiJian(biaoGe chuangTi) { this.jieShou = chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String name = jieShou.wenBenKuangName.getText(); String price = jieShou.wenBenKuangPrice.getText(); String type = jieShou.wenBenKuangTypeId.getText(); String jieshao = jieShou.wenBenKuangJieShao. getText(); String sql = "insert into shangpin values('" + name + "'" + ", " + price + "," + type + ",'" + jieshao + "')"; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "增加成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,增加失败"); } } @Override public void mouseClicked(MouseEvent arg0) { if (arg0.getClickCount() == 2) { int row = jieShou.biaoGe1.getSelectedRow(); jieShou.wenBenKuangBianHao .setText(jieShou.biaoGe1.getValueAt( row, 0).toString()); jieShou.wenBenKuangName .setText(jieShou.biaoGe1.getValueAt( row, 1).toString()); jieShou.wenBenKuangPrice .setText(jieShou.biaoGe1.getValueAt( row, 2).toString()); jieShou.wenBenKuangTypeId .setText(jieShou.biaoGe1.getValueAt( row, 3).toString()); jieShou.wenBenKuangJieShao .setText(jieShou.biaoGe1.getValueAt( row, 4).toString()); } if (arg0.isMetaDown()) { int num = JOptionPane.showConfirmDialog(null, "是否确认删除这条信息?"); if (num == 0) { int row = jieShou.biaoGe1 .getSelectedRow(); String sql = "delete shangpin where sp_id=" + jieShou.biaoGe1.getValueAt( row, 0) + ""; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "册除成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,请重试"); } } } } @Override public void mouseEntered(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent arg0) { // TODO Auto-generated method stub } } static JButton zengJiaAnNiu = null; static DefaultTableModel biaoGeMoXing1 = null; static JScrollPane gunDongTiao = null; static JTable biaoGe1 = null; static JLabel wenZiBianHao, wenZiName, wenZiPrice, wenZiTypeId, wenZiJieShao; static JTextField wenBenKuangBianHao, wenBenKuangName, wenBenKuangPrice, wenBenKuangTypeId, wenBenKuangJieShao; static Vector BiaoTiJiHe = null; static Vector> NeiRongJiHe = null; JPanel mianBan1, mianBan2 = null; public biaoGe() { this.setTitle("登录后的界面"); this.setSize(800, 600); this.setLayout(null); this.setLocationRelativeTo(null); wenZiBianHao = new JLabel("编号"); wenZiName = new JLabel("名称"); wenZiPrice = new JLabel("价格"); wenZiTypeId = new JLabel("类型ID"); wenZiJieShao = new JLabel("介绍"); zengJiaAnNiu = new JButton("添加数据"); zengJiaAnNiu.setBounds(530, 390, 100, 30); zengJiaAnNiu.addActionListener(new shiJian(this)); this.add(zengJiaAnNiu); wenZiBianHao.setBounds(560, 100, 70, 30); wenZiName.setBounds(560, 140, 70, 30); wenZiPrice.setBounds(560, 180, 70, 30); wenZiTypeId.setBounds(560, 220, 70, 30); wenZiJieShao.setBounds(560, 260, 70, 30); this.add(wenZiBianHao); this.add(wenZiName); this.add(wenZiPrice); this.add(wenZiTypeId); this.add(wenZiJieShao); wenBenKuangBianHao = new JTextField(); wenBenKuangBianHao.setEditable(false); wenBenKuangName = new JTextField(); wenBenKuangPrice = new JTextField(); wenBenKuangTypeId = new JTextField(); wenBenKuangJieShao = new JTextField(); wenBenKuangBianHao.setBounds(640, 100, 130, 30); wenBenKuangName.setBounds(640, 140, 130, 30); wenBenKuangPrice.setBounds(640, 180, 130, 30); wenBenKuangTypeId.setBounds(640, 220, 130, 30); wenBenKuangJieShao.setBounds(640, 260, 130, 30); this.add(wenBenKuangBianHao); this.add(wenBenKuangName); this.add(wenBenKuangPrice); this.add(wenBenKuangTypeId); this.add(wenBenKuangJieShao); biaoGeFengZhuangFangFa(); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } //biaoGeFengZhuangFangFa表格的封装方法 private void biaoGeFengZhuangFangFa() { BiaoTiJiHe = new Vector(); BiaoTiJiHe.add("编号"); BiaoTiJiHe.add("名称"); BiaoTiJiHe.add("价格"); BiaoTiJiHe.add("类型"); BiaoTiJiHe.add("介绍"); String sql = "select from shangpin"; ResultSet res = DBUtils.Select(sql); try { NeiRongJiHe = new Vector>(); while (res.next()) { Vector v = new Vector(); v.add(res.getInt("sp_ID")); v.add(res.getString("sp_Name")); v.add(res.getDouble("sp_price")); v.add(res.getInt("sp_TypeID")); v.add(res.getString("sp_Jieshao")); NeiRongJiHe.add(v); } biaoGeMoXing1 = new DefaultTableModel(NeiRongJiHe, BiaoTiJiHe) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe1 = new JTable(biaoGeMoXing1); biaoGe1.addMouseListener(new shiJian(this)); biaoGe1.setBounds(0, 0, 500, 500); gunDongTiao= new JScrollPane(biaoGe1); gunDongTiao .setBounds(0, 0, 550, 150); mianBan1 = new JPanel(); mianBan1.add(gunDongTiao ); mianBan1.setBounds(0, 0, 550, 250); this.add(mianBan1); } catch (SQLException e) { e.printStackTrace(); } } public void chaxunchushihua() { if (this.mianBan1 != null) { this.remove(mianBan1); } biaoGeFengZhuangFangFa(); // 释放资源:this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package SwingJdbc; import java.sql.; public class DBUtils { static Connection con=null; static Statement sta=null; static ResultSet res=null; //在静态代码块中执行 static{ try { Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //封装链接数据库的方法 public static Connection getCon(){ if(con==null){ try { con=DriverManager.getConnection ("jdbc:sqlserver://localhost;databaseName=yonghu","qqq","123"); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return con; } //查询的方法 public static ResultSet Select(String sql){ con=getCon();//建立数据库链接 try { sta=con.createStatement(); res=sta.executeQuery(sql); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return res; } //增删改查的方法 //返回int类型的数据 public static boolean ZSG(String sql){ con=getCon();//建立数据库链接 boolean b=false; try { sta=con.createStatement(); int num=sta.executeUpdate(sql); //0就是没有执行成功,大于0 就成功了 if(num>0){ b=true; } } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return b; } } package SwingJdbc; public class mains { public static void main(String[] args) { new biaoGe(); } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39929646/article/details/114190817。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-18 08:36:23
525
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 PLC通讯实现-C访问OpcUa实现读写PLC(十) 背景 概念 特点 依赖 配置OpcUA Server 关键代码 代码下载 背景 由于工厂设备种类多、分阶段建设,工控程序开发通常面临对接多种PLC厂商设备和不同系列与型号。因此出现了一种专门与不同PLC通讯的软件协议-OPC(OLE for Process Control),而各厂家在OPC基础上进行了不同程度的扩展,为了应对标准化和跨平台的趋势,和了更好的推广OPC,OPC基金会近些年在之前OPC成功应用的基础上推出了一个新的OPC标准-OPC UA。处于通讯效率上的考虑,很多厂家生产了OPCUA设备模块,内置处理器,性价比不错。不过这不是本文关注的重点。 概念 OPC UA(OPC Unified Architecture)是指OPC统一体系架构,是一种基于服务的、跨越平台的解决方案。 特点 扩展了OPC的应用平台。传统的基于COM/DCOM 的OPC技术只能基于Windows操作系统,OPC UA支持拓展到Linux和Unix平台。这使得基于OPC UA的标准产品可以更好地实现工厂级的数据采集和管理; 不再基于DCOM通讯,不需要进行DCOM安全设置; OPC UA定义了统一数据和服务模型,使数据组织更为灵活,可以实现报警与事件、数据存取、历史数据存取、控制命令、复杂数据的交互通信; OPC UA比OPC DA更安全。OPC UA传递的数据是可以加密的,并对通信连接和数据本身都可以实现安全控制。新的安全模型保证了数据从原始设备到MES,ERP系统,从本地到远程的各级自动化和信息化系统的可靠传递; OPC UA可以穿越防火墙,实现Internet 通讯。 依赖 我们通常不会从头写,可以基于OpcUa.core.dll库和OpcUa.Client.dll库,而且附上这2个库的源代码。 配置OpcUA Server 您可以安装任何一款支持OPCUA的服务端软件进行以下配置(此为示例配置,您可根据你的实际情况进行配置) 1、OpcUa Server Url:opc.tcp://192.168.100.1:4840。 2、OpcUa EndPoint:[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01] 3、PLC Device Name:Siemens S7-1200/S7-1500 4、Account:user1 5、Password:自己设置 6、在PLC中开了2个数据块,分别为DB4长度110个字、DB5长度122个字。 7、对应第4块创建标签,第一个名称为DB4.0-99,地址为DB4DBW0.100,数据类型为Short,长度100,即定义长度最长为100的Short数组。第二个名称为DB4.100-109,地址为DB4DBW100.10,数据类型为Short,方便快速读取。 5、对应第5块创建3个标签,第一个名称为DB5.0-99,地址为DB5DBW0.100,数据类型为Short,第二个名称为DB5.100-121, 地址为DB5DBW100.22,数据类型为Short,即定义长度最长为100的Short数组。方便快速读取。第三个标签名称为DB5DBW64,地址为DB5DBW64,数据类型为Short。 具体如下图: 关键代码 using System;using System.Collections.Generic;using System.Linq;using Opc.Ua.Helper;using Mesnac.Equips;namespace Mesnac.Equip.OPC.OpcUa.OPCUA{public class Equip : BaseEquip{region 字段定义private bool _isOpen = false; //是否已打开设备private bool _isClosing = false; //是否正在关闭设备private OPCUAClass myOpcHelper; //OPCUA设备访问辅助对象private Dictionary<string, string> dicTags = null; //保存标签集合private Dictionary<string, object> readResult = null; //设备标签数据缓存private int stepLen = 250; //标签变量的步长设置private string groupNamePrefix = "DB"; //数据块号前缀private string childTagFlag = "~"; //子元素标签标志符private System.Threading.Thread innerReadThread = null; //内部读取线程对象private int innerReadRate = 1000; //内部读取频率endregionregion 属性定义/// <summary>/// OPCUA Server Url/// </summary>public string OpcUaServerUrl{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServerUrl;return "opc.tcp://192.168.1.102:4840";//return "opc.tcp://192.168.100.1:4840";//return "opc.tcp://192.168.100.2:4840";} }/// <summary>/// 要连接的OPCUA服务器上的服务名/// </summary>public string OpcUaServiceName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServiceName;return "[UaServer@cMT-9F1F] [None] [None] [opc.tcp://192.168.1.102:4840/G01]";//return "[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G02]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G01]";} }/// <summary>/// 要连接的OPCUA服务器上指定服务名下的PLC的名称/// </summary>public string PLCName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).PLCName;//return "Feeding";return "Siemens_192.168.2.1";//return "Rockwell_192.168.1.10";} }/// <summary>/// OPCUA服务器的访问账户/// </summary>public string Account{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Account;return "user1";} }/// <summary>/// OPCUA服务器的访问密码/// </summary>public string Password{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Password;return "1";} }endregionregion BaseEquip成员实现/// <summary>/// 打开连接设备/// </summary>/// <returns>成功返回true,失败返回false</returns>public override bool Open(){lock (this){this._isClosing = false;if (this._isOpen == true && this.myOpcHelper != null){return true;}this.State = false;this.myOpcHelper = new OPCUAClass();this.dicTags = this.myOpcHelper.ConnectOPCUA(this.OpcUaServerUrl, this.Account, this.Password, this.OpcUaServiceName, this.PLCName); //连接OPCServerif (this.dicTags == null || this.dicTags.Count == 0){this.myOpcHelper = null;Console.WriteLine("OPC连接失败!");this.State = false;return false;}else{this.State = true;this._isOpen = true;region 初始化读取结果this.readResult = new Dictionary<string, object>();foreach (Equips.BaseInfo.Group group in this.Group.Values){if (!group.IsAutoRead){continue;}int groupMinStart = group.Start;int groupMaxEnd = group.Start + group.Len;int groupMaxLen = group.Len;foreach (Equips.BaseInfo.Group g in this.Group.Values){if (!g.IsAutoRead){continue;}if (g.Block == group.Block){if (g.Start < group.Start){groupMinStart = g.Start;}if (g.Start + g.Len > groupMaxEnd){groupMaxEnd = g.Start + g.Len;} }}groupMaxLen = groupMaxEnd - groupMinStart;int tagCount = groupMaxLen % this.stepLen == 0 ? groupMaxLen / this.stepLen : groupMaxLen / this.stepLen + 1;int currLen = 0;for (int i = 0; i < tagCount; i++){string tagName = String.Empty;if (tagCount == 1){tagName = String.Format("{0}-{1}", groupMinStart, groupMinStart + groupMaxLen - 1);currLen = groupMaxLen;}else if (i == tagCount - 1){tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + (groupMaxLen % this.stepLen == 0 ? this.stepLen : groupMaxLen % this.stepLen) - 1);currLen = groupMaxLen % this.stepLen;}else{tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + this.stepLen - 1);currLen = this.stepLen;}string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);if (!this.readResult.ContainsKey(tagFullName)){bool exists = false;region 判断读取结果标签组的范围是否包括了此标签 比如tagFullName DB5.220-299,在readResult中存在 DB5.200-299,则认为已存在,不需要再添加string[] beginend = null;int begin = 0;int end = 0;string[] startstop = tagFullName.Replace(String.Format("{0}{1}.", groupNamePrefix, group.Block), String.Empty).Split(new char[] { '-' });int start = 0;int stop = 0;bool parseResult = false;if (startstop.Length == 2){parseResult = int.TryParse(startstop[0], out start);if (parseResult){parseResult = int.TryParse(startstop[1], out stop);} }if (parseResult){int existsMinBegin = 0; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, group.Block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){if (start >= begin && stop <= end){exists = true;break;}if (isContinue){if (start >= existsMinBegin && stop <= existsMaxEnd){exists = true;break;} }} }} }endregionif (!exists){ushort[] groupData = new ushort[currLen];this.readResult[tagFullName] = groupData;Console.WriteLine(tagFullName);} }}//int tagCount = group.Len % this.stepLen == 0 ? group.Len / this.stepLen : group.Len / this.stepLen + 1;//int currLen = 0;//for (int i = 0; i < tagCount; i++)//{// string tagName = String.Empty;// if (tagCount == 1)// {// tagName = String.Format("{0}-{1}", group.Start, group.Start + group.Len - 1);// currLen = group.Len;// }// else if (i == tagCount - 1)// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + (group.Len % this.stepLen == 0 ? this.stepLen : group.Len % this.stepLen) - 1);// currLen = group.Len % this.stepLen;// }// else// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + this.stepLen - 1);// currLen = this.stepLen;// }// string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);// if (!this.readResult.ContainsKey(tagFullName))// {// short[] groupData = new short[currLen];// this.readResult[tagFullName] = groupData;// }//} }endregionregion 开启内部定时读取if (this.innerReadThread == null){this.innerReadRate = this.Main.ReadHz / 2;this.innerReadThread = new System.Threading.Thread(this.InnerAutoRead);this.innerReadThread.Start();}endregion}return this.State;} }/// <summary>/// 从设备读取数据/// </summary>/// <param name="block">要读取的块号</param>/// <param name="start">要读取的起始字</param>/// <param name="len">要读取的长度</param>/// <param name="buff">读取成功后的输出数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Read(string block, int start, int len, out object[] buff){lock (this){buff = null;if (this._isClosing){return false;}string readstrflag = String.Format("{0}{1}.{2}-{3}", this.groupNamePrefix, block, start, start + len - 1);System.Text.StringBuilder sbtaglength = new System.Text.StringBuilder();string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();List<string> groupTagNames = new List<string>();int startIndex = 0;try{if (!Open()){return false;}//return true;string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){if (key.StartsWith(groupName) && key.Replace(String.Format("{0}.", groupName), String.Empty).Contains("-")){groupTagNames.Add(key);} }groupTagNames.Sort(); //对块标签进行排序foreach (string key in groupTagNames){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}ushort[] values;if (this.readResult[key] is ushort[]){values = this.readResult[key] as ushort[];}else{values = new ushort[] { (ushort)this.readResult[key] };}sbtaglength.Append(String.Format("tagName={0}, buff length = {1}", key, values.Length));groupData.AddRange(values);}buff = new object[len];if (!String.IsNullOrEmpty(startTag)){string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;Array.Copy(groupData.ToArray(), startIndex, buff, 0, buff.Length);}else{}return true;}catch (Exception ex){Console.WriteLine(String.Join(";", groupTagNames.ToArray<string>()));Console.WriteLine("data length = " + groupData.Count);Console.WriteLine(this.Name + "读取失败[" + readstrflag + "]:" + ex.Message);Console.WriteLine(sbtaglength.ToString());this.State = false;return false;} }}/// <summary>/// 写入数据到设备/// </summary>/// <param name="block">要写入的块号</param>/// <param name="start">要写入的起始字</param>/// <param name="buff">要写如的数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Write(int block, int start, object[] buff){bool result = true;lock (this){try{if (this._isClosing){return false;}if (!Open()){return false;}bool isWrite = false;region 按标签变量写入string itemId = "";foreach (Equips.BaseInfo.Group group in this.Group.Values){if (group.Block == block.ToString()){foreach (Equips.BaseInfo.Data data in group.Data.Values){if (group.Start + data.Start == start && data.Len == buff.Length){if (this.dicTags.ContainsKey(data.Name)){itemId = this.dicTags[data.Name];}break;} }} }if (!String.IsNullOrEmpty(itemId)){UInt16[] intBuff = new UInt16[buff.Length];for (int i = 0; i < intBuff.Length; i++){intBuff[i] = 0;if (!UInt16.TryParse(buff[i].ToString(), out intBuff[i])){Console.WriteLine("在写入OPCUA标签时把buff中的元素转为UInt16类型失败!");} }result = this.myOpcHelper.WriteUInt16(itemId, intBuff);if (!result){Console.WriteLine(String.Format("标签变量[{0}]写入失败!", itemId));return false;}else{Console.WriteLine("按标签变量写入..." + itemId);isWrite = true;} }if (isWrite){return true;}endregionregion 按块写入region 先读取相应标签数数据string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();string[] keys = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key in keys){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}string[] beginEnd = key.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}.{1}", key)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);region 写入之前,先读取一下PLC的值if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){this.ReadTag(key);if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);}else{Console.WriteLine(String.Format("读取结果中不包含标签变量[{0}]的值!", String.Format("{0}", key)));} }else{if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("no read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);} }endregion}endregionif (String.IsNullOrEmpty(startTag)){Console.WriteLine("写入失败,未在OPCUAserver中找到对应的标签,block = {0}, start = {1}, len = {2}", block, start, buff.Length);return false;}region 更新标签中对应的数据后,再写回OPCServerint startIndex = 0;string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;ushort[] newDataBuffer = groupData.ToArray();for (int i = 0; i < buff.Length; i++){ushort svalue = 0;ushort.TryParse(buff[i].ToString(), out svalue);newDataBuffer[startIndex + i] = svalue;}int index = 0;string[] keys2 = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key2 in keys2){string[] beginEnd = key2.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}", key2)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){//Console.WriteLine("---------------------------------------------------------");//Console.WriteLine("start = " + start);//Console.WriteLine("start + buff.Length - 1 = " + (start + buff.Length -1));//Console.WriteLine("begin = " + begin);//Console.WriteLine("end = " + end);//Console.WriteLine("---------------------------------------------------------");if (!this.dicTags.ContainsKey(key2)){Console.WriteLine(String.Format("写入失败:标签变量[{0}]在OpcUA Server中未定义!", String.Format("{0}", key2)));return false;}int len = (this.readResult[key2] as ushort[]).Length;ushort[] tagDataBuff = new ushort[len];//Console.WriteLine("newDataBuff");//Console.WriteLine(String.Join(",", newDataBuffer));//Console.WriteLine("index = " + index);//Console.WriteLine("tagDataBuff.Length = " + tagDataBuff.Length);//Array.Copy(newDataBuffer, begin, tagDataBuff, 0, tagDataBuff.Length);int existsMinBegin = this.GetExistsMinBeginByBlock(block.ToString());Array.Copy(newDataBuffer, begin - existsMinBegin, tagDataBuff, 0, tagDataBuff.Length);index += tagDataBuff.Length;//Console.WriteLine("Write " + key2);//Console.WriteLine(String.Join(",", tagDataBuff));//Console.WriteLine("写入标签:" + this.dicTags[key2]);result = this.myOpcHelper.WriteUInt16(this.dicTags[key2], tagDataBuff);if (!result){Console.WriteLine(String.Format("向标签变量[{0}]中写入值失败!", String.Format("{0}", key2)));return false;}else{this.ReadTag(key2);Console.WriteLine("写入...");}//Console.WriteLine("---------------------------------------------------------");} }endregionendregionreturn result;}catch (Exception ex){Console.WriteLine(this.Name + "写入失败:" + ex.Message);return false;} }}/// <summary>/// 关闭方法,断开与设备的连接释放资源/// </summary>public override void Close(){try{this._isClosing = true;System.Threading.Thread.Sleep(this.Main.ReadHz);if (this.innerReadThread != null){this.innerReadThread.Abort();this.innerReadThread = null;} }catch (Exception ex){Console.WriteLine("关闭内部读取OPCUA线程异常:" + ex.Message);}try{if (this.myOpcHelper != null){this.myOpcHelper.Close();this.myOpcHelper = null;this.State = false;this._isOpen = false;} }catch (Exception ex){Console.WriteLine("关于与OPCUA服务连接异常:" + ex.Message);} }endregionregion 辅助方法/// <summary>/// 获取某个数据块标签的最小开始索引/// </summary>/// <param name="block">块号</param>/// <returns>返回数据块标签的最小开始索引</returns>private int GetExistsMinBeginByBlock(string block){int existsMinBegin = 99999; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();string[] beginend = null;bool parseResult = false;int begin = 0;int end = 0;foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){//} }}return existsMinBegin;}/// <summary>/// 读取标签/// </summary>/// <param name="tagName"></param>private void ReadTag(string tagName){UInt16[] buff = null;if (this.dicTags.ContainsKey(tagName)){if (this.myOpcHelper.ReadUInt16(this.dicTags[tagName], out buff)){//Console.WriteLine("tagName={0}, buff length = {1}", tagName, buff.Length);if (this.readResult.ContainsKey(tagName)){this.readResult[tagName] = buff;}else{this.readResult.Add(tagName, buff);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception 读取标签:[{0}]失败!", tagName);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception OPCUA Server中未定义此标签:[{0}]!", tagName);} }/// <summary>/// 内部自动读取方法/// </summary>private void InnerAutoRead(){while (this._isOpen && this._isClosing == false){try{if (this.myOpcHelper == null){this._isClosing = true;this.State = false;return;}lock (this){string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){this.ReadTag(key);} }System.Threading.Thread.Sleep(this.innerReadRate);}catch (Exception ex){Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.InnerAutoRead Exception : " + ex.Message);} }this.innerReadThread = null;}endregionregion 析构方法~Equip(){this.Close();}endregion} } 代码下载 代码下载 本篇文章为转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 18:43:00
269
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 C10K I/O 模型优化 工作模型优化 C1000K C10M 总结 C10K 和 C1000K 的首字母 C 是 Client 的缩写。 C10K 是单机同时处理 1 万个请求(并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 我踩过的坑,希望大家不用再踩。 到现在我工作 17 年了, 担任架构师的职位也超过了 10 年,担任过像 HP、Amazon 这样的世界级团队的架构师,也担任过像汇量科技这样快速成长的中小企业的技术领导。应 InfoQ 邀请分享一下我的工作感悟,分享内容部分来自成功总结,更多是来自失败的反思,希望我踩过的坑大家可以不用再踩。 “提出问题”难于“解决问题” 作为技术人员,我们已经习惯于作为问题的解决者给出设计方案,而很少以问题提出者的身份去思考设计方案。团队中常见的典型矛盾,就是产品团队和研发团队之间的矛盾。作为研发团队,我们常吐槽产品团队的需求不合理、不懂技术等。其实我们可以试着把自己的工作再往前移一下,不仅仅是去设计架构、实现产品的需求,同时也试着去实现客户的需求,甚至发现潜在的需求。 这时我们就变成了在设计上提出问题的人,你会发现提出问题的同时,在很多时候也需要同样深入的思考。设计一个好的问题,甚至比解决问题更难。 其实即便是软件开发领域的大神 Frederick P. Brooks Jr.(《人月神话》的作者)也会有同样的感叹。 “The hardest part of design is deciding what to design.” – 《The design of design》, by Frederick P. Brooks Jr. 决定“不要什么”比“要什么”更难 也许是由于人性的贪婪,对于软件系统我们同样想要更多:更多功能、更好的性能、更好的伸缩性、扩展性等等。作为软件架构师要明白软件架构设计就是一种取舍或平衡。当大家都在往里面加东西的时候,架构师更应该来做这个说“不”的人。 软件设计和定义过程中存在很多取舍,例如: 完善功能和尽早发布的取舍。 伸缩性和性能的取舍。 著名的 CAP 原则,就是一个很好的取舍指导策略。为了更好的取舍,保持架构风格的一致性,在一开始架构师就应该根据系统的实际需求来定义一些取舍的原则,如: 数据一致性拥有最高优先级。 提前发布核心功能优于完整发布等。 非功能性需求决定架构 因为软件是为了满足客户的功能性需求的,所以很多设计人员可能会认为架构是由要实现的功能性需求决定的。但实际上真正决定软件架构的其实是非功能性需求。 架构师要更加关注非功能性需求,常见的非功能性包括:性能,伸缩性,扩展性和可维护性等,甚至还包括团队技术水平和发布时间要求。能实现功能的设计总是有很多,考虑了非功能性需求后才能筛选出最合适的设计。 以上架构模式来自《面向模式的软件架构》的第一卷,这套书多年来一直是架构师的必读经典。面向架构的模式就是为不同的非功能性需求提供了很好的参考和指导。图中的 Micro-Kernel 模式,更加关注可扩展性和可用性(错误隔离)。 “简单”并不“容易” 很多架构师都会常常提到保持简单,但是有时候我们会混淆简单和容易。简单和容易在英语里也是两个词“simple”和“easy”。 “Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end because once you get there, you can move mountains. To be truly simple, you have to go really deep.” –SteveJobs 真正的一些简单的方法其实来自于对问题和技术更深入的理解。这些方案往往不是容易获得的、表面上的方法。简单可以说蕴含着一种深入的技巧在其中。 下面我来举一个例子。 首先我们来回顾一下软件生命周期中各个阶段的成本消耗占比。以下是来一个知名统计机构的分析报告。我们可以看到占比最大的是维护部分,对于这一部分的简化将最具有全局意义。 我曾经开发过一个设备管理系统,移动运营商通过这个系统来管理移动设备,实现包括设备的自动注册、固件和软件的同步等管理功能。这些功能是通过一些管理系统与移动设备间的预定义的交互协议来完成的。 电信专家们会根据业务场景及需求来调整和新增这些交互协议。起初我们采用了一种容易实现的方式,即团队中的软件工程会根据电信专家的说明,将协议实现为对应代码。 之后我们很快发现这样的方式,让我们的工作变得没那么简单。 “I believe that the hardest part of software projects, the most common source of project failure, is communication with the customers and users of that software.” –Martin Fowler 正如软件开发大师 MartinFowler 提到的,“沟通”往往是导致软件项目失败的主要原因。前面这个项目最大的问题是在系统上线后的运行维护阶段,电信专家和开发工程师之间会不断就新的协议修改和增加进行持续的沟通,而他们的领域知识和词汇都有很大的差别,这会大大影响沟通的效率。因此这期间系统的运行维护(协议的修改)变得十分艰难,不仅协议更新上线时间慢,而且由于软件工程对于电信协议理解程度有限,很多问题都要在实际上线使用后才能被电信专家发现,导致了很多的交换和反复。 针对上面提到的问题,后来我们和电信专家一起设计了一种协议设计语言(并提供可视化的工具),这种设计语言使用的电信专家所熟悉的词汇。然后通过一个类似于编译器的程序将电信专家定义好的协议模型转换为内存中的 Java 结构。这样整个项目的运行和维护就变得简单高效了,省去了低效的交流和不准确人工转换。 我们可以看到一开始按电信专家的说明直接实现协议是更为容易的办法,但就整个软件生命周期来看却并不是一个简单高效的方法。 永远不要停止编码 架构师也是程序员,代码是软件的最终实现形态,停止编程会逐渐让你忘记作为程序员的感受,更重要的是忘记其中的“痛”,从而容易产生一些不切实际的设计。 大家可能听说过在 Amazon,高级副总裁级别的 Distinguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
78
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文系转载。文中的“我”均为原作者 作者:张彦飞allen 十年,一个听起来感觉很长的时间,已经从我身边悄悄地滑过了。一直想写点什么,却也一直也没时间动笔。今天捡了个周末,就随点写点流水文吧,写到哪儿算哪儿。 01 职场首站 我是 2010 年硕士毕业。还记得在 2009 年 11 月的校园招聘季的时候,我当时只面试了两家公司。一家是中科大洋,承诺 100% 解决户口。另外一家就是腾讯,技术面试全部通过以后,hr面试中各种旁敲侧击发现我还是希望长期在北京发展(当时我面试的是深圳的岗位),而且也有解决户口的工作后,就卡了我的offer。 现在回想起来,其实反而还有点感谢当时的腾讯 hr。因为我确实是想在北京长期发展的,北京的户口只有毕业的时候最好拿。错过了这次机会后会非常的难得到。进大厂机会多的是,但是户口的窗口却很少很少。 面试完这两家公司以后,我就没再面试其它公司。而是开始准备将我的一篇 ICPR 论文(https://projet.liris.cnrs.fr/imagine/pub/proceedings/ICPR-2010/data/4109b670.pdf) 里的算法去申请了个专利,然后去安安心心去中科大洋实习。 在第一家公司工作的时候,我不局限于完成自己的任务,而是花时间去看团队里的所有代码。这种工作方式刚开始的时候会比较吃力。因为我不仅仅只是把问题处理完了就完事,而是非得想把和它相关的周边业务逻辑都挖一遍才甘心。因此,班也没少加,好多个周末我都一个人在公司看代码,做测试。 不过这种方式的好处也是显而易见的,我花了大概一年的时间就熟悉了团队里的各种模块和业务。当有老员工离职的时候,我们领导很惆怅。我告诉他不用担心,这些模块我能顶住。有了前期看代码的积累,确实后来的各种事情处理起来都非常的得心应手。入职一年就顶起了团队里的大梁。 而且我还发现我们公司的客户端软件在启动的时候比较慢,通过主动调研和测试,最后给领导提交了一个客户端启动加速的方案。现在能想起来的方式其中一个技术方式是 DLL 的基地址重定位。 02 入职腾讯 在 2011 年下半年,工作了一年多的时候,感觉广播电视领域整体的盘子还是太小了,当时领头企业的营业额一年也就才十个亿左右。再通过和自己在腾讯的同学交流,还是觉得互联网的空间更大。所以也婉拒了领导给的副组长的提拔挽留,又毅然跳到了北京腾讯。 我是 2011 年 11 月加入腾讯的。在项目上,仍然保持和第一家公司时工作类似的风格,全力以赴。不仅仅局限于完成自己手头的工作,主动做一切可能有价值的事情。其中一件事情就是我发现在当时的项目中,存在很多运营后台的开发需求。每次开发一个后台都得有人力去投入。 后来我就在老大的所开发的一套 PHP 框架的基础上进行改进。实现了只要指定一张 Mysql 数据库中的表,就可以自动生成 bootstrap 样式的管理后台界面。支持列表展示、搜索、删除、批量删除、文本框、时间控件等等一切基础功能。再以后涉及管理后台的功能,只需要在这个基础上改造就行了,人力投入降低了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
yum check-update && yum upgrade (适用于基于RPM的系统如CentOS)
- 同上,用于RPM包管理器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"