前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[遍历Lua表以检测键存在性 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Flink
...新数据的时候,都需要遍历整个数据库,这无疑会大大降低我们的处理效率。通过数据分区这个招数,我们就能瞄准我们需要的那一小块数据精准操作,这样一来,工作效率嗖嗖地往上窜,绝对的大幅度提升! 四、Flink如何进行数据分区 接下来,我们就来看看Flink是如何进行数据分区的。在Flink中,我们可以通过设置KeyedStream的keyBy()方法来进行数据分区。这个方法会根据我们传入的关键字,将数据分成不同的组。例如,如果我们有一个订单流,我们可以根据订单号来分区: java DataStream orders = env.addSource(...); DataStream keyedOrders = orders.keyBy("orderId"); 在这个例子中,Flink会根据订单号来对订单进行分区,这样当我们需要查找特定订单的时候,就可以直接从对应的分区中获取,不需要遍历整个流。 五、如何通过重新分区优化数据分布 最后,我们来谈谈如何通过重新分区优化数据分布。在咱们日常的实际操作里,有时候会遇到这样的情况:新的需求冒出来,这时候就可能需要对原来已经存在的数据进行一番“大挪移”,也就是重新分区啦。比如,想象一下咱们最初是按照用户的ID给数据分门别类的,但现在呢,我们想要换个方式,改成按照时间来划分这部分数据。这个时候,我们就需要使用Flink的rebalance()方法来进行重新分区: java DataStream orders = env.addSource(...); DataStream keyedOrders = orders.keyBy("userId"); // 假设我们发现用户活动的时间特性更符合时间分区,于是决定重新分区 keyedOrders.rebalance() .keyBy("time") .print(); 在这个例子中,我们先按照用户的ID进行了分区,然后使用rebalance()方法进行重新分区,最后按照时间进行分区。这样做的好处是可以更好地利用集群的资源,提高我们的处理效率。 六、总结 总的来说,Flink通过提供强大的数据分布优化能力,可以帮助我们在处理大数据时提高处理效率。此外,通过给集群来个重新分区这招,我们就能更巧妙地榨干集群的资源潜力,从而让我们的处理效率蹭蹭往上涨。大家伙儿在用Flink的时候,千万要记得把这些工具物尽其用啊,这样一来,咱们的工作效率就能蹭蹭地往上涨了!
2023-08-15 23:30:55
422
素颜如水-t
Nacos
...cos在启动时会自动检测用户的登录信息,并将其存储在本地的配置文件中。当你改了密码之后,Nacos这个小家伙就会屁颠屁颠地用新密码去打开配置文件。不过呢,配置文件里还记着旧密码,这下旧密码就不管用了,于是乎,服务也就启动不了啦,就像你拿着过期的钥匙开不了新锁一样。 四、解决方案 知道了问题的原因,我们就可以开始寻找解决办法了。首先,我们需要知道Nacos在哪里保存了用户的登录信息。这通常可以在Nacos的配置文件中找到。在本文中,我们将假设你的Nacos使用的是MySQL作为其数据存储。 在Nacos的配置文件application.properties中,我们可以看到以下内容: css spring.datasource.url=jdbc:mysql://localhost:3306/nacos?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC spring.datasource.username=nacos spring.datasource.password=nacos 这里可以看到,Nacos的登录信息(用户名和密码)被保存在了MySQL数据库中,其中数据库的名字为nacos,用户名和密码分别为nacos。因此,我们需要先在MySQL中更新这两个用户的信息。 五、操作步骤 接下来,我们就来具体介绍一下如何在MySQL中更新Nacos的登录信息。 1. 登录到MySQL服务器,然后选择名为nacos的数据库。 python mysql -u root -p use nacos; 2. 修改用户名和密码。在这个例子中,我们将用户名改为new-nacos,密码改为new-nacos-password。 sql update user set password='new-nacos-password' where username='nacos'; update user set authentication_string='MD5(new-nacos-password)' where username='new-nacos'; 3. 最后,我们需要刷新MySQL的权限表,以便让Nacos能够正确地识别新的用户名和密码。 bash flush privileges; 六、测试验证 完成上述步骤后,我们就可以尝试重新启动Nacos服务了。要是顺顺利利的话,你现在应该已经成功登录到Nacos的控制台了,而且你改的新密码也妥妥地生效啦! 七、总结 总的来说,Nacos修改密码后服务无法启动的问题并不难解决,只需要我们按照正确的步骤进行操作就可以了。不过,你要知道,每个人的环境和配置都是独一无二的,所以在实际动手操作时,可能会遇到些微不同的情况。如果你在尝试上述步骤的过程中遇到了任何问题,欢迎随时向我提问,我会尽我所能为你提供帮助。
2023-06-03 16:34:08
184
春暖花开_t
转载文章
...担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、树莓派换源 参考链接:https://blog.csdn.net/qq_43556844/article/details/113615915 2、更新pip3 参考链接:https://blog.csdn.net/qq_43556844/article/details/113616214 3、存取麦克风 我们使用PortAudio作为音频输入/输出的跨平台支持。我们还使用sox作为快速实用程序来检查麦克风设置是否正确。 sudo apt-get install python-pyaudio python3-pyaudio sox sudo pip3 install pyaudio 4、录制音频 rec test.wav 这里会报错,can’t open input ‘default’: 5、需要安装以下包,用以麦克风的配置 sudo apt-get install alsa-utils pulseaudio 6、再次测试 rec test.wav 7、使用ctrl + c停止录音,aplay test.wav播放。 8、下载snowboy,编译出适合自己系统的_snowboydetect.so 在这个链接下载:https://github.com/kitt-ai/snowboy 使用命令:git clone https://github.com/Kitt-AI/snowboy.git下载 安装以下工具,用以编译 sudo apt-get install swig (3.0.10或者更高的版本)sudo apt-get install libatlas-base-dev 进入snowboy目录,执行以下命令,进行编译 cd /snowboy/swig/Python3make 得到了编译好的文件_snowboydetect.so 新建自己文件夹,将snowboy/example/Python3下的文件全复制到自己文件夹下,并将上一步编译后得到的_snowboydetect.so放到自己的文件夹中。 9、生成自己的唤醒词 训练模型:参考https://github.com/Kitt-AI/snowboy/ 10、将自己的模型.pmdl放到自己创建的文件夹snowboy里。 11、使用以下代码运行 注意:需要将官方案例中的 snowboydecoder.py 文件修改一下,把from . import snowboydetect 改为 import snowboydetect然后再运行。并将编译后的swig/Python3目录下的snowboydetect.py复制到自己的目录中。 python3 demo.py .pmdl 听到叮的一声,代表成功了。 完整参考文档:http://docs.kitt.ai/snowboy/downloads 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_43556844/article/details/113617602。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-05 08:57:02
124
转载
转载文章
...担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 编译选项 ---------IDE掩盖下的天空 / gcc for c language / Single Source to Executable $ gcc helloworld.c [-o howdy] 默认生成的名字a.exe ______________________________________ Source File to Object File $ gcc -c helloworld.c [-o harumph.o] 默认生成的名字与原文件名一致,后缀为.o -c告知不但保留object文件,而且忽略连接过程 ______________________________________ Multiple Source Files to Executable $ gcc hellomain.c sayhello.c -o hello ______________________________________ Preprocessing $ gcc -E helloworld.c [-o helloworld.i] 默认不输出文件,若输出则为.i文件 -E把宏展开后的代码情况 ____________________________________ Generating Assembly Language $ gcc -S helloworld.c -S生成hellowordl.s汇编语言文件 ____________________________________ Creating a Static Library 1、生成.o文件 $ gcc -c hellofirst.c hellosecond.c 2、生成.a文件 $ ar -r libhello.a hellofirst.o hellosecond.o 注意静态库的命名规则 3、连接 $ gcc twohellos.c libhello.a -o twohellos ____________________________________ Creating a Shared Library 1、生成.o文件 $ gcc -c -fpic shellofirst.c shellosecond.c -fpic 使得.o输出模块以地址可定向的方式产生。[pic:position independent code] 2、生成.so $ gcc -shared shellofirst.o shellosecond.o -o hello.so 3、连接 $ gcc stwohellos.c hello.so -o stwohellos 注意:1、2可以合并为 $ gcc -fpic -shared shellofirst.c shellosecond.c -o hello.so _____________________________________ Overriding the Naming Convention $ gcc -xc helloworld.jxj -o helloworld -xc对于C语言的源代码,默认后缀为.c,但别的后缀文件也可以当作c来用,那就要加-x选项 _______________________________________ Create a header file $ gcc sayhello.c -aux-info sayhello.h $ gcc .c -aux-info prototypes.h 不过这样产生的头文件,包含的函数原型太多,除了用户自定义的函数外,标准库中的函数原型都列出来了 本篇文章为转载内容。原文链接:https://blog.csdn.net/szu030606/article/details/7212586。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-29 13:05:13
53
转载
DorisDB
...数据时,若数据源本身存在网络中断、表结构变更、权限问题等情况,可能导致同步失败。 - 示例代码: java // 假设我们正在通过DataX工具将MySQL数据同步到DorisDB { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "password", "connection": [ {"jdbcUrl": ["jdbc:mysql://source-db:3306/mydb"]} ], "table": ["mytable"] } }, "writer": { "name": "doriswriter", "parameter": { "feHost": "doris-fe:8030", "bePort": 9050, "database": "mydb", "table": "mytable" } } } ] } } 若MySQL端发生异常,如连接断开或表结构被删除,会导致上述同步任务执行失败。 2.2 同步配置错误 - 场景描述:配置文件中的参数设置不正确,例如DorisDB的FE地址、BE端口或者表名、列名等不匹配,也会导致数据无法正常同步。 2.3 网络波动或资源不足 - 场景描述:在同步过程中,由于网络不稳定或者DorisDB所在集群资源(如内存、磁盘空间)不足,也可能造成同步任务失败。 3. 排查与解决方法 3.1 查看日志定位问题 - 操作过程:首先查看DorisDB FE和BE的日志,以及数据同步工具(如DataX)的日志,通常这些日志会清晰地记录下出错的原因和详细信息。 3.2 检查数据源状态 - 理解与思考:如果日志提示是数据源问题,那么我们需要检查数据源的状态,确保其稳定可用,并且表结构、权限等符合预期。 3.3 核实同步配置 - 举例说明:假设我们在同步配置中误写了一个表名,可以通过修正并重新运行同步任务来验证问题是否得到解决。 java // 更正后的writer部分配置 "writer": { "name": "doriswriter", "parameter": { "feHost": "doris-fe:8030", "bePort": 9050, "database": "mydb", // 注意这里已更正表名 "table": ["correct_table_name"] } } 3.4 监控网络与资源状况 - 探讨性话术:对于因网络或资源问题导致的同步失败,我们可以考虑优化网络环境,或者适当调整DorisDB集群资源配置,比如增加磁盘空间、监控并合理分配内存资源。 4. 总结 面对DorisDB数据同步失败的情况,我们需要像侦探一样细致入微,从日志、配置、数据源以及运行环境等多个角度入手,逐步排查问题根源。通过实实在在的代码实例演示,咱们就能更接地气地明白各个环节可能潜藏的小问题,然后对症下药,精准地把这些小bug给修复喽。虽然解决问题的过程就像坐过山车一样跌宕起伏,但每当我们成功扫除一个障碍,就仿佛是在DorisDB这座神秘宝库里找到新的秘密通道。这样一来,我们对它的理解愈发透彻,也让我们的数据分析之旅走得更稳更顺溜,简直像是给道路铺上了滑板鞋,一路畅行无阻。
2024-02-11 10:41:40
433
雪落无痕
HTML
...你的源代码文件,一旦检测到有改动,它会立即重新进行编译打包。这是一种实时反馈开发成果的高效工作模式。 2. 使用webpack插件实现回调功能 webpack 的强大之处在于它的插件系统。我们可以编写自定义插件来扩展其功能。下面,我们将创建一个自定义webpack插件,用于在每次编译完成后执行文件拷贝操作。 javascript class CopyAfterCompilePlugin { constructor(options) { this.options = options || {}; } apply(compiler) { compiler.hooks.done.tap('CopyAfterCompilePlugin', (stats) => { if (!stats.hasErrors()) { const { copyFrom, copyTo } = this.options; // 这里假设copyFrom和copyTo是待拷贝文件和目标路径 fs.copyFileSync(copyFrom, copyTo); console.log(已成功将${copyFrom}拷贝至${copyTo}); } }); } } // 在webpack配置文件中引入并使用该插件 const CopyWebpackPlugin = require('./CopyAfterCompilePlugin'); module.exports = { // ... 其他webpack配置项 plugins: [ new CopyWebpackPlugin({ copyFrom: 'src/assets/myfile.js', copyTo: 'dist/static/myfile.js' }), ], }; 上述代码中,我们定义了一个名为 CopyAfterCompilePlugin 的webpack插件,它会在编译过程结束后触发 done 钩子,并执行文件拷贝操作。这里使用了 Node.js 的 fs 模块提供的 copyFileSync 方法进行文件拷贝。 3. 插件应用与思考 在实际开发中,你可能需要拷贝多个文件或整个目录,这时可以通过遍历文件列表或者递归调用 copyFileSync 来实现。同时,为了提高健壮性,可以增加错误处理逻辑,确保拷贝失败时能给出友好的提示信息。 通过这种方式,我们巧妙地利用了webpack的生命周期钩子,实现了编译完成后的自动化文件管理任务。这种做法,可不光是让手动操作变得省心省力,工作效率嗖嗖往上升,更重要的是,它让构建流程变得更聪明、更自动化了。就好比给生产线装上了智能小助手,让webpack插件系统那灵活多变、随时拓展的特性展现得淋漓尽致。 总结一下,面对“webpack --watch 编译完成之后执行一个callback,将部分文件拷贝到指定目录”的需求,通过编写自定义webpack插件,我们可以轻松解决这个问题,这也是前端工程化实践中的一个小技巧,值得我们在日常开发中加以运用和探索。当然啦,每个项目的个性化需求肯定是各不相同的,所以呢,咱们就可以在这个基础上灵活变通,根据实际情况来个“私人订制”,把咱们的构建过程打磨得更贴合项目的独特需求,让每一个环节都充满浓浓的人情味儿,更有温度。
2023-12-07 22:55:37
690
月影清风_
转载文章
...担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1.在project.config.json 文件中添加 "miniprogramRoot": "/", 2.在项目根目录创建 functions 文件夹 3.右键点击文件夹 选着 新建Node.js云函数 我的云函数名字 叫 checkStr(可以自定义) 点击之后会生成这三个文件 如果没有 请手动添加 config.json {"permissions": {"openapi": ["security.msgSecCheck"]} } index.js // 云函数入口文件 index.jsconst cloud = require('wx-server-sdk')cloud.init()// 云函数入口函数exports.main = async (event, context) => {const wxContext = cloud.getWXContext()try {const result = await cloud.openapi.security.msgSecCheck({content: event.text?event.text:'1'})if (result && result.errCode.toString() === '87014'){return { code: 500, msg: '内容含有违法违规内容', data: result } }else{return { code: 200, msg: 'ok', data: result } }} catch (err) {// 错误处理if (err.errCode.toString() === '87014') {return { code: 500, msg: '内容含有违法违规内容', data: err } }return { code: 502, msg: '调用security接口异常', data: err } }} package.json {"name": "checkStr","version": "1.0.0","description": "","main": "index.js","scripts": {"test": "echo \"Error: no test specified\" && exit 1"},"author": "","license": "ISC","dependencies": {"wx-server-sdk": "~2.3.1"} } 4.右键点击 云函数文件夹 checkStr 实例文件夹 点击上传并部署:云端安装依赖(不上传node_modules) 上传成功之后再右键点击当前文件夹 点击本地调试 会跳出来云函数界面 勾选本地调试 5.在页面中使用 wx.cloud.init();wx.cloud.callFunction({name: 'checkStr',data: {text: e.detail.value?e.detail.value:'1' // 这一步是处理输入框值手动清空的时候会被检测出敏感词,不知道什么原因抱歉} }).then((res) => {if (res.result.code == "200") {this.setData({sendValue: e.detail.value})} else {this.setData({sendValue: ''})wx.showToast({title: '包含敏感字哦。',icon: 'none',duration: 3000})} }) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42046201/article/details/108998434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-20 15:53:16
103
转载
ZooKeeper
...风险 由于网络分区的存在,某一区域内的客户端可能成功更新了数据,但这些更新却无法及时同步到其他分区中的服务器和客户端。这就导致了不同分区的ZooKeeper节点持有的数据可能存在不一致的情况,严重威胁了ZooKeeper提供的强一致性保证。 5. ZooKeeper的应对策略 面对网络分区带来的数据不一致风险,ZooKeeper采取了一种保守的策略——优先保障数据的安全性,即在无法确保所有服务器都能收到更新请求的情况下,宁愿选择停止对外提供写服务,以防止潜在的数据不一致问题。 具体体现在,一旦检测到网络分区,ZooKeeper会将受影响的服务器转换为“Looking”状态,暂停接受客户端的写请求,直到网络恢复,重新达成多数派共识,从而避免在分区期间进行可能引发数据不一致的写操作。 6. 结论与思考 虽然网络分区对ZooKeeper的数据一致性构成了挑战,但ZooKeeper通过严谨的设计和实施策略,能够在很大程度上规避由此产生的数据不一致问题。然而,这也意味着在极端条件下,系统可用性可能会受到一定影响。所以,在我们设计和改进依赖ZooKeeper的应用时,可不能光知道它在网络分区时是咋干活的,还要结合咱们实际业务的特点,做出灵活又合理的取舍。就拿数据一致性跟系统可用性来说吧,得像端水大师一样平衡好这两个家伙,这样才能打造出既结实耐用、又能满足业务需求的分布式系统,让它健健康康地为我们服务。
2024-01-05 10:52:11
92
红尘漫步
Shell
...码中,尝试列出一个不存在的目录会失败,其退出状态将不为0,通过echo $?可以查看具体的错误代码。 2. 错误处理的基本姿势 if条件判断 了解了退出状态之后,我们可以利用它来进行错误处理。基本的方法是使用if条件判断语句: bash command_that_might_fail if [ $? -ne 0 ]; then echo "An error occurred while executing the command." 这里可以添加进一步的错误处理逻辑,比如记录日志或发送警告邮件等 fi 在这个例子中,如果command_that_might_fail执行失败(即返回非0退出状态),则会输出错误信息,并进行后续错误处理操作。 3. 使用trap函数捕获信号错误 更高级的错误处理方式是利用trap命令来设置信号处理器。当接收到特定信号时,可以触发预先定义好的命令序列: bash !/bin/bash cleanup() { echo "An unexpected error occurred, cleaning up..." 这里添加清理资源的命令 } trap cleanup ERR 当出现错误时,自动执行cleanup函数 下面是可能会出错的操作 rm -rf /path/to/sensitive/file 在这个示例中,一旦删除文件的操作失败,系统将会抛出错误信号,此时预设的cleanup函数会被调用,进行必要的资源清理。 4. 嵌套脚本中的错误传播与忽略 在编写复杂的Shell脚本时,我们可能需要调用其他脚本或者函数。在这种情况下,我们需要确保子脚本或函数的错误能被正确地传递和处理: bash sub_script() { some_command_that_might_fail if [ $? -ne 0 ]; then echo "Error in sub_script" return 1 返回非零状态码表示函数执行出错 fi } main_script() { sub_script if [ $? -ne 0 ]; then echo "sub_script failed in main_script" fi } main_script 在这个例子中,子脚本sub_script中的错误被适当捕获,并通过返回非零状态码的方式向上层脚本(main_script)传播。 结语 面对Shell脚本中的错误,就像在生活中应对挫折一样,我们需要有足够的耐心和智慧去发现、理解和解决。在Shell编程的世界里,咱们可以通过深入理解程序的退出状态,联手if条件判断这个小帮手,再加上trap函数这位守护神,以及对错误状态码的巧妙应对,就能打造出一套既结实又灵活的错误处理体系,让程序在遇到意外状况时也能游刃有余地应对。每一次我们成功逮住并解决掉一个错误,那都是我们在Shell编程这条道路上,实实在在地向前蹦跶了一大步,朝着更高阶的技巧迈进的过程。所以,别怕错误,让我们以更从容的姿态与之共舞吧!
2024-03-02 10:38:18
84
半夏微凉
Kubernetes
...先,我们需要检查是否存在可能影响 Pod 运行的节点问题。我们可以使用 kubectl get nodes 命令查看所有节点的状态。如果某个节点突然闹情绪了,比如罢工(宕机)或者跟大家断开联系(网络故障),那我们就可以亲自出马,动手在那个节点上重启它,或者让它恢复正常服务。 2. 查看 DaemonSet 对象 然后,我们可以使用 kubectl describe daemonset 命令查看相关 DaemonSet 对象的信息,包括其副本数量和分布情况等。如果发现某个节点的副本数量突然冒出了预期范围,那可能是因为有些节点上的服务小哥没正常启动工作,撂挑子了~这时候,咱们可以试试在这些节点上重新装一遍相关的服务包,或者索性检查一下,把其他可能潜藏的小问题也一并修理好。 3. 使用 kubectl edit daemonset 命令修改 DaemonSet 对象的配置 如果我们认为问题出在 DaemonSet 对象本身,那么可以尝试修改其配置。比如说,我们可以动手改变一下给节点贴标签的策略,让Pod能够更平均、更匀称地分散在每一个节点上,就像把糖果均匀分到每个小朋友手中那样。此外,我们还可以调整副本数量,避免某些节点的负载过重。 4. 使用 kubectl scale 命令动态调整 Pod 数量 最后,如果我们确定某个节点的负载过重,可以使用 kubectl scale daemonset --replicas= 命令将其副本数量减少到合理范围。这样既可以减轻该节点的压力,又不会影响其他节点的服务质量。 四、总结 总的来说,处理 DaemonSet 中 Pod 不在预期节点上运行的问题主要涉及到检查节点状态、查看 DaemonSet 对象、修改 DaemonSet 对象的配置和动态调整 Pod 数量等方面。通过上述方法,我们通常可以有效地解决问题,保证应用程序的稳定运行。同时,我们也应该养成良好的运维习惯,定期监控和维护集群,预防可能出现的问题。 五、结语 虽然 Kubernetes 提供了强大的自动化管理功能,但在实际应用过程中,我们仍然需要具备一定的运维技能和经验,才能更好地应对各种问题。所以呢,咱们得不断充电学习,积累宝贵经验,让自己的技术水平蹭蹭往上涨。这样一来,我们就能更好地为打造出那个既高效又稳定的云原生环境出一份力,让它更牛更稳当。
2023-04-13 21:58:20
208
夜色朦胧-t
Datax
...中强化了对唯一键冲突检测与修复的功能支持,通过智能化的数据加载策略和错误反馈机制,帮助用户在数据迁移过程中更高效地应对约束冲突问题。 因此,在实际工作中,我们不仅要关注具体工具如Datax的操作技巧,更要紧跟行业前沿动态和技术发展趋势,从数据全生命周期管理的角度出发,综合运用先进的预处理技术与最佳实践的数据库设计理念,才能确保在大规模数据操作过程中既能满足业务需求,又能有效规避各类潜在问题。
2023-10-27 08:40:37
721
初心未变-t
Beego
...rol),可以通过遍历已存在的值并进行合并,而不是直接覆盖: go func mergeCacheControlHeader(ctx context.Context, newValue string) { existingValues := ctx.Output.Header["Cache-Control"] if len(existingValues) > 0 { newValue = strings.Join(append(existingValues, newValue), ", ") } ctx.Output.Header("Cache-Control", newValue) } // 使用示例 mergeCacheControlHeader(c.Ctx, "no-cache") mergeCacheControlHeader(c.Ctx, "max-age=3600") (4.3)统一管理头部设置 为了减少冲突,可以在全局或模块层面设计一套统一的头部设置机制,避免分散在各个中间件和控制器中随意设置。 总结来说,Beego框架中的HTTP头部设置冲突是一个需要开发者关注的实际问题。理解其产生原因并采取恰当的策略规避或解决此类冲突,有助于我们构建更稳定、高效的Web服务。在这一整个挖掘问题和解决问题的过程中,我们不能光靠死板的技术知识“啃硬骨头”,更要灵活运用咱们的“人情味儿”设计思维,这样一来,才能更好地把那个威力强大的Beego开发工具玩转起来,让它乖乖听话,帮我们干活儿。
2023-04-16 17:17:44
438
岁月静好
ClickHouse
...是,则表示该节点可能存在问题。 (2)日志分析 其次,查阅ClickHouse节点的日志文件(默认路径通常在 /var/log/clickhouse-server/),寻找可能导致节点未准备好的线索,如重启记录、同步失败等信息。 (3)配置核查 检查集群配置文件(如 config.xml 和 users.xml),确认节点间的网络通信、数据复制等相关设置是否正确无误。 (4)网络诊断 排除节点间网络连接的问题,确保各个节点之间的网络是通畅的。可以通过ping命令或telnet工具来测试。 (5)故障转移与恢复 针对分布式场景,合理利用ClickHouse的分布式表引擎特性,设计合理的故障转移策略,当出现节点未就绪时,能自动切换到其他可用节点。 4. 预防与优化策略 - 定期维护与监控:建立完善的监控系统,实时检测每个节点的运行状况,并对可能出现问题的节点提前预警。 - 合理规划集群规模与架构:根据业务需求,合理规划集群规模,避免单点故障,同时确保各节点负载均衡。 - 升级与补丁管理:及时关注ClickHouse的版本更新与安全补丁,确保所有节点保持最新稳定版本,降低因软件问题引发的NodeNotReadyException风险。 - 备份与恢复策略:制定有效的数据备份与恢复方案,以便在节点发生故障时,能够快速恢复服务。 总结起来,面对ClickHouse的NodeNotReadyException异常,我们不仅需要深入理解其背后的原因,更要在实践中掌握一套行之有效的排查方法和预防策略。这样子做,才能确保当我们的大数据处理平台碰上这类问题时,仍然能够坚如磐石地稳定运行,实实在在地保障业务的连贯性不受影响。这一切的一切,都离不开我们对技术细节的死磕和实战演练的过程,这正是我们在大数据这个领域不断进步、持续升级的秘密武器。
2024-02-20 10:58:16
496
月影清风
SpringCloud
...允许部分请求通过,以检测服务是否已经恢复正常。 阈值 , 在本文上下文中,阈值是指触发熔断器行为的一个临界点或限定条件。例如,在Hystrix中,可以设置熔断阈值为连续五次请求失败,则启动熔断保护。阈值设定对于系统稳定性至关重要,它决定了在何种错误率或请求量的情况下,熔断器开始介入并隔离有问题的服务。 熔断时间 , 熔断时间是熔断器从触发熔断状态到尝试恢复服务调用之间的一段时间间隔。在这段时间内,所有新到达的请求都会被拒绝,而不是转发到可能存在问题的服务上。用户可以根据实际需求调整熔断时间,如在SpringCloud Hystrix中配置circuitBreakerSleepWindowInMilliseconds参数来控制这个持续时间,默认为3秒。这样设计有助于确保故障服务有足够的时间进行自我修复,并在再次接受请求之前逐步恢复其正常运行状态。
2023-05-11 23:23:51
76
晚秋落叶_t
Redis
...Redis一个压根不存在的键来设定值,嘿,这小家伙会根据不同数据结构的脾性,来个智能的操作。 三、键不存在的设置操作 1. 字符串类型(String) 在Redis中,如果尝试设置一个不存在的字符串键,它会直接创建这个键并设置相应的值。例如: python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('my_key', 'Hello, Redis!') 如果my_key不存在,Redis会自动创建并设置值为Hello, Redis!。 2. 哈希类型(Hash) 对于哈希类型,我们可以指定一个键来存储一个关联数组。同样,如果键不存在,Redis会自动创建: python r.hset('hash_key', 'field1', 'value1') 如果hash_key不存在,Redis会创建一个新哈希并将field1与value1关联起来。 四、过期时间和自动删除 Redis允许我们为键设置过期时间,当超过设定的时间后,键将自动被删除。即使键不存在,我们也可以设置过期时间: python r.expire('non_existent_key', 60) 设置键过期时间为60秒 r.set('non_existent_key', 'Will be deleted soon') 设置值 这里,non_existent_key将在60秒后被自动删除,即使之前不存在。 五、总结与讨论 在实际开发中,键不存在但尝试设置值的情况非常常见,尤其是当我们需要预设数据结构或者进行数据初始化的时候。Redis的这种灵活性使得它在缓存、消息队列等领域大放异彩。你知道吗,掌握那种“找不到键也能应对自如”的技巧,就像打理生活琐事一样重要,能帮咱们高效地管理数据,省下那些不必要的麻烦和资源。 总的来说,Redis的强大不仅仅在于它的性能,更在于其设计的灵活性和易用性。懂透这些基本技巧后,就像给应用程序穿上了一双疾速又稳健的红鞋,Redis能让你的应用跑得飞快又稳如老马,效率和稳定性双双升级!下次你碰到那个棘手的“按键没影子还想填值”的情况,不妨来点新鲜玩意儿——Redis,保证让你一试就爱上它的魔力!
2024-04-08 11:13:38
219
岁月如歌
Etcd
...可用性,其数据默认保存在本地磁盘上(可通过--data-dir配置项指定目录),并定期进行快照(snapshot)和日志记录,确保即使在异常情况下也能尽可能减少数据丢失的风险。 bash 启动etcd时设置数据存储目录 etcd --data-dir=/var/lib/etcd 2. 非正常关闭与重启恢复流程 当Etcd非正常关闭后,重启时会自动执行以下恢复流程: (1)检测数据完整性:Etcd启动时,首先会检查data-dir下的快照文件和日志文件是否完整。要是发现文件受损或者不齐全,它会像个贴心的小助手那样,主动去其它Raft节点那里借个肩膀,复制丢失的日志条目,以便把状态恢复重建起来。 (2)恢复Raft状态:基于Raft协议,Etcd通过读取并应用已有的日志和快照文件来恢复集群的最新状态。这一过程包括回放所有未提交的日志,直至达到最新的已提交状态。 (3)恢复成员关系与领导选举:Etcd根据持久化的成员信息重新建立集群成员间的联系,并参与领导选举,以恢复集群的服务能力。 go // 这是一个简化的示例,实际逻辑远比这复杂 func (s EtcdServer) start() error { // 恢复raft状态 err := s raft.Restore() if err != nil { return err } // 恢复成员关系 s.restoreCluster() // 开始参与领导选举 s.startElection() // ... } 3. 数据安全与备份策略 尽管Etcd具备一定的自我恢复能力,但为了应对极端情况下的数据丢失,我们仍需要制定合理的备份策略。例如,可以使用Etcd自带的etcdctl snapshot save命令定期创建数据快照,并将其存储到远程位置。 bash 创建Etcd快照并保存到指定路径 etcdctl snapshot save /path/to/snapshot.db \ --endpoint=https://etcd-cluster-0:2379,https://etcd-cluster-1:2379 如遇数据丢失,可使用etcdctl snapshot restore命令从快照恢复数据,并重新加入至集群。 bash 从快照恢复数据并启动一个新的etcd节点 etcdctl snapshot restore /path/to/snapshot.db \ --data-dir=/var/lib/etcd-restore \ --initial-cluster-token=etcd-cluster-unique-token 4. 结语与思考 面对Etcd非正常关闭后的重启数据恢复问题,我们可以看到Etcd本身已经做了很多工作来保障数据的安全性和系统的稳定性。但这可不代表咱们能对此放松警惕,摸透并熟练掌握Etcd的运行原理,再适时采取一些实打实的备份策略,对提高咱整个系统的稳定性、坚韧性可是至关重要滴!就像人的心跳一旦不给力,虽然身体自带修复技能,但还是得靠医生及时出手治疗,才能最大程度地把生命危险降到最低。同样,我们在运维Etcd集群时,也应该做好“医生”的角色,确保数据的“心跳”永不停息。
2023-06-17 09:26:09
713
落叶归根
Tomcat
...序中已动态分配的堆内存在不再需要时未能被及时回收。对于Tomcat来说,问题的关键在于运行Web应用程序时,有时候会有一些对象没被收拾干净,就像房间里的垃圾没丢掉一样,它们占着内存空间不放手。时间一长,内存就会被这些“垃圾对象”塞得满满当当,这样一来,系统资源就被消耗殆尽了。这就好比家里的空间都被杂物占满,导致你无法正常生活一样,系统也会因此出现性能下滑,严重时甚至可能让服务崩溃挂起。 3. Tomcat内存泄漏典型场景与分析 场景一:Servlet上下文未关闭 java public class MemoryLeakServlet extends HttpServlet { private static List list = new ArrayList<>(); protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { list.add("A piece of data..."); // ... } // 忽略了destroy方法,导致list无法在Servlet结束生命周期时释放 } 上述代码中的静态集合list在每次请求处理中都会添加数据,但在Servlet生命周期结束时并未清空,从而造成内存泄漏。 场景二:全局变量持有Context引用 java public class GlobalClass { private static ServletContext context; public static void setContext(ServletContext ctx) { context = ctx; } // ... 其他可能访问context的方法 } 在某个地方调用GlobalClass.setContext()将ServletContext设置为全局变量,这将阻止Web应用程序上下文在不活动时被垃圾收集器回收,从而产生内存泄漏。 4. 解决Tomcat内存泄漏的策略与实践 - 合理管理生命周期:确保在Servlet或Filter的destroy()方法中释放所有不再使用的资源。 - 避免全局引用:尽量不要在类的静态变量或单例模式中持有任何可能会导致Context无法回收的引用。 - 使用WeakReference或SoftReference:对于必须持有的引用,可以考虑使用Java弱引用或软引用,以便在内存紧张时能够被自动回收。 - 监控与检测:借助如VisualVM、JProfiler等工具实时监测内存使用情况,一旦发现有内存泄漏迹象,立即进行排查。 5. 结语 没有人愿意自己的Tomcat服务器在深夜悄然“崩溃”,因此,对内存泄漏问题的理解与防范显得尤为重要。希望以上的讨论和代码实例,能够让大家伙儿更接地气地理解Tomcat内存泄漏这个捣蛋鬼,并成功把它摆平。这样一来,咱们的应用就能健健康康、稳稳当当地运行啦!记住,每一个良好的编程习惯,都可能是防止内存泄漏的一道防线,让我们共同养成良好的编码习惯,守护好每一行代码的生命力吧!
2023-03-15 09:19:49
291
红尘漫步
转载文章
...担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 在看Unreal Engine 4.x Scripting with C++ Cookbook(第二版)这本书,把一些必要的基础知识过一过。目前没有学习ygo具体游戏逻辑的实现,先尝试先自己简化一下实现一些东西,首先要弄清楚如何动态的传递一些参数(这对后面写逻辑至关重要):例如说,我得到了卡牌的code,那么我该怎么映射成对应的贴图信息?如果创建一个特定的Actor蓝图,那么我又该怎么去动态的表示这个蓝图的信息呢?这就是接下来将要进行的内容探索。 关于这个问题的具体描述应该是如何动态的加载资源(分为Object资源和Class资源) 可以看一下这一些大佬的归纳:UE4静态/动态加载资源方式 - 知乎 (zhihu.com) [UE4]C++实现动态加载的问题:LoadClass()和LoadObject() 及 静态加载问题:ConstructorHelpers::FClassFinder()和FObjectFinder() - Bill Yuan - 博客园 (cnblogs.com) 简而言之,资源按照一定的规律和卡片的id进行关联,然后在代码中通过LoadObject()传入资源的路径来完成动态的加载。 卡片衍生出来的蓝图通过LoadClass(). 因此之前的修改1、动态加载材质信息,路径Path是字符串,可以很方便的变更,同样的蓝图类以一定的规则组织之后也可以通过路径来很方便的设置 接下来要考虑的内容是事件的传递、类间的消息传递,以及技能逻辑的运用 在做接下来的功能设计的时候,需要去了解游戏王卡牌游戏这个游戏的相关逻辑,关于卡片逻辑编写可以看B站这位大佬的视频游戏王Lua脚本编写教程·改二_哔哩哔哩_bilibili 关于技能的发动: 1、GAS中取对象的技能设计,使用targetData Actor来表征选选择对象的信息。 另一种实现方式是设定一个定时器,当技能开始的时候⏲,如果超时没有获取到对象,那么就当作对局失败或者技能发动失败处理。我偏向于后者的实现。 2、关于效果的类型,我们可以看到ygopro和DL的分类大体相似,如果用GAS设计技能的话也可以从简单的技能类型设计起来 3、卡片的表示 沿用ygopro的卡片类型的定义,在游戏中用Pawn做为基类。初始化的时候传入基本的信息,一开始将cards.db读入内存,用map存储,后续信息的查找都查询该map 效果卡片,仍然可以用lua实现逻辑,具体的后续再看看怎么实现比较合适。 4、设计简单的演示方案,仍然是从最简单的初代规则和初代卡牌考虑 a:summon a monster 利用动态资源加载的方式,先完成了一个简单的召唤逻辑。 先实现最基本的功能。后面再考虑详细的state信息 接下来实现三种基本的技能方式,然后看看技能资源该如何组织比较好 b:进行攻击 c:装备卡发动 d:生命值回复效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33232568/article/details/117932910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-07 13:59:47
150
转载
PostgreSQL
...件状态 确认磁盘是否存在物理损坏或其他硬件故障。可以利用系统自带的SMART工具(Self-Monitoring, Analysis and Reporting Technology)进行检测,或是联系硬件供应商进行进一步诊断。 3.4 数据库维护与优化 定期进行VACUUM FULL操作以释放不再使用的磁盘空间;合理设置WAL(Write-Ahead Log)策略,以平衡数据安全性与磁盘I/O压力。 3.5 配置冗余与备份 为防止突发性的磁盘故障造成数据丢失,建议配置RAID阵列提高数据可靠性,并实施定期的数据备份策略。 4. 结论与思考 处理PostgreSQL的File I/O错误并非难事,关键在于准确识别问题源头,并采取针对性的解决方案。在整个这个过程中,咱们得化身成侦探,一丁点儿线索都不能放过,得仔仔细细地捋清楚。这就好比破案一样,得把日志信息和实际状况结合起来,像福尔摩斯那样抽丝剥茧地分析判断。同时,咱们也要重视日常的数据库管理维护工作,就好比要时刻盯着磁盘空间够不够用,定期给它做个全身检查和保养,还要记得及时备份数据,这些可都是避免这类问题发生的必不可少的小窍门。毕竟,数据库健康稳定地运行,离不开我们持续的关注和呵护。
2023-12-22 15:51:48
233
海阔天空
SeaTunnel
...ame中选取一个不存在的列unknow_column,这同样会导致SQL查询语法错误。当你在用SeaTunnel的时候,千万要记得检查一下引用的字段名是不是真的在目标表里“活生生”存在着,不然可就抓瞎啦! 3.3 示例三:JOIN操作符使用不当 sql -- 错误示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; -- 正确示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; 在SeaTunnel的SQL语法中,JOIN操作符后的ON关键字引导的连接条件不能直接跟在JOIN后面,需要换行显示,否则会导致语法错误。 4. 面对SQL查询语法错误的策略与思考 当我们遭遇SQL查询语法错误时,首先不要慌张,要遵循以下步骤: - 检查错误信息:SeaTunnel通常会返回详细的错误信息,包括错误类型和发生错误的具体位置,这是定位问题的关键线索。 - 回归基础:重温SQL基本语法,确保对关键词、操作符的使用符合规范,比如WHERE、JOIN、GROUP BY等。 - 逐步调试:对于复杂的SQL查询,可以尝试将其拆分成多个简单的部分,逐一测试以找出问题所在。 - 利用IDE辅助:许多现代的数据库管理工具或IDE如DBeaver、DataGrip等都具有SQL语法高亮和实时错误检测功能,这对于预防和发现SQL查询语法错误非常有帮助。 - 社区求助:如果问题仍然无法解决,不妨到SeaTunnel的官方文档或者社区论坛寻求帮助,与其他开发者交流分享可能的经验和解决方案。 总结来说,面对SeaTunnel中的SQL查询语法错误,我们需要保持耐心,通过扎实的基础知识、细致的排查和有效的工具支持,结合不断实践和学习的过程,相信每一个挑战都将变成提升技能的一次宝贵机会。说到底,“犯错误”其实就是成功的另一种伪装,它让我们更接地气地摸清了技术的底细,还逼着我们不断进步,朝着更牛掰的开发者迈进。
2023-05-06 13:31:12
145
翡翠梦境
Apache Lucene
...试往索引里塞一个已经存在的文档时,系统就会抛出这个异常。这篇内容会手把手带你“穿越”到这个异常的背后,探寻它产生的真正原因,并且,咱们还会通过一些实际的代码例子,一起研究下到底如何巧妙地应对这种状况。 2. DocumentAlreadyExistsException的理解 在Lucene的世界里,每个文档都有其独一无二的标识符——document id。当我们试图使用相同的document id创建并添加一个新的文档到索引时,DocumentAlreadyExistsException就会闪亮登场。这是因为Lucene这个家伙,为了确保索引数据的整齐划一、滴水不漏,坚决不让两个相同ID的文档同时存在于它的数据库里。就像是图书管理员坚决不让两本同书名、同作者的书籍混进同一个书架一样,它对索引数据的一致性和完整性要求可是相当严格的呢! java // 创建一个新的文档 Document doc = new Document(); doc.add(new StringField("id", "123", Field.Store.YES)); doc.add(new TextField("content", "This is a sample document.", Field.Store.YES)); // 尝试将文档添加到索引(假设索引中已有id为"123"的文档) IndexWriter writer = new IndexWriter(directory, new IndexWriterConfig()); try { writer.addDocument(doc); } catch (DocumentAlreadyExistsException e) { System.out.println("Oops! A document with the same ID already exists."); // 这里是异常处理逻辑... } 3. 遇到DocumentAlreadyExistsException时的思考过程 首先,当此异常出现时,我们应当反思一下业务逻辑。是不是有用户不小心手滑了,或者咱们的系统设计上有个小bug,让一份文档被多次抓取进了索引里?要是真有这样的情况,那我们得在最上面的应用层好好瞅瞅,做点相应的检查和优化工作,确保同样的内容不会被反复提交上去。 其次,如果确实有更新文档的需求,而不是简单地添加新的文档,那么应该采用IndexWriter.updateDocument()方法替换原有的文档,而非addDocument(): java Term term = new Term("id", "123"); writer.updateDocument(term, updatedDoc); // 更新已存在的文档 最后,对于一些需要保证唯一性的场景,例如日志记录、订单编号等,可以考虑在索引建立阶段就设置IndexWriterConfig.setMergePolicy(NoDuplicatesMergePolicy.INSTANCE),从而避免因并发写入导致的重复文档问题。 4. 深入探讨与应对策略 在实践中,处理DocumentAlreadyExistsException不仅关乎对Lucene机制的理解,更需要结合具体应用场景来制定解决方案。比如,我们可以设想这样一种方案:定制一个独特的错误处理机制,这样一来,只要系统一检测到这个异常情况,就会自动启动文档内容合并流程,或者更贴心地告诉你,哎呀,这份文档已经存在了,需要你提供一个新的文档编号。 此外,对于高并发环境下的索引更新,除了利用Lucene提供的API外,还需要引入适当的并发控制策略,如乐观锁、分布式锁等,确保在多线程环境下,也能正确无误地处理文档添加与更新操作。 总结起来,DocumentAlreadyExistsException在Apache Lucene中扮演着守护者角色,提醒我们在构建高效、精准的全文搜索服务的同时,也要注意维护数据的一致性与完整性。如果咱们能全面摸清这个异常状况,并且妥善应对处理,那么咱们的应用程序就会变得更皮实耐造,这样一来,用户体验也绝对会蹭蹭地往上提升,变得超赞!
2023-01-30 18:34:51
459
昨夜星辰昨夜风
转载文章
...担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 python curl.py !/usr/bin/python -- coding: utf-8 -- import httplib 连接服务器 conn=httplib.HTTPConnection('www.dnspod.cn') 发送HTTP请求 conn.request('GET','url') 得到结果 result=conn.getresponse() 获取HTTP请求结果值。200为成功 resultresultStatus=result.status print resultStatus 获取请求的页面内容 content=result.read() 关闭连接 conn.close() 如果要模拟客户端进行请求,可以发送HTTP请求头 headers={"Content-Type":"text/html;charset=gb2312"} conn.requeset('POST','url',headersheaders=headers) 带参数传送 params=urllib.urlencode({'key':'value'}); conn.request('POST','url',body=params) 还有一个 模拟 浏览器的方式~ !/usr/bin/python -- coding: utf-8 -- import httplib conn = httplib.HTTPConnection('www.hao123.com') conn.request('GET', '/', headers = { "User-Agent" : "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.1) Gecko/20090624 Firefox/3.5", "Accept" : "/", "Accept-Encoding" : "gzip,deflate", }) res = conn.getresponse() print conn.getresponse().status print res.status print res.msg print res.read() conn.close() 下面是 并发的测试~ 类似 ab 和 webbench~~~~ -- coding: utf8 -- import threading, time, httplib HOST = "www.baidu.com"; 主机地址 例如192.168.1.101 PORT = 80 端口 URI = "/?123" 相对地址,加参数防止缓存,否则可能会返回304 TOTAL = 0 总数 SUCC = 0 响应成功数 FAIL = 0 响应失败数 EXCEPT = 0 响应异常数 MAXTIME=0 最大响应时间 MINTIME=100 最小响应时间,初始值为100秒 GT3=0 统计3秒内响应的 LT3=0 统计大于3秒响应的 创建一个 threading.Thread 的派生类 class RequestThread(threading.Thread): 构造函数 def __init__(self, thread_name): threading.Thread.__init__(self) self.test_count = 0 线程运行的入口函数 def run(self): self.test_performace() def test_performace(self): global TOTAL global SUCC global FAIL global EXCEPT global GT3 global LT3 try: st = time.time() conn = httplib.HTTPConnection(HOST, PORT, False) conn.request('GET', URI) res = conn.getresponse() print 'version:', res.version print 'reason:', res.reason print 'status:', res.status print 'msg:', res.msg print 'headers:', res.getheaders() start_time if res.status == 200: TOTAL+=1 SUCC+=1 else: TOTAL+=1 FAIL+=1 timetime_span = time.time()-st print '%s:%f\n'%(self.name,time_span) self.maxtime(time_span) self.mintime(time_span) if time_span>3: GT3+=1 else: LT3+=1 except Exception,e: print e TOTAL+=1 EXCEPT+=1 conn.close() def maxtime(self,ts): global MAXTIME print ts if ts>MAXTIME: MAXTIME=ts def mintime(self,ts): global MINTIME if ts<MINTIME: MINTIME=ts main 代码开始 print '===========task start===========' 开始的时间 start_time = time.time() 并发的线程数 thread_count = 300 i = 0 while i <= thread_count: t = RequestThread("thread" + str(i)) t.start() i += 1 t=0 并发数所有都完成或大于50秒就结束 while TOTAL<thread_count|t>50: print "total:%d,succ:%d,fail:%d,except:%d\n"%(TOTAL,SUCC,FAIL,EXCEPT) print HOST,URI t+=1 time.sleep(1) print '===========task end===========' print "total:%d,succ:%d,fail:%d,except:%d"%(TOTAL,SUCC,FAIL,EXCEPT) print 'response maxtime:',MAXTIME print 'response mintime',MINTIME print 'great than 3 seconds:%d,percent:%0.2f'%(GT3,float(GT3)/TOTAL) print 'less than 3 seconds:%d,percent:%0.2f'%(LT3,float(LT3)/TOTAL) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33835103/article/details/85213806。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-19 20:57:06
75
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
env
- 列出当前环境变量及其值。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"