前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Material UI ChipGrou...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Etcd
...金需求的一种金融服务模式。在文中,智能合约应用于供应链金融,自动执行交易流程,如支付、货物交付确认等,大幅提升了交易效率和透明度。
2024-07-30 16:28:05
455
飞鸟与鱼
Mongo
...信息:“IndexBuildingPrivilegeNotFound”。这意思就是说,你的小手还缺那么一丁点儿权限,没法儿建索引呢!别急,你只需要去找管理员大哥,或者自己在设置里开开这个权限开关,问题就迎刃而解啦!记得,权限这东西可得小心用,别乱来,不然可能会影响整个系统的稳定性和安全呢。嘿,小伙伴们!这篇文章就像是一次探险之旅,带你深入探索这个棘手问题的根源,揭秘那些神奇的解决策略,顺便给你几个小贴士,让你在日后的生活中轻松避开这些坑坑洼洼。准备好出发了吗?让我们一起揭开谜团,让生活变得更加顺畅吧! 二、理解索引权限问题 在 MongoDB 中,当你尝试创建索引时,系统会检查你是否有足够的权限来执行这个操作。这通常涉及到两个主要方面: 1. 用户角色 你需要被赋予正确的角色,这些角色允许你在特定的数据库上创建索引。 2. 数据库配置 确保你的 MongoDB 配置允许创建索引,并且相关角色已正确分配给用户。 三、排查步骤与解决策略 面对 “IndexBuildingPrivilegeNotFound” 错误,以下是一些排查和解决问题的步骤: 1. 确认用户角色 - 使用 db.getUsers() 或 db.runCommand({ users: 1 }) 命令查看当前用户的角色及其权限。 - 确认是否拥有 db.createUser 和 createIndexes 权限。 javascript // 创建新用户并赋予权限 db.createUser({ user: "indexCreator", pwd: "password", roles: [ { role: "readWrite", db: "yourDatabase" }, { role: "createIndexes", db: "yourDatabase" } ] }); 2. 检查数据库配置 - 确保你的 MongoDB 实例允许创建索引。可以通过查看 /etc/mongod.conf(Linux)或 mongod.exe.config(Windows)文件中的配置选项来确认。 - 确保 security.authorizationMechanism 设置为 mongodb 或 scram-sha-1。 3. 权限验证 - 使用 db.auth("username", "password") 命令验证用户身份和权限。 javascript db.auth("indexCreator", "password"); 四、预防与最佳实践 为了避免此类错误,遵循以下最佳实践: - 权限最小化原则:只为需要执行特定操作的用户赋予必要的权限。 - 定期审核权限:定期检查数据库中的用户角色和权限设置,确保它们与当前需求相匹配。 - 使用角色聚合:考虑使用 MongoDB 的角色聚合功能来简化权限管理。 五、总结与反思 在 MongoDB 中管理索引权限是一个既关键又细致的过程。哎呀,兄弟!掌握并恰到好处地运用这些招数,不仅能让你在处理数据库这事儿上效率爆棚,还能给你的系统安全和稳定打上一个大大的保险扣儿。就像是有了秘密武器一样,让数据跑得快又稳,而且还能防着那些不怀好意的小坏蛋来捣乱。这样一来,你的数据保管工作就不仅是个技术活,还成了守护宝藏的秘密行动呢!哎呀,你遇到了“IndexBuildingPrivilegeNotFound”的小麻烦?别急嘛,我来给你支个招!按照我刚刚说的步骤一步步来,就像解密游戏一样,慢慢找啊找,你会发现那个藏起来的小秘密。说不定,问题就在这儿呢!找到原因了,解决起来自然就快多了,就像解开了一道数学难题,是不是超有成就感的?别忘了,耐心是关键,就像慢慢炖一锅好汤,火候到了,味道自然就出来了。加油,你一定行的!嘿!兄弟,听好了,每次碰上难题,那都是咱们提升自己,长知识的好时机,就像我们在数据库这片大海上航行,每一步都让咱们更懂水性,越来越厉害! --- 通过本文的探索,我们不仅解决了“IndexBuildingPrivilegeNotFound”这一常见问题,还深入了解了索引在数据库性能优化中的重要性,以及如何通过正确的权限管理和配置来确保数据库操作的顺利进行。希望这篇文章能为 MongoDB 用户提供有价值的参考,共同提升数据库管理的效率和安全性。
2024-10-14 15:51:43
88
心灵驿站
RocketMQ
...求动态扩展资源。这种模式特别适合微服务架构,因为它允许各个服务独立运行,同时共享基础设施资源,提高了系统的弹性、可靠性和资源利用率。 名词 , 微服务架构。 解释 , 微服务架构是一种将大型应用程序拆分为多个独立、可独立部署的小型服务的方法。每个服务负责处理特定的业务功能,通过轻量级通信机制(如APIs)进行交互。在云计算的支持下,微服务架构使得应用程序能够更易于管理、测试、部署和扩展。它有助于实现高度的解耦和模块化,使得团队能够并行开发和维护不同的服务,从而加速创新过程,同时提高了系统的可靠性和灵活性。 名词 , 大数据处理。 解释 , 大数据处理是指收集、存储、分析和可视化大规模数据集的过程。在现代技术趋势中,随着数据量的急剧增长,企业需要借助大数据处理技术来挖掘数据中的价值,支持决策制定、市场洞察和个性化服务。大数据处理通常涉及分布式计算框架(如Apache Hadoop和Apache Spark),这些框架能够处理PB级别的数据,支持实时数据分析和机器学习模型训练。在消息队列的支持下,大数据处理流程可以实现数据的实时传输和处理,提高数据处理的效率和响应速度。
2024-10-02 15:46:59
573
蝶舞花间
转载文章
...在当前流行的敏捷开发模式下,如何结合迭代特性灵活地对WBS进行调整与优化,以适应快速变化的需求,并通过实例分析展示了模块化设计在其中的关键作用。 2. 深度解读:《微软Azure团队如何借助接口设计降低项目沟通成本》。文章剖析了微软Azure项目团队在实际工作中是如何利用接口设计减少重复劳动、提升协作效率的,从而降低了高昂的沟通成本,并在此基础上实现了高效的任务分配与管理。 3. 学术研究:《基于RACI责任矩阵的多项目并行管理策略》。这篇学术论文深入探讨了RACI责任矩阵在应对复杂项目环境下的具体应用场景,并结合多个行业案例分析了其在明确职责、降低变更成本、提高跨部门协作效能等方面的积极作用。 4. 实操指南:《IBM发布“模块化设计在软件开发项目中的最佳实践”报告》。IBM近期发布的报告系统梳理了模块化设计原则及其在软件开发项目中的落地步骤,同时提供了丰富的案例研究,帮助读者更好地理解和应用模块化设计来改进任务划分,提升整体项目管理水平。 综上所述,以上延伸阅读内容将为读者提供更全面且具有针对性的视角,深入了解和掌握在项目管理实践中如何有效地运用工作分解结构、模块化设计、接口设计及责任矩阵等相关工具,以实现项目执行的高效与成功。
2023-07-29 21:22:45
111
转载
Impala
...度学习技术因其强大的模式识别能力和预测能力,在图像处理、语音识别、自然语言处理等领域取得了显著成就。然而,深度学习的应用往往依赖于大量的训练数据和复杂的模型结构,这在数据量庞大的商业环境中显得尤为重要。与此同时,传统的SQL查询作为一种高效的数据检索手段,已经广泛应用于大数据分析中,但其在复杂数据分析和预测任务上的局限性日益凸显。 深度学习与SQL查询的融合 面对这一挑战,研究人员开始探索将深度学习技术与SQL查询相结合的可能性,以期在保持SQL查询高效性的同时,增强其在复杂数据分析和预测任务上的能力。这种融合不仅限于简单的集成,而是涉及到深度学习模型的构建、优化以及与SQL查询系统的无缝对接。例如,通过使用SQL查询来预处理数据,提取特征,然后将这些特征输入到深度学习模型中进行训练和预测,从而实现高效的数据分析流程。 案例分析:深度学习辅助SQL查询优化 一项研究表明,结合深度学习的SQL查询优化策略能够显著提高查询性能和响应速度。研究团队通过构建深度强化学习模型,用于预测SQL查询的执行路径和最佳执行计划,以此来减少查询执行时间。该模型通过对历史查询日志的学习,自动识别出常见的查询模式和执行瓶颈,从而动态调整查询计划,以适应不同规模和复杂性的数据集。 行业应用与展望 这一融合趋势已经在多个行业中展现出巨大潜力。例如,在金融领域,深度学习辅助的SQL查询优化可以帮助银行快速处理大量交易数据,提高风险评估的准确性和效率;在医疗健康领域,结合深度学习的SQL查询技术能够加速病例数据的分析,支持个性化治疗方案的制定。此外,随着物联网设备的普及,海量实时数据的处理成为亟待解决的问题,深度学习与SQL查询的融合有望在此领域发挥重要作用。 结论 深度学习与SQL查询的融合是数据分析领域的一大创新方向,它不仅能够提升传统SQL查询系统的性能,还能够拓宽数据分析的边界,促进人工智能与传统数据库技术的深度融合。未来,随着技术的不断进步和应用场景的拓展,这一融合趋势将为各行各业带来更加智能、高效的数据分析解决方案,推动整个社会向智能化转型。 深度学习与SQL查询的融合,不仅是技术层面的创新,更是数据分析方式的根本变革,预示着未来数据驱动型决策将成为常态,而数据分析师的角色也将因此变得更加重要。
2024-08-19 16:08:50
71
晚秋落叶
转载文章
...ss的规范性。在传统模式下,css都是一股脑写在一个大文件里,然后加载到网页的,这样就直接导致了管理上的混乱: 在css增量开发时,要时刻注意命名空间问题;到了调试阶段,又不得不依赖谷歌控制台或firebug的元素定位,有时父类的某个属性影响了子类,导致修改子类样式无法达到预期。。。。 自从有了react和vue,css的灵魂得到了救赎。这两种框架均提出组件化编程的思想,也就是将html,css,js均凝聚成一个不可分割的小部件,留出对外通信的接口,然后灵活组合使用,譬如下图所示: 这样一来,css就有了打包的可能性。打包的好处是: css也有了模块化,可以不用再关心命名空间问题,只需专心将这个部件渲染好,出了问题也更容易定位追踪。 知其然知其所以然,我们搞懂了为啥css要打包的道理,下面就可以愉快而主动的学习了。 仔细权衡了一下,这里我并不打算引入react或vue讲解,因为这样会增加大家理解上的负担。学习新东西,最忌讳的就是学了这个又牵扯到那个,结果精力分散重点转移,到最后很可能一个都没搞懂,还增加了自己的挫败感。 为了简单起见,我们仍旧沿用前面那个案例做讲解,先把这个webpack玩转再说。 咱们看一下具体玩法。首先还是安装插件,这里我们需要两个工具: npm install style-loadernpm install css-loader 原料有了,我们做一下测试文件做测试。我们首先新建一个style.css文件,目录结构如下: style.css: .content {color: red;} 很简单,就是一个样式类。然后我们改一下helloworld.js文件。 helloworld.js: // 引入css模块var styles = require('../style.css');// 输出模块module.exports = () => {// 这里使用了箭头函数,还有let和const关键字哦~~let content = "Hello ";const NAME = "ES6";var div = document.createElement('div');div.setAttribute('class', styles.content); // 使用样式类div.innerHTML = content + NAME;return div;}; 注意,这里跟我们平时写的有点不一样。 我们在建一个dom节点时,指定了一个样式类。但是这个样式类,是以包的形式存在的,也就是一个模块。 综合起来看我们这个helloworld.js模块,是不是把html,css和js凝聚成了一个小整体了呢? 我知道你已经迫不及待的想看结果了,好吧,咱们赶紧写一下配置文件跑起来吧~~ webpack.config.js: var path = require('path');module.exports = {entry: './src/index.js',output: {path: path.resolve(__dirname, 'dist'),filename: 'bundle.js'},module: {rules: [{test: /\.js$/,exclude: /node_modules/,loader: 'babel-loader',options: {presets: ['env']} }, {test: /\.css$/,loader: 'style-loader!css-loader?modules'}]} }; 说明: style-loader和css-loader是工具名称。 !感叹号是分割符,表示两个工具都参与处理。 ?问号,其实跟url的问号一样,就是后面要跟参数的意思。 而modules这个参数呢,就是将css打包成模块。跟js打包是一样的,你不必再担心不同模块具有相同类名时造成的问题了。 我们运行一下:(我这次特地没在局部安装webpack-cli,发现可以运行,因为我昨天在全局安装了webpack-cli,之所以要在全局安装而单独局部安装不行,可能跟package.json有关,因为这里都没有用到package.json)。 如果不报错,我们打开浏览器,看一下index.html: 我们看到,样式已然生效了,但是我们打开控制台,看到class的名称并非是我们写的样式类.content,而是生成了新名称,这就说明webpack的编译生效了。 我们打开bundle.js看一下,css其实已经被打包编译到了bundle.js文件里:(太长,截了一部分) 我们看到,css打包后,存在形态已经变成了js。这没有什么可奇怪的,只有这样才能使用包的形式做管理,css本身,是无法达到这样的目的的,所以,它还是二等公民。。。。 本篇文章为转载内容。原文链接:https://blog.csdn.net/DreamFJ/article/details/81700004。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-13 11:42:35
72
转载
HessianRPC
...在主逻辑中使用装饰器模式来包裹原始的服务: java public class UserServiceDecorator implements UserService { private final UserService userService; private final UserService fallback; public UserServiceDecorator(UserService userService, UserService fallback) { this.userService = userService; this.fallback = fallback; } @Override public UserInfo getUserInfo(int userId) { try { return userService.getUserInfo(userId); } catch (Exception e) { System.err.println("Service unavailable, falling back..."); return fallback.getUserInfo(userId); } } } 通过这种方式,即使后端服务出现问题,我们也能够提供一个友好的备用方案,不至于让用户感到困惑。 4. 面临挑战与解决方案 当然,实际开发过程中总会遇到各种意想不到的问题。比如说,当多个服务同时发生故障时,我们应该如何合理分配降级策略?另外,频繁触发降级会不会影响性能? 为了解决这些问题,我们可以引入熔断器模式(Circuit Breaker Pattern)。简单讲啊,就好比给系统装了个“自动切换”的小开关。要是某个服务老是连不上,失败个好几次之后,这个开关就会自动启动,直接给用户返回个备用的数据,省得一直傻乎乎地去重试那个挂掉的服务,多浪费时间啊! 下面是一个基于HessianRPC的熔断器实现: java public class CircuitBreaker { private final T delegate; private boolean open = false; private int failureCount = 0; public CircuitBreaker(T delegate) { this.delegate = delegate; } public T getDelegate() { if (open && failureCount > 5) { return null; // 返回null表示断路器处于打开状态 } return delegate; } public void recordFailure() { failureCount++; if (failureCount >= 5) { open = true; } } } 将熔断器集成到之前的装饰器中: java public class CircuitBreakingUserServiceDecorator implements UserService { private final CircuitBreaker circuitBreaker; public CircuitBreakingUserServiceDecorator(CircuitBreaker circuitBreaker) { this.circuitBreaker = circuitBreaker; } @Override public UserInfo getUserInfo(int userId) { UserService userService = circuitBreaker.getDelegate(); if (userService == null) { return new UserInfo(-1, "Circuit Opened", "Service Unavailable"); } try { return userService.getUserInfo(userId); } catch (Exception e) { circuitBreaker.recordFailure(); return new UserInfo(-1, "Fallback User", "Service Unavailable"); } } } 这样,我们就能够在一定程度上缓解高负载带来的压力,并且确保系统的稳定性。 5. 总结与展望 回顾这次经历,我深刻体会到服务降级并不是一件轻松的事情。这事儿吧,不光得靠技术硬功夫,还得会提前打算,脑子转得也得快,不然真容易手忙脚乱。虽然HessianRPC没有提供现成的服务降级工具,但通过灵活运用设计模式,我们完全可以打造出适合自己项目的解决方案。 未来,我希望能够在更多场景下探索HessianRPC的应用潜力,同时也期待社区能够推出更加完善的降级框架,让开发者们少走弯路。毕竟,谁不想写出既高效又优雅的代码呢?如果你也有类似的经历或想法,欢迎随时交流讨论!
2025-05-01 15:44:28
17
半夏微凉
转载文章
...de=2将SDTV模式设置为PAL(在欧洲使用) hdmi_drive=1正常DVI模式(无声音) hdmi_drive=2将监视器强制到HDMI模式,以便通过HDMI电缆发送声音 hdmi_group=1将监视器模式设置为CEA hdmi_group=2将监视器模式设置为DMT hdmi_mode=16将监视器分辨率设置为1080P 60 Hz 这个是我侧屏解决黑屏的关键一个参数,先查看自己使用显示器的分辨率,对照hdmi_mode表值,进行改写。我的侧屏分辨率是19201080,选择hdmi_mode=16。 hdmi_group定义了CEA或DMT格式的屏幕分辨率 如果hdmi_group=1(CEA),则这些值有效。hdmi_mode=1 VGAhdmi_mode=2 480p 60 Hzhdmi_mode=3 480p 60 Hz Hhdmi_mode=4 720p 60 Hzhdmi_mode=5 1080i 60 Hzhdmi_mode=6 480i 60 Hzhdmi_mode=7 480i 60 Hz Hhdmi_mode=8 240p 60 Hzhdmi_mode=9 240p 60 Hz Hhdmi_mode=10 480i 60 Hz 4xhdmi_mode=11 480i 60 Hz 4x Hhdmi_mode=12 240p 60 Hz 4xhdmi_mode=13 240p 60 Hz 4x Hhdmi_mode=14 480p 60 Hz 2xhdmi_mode=15 480p 60 Hz 2x Hhdmi_mode=16 1080p 60 Hzhdmi_mode=17 576p 50 Hzhdmi_mode=18 576p 50 Hz Hhdmi_mode=19 720p 50 Hzhdmi_mode=20 1080i 50 Hzhdmi_mode=21 576i 50 Hzhdmi_mode=22 576i 50 Hz Hhdmi_mode=23 288p 50 Hzhdmi_mode=24 288p 50 Hz Hhdmi_mode=25 576i 50 Hz 4xhdmi_mode=26 576i 50 Hz 4x Hhdmi_mode=27 288p 50 Hz 4xhdmi_mode=28 288p 50 Hz 4x Hhdmi_mode=29 576p 50 Hz 2xhdmi_mode=30 576p 50 Hz 2x Hhdmi_mode=31 1080p 50 Hzhdmi_mode=32 1080p 24 Hzhdmi_mode=33 1080p 25 Hzhdmi_mode=34 1080p 30 Hzhdmi_mode=35 480p 60 Hz 4xhdmi_mode=36 480p 60 Hz 4xHhdmi_mode=37 576p 50 Hz 4xhdmi_mode=38 576p 50 Hz 4x Hhdmi_mode=39 1080i 50 Hz reduced blankinghdmi_mode=40 1080i 100 Hzhdmi_mode=41 720p 100 Hzhdmi_mode=42 576p 100 Hzhdmi_mode=43 576p 100 Hz Hhdmi_mode=44 576i 100 Hz hdmi_mode=45 576i 100 Hz Hhdmi_mode=46 1080i 120 Hz hdmi_mode=47 720p 120 Hz hdmi_mode=48 480p 120 Hz hdmi_mode=49 480p 120 Hz Hhdmi_mode=50 480i 120 Hz hdmi_mode=51 480i 120 Hz Hhdmi_mode=52 576p 200 Hz hdmi_mode=53 576p 200 Hz Hhdmi_mode=54 576i 200 Hz hdmi_mode=55 576i 200 Hz Hhdmi_mode=56 480p 240 Hz hdmi_mode=57 480p 240 Hz Hhdmi_mode=58 480i 240 Hz hdmi_mode=59 480i 240 Hz HH指16:9变体(通常为4:3模式)。2x意味着像素加倍(即更高的时钟速率,每个像素重复两次)4x意味着像素四倍(即更高的时钟速率,每个像素重复四次)。 如果hdmi_group=2(Dmt),则这些值有效。有一个像素时钟限制,这意味着支持的最高模式是1920x1200@60 Hz,减少了消隐。hdmi_mode=1 640x350 85 Hzhdmi_mode=2 640x400 85 Hzhdmi_mode=3 720x400 85 Hzhdmi_mode=4 640x480 60 Hzhdmi_mode=5 640x480 72 Hzhdmi_mode=6 640x480 75 Hzhdmi_mode=7 640x480 85 Hzhdmi_mode=8 800x600 56 Hzhdmi_mode=9 800x600 60 Hzhdmi_mode=10 800x600 72 Hzhdmi_mode=11 800x600 75 Hzhdmi_mode=12 800x600 85 Hzhdmi_mode=13 800x600 120 Hzhdmi_mode=14 848x480 60 Hzhdmi_mode=15 1024x768 43 Hz DO NOT USEhdmi_mode=16 1024x768 60 Hzhdmi_mode=17 1024x768 70 Hzhdmi_mode=18 1024x768 75 Hzhdmi_mode=19 1024x768 85 Hzhdmi_mode=20 1024x768 120 Hzhdmi_mode=21 1152x864 75 Hzhdmi_mode=22 1280x768 Reduced blankinghdmi_mode=23 1280x768 60 Hzhdmi_mode=24 1280x768 75 Hzhdmi_mode=25 1280x768 85 Hzhdmi_mode=26 1280x768 120 Hz Reduced blankinghdmi_mode=27 1280x800 Reduced blankinghdmi_mode=28 1280x800 60 Hz hdmi_mode=29 1280x800 75 Hz hdmi_mode=30 1280x800 85 Hz hdmi_mode=31 1280x800 120 Hz Reduced blankinghdmi_mode=32 1280x960 60 Hz hdmi_mode=33 1280x960 85 Hz hdmi_mode=34 1280x960 120 Hz Reduced blankinghdmi_mode=35 1280x1024 60 Hz hdmi_mode=36 1280x1024 75 Hz hdmi_mode=37 1280x1024 85 Hz hdmi_mode=38 1280x1024 120 Hz Reduced blankinghdmi_mode=39 1360x768 60 Hz hdmi_mode=40 1360x768 120 Hz Reduced blankinghdmi_mode=41 1400x1050 Reduced blankinghdmi_mode=42 1400x1050 60 Hz hdmi_mode=43 1400x1050 75 Hz hdmi_mode=44 1400x1050 85 Hz hdmi_mode=45 1400x1050 120 Hz Reduced blankinghdmi_mode=46 1440x900 Reduced blankinghdmi_mode=47 1440x900 60 Hz hdmi_mode=48 1440x900 75 Hz hdmi_mode=49 1440x900 85 Hz hdmi_mode=50 1440x900 120 Hz Reduced blankinghdmi_mode=51 1600x1200 60 Hz hdmi_mode=52 1600x1200 65 Hz hdmi_mode=53 1600x1200 70 Hz hdmi_mode=54 1600x1200 75 Hz hdmi_mode=55 1600x1200 85 Hz hdmi_mode=56 1600x1200 120 Hz Reduced blankinghdmi_mode=57 1680x1050 Reduced blankinghdmi_mode=58 1680x1050 60 Hz hdmi_mode=59 1680x1050 75 Hz hdmi_mode=60 1680x1050 85 Hz hdmi_mode=61 1680x1050 120 Hz Reduced blankinghdmi_mode=62 1792x1344 60 Hz hdmi_mode=63 1792x1344 75 Hz hdmi_mode=64 1792x1344 120 Hz Reduced blankinghdmi_mode=65 1856x1392 60 Hz hdmi_mode=66 1856x1392 75 Hz hdmi_mode=67 1856x1392 120 Hz Reduced blankinghdmi_mode=68 1920x1200 Reduced blankinghdmi_mode=69 1920x1200 60 Hz hdmi_mode=70 1920x1200 75 Hz hdmi_mode=71 1920x1200 85 Hz hdmi_mode=72 1920x1200 120 Hz Reduced blankinghdmi_mode=73 1920x1440 60 Hz hdmi_mode=74 1920x1440 75 Hz hdmi_mode=75 1920x1440 120 Hz Reduced blankinghdmi_mode=76 2560x1600 Reduced blankinghdmi_mode=77 2560x1600 60 Hz hdmi_mode=78 2560x1600 75 Hz hdmi_mode=79 2560x1600 85 Hz hdmi_mode=80 2560x1600 120 Hz Reduced blankinghdmi_mode=81 1366x768 60 Hz hdmi_mode=82 1080p 60 Hz hdmi_mode=83 1600x900 Reduced blankinghdmi_mode=84 2048x1152 Reduced blankinghdmi_mode=85 720p 60 Hz hdmi_mode=86 1366x768 Reduced blanking 建议的低分辨率尝试开始,出现正常桌面在不断调整参数 ps:在网上买的小显示屏坏的,怎么调都是黑屏,最后用电脑的侧屏成功了。 (先让屏幕亮,然后在调适合屏幕的参数) overscan_left=20在左边跳过的像素数 overscan_right=20在右边跳过的像素数 overscan_top=20要跳过顶部的像素数 overscan_bottom要跳过底部的像素数 使显示器变小,以防止文本从屏幕上溢出 start_x启用照相机模块。起始x=1 disable_camera_led=1在录制视频或拍摄静止照片时,关闭红色照相机LED gpu_mem=128摄像机用最小GPU内存 disable_audio_dither=1禁止在PWM音频算法上抖动。如果您在音频插孔上遇到白噪声问题,请尝试此方法。 sdtv_mode=0复合输出定义TV标准(默认值=0) sdtv_mode=0 正常 NTSCsdtv_mode=1 日文版 NTSC – (无基座)sdtv_mode=2 正常 PALsdtv_mode=3 巴西版本 PAL sdtv_aspect=1 4:3 sdtv_aspect=2 14:9 sdtv_aspect=3 16:9定义复合输出的高宽比(默认值=1) hdmi_safe=1使用“安全模式”设置尝试引导与最大的HDMI兼容性。这与以下组合相同: hdmi_force_hotplug=1hdmi_niel_edid=0xa5000080 config_hdmi_boost=4hdmi_group=2hdmi_mode=4disdable_overscan=0overcan_left=24overcan_right=24overscan_top=24overcan_base=24 ps:可参考 hdmi_edid_file=1当设置为1时,将从edid.dat文件而不是从监视器读取edid数据 hdmi_force_hotplug=1即使没有检测到hdmi监视器,也可以使用hdmi模式。 hdmi_niel_edid=0xa5000080如果显示没有准确的Edid,则启用忽略Edid/Display数据。 hdmi_ignore_hotplug=1即使检测到hdmi监视器,也可以使用复合模式。 config_hdmi_boost=2配置hdmi接口的信号强度。如果您对hdmi有干扰问题,尝试增加(例如,到7)11是最大的。 disdable_overscan=0设置为1以禁用过度扫描。 max_usb_current=1结合树莓PI B+,引入了一个新的config.txt设置。 max_usb_current=0当添加这一行时,USB电源管理器将将其输出电流限制(对所有4个USB端口加起来)从600 mA更改为1200 mA的两倍。 dtparam=i2c_arm=on在GPIO引脚上启用I2C。 dtparam=i2s=on启用I2S音频硬件。 dtparam=spi=on启用SPI驱动程序。 dtoverlay=xxx向设备树中添加一个覆盖/boot/overays/xxx-overlay.dtb(在树莓派的系统盘中搜索文件位置) 文章总结: 一个树莓派发烧友(小学生)使用树莓派版本4B,参考过很多文章和博客但是都没有成功,最后翻译官方文档,更改参数最终victory!!! 附上我的config文件参数 文章参考: https://elinux.org/RPiconfig 本篇文章为转载内容。原文链接:https://blog.csdn.net/gcyhacker/article/details/122666018。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-09 14:23:40
375
转载
RabbitMQ
...功能,还支持多种消息模式和协议。不过嘛,在实际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
转载文章
...先看看代码大全、设计模式,不管是否来我们公司。其实,一个真正对某件事情感兴趣的同学,他会主动去找资源,深入理解,不会等到应聘的时候再抱佛脚,找借口。 3. 招聘是体力活 外出前就有些感冒,招聘过程中,拿带子断掉的易拉宝宣传盒子,提数斤重的简历试题,在酒店昏暗灯光中阅卷,坐在椅子中一天且不停地说话,做5小时高铁。。。最后感觉都是机械式的动作,实在是体力活,感冒在武汉有加重倾向,回到深圳后,在草窝中睡了一天,第2天就好了一半。 离开武汉5年多了,本次去武汉招聘,趁着晚上休息时刻,去拜访老师和室友。好久不去,武汉修了环城路,打车都找不到地方,只能到附近的金三利酒店,再重温上学的路。在老师家品尝了招牌的红烧武昌鱼,木耳鸡翅膀,见识老师几十年的工作成果奖励。去室友家,他家公子见到生人就不停的哭,呵呵。回到酒店想一想,时间不在了,记忆模糊了,唯有文字记录之。 节后,我们还要继续后续的校园招聘。(北京、哈尔滨校园招聘记录) 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhouyulu/article/details/8033464。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-02 13:16:24
524
转载
Hive
转载文章
...域,DAO是一种设计模式,常用于将底层的数据访问细节与业务逻辑分离。在本文中,创建的UserMapper.java文件就是一个DAO接口示例,定义了一系列与用户表t_user相关的CRUD操作方法,如保存(save)、更新(update)、删除(delete)、按ID查找(findById)以及查询所有用户信息(findAll)。通过这种方式,业务层代码只需调用这些接口方法即可进行数据库操作,无需关心具体的SQL执行细节。 XML映射文件 , 在Mybatis框架中,XML映射文件用于描述SQL语句以及SQL结果如何映射到Java对象上。例如,UserMapper.xml文件就是对UserMapper.java接口中的方法对应的SQL实现,每个方法对应一个SQL片段,并通过 参数名 的方式引用Java方法传递过来的参数,确保SQL执行时能够动态绑定参数值,同时也提供了处理结果集映射到Java对象的方法,实现了ORM(对象关系映射)功能。
2023-09-05 11:56:25
111
转载
转载文章
...verless)计算模式,通过与AWS Lambda、Google Cloud Functions等服务集成,为开发者提供更为便捷高效的开发体验。 综上所述,Java语言在不断发展演进中保持活力,并且在全球范围内继续影响和塑造着软件开发的趋势与格局。无论是初学者还是资深开发者,关注Java最新动态和技术进展,都将有助于把握未来编程语言的发展脉络,提升自身的技术实力与竞争力。
2023-03-25 09:18:50
84
转载
Kylin
...六、策略四 优化联接模式 选择合适的联接模式(如内联接、外联接等)对于性能优化至关重要。哎呀,你得知道,在咱们实际干活的时候,选对了数据联接的方式,就像找到了开锁的金钥匙,能省下不少力气,避免那些没必要的数据大扫荡。比如说,你要是搞个报表啥的,用对了联接方法,数据就乖乖听话,找起来快又准,省得咱们一个个文件翻,一个个字段找,那得多费劲啊!所以,挑对工具,效率就是王道! 实践示例: 假设我们需要查询所有在特定时间段内的订单信息,并且关联了用户的基本信息。这里,我们可以使用内联接: sql SELECT FROM orders o INNER JOIN users u ON o.user_id = u.user_id WHERE o.order_date BETWEEN '2023-01-01' AND '2023-12-31'; 七、总结与展望 通过上述策略的实施,我们能够显著提升Kylin与MySQL联接操作的性能。哎呀,你知道优化数据库操作这事儿,可真是个门道多得很!比如说,调整联接条件啊,用上索引来提速啊,批量导入数据也是一大妙招,还有就是选对联接方式,这些小技巧都能让咱们的操作变得顺畅无比,响应速度嗖嗖的快起来。就像开车走高速,不堵车不绕弯,直奔目的地,那感觉,爽歪歪!哎呀,随着咱手里的数据越来越多,就像超市里的货物堆积如山,技术这玩意儿也跟咱们的手机更新换代一样快。所以啊,要想让咱们的系统运行得又快又好,就得不断调整和改进策略。就像是给汽车定期加油、保养,让它跑得既省油又稳定。这事儿,可得用心琢磨,不能偷懒!未来,随着更多高级特性如分布式计算、机器学习集成等的引入,Kylin与MySQL的联接优化将拥有更广阔的应用空间,助力数据分析迈向更高层次。
2024-09-20 16:04:27
104
百转千回
转载文章
...空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
343
转载
Kotlin
...能看出这是干啥的。而模式匹配嘛,简直就是解谜神器,轻轻松松就能解开那些复杂的逻辑难题。这些玩意儿合在一起,就形成了一个强大的武器库,帮我们防患于未然,解决问题更是不在话下。你说是不是,这Kotlin,简直就是程序员的好伙伴!让我们带着好奇心和探索精神,继续在编程的海洋中航行吧! --- 在这篇文章中,我们不仅探讨了 IllegalArgumentException 的由来和解决方法,还通过一系列的代码示例展示了如何在实践中应用这些知识。嘿,兄弟!读完这篇文章后,希望你对Kotlin里的异常处理方式有了一番全新的领悟。别担心,这不像是AI在跟你说话,就像跟老朋友聊天一样轻松。你得尝试将这些小技巧应用到你的实际项目中,让代码不仅好看,而且超级稳定,就像是给你的程序穿上了一件坚固的盔甲。这样,无论遇到什么问题,它都能稳如泰山。所以,拿起你的键盘,动手实践吧!记住,编程是一场持续的学习之旅,每一次遇到困难都是成长的机会。加油!
2024-09-18 16:04:27
112
追梦人
Hadoop
...量与复杂性,这一集成模式也面临着一系列挑战与机遇。 数据融合与集成的持续演进 随着数据量的爆炸式增长,数据融合与集成的需求变得愈发迫切。HBase与NoSQL数据库的集成不仅限于简单的数据复制或同步,而是扩展到了更为复杂的数据模型构建与实时分析场景。例如,在金融行业,企业需要整合来自多个系统的交易数据,进行实时风险评估与市场预测。这种集成模式不仅提高了数据处理的效率,也为决策支持系统提供了更丰富的数据基础。 技术融合与创新 为了应对数据管理的挑战,技术界不断探索新的集成方法与工具。例如,使用API网关、微服务架构等现代技术手段,可以更灵活地连接不同的数据源,实现数据的无缝集成。同时,AI与机器学习技术也被引入,用于自动优化数据集成流程,提高数据质量与分析精度。这种技术融合不仅增强了数据集成的自动化水平,也为数据驱动的决策提供了更强大的支持。 安全与合规性考量 在数据集成过程中,安全与合规性是不可忽视的关键因素。随着全球数据保护法规(如GDPR、CCPA等)的出台,确保数据集成过程中的隐私保护与数据安全显得尤为重要。企业需要在集成方案设计之初就充分考虑数据加密、访问控制、审计追踪等安全措施,确保符合相关法律法规的要求。此外,建立透明的数据流转机制,增强用户对数据使用的信任度,也是维护企业声誉与合规性的重要环节。 结语 HBase与NoSQL数据库的集成在现代数据管理中扮演着不可或缺的角色。面对数据量的增长、技术的迭代以及合规性要求的提升,这一集成模式需要不断适应变化,探索更高效、安全的数据处理与分析方法。未来,随着大数据、人工智能等技术的进一步发展,数据集成的边界将进一步拓宽,为各行各业提供更加智能、个性化的数据解决方案。 在这个不断演进的过程中,企业应持续关注技术创新与最佳实践,构建灵活、安全的数据生态体系,以应对未来的挑战与机遇。
2024-08-10 15:45:14
35
柳暗花明又一村
Dubbo
...等服务网格框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
63
雪落无痕
Kibana
...1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
16
风轻云淡
转载文章
...签(如)创建可复用的UI组件,大大提升了开发效率和代码可维护性。 另外,针对无障碍访问的需求日益增长,WAI-ARIA(Web Accessibility Initiative - Accessible Rich Internet Applications)角色和属性在现代网页设计中扮演着关键角色。通过合理使用aria-label、role等属性,可以有效增强屏幕阅读器对HTML元素的理解与解析,实现更加友好的无障碍体验。 同时,在实际项目开发中,前端框架如React、Vue.js等广泛采用虚拟DOM技术,对HTML标签进行抽象封装,以提高应用性能并简化编程模型。这些框架自带的组件库也提供了丰富的预设标签,比如Vue中的用于声明式导航,极大地扩展了HTML标签的功能边界。 为了紧跟行业发展,前端开发者需要持续关注HTML最新特性的发展动态,如最近被提出讨论的标签,旨在提供原生的模态对话框支持;而对的安全性和性能优化也是业界热议的话题。只有不断跟进新技术,才能更好地运用HTML标签服务于用户需求,并在实践中提升自己的技术水平。
2023-10-11 23:43:21
296
转载
Logstash
...APACHELOG模式来解析每一行日志内容。这样子一来,原始的文本信息就被拆成了一个个有组织的小块儿,给接下来的处理铺平了道路,简直不要太方便! 2.2 高效索引策略 一旦数据被Logstash处理完毕,下一步就是将其导入Elasticsearch。为了确保索引操作尽可能高效,我们可以采取一些策略: - 批量处理:减少网络往返次数,提高吞吐量。 - 动态映射:允许Elasticsearch根据文档内容自动创建字段类型,简化索引管理。 - 分片与副本:合理设置分片数量和副本数量,平衡查询性能与集群稳定性。 下面是一个简单的Logstash输出配置示例,演示了如何将处理后的数据批量发送给Elasticsearch: yaml output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" document_type => "_doc" user => "elastic" password => "changeme" manage_template => false template => "/path/to/template.json" template_name => "nginx-access" template_overwrite => true flush_size => 5000 idle_flush_time => 1 } } 在这段配置中,我们设置了批量大小为5000条记录,以及空闲时间阈值为1秒,这意味着当达到这两个条件之一时,Logstash就会将缓冲区内的数据一次性发送至Elasticsearch。此外,我还指定了自定义的索引模板,以便更好地控制字段映射规则。 3. 实战案例 打造高性能日志分析平台 好了,理论讲得差不多了,接下来让我们通过一个实际的例子来看看这一切是如何运作的吧! 假设你是一家电商网站的运维工程师,最近你们网站频繁出现访问异常的问题,客户投诉不断。为了找出问题根源,你需要对Nginx服务器的日志进行深入分析。幸运的是,你们已经部署了Logstash和Elasticsearch作为日志处理系统。 3.1 日志采集与预处理 首先,我们需要确保Logstash能够正确地从Nginx服务器上采集到所有相关的日志信息。根据上面说的设置,我们可以搞一个Logstash配置文件,用来从特定的日志文件里扒拉出重要的信息。嘿,为了让大家看日志的时候能更轻松明了,我们可以加点小技巧,比如说统计每个用户逛网站的频率,或者找出那些怪怪的访问模式啥的。这样一来,信息就一目了然啦! 3.2 索引优化与查询分析 接下来,我们将这些处理后的数据发送给Elasticsearch进行索引存储。有了合适的索引设置,就算同时来一大堆请求,我们的查询也能嗖嗖地快,不会拖泥带水的。比如说,在上面那个输出配置的例子里面,我们调高了批量处理的门槛,同时把空闲时间设得比较短,这样就能大大加快数据写入的速度啦! 一旦数据被成功索引,我们就可以利用Elasticsearch的强大查询功能来进行深度分析了。比如说,你可以写个DSL查询,找出最近一周内访问量最大的10个页面;或者,你还可以通过用户ID捞出某个用户的操作记录,看看能不能从中发现问题。 4. 结语 拥抱变化,不断探索 通过以上介绍,相信大家已经对如何使用Logstash与Elasticsearch实现高效的实时索引优化有了一个全面的认识。当然啦,技术这东西总是日新月异的,所以我们得保持一颗好奇的心,不停地学新技术,这样才能更好地迎接未来的各种挑战嘛! 希望这篇文章能对你有所帮助,如果你有任何疑问或建议,欢迎随时留言交流。让我们一起加油,共同成长!
2024-12-17 15:55:35
41
追梦人
转载文章
...游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
755
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart service_name
- 控制systemd服务的启动、停止或重启。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"