前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[视图与模型 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...变化时,依赖该数据的视图会自动得到更新。通过 Proxy 和 Reflect 等技术手段,Vue.js 可以监听并追踪数据的变化,并触发相应的回调函数来更新视图,从而实现了数据和视图之间的联动关系,简化了用户界面开发过程中手动管理数据同步的工作量。
2023-01-11 12:37:47
679
转载
转载文章
...Vo:数据持久化模型 Query:数据查询模型 Dto:数据传输模型 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_40910781/article/details/111416185。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-26 23:30:52
268
转载
转载文章
...“日历” View(视图) Change View(更改视图) List(列表) 删除“日历”中过期的项目。 Calendar (Left Bottom) - View (Change View to Calendar) - Choose Menu Month 4.2.2 TCAM filter rule Home - ... - Rules - Create Rule (Manage Rules & Alerts) - Title 4.3 Powerpoint画图 插入 - > 形状 Insert - > Shapes 4.4 Word 升级目录 [References][Update Table] 5 Sprax EA 5.1 Basic Design - Toolbox Message/Argument/Return Value Publish - Save - Save to Clipboard 5.2 Advanced Copy/Paste - Copy to Clipboard - Full Structure for Duplication Copy/Paste - Paste Package from Clipboard 6 USB Win7 CMD: wmic path Win32_PnPSignedDriver | find "Android" wmic path Win32_PnPSignedDriver | find "USB" :: similar to Linux lsusb wmic path Win32_USBControllerDevice get Dependent 7 Abbreviations CAB: Capacity Approval Board NPcap: Nmap Packet Capture wmic: Windows Management Instrumentation Command-line 本篇文章为转载内容。原文链接:https://blog.csdn.net/zoosenpin/article/details/118596813。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 16:27:10
270
转载
Ruby
...了现代编程语言在并发模型设计上的差异,并提出了一种新型的“乐观并发控制”算法。该算法通过预测线程间的冲突概率,动态调整同步策略,从而在一定程度上减少了锁的使用频率。这一方法不仅提升了程序的执行效率,还降低了开发者的维护成本。 从哲学角度来看,无论是技术层面还是理论层面,人类对于并发编程的追求始终未曾停歇。正如古希腊哲学家赫拉克利特所言:“人不能两次踏进同一条河流。”同样,在并发编程的世界里,每一次尝试都是一次全新的探索,而每一次成功都离不开对失败教训的深刻反思。未来,随着量子计算等前沿科技的发展,我们或许将迎来一场关于并发编程范式的革命,而这无疑将为软件工程领域带来前所未有的机遇与挑战。
2025-04-25 16:14:17
32
凌波微步
转载文章
...提出的一种分布式编程模型,主要应用于大数据并行计算领域。在文中提到,面对海量数据处理难题时,MapReduce提供了一种解决方案。它将复杂的计算任务分解成两个阶段。
2024-03-01 12:40:17
541
转载
Spark
...迟,但实际部署仍面临模型训练成本高昂等问题。 值得注意的是,尽管分布式缓存带来了诸多便利,但它并非没有挑战。隐私保护、数据一致性以及跨地域同步等问题仍然是业界亟待解决的难题。随着GDPR等法规的出台,企业在使用缓存技术时还需格外注意合规性,确保用户数据的安全与合法使用。在未来,我们或许可以看到更多结合区块链技术的去中心化缓存解决方案,为用户提供更加透明和安全的服务体验。
2025-05-02 15:46:14
82
素颜如水
转载文章
...ytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...__str__用于模型对象的字符串表示,__getattr__、__setattr__等用于属性管理,以及save()方法背后的__init__、__new__等构造逻辑。这些都充分体现了Python特殊方法在构建复杂系统时的重要性。 不仅如此,对于面向对象设计原则的理解,诸如封装、多态和继承,也能够在特殊方法的使用上得到生动体现。以重载比较操作符为例,通过实现__eq__、__lt__等方法,开发者能够根据业务需求为自定义类赋予灵活而精准的比较逻辑,从而实现更符合领域特性的行为表现。 总之,Python特殊方法不仅提供了丰富的扩展能力,还在不同场景下展现了其强大的灵活性和实用性。无论是跟进最新的Python语言特性更新,还是深入研究经典开源项目源码,或是解决实际编程问题,理解并熟练运用特殊方法都是提升Python编程水平的关键所在。
2023-04-19 14:30:42
132
转载
转载文章
...前言 一、数字识别的模型训练 1.下载训练集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 2.2 将图片按照标签分类到具体文件夹 2.3 数据存在的缺陷 2.4 优化建议(核心) 二、模型训练 三、项目实现 1. 代码实现 2. 采用器件 2. 注意事项 总结 前言 第一次接触OpenMV也是第一次将理论用于实践,是老师让我实现的一个小测验,这几天完成后决定写下完整的过程。本文主要是当缝合怪,借鉴和参考了其他人的代码再根据我个人设备进行了一定的调整,此外还包括了我自身实践过程中的一些小意外。 !!!一定要根据个人器件型号和个人设备来参考 一、数字识别的模型训练 1.下载训练集 研究期间,我发现大部分人以及官网教程采用的都是自己拍摄照片再进行网络训练,存在的缺陷就是数据集较小不全面、操作繁琐。个人认为如果是对标准的数字进行识别,自己手动拍取照片进行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
Golang
...简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
Netty
...ty通过非阻塞I/O模型,完美解决了这个问题。这就像是一个超级能干的服务员,能够在同一时间同时服务上万个客人,而且就算有个客人纠结半天点菜(也就是某个请求拖拉),也不会耽误其他客人的服务,更不会让整个餐厅都停下来等他。 举个栗子: java EventLoopGroup bossGroup = new NioEventLoopGroup(); // 主线程组 EventLoopGroup workerGroup = new NioEventLoopGroup(); // 工作线程组 try { ServerBootstrap b = new ServerBootstrap(); // 启动辅助类 b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 使用NIO通道 .childHandler(new ChannelInitializer() { // 子处理器 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder()); // 解码器 ch.pipeline().addLast(new StringEncoder()); // 编码器 ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); ctx.writeAndFlush("Echo: " + msg); // 回显消息 } }); } }); ChannelFuture f = b.bind(8080).sync(); // 绑定端口并同步等待完成 f.channel().closeFuture().sync(); // 等待服务关闭 } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } 这段代码展示了如何用Netty创建一个简单的TCP服务器。话说回来,Netty这家伙简直太贴心了,它的API设计得特别直观,想设置啥处理器或者监听事件都超简单,用起来完全没压力,感觉开发效率直接拉满! 2. 大数据流处理平台中的挑战 接下来,我们聊聊大数据流处理平台面临的挑战。在这个领域,我们通常会遇到以下几个问题: - 高吞吐量:我们需要处理每秒数百万条甚至更多的数据记录。 - 低延迟:对于某些实时应用场景(如股票交易),毫秒级的延迟都是不可接受的。 - 可靠性:数据不能丢失,必须保证至少一次投递。 - 扩展性:随着业务增长,系统需要能够无缝扩容。 这些问题听起来是不是很让人头大?但别担心,Netty正是为此而生的! 让我分享一个小故事吧。嘿,有次我正忙着弄个日志收集系统,结果一测试才发现,这传统的阻塞式I/O模型简直是“人形瓶颈”啊!流量一大就直接崩溃,完全hold不住那个高峰时刻,简直让人头大!于是,我开始研究Netty,并将其引入到项目中。哈哈,结果怎么样?系统的性能直接翻了三倍!这下我可真服了,选对工具真的太重要了,感觉像是找到了开挂的装备一样爽。 为了更好地理解这些挑战,我们可以看看下面这段代码,这是Netty中用来实现高性能读写的示例: java public class HighThroughputHandler extends ChannelInboundHandlerAdapter { private final ByteBuf buffer; public HighThroughputHandler() { buffer = Unpooled.buffer(1024); } @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { for (int i = 0; i < 1024; i++) { buffer.writeByte((byte) i); } ctx.writeAndFlush(buffer.retain()); } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 在这段代码中,我们创建了一个自定义的处理器HighThroughputHandler,它能够在每次接收到数据后立即转发出去,从而实现高吞吐量的传输。 3. Netty如何优化大数据流处理平台? 现在,让我们进入正题——Netty是如何具体优化大数据流处理平台的呢? 3.1 异步非阻塞I/O Netty的核心优势在于其异步非阻塞I/O模型。这就相当于,当有请求进来的时候,Netty可不会给每个连接都专门安排一个“服务员”,而是让这些连接共用一个“服务团队”。这样既能节省人手,又能高效处理各种任务,多划算啊!这样做的好处是显著减少了内存占用和上下文切换开销。 假设你的大数据流处理平台每天要处理数十亿条数据记录,采用传统的阻塞式I/O模型,很可能早就崩溃了。而Netty则可以通过单线程处理数千个连接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...定义了统一数据和服务模型,使数据组织更为灵活,可以实现报警与事件、数据存取、历史数据存取、控制命令、复杂数据的交互通信; OPC UA比OPC DA更安全。OPC UA传递的数据是可以加密的,并对通信连接和数据本身都可以实现安全控制。新的安全模型保证了数据从原始设备到MES,ERP系统,从本地到远程的各级自动化和信息化系统的可靠传递; OPC UA可以穿越防火墙,实现Internet 通讯。 依赖 我们通常不会从头写,可以基于OpcUa.core.dll库和OpcUa.Client.dll库,而且附上这2个库的源代码。 配置OpcUA Server 您可以安装任何一款支持OPCUA的服务端软件进行以下配置(此为示例配置,您可根据你的实际情况进行配置) 1、OpcUa Server Url:opc.tcp://192.168.100.1:4840。 2、OpcUa EndPoint:[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01] 3、PLC Device Name:Siemens S7-1200/S7-1500 4、Account:user1 5、Password:自己设置 6、在PLC中开了2个数据块,分别为DB4长度110个字、DB5长度122个字。 7、对应第4块创建标签,第一个名称为DB4.0-99,地址为DB4DBW0.100,数据类型为Short,长度100,即定义长度最长为100的Short数组。第二个名称为DB4.100-109,地址为DB4DBW100.10,数据类型为Short,方便快速读取。 5、对应第5块创建3个标签,第一个名称为DB5.0-99,地址为DB5DBW0.100,数据类型为Short,第二个名称为DB5.100-121, 地址为DB5DBW100.22,数据类型为Short,即定义长度最长为100的Short数组。方便快速读取。第三个标签名称为DB5DBW64,地址为DB5DBW64,数据类型为Short。 具体如下图: 关键代码 using System;using System.Collections.Generic;using System.Linq;using Opc.Ua.Helper;using Mesnac.Equips;namespace Mesnac.Equip.OPC.OpcUa.OPCUA{public class Equip : BaseEquip{region 字段定义private bool _isOpen = false; //是否已打开设备private bool _isClosing = false; //是否正在关闭设备private OPCUAClass myOpcHelper; //OPCUA设备访问辅助对象private Dictionary<string, string> dicTags = null; //保存标签集合private Dictionary<string, object> readResult = null; //设备标签数据缓存private int stepLen = 250; //标签变量的步长设置private string groupNamePrefix = "DB"; //数据块号前缀private string childTagFlag = "~"; //子元素标签标志符private System.Threading.Thread innerReadThread = null; //内部读取线程对象private int innerReadRate = 1000; //内部读取频率endregionregion 属性定义/// <summary>/// OPCUA Server Url/// </summary>public string OpcUaServerUrl{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServerUrl;return "opc.tcp://192.168.1.102:4840";//return "opc.tcp://192.168.100.1:4840";//return "opc.tcp://192.168.100.2:4840";} }/// <summary>/// 要连接的OPCUA服务器上的服务名/// </summary>public string OpcUaServiceName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServiceName;return "[UaServer@cMT-9F1F] [None] [None] [opc.tcp://192.168.1.102:4840/G01]";//return "[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G02]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G01]";} }/// <summary>/// 要连接的OPCUA服务器上指定服务名下的PLC的名称/// </summary>public string PLCName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).PLCName;//return "Feeding";return "Siemens_192.168.2.1";//return "Rockwell_192.168.1.10";} }/// <summary>/// OPCUA服务器的访问账户/// </summary>public string Account{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Account;return "user1";} }/// <summary>/// OPCUA服务器的访问密码/// </summary>public string Password{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Password;return "1";} }endregionregion BaseEquip成员实现/// <summary>/// 打开连接设备/// </summary>/// <returns>成功返回true,失败返回false</returns>public override bool Open(){lock (this){this._isClosing = false;if (this._isOpen == true && this.myOpcHelper != null){return true;}this.State = false;this.myOpcHelper = new OPCUAClass();this.dicTags = this.myOpcHelper.ConnectOPCUA(this.OpcUaServerUrl, this.Account, this.Password, this.OpcUaServiceName, this.PLCName); //连接OPCServerif (this.dicTags == null || this.dicTags.Count == 0){this.myOpcHelper = null;Console.WriteLine("OPC连接失败!");this.State = false;return false;}else{this.State = true;this._isOpen = true;region 初始化读取结果this.readResult = new Dictionary<string, object>();foreach (Equips.BaseInfo.Group group in this.Group.Values){if (!group.IsAutoRead){continue;}int groupMinStart = group.Start;int groupMaxEnd = group.Start + group.Len;int groupMaxLen = group.Len;foreach (Equips.BaseInfo.Group g in this.Group.Values){if (!g.IsAutoRead){continue;}if (g.Block == group.Block){if (g.Start < group.Start){groupMinStart = g.Start;}if (g.Start + g.Len > groupMaxEnd){groupMaxEnd = g.Start + g.Len;} }}groupMaxLen = groupMaxEnd - groupMinStart;int tagCount = groupMaxLen % this.stepLen == 0 ? groupMaxLen / this.stepLen : groupMaxLen / this.stepLen + 1;int currLen = 0;for (int i = 0; i < tagCount; i++){string tagName = String.Empty;if (tagCount == 1){tagName = String.Format("{0}-{1}", groupMinStart, groupMinStart + groupMaxLen - 1);currLen = groupMaxLen;}else if (i == tagCount - 1){tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + (groupMaxLen % this.stepLen == 0 ? this.stepLen : groupMaxLen % this.stepLen) - 1);currLen = groupMaxLen % this.stepLen;}else{tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + this.stepLen - 1);currLen = this.stepLen;}string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);if (!this.readResult.ContainsKey(tagFullName)){bool exists = false;region 判断读取结果标签组的范围是否包括了此标签 比如tagFullName DB5.220-299,在readResult中存在 DB5.200-299,则认为已存在,不需要再添加string[] beginend = null;int begin = 0;int end = 0;string[] startstop = tagFullName.Replace(String.Format("{0}{1}.", groupNamePrefix, group.Block), String.Empty).Split(new char[] { '-' });int start = 0;int stop = 0;bool parseResult = false;if (startstop.Length == 2){parseResult = int.TryParse(startstop[0], out start);if (parseResult){parseResult = int.TryParse(startstop[1], out stop);} }if (parseResult){int existsMinBegin = 0; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, group.Block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){if (start >= begin && stop <= end){exists = true;break;}if (isContinue){if (start >= existsMinBegin && stop <= existsMaxEnd){exists = true;break;} }} }} }endregionif (!exists){ushort[] groupData = new ushort[currLen];this.readResult[tagFullName] = groupData;Console.WriteLine(tagFullName);} }}//int tagCount = group.Len % this.stepLen == 0 ? group.Len / this.stepLen : group.Len / this.stepLen + 1;//int currLen = 0;//for (int i = 0; i < tagCount; i++)//{// string tagName = String.Empty;// if (tagCount == 1)// {// tagName = String.Format("{0}-{1}", group.Start, group.Start + group.Len - 1);// currLen = group.Len;// }// else if (i == tagCount - 1)// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + (group.Len % this.stepLen == 0 ? this.stepLen : group.Len % this.stepLen) - 1);// currLen = group.Len % this.stepLen;// }// else// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + this.stepLen - 1);// currLen = this.stepLen;// }// string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);// if (!this.readResult.ContainsKey(tagFullName))// {// short[] groupData = new short[currLen];// this.readResult[tagFullName] = groupData;// }//} }endregionregion 开启内部定时读取if (this.innerReadThread == null){this.innerReadRate = this.Main.ReadHz / 2;this.innerReadThread = new System.Threading.Thread(this.InnerAutoRead);this.innerReadThread.Start();}endregion}return this.State;} }/// <summary>/// 从设备读取数据/// </summary>/// <param name="block">要读取的块号</param>/// <param name="start">要读取的起始字</param>/// <param name="len">要读取的长度</param>/// <param name="buff">读取成功后的输出数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Read(string block, int start, int len, out object[] buff){lock (this){buff = null;if (this._isClosing){return false;}string readstrflag = String.Format("{0}{1}.{2}-{3}", this.groupNamePrefix, block, start, start + len - 1);System.Text.StringBuilder sbtaglength = new System.Text.StringBuilder();string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();List<string> groupTagNames = new List<string>();int startIndex = 0;try{if (!Open()){return false;}//return true;string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){if (key.StartsWith(groupName) && key.Replace(String.Format("{0}.", groupName), String.Empty).Contains("-")){groupTagNames.Add(key);} }groupTagNames.Sort(); //对块标签进行排序foreach (string key in groupTagNames){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}ushort[] values;if (this.readResult[key] is ushort[]){values = this.readResult[key] as ushort[];}else{values = new ushort[] { (ushort)this.readResult[key] };}sbtaglength.Append(String.Format("tagName={0}, buff length = {1}", key, values.Length));groupData.AddRange(values);}buff = new object[len];if (!String.IsNullOrEmpty(startTag)){string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;Array.Copy(groupData.ToArray(), startIndex, buff, 0, buff.Length);}else{}return true;}catch (Exception ex){Console.WriteLine(String.Join(";", groupTagNames.ToArray<string>()));Console.WriteLine("data length = " + groupData.Count);Console.WriteLine(this.Name + "读取失败[" + readstrflag + "]:" + ex.Message);Console.WriteLine(sbtaglength.ToString());this.State = false;return false;} }}/// <summary>/// 写入数据到设备/// </summary>/// <param name="block">要写入的块号</param>/// <param name="start">要写入的起始字</param>/// <param name="buff">要写如的数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Write(int block, int start, object[] buff){bool result = true;lock (this){try{if (this._isClosing){return false;}if (!Open()){return false;}bool isWrite = false;region 按标签变量写入string itemId = "";foreach (Equips.BaseInfo.Group group in this.Group.Values){if (group.Block == block.ToString()){foreach (Equips.BaseInfo.Data data in group.Data.Values){if (group.Start + data.Start == start && data.Len == buff.Length){if (this.dicTags.ContainsKey(data.Name)){itemId = this.dicTags[data.Name];}break;} }} }if (!String.IsNullOrEmpty(itemId)){UInt16[] intBuff = new UInt16[buff.Length];for (int i = 0; i < intBuff.Length; i++){intBuff[i] = 0;if (!UInt16.TryParse(buff[i].ToString(), out intBuff[i])){Console.WriteLine("在写入OPCUA标签时把buff中的元素转为UInt16类型失败!");} }result = this.myOpcHelper.WriteUInt16(itemId, intBuff);if (!result){Console.WriteLine(String.Format("标签变量[{0}]写入失败!", itemId));return false;}else{Console.WriteLine("按标签变量写入..." + itemId);isWrite = true;} }if (isWrite){return true;}endregionregion 按块写入region 先读取相应标签数数据string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();string[] keys = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key in keys){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}string[] beginEnd = key.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}.{1}", key)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);region 写入之前,先读取一下PLC的值if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){this.ReadTag(key);if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);}else{Console.WriteLine(String.Format("读取结果中不包含标签变量[{0}]的值!", String.Format("{0}", key)));} }else{if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("no read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);} }endregion}endregionif (String.IsNullOrEmpty(startTag)){Console.WriteLine("写入失败,未在OPCUAserver中找到对应的标签,block = {0}, start = {1}, len = {2}", block, start, buff.Length);return false;}region 更新标签中对应的数据后,再写回OPCServerint startIndex = 0;string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;ushort[] newDataBuffer = groupData.ToArray();for (int i = 0; i < buff.Length; i++){ushort svalue = 0;ushort.TryParse(buff[i].ToString(), out svalue);newDataBuffer[startIndex + i] = svalue;}int index = 0;string[] keys2 = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key2 in keys2){string[] beginEnd = key2.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}", key2)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){//Console.WriteLine("---------------------------------------------------------");//Console.WriteLine("start = " + start);//Console.WriteLine("start + buff.Length - 1 = " + (start + buff.Length -1));//Console.WriteLine("begin = " + begin);//Console.WriteLine("end = " + end);//Console.WriteLine("---------------------------------------------------------");if (!this.dicTags.ContainsKey(key2)){Console.WriteLine(String.Format("写入失败:标签变量[{0}]在OpcUA Server中未定义!", String.Format("{0}", key2)));return false;}int len = (this.readResult[key2] as ushort[]).Length;ushort[] tagDataBuff = new ushort[len];//Console.WriteLine("newDataBuff");//Console.WriteLine(String.Join(",", newDataBuffer));//Console.WriteLine("index = " + index);//Console.WriteLine("tagDataBuff.Length = " + tagDataBuff.Length);//Array.Copy(newDataBuffer, begin, tagDataBuff, 0, tagDataBuff.Length);int existsMinBegin = this.GetExistsMinBeginByBlock(block.ToString());Array.Copy(newDataBuffer, begin - existsMinBegin, tagDataBuff, 0, tagDataBuff.Length);index += tagDataBuff.Length;//Console.WriteLine("Write " + key2);//Console.WriteLine(String.Join(",", tagDataBuff));//Console.WriteLine("写入标签:" + this.dicTags[key2]);result = this.myOpcHelper.WriteUInt16(this.dicTags[key2], tagDataBuff);if (!result){Console.WriteLine(String.Format("向标签变量[{0}]中写入值失败!", String.Format("{0}", key2)));return false;}else{this.ReadTag(key2);Console.WriteLine("写入...");}//Console.WriteLine("---------------------------------------------------------");} }endregionendregionreturn result;}catch (Exception ex){Console.WriteLine(this.Name + "写入失败:" + ex.Message);return false;} }}/// <summary>/// 关闭方法,断开与设备的连接释放资源/// </summary>public override void Close(){try{this._isClosing = true;System.Threading.Thread.Sleep(this.Main.ReadHz);if (this.innerReadThread != null){this.innerReadThread.Abort();this.innerReadThread = null;} }catch (Exception ex){Console.WriteLine("关闭内部读取OPCUA线程异常:" + ex.Message);}try{if (this.myOpcHelper != null){this.myOpcHelper.Close();this.myOpcHelper = null;this.State = false;this._isOpen = false;} }catch (Exception ex){Console.WriteLine("关于与OPCUA服务连接异常:" + ex.Message);} }endregionregion 辅助方法/// <summary>/// 获取某个数据块标签的最小开始索引/// </summary>/// <param name="block">块号</param>/// <returns>返回数据块标签的最小开始索引</returns>private int GetExistsMinBeginByBlock(string block){int existsMinBegin = 99999; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();string[] beginend = null;bool parseResult = false;int begin = 0;int end = 0;foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){//} }}return existsMinBegin;}/// <summary>/// 读取标签/// </summary>/// <param name="tagName"></param>private void ReadTag(string tagName){UInt16[] buff = null;if (this.dicTags.ContainsKey(tagName)){if (this.myOpcHelper.ReadUInt16(this.dicTags[tagName], out buff)){//Console.WriteLine("tagName={0}, buff length = {1}", tagName, buff.Length);if (this.readResult.ContainsKey(tagName)){this.readResult[tagName] = buff;}else{this.readResult.Add(tagName, buff);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception 读取标签:[{0}]失败!", tagName);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception OPCUA Server中未定义此标签:[{0}]!", tagName);} }/// <summary>/// 内部自动读取方法/// </summary>private void InnerAutoRead(){while (this._isOpen && this._isClosing == false){try{if (this.myOpcHelper == null){this._isClosing = true;this.State = false;return;}lock (this){string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){this.ReadTag(key);} }System.Threading.Thread.Sleep(this.innerReadRate);}catch (Exception ex){Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.InnerAutoRead Exception : " + ex.Message);} }this.innerReadThread = null;}endregionregion 析构方法~Equip(){this.Close();}endregion} } 代码下载 代码下载 本篇文章为转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 18:43:00
269
转载
转载文章
... C10K I/O 模型优化 工作模型优化 C1000K C10M 总结 C10K 和 C1000K 的首字母 C 是 Client 的缩写。 C10K 是单机同时处理 1 万个请求(并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...括了静态测试技术(如模型检查、理论证明)和动态测试(如测试自动化、特定缺陷的检查、测试有效性分析等) http://www.grove.co.uk/ 一个有关软件测试和咨询机构的网站,有一些测试方面的课程和资料供下载 http://www.hq.nasa.gov/office/codeq/relpract/prcls-23.htm NASA可靠性设计实践资料 http://www.io.com/~wazmo/ Bret Pettichord的主页,他的一个热点测试页面连接非常有价值,从中可以获得相当大的测试资料,很有价值 http://www.iso.ch/iso/en/ISOOnline.frontpage 国际标准化组织,提供包括ISO标准系统方面的各类参考资料 http://www.isse.gmu.edu/faculty/ofut/classes/ 821-ootest/papers.html 提供面向对象和基于构架的测试方面著作下载,对这方面感兴趣的读者可以参考该网站,肯定有价值 http://www.ivv.nasa.gov/ NASA设立的独立验证和确认机构,该机构提出了软件开发的全面验证和确认,在此可以获得这方面的研究资料 http://www.kaner.com/ 著名的测试专家Cem Kanner的主页,里面有许多关于测试的专题文章,相信对大家都有用。Cem Kanner关于测试的最著名的书要算Testing Software,这本书已成为一个测试人员的标准参考书 http://www.library.cmu.edu/Re-search/Engineer-ingAndSciences/CS+ECE/index.html 卡耐基梅陇大学网上图书馆,在这里你可以获得有关计算机方面各类论文资料,内容极其庞大,是研究软件测试不可获取的资料来源之一 http://www.loadtester.com/ 一个性能测试方面的网站,提供有关性能测试、性能监控等方面的资源,包括论文、论坛以及一些相关链接 http://www.mareinig.ch/mt/index.html 关于软件工程和应用开发领域的各种免费的实践知识、时事信息和资料文件下载,包括了测试方面的内容 http://www.mtsu.ceu/-storm/ 软件测试在线资源,包括提供目前有哪些人在研究测试,测试工具列表连接,测试会议,测试新闻和讨论,软件测试文学(包括各种测试杂志,测试报告),各种测试研究组织等内容 http://www.psqtcomference.com/ 实用软件质量技术和实用软件测试技术国际学术会议宣传网站,每年都会举行两次 http://www.qacity.com/front.htm 测试工程师资源网站,包含各种测试技术及相关资料下载 http://www.qaforums.com/ 关于软件质量保证方面的一个论坛,需要注册 http://www.qaiusa.com/ QAI是一个提供质量保证方面咨询的国际著名机构,提供各种质量和测试方面证书认证 http://www.qualitytree.com/ 一个测试咨询提供商,有一些测试可供下载,有几篇关于缺陷管理方面的文章值得参考 http://www.rational.com/ IBM Rational的官方网站,可以在这里寻找测试方面的工具信息。IBM Rational提供测试方面一系列的工具,比较全面 http://rexblackconsulting.com/Pages/publicat-ions.htm Rex Black的个人主页,有一些测试和测试管理方面的资料可供下载 http://www.riceconsulting.com/ 一个测试咨询提供商,有一些测试资料可供下载,但不多 http://www.satisfice.com/ 包含James Bach关于软件测试和过程方面的很多论文,尤其在启发式测试策略方面值得参考 http://www.satisfice.com/seminars.shtml 一个黑盒软件测试方面的研讨会,主要由测试专家Cem Kanar和James Bach组织,有一些值得下载的资料 http://www.sdmagazine.com/ 软件开发杂志,经常会有一些关于测试方面好的论文资料,同时还包括了项目和过程改进方面的课题,并且定期会有一些关于质量和测试方面的问题讨论 http://www.sei.cmu.edu/ 著名的软件工程组织,承担美国国防部众多软件工程研究项目,在这里你可以获俄各类关于工程质量和测试方面的资料。该网站提供强有力的搜索功能,可以快速检索到你想要的论文资料,并且可以免费下载 http://www.soft.com/Institute/HotList/ 提供了网上软件质量热点连接,包括:专业团体组织连接、教育机构连接、商业咨询公司连接、质量相关技术会议连接、各类测试技术专题连接等 http://www.soft.com/News/QTN-Online/ 质量技术时事,提供有关测试质量方面的一些时事介绍信息,对于关心测试和质量发展的人士来说是很有价值的 http://www.softwaredioxide.com/ 包括软件工程(CMM,CMMI,项目管理)软件测试等方面的资源 http://www.softwareqatest.com/ 软件质量/测试资源中心。该中心提供了常见的有关测试方面的FAQ资料,各质量/测试网站介绍,各质量/测试工具介绍,各质量/策划书籍介绍以及与测试相关的工作网站介绍 http://www.softwaretestinginstitute.com 一个软件测试机构,提供软件质量/测试方面的调查分析,测试计划模板,测试WWW的技术,如何获得测试证书的指导,测试方面书籍介绍,并且提供了一个测试论坛 http://www.sqatester.com/index.htm 一个包含各种测试和质量保证方面的技术网站,提供咨询和培训服务,并有一些测试人员社团组织,特色内容是缺陷处理方面的技术 http://www.sqe.com/ 一个软件质量工程服务性网站,组织软件测试自动化、STAR-EASE、STARWEST等方面的测试学术会议,并提供一些相关信息资料和课程服务 http://www.stickyminds.com/ 提供关于软件测试和质量保证方面的当前发展信息资料,论文等资源 http://www.stqemagazine.com/ 软件策划和质量工程杂志,经常有一些好的论文供下载,不过数量较少,更多地需要通过订购获得,内容还是很有价值的 http://www.tantara.ab.ca/ 软件质量方面的一个咨询网站,有过程改进方面的一些资料提供 http://www.tcse.org/ IEEE的一个软件工程技术委员会,提供技术论文下载,并有一个功能强大的分类下载搜索功能,可以搜索到测试类型、测试管理、 测试分析等各方面资料 http://www.testing.com/ 测试技术专家Brain Marick的主页,包含了Marick 研究的一些资料和论文,该网页提供了测试模式方面的资料,值得研究。总之,如果对测试实践感兴趣,该网站一定不能错过 http://www.testingcenter.com/ 有一些测试方面的课程体系,有一些价值 http://www.testingconferences.com/asiastar/home 著名的AsiaStar测试国际学术会议官方网站,感兴趣的人一定不能错过 http://www.testingstuff.com/ Kerry Zallar的个人主页,提供一些有关培训、工具、会议、论文方面的参考信息 http://www-sqi.cit.gu.edu.au/ 软件质量机构,有一些技术资料可以供下载,包括软件产品质量模型、再工程、软件质量改进等 这里有些网站已经不能使用了. 转载于:https://www.cnblogs.com/mmsky/p/4581975.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/aizongzhuang2281/article/details/101129638。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-29 09:17:46
134
转载
转载文章
...电信专家定义好的协议模型转换为内存中的 Java 结构。这样整个项目的运行和维护就变得简单高效了,省去了低效的交流和不准确人工转换。 我们可以看到一开始按电信专家的说明直接实现协议是更为容易的办法,但就整个软件生命周期来看却并不是一个简单高效的方法。 永远不要停止编码 架构师也是程序员,代码是软件的最终实现形态,停止编程会逐渐让你忘记作为程序员的感受,更重要的是忘记其中的“痛”,从而容易产生一些不切实际的设计。 大家可能听说过在 Amazon,高级副总裁级别的 Distinguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
79
转载
转载文章
...AWS责任共担的安全模型模型,必须要读懂 数据安全包括4个层面:基础设施层、计算/网络层、数据层、应用层 - 基础设施层 1. 基础硬件安全 2. 授权访问、流程等 - 计算/网络层 1. 主要靠VPC保障网络(防护、路由、网络隔离、易管理) 2. 认识安全组和NACLs以及他们的差别 安全组比ACL多一点,安全组可以针对其他安全组,ACL只能针对IP 安全组只允许统一,ACL可以设置拒绝 安全组有状态!很重要(只要一条入站规则通过,那么出站也可以自动通过),ACL没有状态(必须分别指定出站、入站规则) 安全组的工作的对象是网卡(实例)、ACL工作的对象是子网 认识4种网关,以及他们的差别 共有4种网关,支撑流量进出VPC internet gatway:互联网的访问 virtual private gateway:负责VPN的访问 direct connect:负责企业直连网络的访问 vpc peering:负责VPC的peering的访问 数据层 数据传输安全 – 进入和出AWS的安全 – AWS内部传输安全 通过https访问API 链路的安全 – 通过SSL访问web – 通过IP加密访问VPN – 使用直连 – 使用OFFLINE的导入导出 数据的持久化保存 – 使用EBS – 使用S3访问 访问 – 使用IAM策略 – 使用bucket策略 – 访问控制列表 临时授权 – 使用签名的URL 加密 – 服务器端加密 – 客户端加密 应用层 主要强调的是共担风险模型 多种类型的认证鉴权 给用户在应用层的保障建议 – 选择一种认证鉴权机制(而不要不鉴权) – 用安全的密码和强安全策略 – 保护你的OS(如打开防火墙) – 用强壮的角色来控制权限(RBAC) 判断AWS和用户分担的安全中的标志是,哪些是AWS可以控制的,那些不能,能的就是AWS负责,否则就是用户(举个例子:安全组的功能由AWS负责—是否生效,但是如何使用是用户负责—自己开放所有端口跟AWS无关) AWS可以保障的 用户需要保障的 工具与服务 操作系统 物理内部流程安全 应用程序 物理基础设施 安全组 网络设施 虚拟化设施 OS防火墙 网络规则 管理账号 8 故障排除 问题经常包括的类型: - EC2实例的连接性问题 - 恢复EC2实例或EBS卷上的数据 - 服务使用限制问题 8.1 EC2实例的连接性问题 经常会有多个原因造成无法连接 外部VPC到内部VPC的实例 – 网关(IGW–internet网关、VPG–虚拟私有网关)的添加问题 – 公司网络到VPC的路由规则设置问题 – VPC各个子网间的路由表问题 – 弹性IP和公有IP的问题 – NACLs(网络访问规则) – 安全组 – OS层面的防火墙 8.2 恢复EC2实例或EBS卷上的数据 注意EBS或EC2没有任何强绑定关系 – EBS是可以从旧实例上分离的 – 如有必要尽快做 将EBS卷挂载到新的、健康的实例上 执行流程可以针对恢复没有工作的启动卷(boot volume) – 将root卷分离出来 – 像数据一样挂载到其他实例 – 修复文件 – 重新挂载到原来的实例中重新启动 8.3 服务使用限制问题 AWS有很多软性限制 – 例如AWS初始化的时候,每个类型的EBS实例最多启动20个 还有一些硬性限制例如 – 每个账号最多拥有100个S3的bucket – …… 别的服务限制了当前服务 – 例如无法启动新EC2实例,原因可能是EBS卷达到上限 – Trusted Advisor这个工具可以根据服务水平的不同给出你一些限制的参考(从免费试用,到商业试用,和企业试用的建议) 常见的软性限制 公共的限制 – 每个用户最多创建20个实例,或更少的实例类型 – 每个区域最多5个弹性ip – 每个vpc最多100个安全组 – 最多20个负载均衡 – 最多20个自动伸缩组 – 5000个EBS卷、10000个快照,4w的IOPS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
270
转载
转载文章
...> 打开“任务视图” win + R -> 打开运行窗口 四、其他快捷键 End -> 显示活动窗口的底端 Home -> 显示活动窗口的顶端 F11 -> 最大化或最小化活动窗口 五、运行窗口快捷命令 先输入win+ R 本小结转载地址:https://blog.csdn.net/qq_42402854/article/details/93162387 1.calc:启动计算器 2.appwiz.cpl:程序和功能 3.certmgr.msc:证书管理实用程序 4.charmap:启动字符映射表 5.chkdsk.exe:Chkdsk磁盘检查(管理员身份运行命令提示符) 6.cleanmgr: 打开磁盘清理工具 7.cliconfg:SQL SERVER 客户端网络实用工具 8.cmstp:连接管理器配置文件安装程序 9.cmd:CMD命令提示符 10.自动关机命令 Shutdown -s -t 600:表示600秒后自动关机 shutdown -a :可取消定时关机 Shutdown -r -t 600:表示600秒后自动重启 rundll32 user32.dll,LockWorkStation:表示锁定计算机 11.colorcpl:颜色管理,配置显示器和打印机等中的色彩 12.CompMgmtLauncher:计算机管理 13.compmgmt.msc:计算机管理 14.credwiz:备份或还原储存的用户名和密码 15.comexp.msc:打开系统组件服务 16.control:控制面版 17.dcomcnfg:打开系统组件服务 18.Dccw:显示颜色校准 19.devmgmt.msc:设备管理器 20.desk.cpl:屏幕分辨率 21.dfrgui:优化驱动器 Windows 7→dfrg.msc:磁盘碎片整理程序 22.dialer:电话拨号程序 23.diskmgmt.msc:磁盘管理 24.dvdplay:DVD播放器 25.dxdiag:检查DirectX信息 26.eudcedit:造字程序 27.eventvwr:事件查看器 28.explorer:打开资源管理器 29.Firewall.cpl:Windows防火墙 30.FXSCOVER:传真封面编辑器 31.fsmgmt.msc:共享文件夹管理器 32.gpedit.msc:组策略 33.hdwwiz.cpl:设备管理器 34.inetcpl.cpl:Internet属性 35.intl.cpl:区域 36.iexpress:木马捆绑工具,系统自带 37.joy.cpl:游戏控制器 38.logoff:注销命令 39.lusrmgr.msc:本地用户和组 40.lpksetup:语言包安装/删除向导,安装向导会提示下载语言包 41.lusrmgr.msc:本机用户和组 42.main.cpl:鼠标属性 43.mmsys.cpl:声音 44.magnify:放大镜实用程序 45.mem.exe:显示内存使用情况(如果直接运行无效,可以先管理员身份运行命令提示符,在命令提示符里输入mem.exe>d:a.txt 即可打开d盘查看a.txt,里面的就是内存使用情况了。当然什么盘什么文件名可自己决定。) 46.MdSched:Windows内存诊断程序 47.mmc:打开控制台 48.mobsync:同步命令 49.mplayer2:简易widnows media player 50.Msconfig.exe:系统配置实用程序 51.msdt:微软支持诊断工具 52.msinfo32:系统信息 53.mspaint:画图 54.Msra:Windows远程协助 55.mstsc:远程桌面连接 56.NAPCLCFG.MSC:客户端配置 57.ncpa.cpl:网络连接 58.narrator:屏幕“讲述人” 59.Netplwiz:高级用户帐户控制面板,设置登陆安全相关的选项 60.netstat : an(TC)命令检查接口 61.notepad:打开记事本 62.Nslookup:IP地址侦测器 63.odbcad32:ODBC数据源管理器 64.OptionalFeatures:打开“打开或关闭Windows功能”对话框 65.osk:打开屏幕键盘 66.perfmon.msc:计算机性能监测器 67.perfmon:计算机性能监测器 68.PowerShell:提供强大远程处理能力 69.printmanagement.msc:打印管理 70.powercfg.cpl:电源选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...值。 根据不同的颜色模型,对漫反射色和镜面反射色的处理是不同的。在RGB颜色模型中,系统在插值时使用红、绿和蓝颜色分量。 颜色的阿尔法成员作为单独的插值对象对待,因为设备驱动程序可以以两种不同的方法实现透明:使用纹理混合或使用点画法(stippling)。 可以用D3DCAPS9结构的ShadeCaps成员确定设备驱动程序支持何种插值。 向量、顶点和四元数 贯穿Microsoft® Direct3D®,顶点用于描述位置和方向。图元中的每个顶点由指定其位置的向量、颜色、纹理坐标和指定其方向的法向量描述。 四元数给三元素向量的[ x, y, z]值增加了第四个元素。用于三维旋转的方法,除了典型的矩阵以外,四元数是另一种选择。四元数表示三维空间中的一根轴及围绕该轴的一个旋转。例如,一个四元数可能表示轴(1,1,2)和1度的旋转。四元数包含了有价值的信息,但它们真正的威力源自可对它们执行的两种操作:合成和插值。 对四元数进行插值与合成它们类似。两个四元数的合成如下表示: 将两个四元数的合成应用于几何体意味着“把几何体绕axis2轴旋转rotation2角度,然后绕axis1轴旋转rotation1角度”。在这种情况下,Q表示绕单根轴的旋转,该旋转是先后将q2和q1应用于几何体的结果。 使用四元数,应用程序可以计算出一条从一根轴和一个方向到另一根轴和另一个方向的平滑、合理的路径。因此,在q1和q2间插值提供了一个从一个方向变化到另一个方向的简单方法。 当同时使用合成与插值时,四元数提供了一个看似复杂而实际简单的操作几何体的方法。例如,设想我们希望把一个几何体旋转到某个给定方向。我们已经知道希望将它绕axis2轴旋转r2度,然后绕axis1轴旋转r1度,但是我们不知道最终的四元数。通过使用合成,我们可以在几何体上合成两个旋转并得到最终单个的四元数。然后,我们可以在原始四元数和合成的四元数间进行插值,得到两者之间的平滑转换。 Direct3D扩展(D3DX)工具库包含了帮助用户使用四元数的函数。例如,D3DXQuaternionRotationAxis函数给一个定义旋转轴的向量增加一个旋转值,并在由D3DXQUTERNION结构定义的四元数中返回结果。另外,D3DXQuaternionMultiply函数合成四元数,D3DXQuaternionSlerp函数在两个四元数间进行球面线性插值(spherical linear interpolation)。 Direct3D应用程序可以使用下列函数简化对四元数的使用。 D3DXQuaternionBaryCentric D3DXQuaternionConjugate D3DXQuaternionDot D3DXQuaternionExp D3DXQuaternionIdentity D3DXQuaternionInverse D3DXQuaternionIsIdentity D3DXQuaternionLength D3DXQuaternionLengthSq D3DXQuaternionLn D3DXQuaternionMultiply D3DXQuaternionNormalize D3DXQuaternionRotationAxis D3DXQuaternionRotationMatrix D3DXQuaternionRotationYawPitchRoll D3DXQuaternionSlerp D3DXQuaternionSquad D3DXQuaternionToAxisAngle Direct3D应用程序可以使用下列函数简化对三成员向量的使用。 D3DXVec3Add D3DXVec3BaryCentric D3DXVec3CatmullRom D3DXVec3Cross D3DXVec3Dot D3DXVec3Hermite D3DXVec3Length D3DXVec3LengthSq D3DXVec3Lerp D3DXVec3Maximize D3DXVec3Minimize D3DXVec3Normalize D3DXVec3Project D3DXVec3Scale D3DXVec3Subtract D3DXVec3Transform D3DXVec3TransformCoord D3DXVec3TransformNormal D3DXVec3Unproject D3DX工具库提供的数学函数中包含了许多辅助函数,可以简化对二成员和四成员向量的使用 http://www.gesoftfactory.com/developer/3DCS.htm 本篇文章为转载内容。原文链接:https://blog.csdn.net/okvee/article/details/3438011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-24 12:49:42
271
转载
转载文章
...表示当前时间 25.视图:是一个虚拟的表,没有物理数据,是从其他表中导出的数据,当原表数据发生改变时,视图数据也会发生改变,反之也一样. (1)作用:操作简单化;增加数据安全性:不直接对表进行操作;提高表的逻辑性:原表修改字段对视图无影响. (2)创建视图:语法:create view 视图名 as 查询语句. 例如:create view vi as select id,name from user;–>这是把user中id,name字段的数据写入到vi视图中. 若是想自己定义字段名不用查出的字段名,可以如下面这样写. 例如:create view vi(vi_id,vi_name) as select id,name from user;–>这样的话id对应vi_id,name对应vi_name; 上面的都是单表的视图,多表的视图也是一样的,只不过后面的单表查询变成多表查询了. 建议创建视图后自己定义字段名,也即是定义别名. (3)查看视图: Describe(desc) 视图名–>查看视图基本信息 Show table status like ‘视图名’ --> 查看视图基本信息 Show create view 视图名 --> 视图详细信息,建表具体信息. 在view表中查看视图详细信息–>view 系统表 自带的. (4)修改视图:修改使徒的定义 Create or replace view 没有的话就创建,有的话就替换 例如:Create or replace view vi(id,name) as select语句. Alter view 只修改不能创建(也就是说视图必须存在的情况下才可修改) Alter view vi as select语句 (5)更新视图:视图是虚拟的,对视图进行的crud操作都会对原表的数据产生影响. 也就是说对视图的操作最后都会转换为对视图所连接那个表的操作. (6)删除视图:删除数据库中已存在的视图,视图为虚表,因此只会删除结构,不会删除数据. Drop view if exist 视图名. 26.触发器:由事件来触发某个操作,这些事件包括insert语句,update语句和delete语句.当数据库系统执行这些事件时,就会激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
renice priority_level -p pid
- 更改已运行进程的优先级。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"