前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据一致性 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...日,据W3Techs数据显示,全球近40%的网站使用CMS系统进行搭建和管理,其中WordPress、Joomla!、Drupal等国际知名CMS与织梦DedeCMS一同构成了丰富多元的市场格局。 值得注意的是,随着Web技术的不断演进,现代CMS正朝着更加智能化、模块化和API化的方向发展。例如,头部CMS已经开始整合人工智能功能,提供智能内容推荐、自动化SEO优化等功能,极大提升了用户体验和搜索引擎友好度。 同时,安全性成为各CMS开发者关注的重点。织梦DedeCMS等系统也在不断提升系统的安全防护能力,通过指纹验证、漏洞修复等方式保障用户数据安全。然而,用户在使用过程中仍需定期更新系统及插件以应对不断出现的安全挑战。 此外,响应式设计和多终端适配也成为衡量一款CMS是否与时俱进的重要指标。织梦DedeCMS等产品已实现对移动端的全面支持,确保无论是在桌面端还是移动设备上,都能为用户提供一致且优质的浏览体验。 综上所述,作为国内开源CMS领域的佼佼者,织梦DedeCMS在保持其核心优势的同时,也面临着适应新技术变革、提升用户体验、强化安全防护等一系列挑战。未来,织梦DedeCMS如何紧跟行业发展趋势,持续创新升级,将决定其在国内乃至全球市场的长远竞争力。对于广大用户而言,在选择和使用织梦DedeCMS时,既要看到其当前的优势特点,也要关注其在新环境下的发展动态和技术革新,以实现网站的高效建设和运维。
2023-09-24 09:08:23
278
转载
SpringCloud
...服务间调用的清晰性与一致性,还能结合自动化测试工具进行集成验证,有效防止因服务接口变更带来的潜在问题。 综上所述,尽管注册中心在Spring Cloud微服务架构中不可或缺,但随着技术发展,服务发现及API交互方式正在持续创新和完善,以更好地服务于大规模分布式系统的设计与实施。对这些最新趋势和技术方案保持敏感度和了解深度,将有助于我们在实际项目中构建更为健壮、易维护且具有前瞻性的微服务架构体系。
2023-11-23 11:39:17
37
岁月如歌_
Linux
MongoDB数据库在Linux环境下如何实现备份 0. 引言 当我们谈论数据库管理时,数据的安全性和可靠性始终是至关重要的。MongoDB作为一款高性能、易扩展的NoSQL数据库,在众多项目中得到广泛应用。在用Linux操作系统的时候,MongoDB的日常维护工作可是个重点活儿,尤其是设计和执行备份策略这块儿,那可真是至关重要的一步棋。本文将带领大家深入探讨如何在Linux环境中,以一种高效且安全的方式对MongoDB进行备份。 1. 备份的重要性与基本原理 (情感化表达)想象一下,你精心维护的MongoDB数据库突然遭遇意外,数据丢失或损坏,那种感觉就像失去了一本珍贵的日记,令人痛心疾首。因此,定期备份是我们防止这种“悲剧”发生的最佳保险措施。MongoDB做备份这件事儿,主要靠两种方法:一是直接复制数据库文件这招,二是动用一些专门的工具去创建快照。这样一来,就可以把数据在某一时刻的样子给完好无损地保存下来啦。 2. MongoDB备份方法概述 2.1 数据库文件备份 (代码示例) bash 首先找到MongoDB的数据存储路径,通常位于/var/lib/mongodb/ (根据实际安装配置可能有所不同) sudo cp -R /var/lib/mongodb/ /path/to/backup/ 通过Linux命令行直接复制MongoDB的数据文件目录到备份位置,这是一种最基础的物理备份方式。不过要注意,在咱们进行备份的时候,务必要保证数据库没在进行任何写入操作。要不然的话,可能会让备份出来的文件出现不一致的情况,那就麻烦啦。 2.2 mongodump工具备份 (代码示例) bash mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/ mongodump是MongoDB官方提供的用于逻辑备份的工具,它会将数据库的内容导出为JSON格式的bson文件,这样可以方便地在其他MongoDB实例上导入恢复。在上述命令中,我们指定了目标数据库地址、端口以及备份输出目录。 2.3 使用MongoDB Atlas自动备份服务(可选) 对于使用MongoDB云服务Atlas的用户,其内置了自动备份功能,只需在控制台设置好备份策略,系统就会按照设定的时间周期自动完成数据库的备份,无需手动干预。 3. 实战 结合cron定时任务实现自动化备份 (思考过程)为了保证备份的及时性与连续性,我们可以借助Linux的cron定时任务服务,每天、每周或每月定期执行备份任务。 (代码示例) bash 编辑crontab任务列表 crontab -e 添加以下定时任务,每天凌晨1点执行mongodump备份 0 1 mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/$(date +\%Y-\%m-\%d) 保存并退出编辑器 以上示例中,我们设置了每日凌晨1点执行mongodump备份,并将备份文件保存在按日期命名的子目录下,便于后期管理和恢复。 4. 结语 备份策略的优化与完善 尽管我们已经掌握了MongoDB在Linux下的备份方法,但这只是万里长征的第一步。在实际操作时,咱们还要琢磨一下怎么把备份文件给压缩、加密了,再送到远程的地方存好,甚至要考虑只备份有变动的部分(增量备份)。而且,最好能整出一套全面的灾备方案,以备不时之需。总的来说,咱们对待数据库备份这事儿,就得像呵护自家压箱底的宝贝一样倍加小心。你想啊,数据这玩意儿的价值,那可是无价之宝,而备份呢,就是我们保护这个宝贝不丢的关键法宝,可得看重喽! (探讨性话术)亲爱的读者,你是否已开始构思自己项目的MongoDB备份方案?不妨分享你的见解和实践经验,让我们共同探讨如何更好地保护那些宝贵的数据资源。
2023-06-14 17:58:12
452
寂静森林_
转载文章
数据对齐 , 在金融经济数据分析中,数据对齐是指将两个或多个时间序列的数据在相同的时间点上进行匹配和调整的过程。例如,在处理股票价格和交易量数据时,可能出现两者的时间索引不完全一致的情况。Pandas库能够自动在算术运算中执行数据对齐操作,确保计算基于同一时间点上的有效值,从而提高数据处理的准确性和效率。 成交量加权平均价格(VWAP) , 在金融市场中,成交量加权平均价格是一种衡量资产平均交易价格的方法,它考虑了交易量的影响。具体来说,是通过将每个交易时段内的成交价格乘以该时段内的成交量,然后将所有时段的结果相加并除以总成交量来得到一个加权平均价格。在文章中提到,使用Python的pandas库可以方便地计算出所有有效数据的成交量加权平均价格。 收益指数 , 收益指数是一个反映投资组合或单一资产在一段时间内累积收益率变动情况的统计指标。在金融领域中,通常用来衡量投资者在一个假设初始投资单位(如1美元)基础上所获得的投资收益表现。通过计算每日、每周或每月的百分比变化,并对其进行累乘(cumulative product),即可得出收益指数。该指数可以帮助分析者评估资产长期的盈利能力以及比较不同资产之间的相对表现。在文章中提及,利用pandas的cumprod函数可以简便地计算出收益指数。
2023-12-16 19:15:59
323
转载
转载文章
...时向上调整,保持深度一致且二点不相会.具体地说,就是将\(x\)和\(y\)以此向上走\(k\)=\(2^{logn}\),...,\(2^1\),\(2^0\)步,如果\(path[x][k]\)!=\(path[y][k]\)(即两点还未相会),就令\(x\)=\(path[x][k]\),\(y\)=\(path[y][k]\). 这时\(x\)与\(y\)只差一步就相会了,返回\(path[x][0]\),即\(x\)的父亲,即为\(x\)和\(y\)的LCA. 该算法的时间复杂度为\(O(log2(Depth))\) 模板题 代码: include<cstdio>include<cstring>include<algorithm>include<iomanip>include<vector>using namespace std;struct edge{int next,to;}e[1000010];int n,m,s,size;int head[500010],depth[500010],path[500010][51];void EdgeAdd(int,int);int LCA(int,int);void DFS(int,int);int main(){memset(head,-1,sizeof(head));scanf("%d%d%d",&n,&m,&s);for(int _=1;_<=n-1;_++){int father,son;scanf("%d%d",&father,&son);EdgeAdd(father,son);EdgeAdd(son,father);}DFS(s,0);for(int _=1;_<=m;_++){int a,b;scanf("%d%d",&a,&b);printf("%d\n",LCA(a,b));}return 0;}void EdgeAdd(int from,int to){e[++size].to=to;e[size].next=head[from];head[from]=size;}void DFS(int from,int father){depth[from]=depth[father]+1;path[from][0]=father;for(int _=1;(1<<_)<=depth[from];_++){path[from][_]=path[path[from][_-1]][_-1];}for(int _=head[from];_!=-1;_=e[_].next){int to=e[_].to;if(to!=father){DFS(to,from);} }}int LCA(int a,int b){if(depth[a]>depth[b]){swap(a,b);}for(int _=20;_>=0;_--){if(depth[a]<=depth[b]-(1<<_)){b=path[b][_];} }if(a==b){return a;}for(int _=20;_>=0;_--){if(path[a][_]==path[b][_]){continue;}else{a=path[a][_];b=path[b][_];} }return path[a][0];} Tarjan版LCA Tarjan版的LCA是离线的,而上文介绍的倍增版LCA是在线的,所以说如果不是直接输出LCA的话,需要一个数组来记录它. 主体思想 从根结点遍历这棵树,遍历到每个结点并使用并查集记录父子关系. 实现方式 用并查集记录父子关系,将遍历过的点合并为一颗树. 若两个结点\(x\),\(y\)分别位于结点\(a\)的左右子树中,那么结点\(a\)就为\(x\)与\(y\)的LCA. 考虑到该结点本身就是自己的LCA的情况,做出如下修改: 若\(a\)是\(x\)和\(y\)的祖先之一,且\(x\)和\(y\)分别在\(a\)的左右子树中,那么\(a\)便是\(x\)和\(y\)的LCA. 这个定理便是Tarjan版LCA的实现基础. 具体步骤 当遍历到一个结点\(x\)时,有以下步骤: 把这个结点标记为已访问. 遍历这个结点的子结点\(y\),并在回溯时用并查集合并\(x\)和\(y\). 遍历与当前结点有查询关系的结点\(z\),如果\(z\)已被访问,则它们的LCA就为\(find(z)\). 需要同志们注意的是,存查询关系的时候是要双向存储的. 该算法的时间复杂度为\(O(n+m)\) Tarjan版的LCA很少用到,但为了方便理解,这里引用了参考文献2里的代码,望原博主不要介意. 代码: include<bits/stdc++.h>using namespace std;int n,k,q,v[100000];map<pair<int,int>,int> ans;//存答案int t[100000][10],top[100000];//存储查询关系struct node{int l,r;};node s[100000];/并查集/int fa[100000];void reset(){for (int i=1;i<=n;i++){fa[i]=i;} }int getfa(int x){return fa[x]==x?x:getfa(fa[x]);}void marge(int x,int y){fa[getfa(y)]=getfa(x);}/------/void tarjan(int x){v[x]=1;//标记已访问node p=s[x];//获取当前结点结构体if (p.l!=-1){tarjan(p.l);marge(x,p.l);}if (p.r!=-1){tarjan(p.r);marge(x,p.r);}//分别对l和r结点进行操作for (int i=1;i<=top[x];i++){if (v[t[x][i]]){cout<<getfa(t[x][i])<<endl;}//输出} }int main(){cin>>n>>q;for (int i=1;i<=n;i++){cin>>s[i].l>>s[i].r;}for (int i=1;i<=q;i++){int a,b;cin>>a>>b;t[a][++top[a]]=b;//存储查询关系t[b][++top[b]]=a;}reset();//初始化并查集tarjan(1);//tarjan 求 LCA} 参考文献 参考文献1 参考文献2 参考文献3 转载于:https://www.cnblogs.com/Lemir3/p/11112663.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30736301/article/details/96105162。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-09 23:03:55
154
转载
Mahout
...大的机器学习库,在大数据处理领域一直备受瞩目。Spark这个家伙,可厉害了,人家是个超级给力、操作还贼简单的分布式计算框架。现如今,越来越多的数据科学家和工程师们发现这家伙好使,都把它当成了心头好,处理数据时的首选法宝。当这两个家伙碰头,那肯定能碰撞出炫酷的火花来。不过,在我们实际做项目整合的时候,Mahout和Spark版本之间的兼容性问题却像个小捣蛋鬼,时不时地就给我们带来些小麻烦。本文将深入探讨这一主题,通过实例代码及详细分析,揭示可能遇到的问题以及应对策略。 2. Mahout与Spark的结合 优势与挑战 2.1 优势 集成Mahout与Spark后,我们可以利用Spark的并行处理能力来大幅提升Mahout算法的执行效率。例如,以下是一段使用Mahout-on-Spark实现协同过滤推荐算法的基础代码示例: scala import org.apache.mahout.sparkbindings._ import org.apache.mahout.math.drm._ val data: RDD[Rating] = ... // 初始化用户-物品评分数据 val drmData = DistributedRowMatrix(data.map(r => (r.user, r.product, r.rating)).map { case (u, i, r) => ((u.toLong, i.toLong), r.toDouble) }, numCols = numProducts) val model = ALS.train(drmData, rank = 10, iterations = 10) 2.2 挑战 然而,看似美好的融合背后,版本兼容性问题如同暗礁般潜藏。你知道吗,Mahout和Spark这两个家伙一直在不停地更新升级自己,就像手机系统一样,隔段时间就蹦出个新版本。这样一来呢,新版的接口或者内部构造可能就会变变样,这就意味着不是所有版本都能无缝衔接、愉快合作的,有时候也得头疼一下兼容性问题。如若不慎选择不匹配的版本组合,可能会出现运行错误、性能低下甚至完全无法运行的情况。 3. 版本冲突实例及其解决之道 3.1 实际案例 假设我们在一个项目中尝试将Mahout 0.13.x与Spark 2.4.x进行集成,可能会遇到如下错误提示(这里仅为示例,并非真实错误信息): Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$sc()Lorg/apache/spark/SparkContext; 这是因为Mahout 0.13.x对Spark的支持仅到2.3.x版本,对于Spark 2.4.x的部分接口进行了更改,导致调用失败。 3.2 解决策略 面对这类问题,我们需要遵循以下步骤来解决: - 确认兼容性:查阅Mahout官方文档或相关社区资源,明确当前Mahout版本所支持的Spark版本范围。 - 降级或升级:根据兼容性范围,决定是回退Spark版本还是升级Mahout版本以达到兼容。 - 依赖管理:在构建工具如Maven或SBT中,精确指定对应的依赖版本,确保项目中所有组件版本一致。 - 测试验证:完成上述操作后,务必进行全面的功能与性能测试,确保系统在新的版本环境中稳定运行。 4. 结论与思考 尽管Mahout与Spark集成过程中的版本冲突可能会带来一些困扰,但只要我们理解其背后的原理,掌握正确的排查方法,这些问题都是可预见且可控的。所以,在我们实际动手开发的时候,千万要像追星一样紧盯着Mahout和Spark这些技术栈的版本更新,毕竟它们一有动静,可能就会影响到兼容性。要想让Mahout和Spark这对好搭档火力全开,就得提前把这些因素琢磨透彻了。 以上内容仅是一个简要的探讨,实际开发过程中可能还会遇到更多具体问题。记住啊,当咱们碰上那些棘手的技术问题时,千万要稳住心态,有耐心去慢慢摸索,而且得乐在其中,把解决问题的过程当成一场冒险探索。这正是编写代码、开发软件让人欲罢不能的魅力所在!
2023-03-19 22:18:02
81
蝶舞花间
PostgreSQL
如何在数据库中实现数据的分页和排序功能?——以PostgreSQL为例 1. 开场白 为什么我们需要分页和排序? 嘿,朋友们!今天我们要聊的是一个非常实用的话题:如何在PostgreSQL数据库中实现数据的分页和排序功能。这事儿每个搞数据库的小伙伴都可能碰到,不管是做那个让大伙儿用起来顺手的网页应用,还是搭建那个能搞定一大堆数据的分析平台,怎么把海量数据弄得清清楚楚、井井有条,真的是太关键了。 1.1 为什么需要分页? 想象一下,如果你正在开发一个电商网站,而你的产品目录里有成千上万种商品,如果直接把所有商品一次性展示给用户,不仅页面加载速度会慢得让人抓狂,而且用户也很难找到他们想要的商品。这时候,分页功能就显得尤为重要了。这家伙能帮我们把海量数据切成小块,吃起来方便,还能让咱们用得更爽,系统也跑得飞快! 1.2 为什么需要排序? 再来聊聊排序。在数据展示中,排序功能可以帮助用户根据自己的需求快速定位到所需信息。比如说,在新闻网站上,大家通常都想第一时间看到最新的新闻动态,或者是想找那些大家都爱看的热门文章,点开看看究竟多火。这样一来,我们就能按照用户的喜好来调整数据的排列顺序,让用户看着更舒心,自然也就更满意啦! 2. PostgreSQL中的分页与排序 既然了解了为什么我们需要这些功能,那么现在让我们来看看如何在PostgreSQL中实现它们吧! 2.1 分页的基本概念 在SQL中,分页通常涉及到两个关键参数:OFFSET 和 LIMIT。OFFSET用于指定从结果集的哪个位置开始返回数据,而LIMIT则限制了返回的数据条目数量。例如,如果你想从第5条记录开始获取10条数据,你可以这样写: sql SELECT FROM your_table_name ORDER BY some_column OFFSET 5 LIMIT 10; 这里,ORDER BY some_column是可选的,但强烈建议你总是为查询加上一个排序条件,因为没有明确的排序规则时,返回的数据可能会出现不一致的情况。 2.2 实战演练:分页查询实例 假设你有一个名为products的表,里面存储了各种产品的信息,你想实现一个分页功能来展示这些产品。首先,你得搞清楚用户现在要看的是哪一页(就是每页显示多少条记录),然后用这个信息算出正确的OFFSET值。这样子才能让用户的请求对上数据库里的数据。 sql -- 假设每页显示10条记录 WITH page AS ( SELECT product_id, name, price, ROW_NUMBER() OVER (ORDER BY product_id) AS row_number FROM products ) SELECT FROM page WHERE row_number BETWEEN (page_number - 1) items_per_page + 1 AND page_number items_per_page; 这里的page_number和items_per_page是根据前端传入的参数动态计算出来的。这样,无论用户请求的是第几页,你都可以正确地返回对应的数据。 2.3 排序的魅力 排序同样重要。通过在查询中添加ORDER BY子句,我们可以控制数据的输出顺序。比如,如果你想按价格降序排列产品列表,可以这样写: sql SELECT FROM products ORDER BY price DESC; 或者,如果你想让用户能够自由选择排序方式,可以在应用层接收用户的输入,并相应地调整SQL语句中的排序条件。 3. 结合分页与排序 实战案例 接下来,让我们将分页和排序结合起来,看看实际效果。咱们有个卖东西的网站,得弄个页面能让大伙儿按不同的标准(比如说价格高低、卖得快不快这些)来排产品。这样大家找东西就方便多了。 sql WITH sorted_products AS ( SELECT FROM products ORDER BY CASE WHEN :sort_by = 'price' THEN price END ASC, CASE WHEN :sort_by = 'sales' THEN sales END DESC ) SELECT FROM sorted_products LIMIT :items_per_page OFFSET (:page_number - 1) :items_per_page; 在这个例子中,:sort_by、:items_per_page和:page_number都是从用户输入或配置文件中获取的变量。这种方式使得我们的查询更加灵活,能够适应不同的业务场景。 4. 总结与反思 通过这篇文章,我们探索了如何在PostgreSQL中有效地实现数据的分页和排序功能。别看这些技术好像挺简单,其实它们对提升用户体验和让系统跑得更顺畅可重要着呢!当然啦,随着项目的不断推进,你可能会碰到更多棘手的问题,比如说要应对大量的同时访问,还得绞尽脑汁优化查询速度啥的。不过别担心,掌握了基础之后,一切都会变得容易起来。 希望这篇技术分享对你有所帮助,也欢迎你在评论区分享你的想法和经验。让我们一起进步,共同成长! --- 这就是我关于“如何在数据库中实现数据的分页和排序功能?”的全部内容啦!如果你对PostgreSQL或者其他数据库技术有任何疑问或见解,记得留言哦。编程路上,我们一起加油!
2024-10-17 16:29:27
54
晚秋落叶
Apache Atlas
数据脱敏 , 数据脱敏是一种对敏感信息进行处理的技术手段,通过替换、加密、模糊化等方式将原始数据转化为无法直接识别个人身份或敏感属性的形式,但在整体结构和分布特征上与原数据保持一致。在本文的上下文中,Apache Atlas 提供了平台,让用户能够定义并实施各种数据脱敏策略,如对电话号码部分数字替换为星号,或隐藏身份证号码的部分数字,以此在满足法规要求的同时,降低数据泄露的风险,保障数据安全。 Apache Atlas , Apache Atlas 是一款开源的数据治理工具,由 Apache 软件基金会开发维护。该工具专注于元数据管理、数据血缘分析、数据分类和数据安全等方面,为企业提供了一个统一的数据治理框架。在本文中,Apache Atlas 作为实现数据脱敏策略的主要平台,用户可以通过它设置数据实体的脱敏规则,控制数据在查询、传输、存储过程中的敏感信息可见性,确保数据隐私保护和合规性要求。 数据实体 , 在数据库或数据管理系统中,数据实体是具有特定属性和关系的数据对象的抽象表示。在Apache Atlas 中,数据实体用来描述业务相关的数据模型,如用户表(User)、订单表(Order)等,包含多个字段(属性)。在本文所讨论的数据脱敏场景下,用户需要在Apache Atlas 中为数据实体定义脱敏策略,例如为用户表(User)中的userId 和 email 字段分别设置不同的脱敏规则,以确保敏感信息在展示或使用时得到有效的遮蔽处理。
2024-03-26 11:34:39
469
桃李春风一杯酒-t
Kylin
数据集成 , 数据集成是指将来自不同来源的数据汇聚到一个统一的数据存储系统中,以便进行集中管理和分析的过程。在企业环境中,由于数据通常分布在多个系统和部门,数据集成需要解决数据格式不一致、数据冗余和数据质量问题,确保不同数据源之间的数据能够无缝对接和融合,从而为业务决策提供准确可靠的数据支持。 数据模型 , 数据模型是对现实世界数据特征的一种抽象表示,它定义了数据元素之间的关系和结构。在Kylin中,数据模型设计是一项核心任务,它通过定义维度(Dimension)和度量(Measure)来描述数据立方体(Cube)。维度是数据立方体中的各个分类轴,如时间、地区、产品类型等;度量则是需要计算的数值,如销售额、访问次数等。通过合理设计数据模型,可以显著提高查询效率和灵活性,满足不同业务场景下的分析需求。 Cube , Cube是Kylin中的一个重要概念,指的是预先计算好的多维数据结构。通过Cube,Kylin可以在大规模数据集上实现快速查询。Cube将所有可能的维度组合预先计算好,形成一个多维数组,当用户发起查询时,Kylin可以直接从Cube中检索结果,而无需实时计算,从而实现亚秒级的查询性能。在构建Cube时,可以选择不同的维度组合和度量方法,以平衡存储空间和查询速度的关系。Cube的这种预计算机制,特别适用于需要频繁进行多维度分析的场景。
2024-12-12 16:22:02
89
追梦人
转载文章
...署,极大提升了部署的一致性和可移植性。 另外,云原生技术的发展也改变了传统的服务器管理模式,Kubernetes作为容器编排工具,能够实现自动化部署、扩展和管理容器化应用,有效解决了多实例、动态扩容等问题,使得项目管理和运维更加灵活高效。 总之,在Eclipse等IDE之外,掌握现代化的项目部署与服务器管理技术将有助于开发者应对更多实际场景中的挑战,提升开发效率及系统的稳定性。因此,深入学习Spring Boot、Docker以及Kubernetes等相关知识,是每一位Web开发者持续进阶的必修课。
2024-02-23 12:52:12
489
转载
Beego
...时,集成测试可能涉及数据库操作、路由处理、中间件等多个部分间的协同工作检查。例如,在文章中提及的Beego项目集成测试示例中,开发者会创建一个模拟服务层,并通过实际HTTP请求对控制器层进行测试,以确认整个请求响应流程及数据持久化等环节能按预期协同完成任务。 行为驱动开发(Behavior Driven Development, BDD) , BDD是一种敏捷软件开发方法论,强调基于用户需求和系统行为来描述测试场景和预期结果。在本文中,Ginkgo是一个遵循BDD原则的测试框架,它鼓励开发者通过清晰易读的语言描述测试上下文、前置条件、行为以及预期结果。在Ginkgo中,Describe、BeforeEach、It 和 By 等关键字被用来构建易于理解的行为测试用例,这有助于团队成员更好地沟通并确保对系统功能有共同的理解和一致的验收标准。
2024-02-09 10:43:01
460
落叶归根-t
ElasticSearch
...csearch作为其数据处理和分析的核心工具。然而,正如文章所提到的,即使是最先进的技术,也难免会在实际应用中遭遇各种挑战。就在上周,一家大型电商公司因Elasticsearch集群配置不当,导致系统在高峰时段出现大规模服务中断,影响了数十万用户的购物体验。事后调查发现,问题的根源同样在于数据格式的不一致以及索引映射的疏忽,这再次提醒我们,无论技术多么成熟,细节上的把控始终是决定成败的关键。 与此同时,国际上对于大数据安全性的关注也在持续升温。欧盟刚刚通过了一项新的法规,要求所有企业必须定期审计其数据存储和处理流程,以确保符合最新的隐私保护标准。这一政策无疑给依赖Elasticsearch的企业带来了额外的压力,因为任何微小的配置失误都可能引发严重的法律后果。例如,某家跨国科技公司在去年就因未能妥善管理用户数据而被处以巨额罚款,成为行业内的警示案例。 从技术角度来看,Elasticsearch社区最近发布了一系列更新,旨在提升系统的稳定性和扩展性。其中一项重要的改进是对动态映射功能的优化,使得开发者能够在不中断服务的情况下快速调整字段类型。此外,新版还引入了更加灵活的权限控制机制,允许管理员为不同团队分配差异化的访问权限,从而有效降低误操作的风险。 回到国内,随着“东数西算”工程的逐步推进,西部地区正在成为新的数据中心集聚地。在这种背景下,如何利用Elasticsearch高效整合分布式数据资源,已成为许多企业亟需解决的问题。专家建议,企业在部署Elasticsearch时应优先考虑采用云原生架构,这样不仅能大幅降低运维成本,还能显著提高系统的容灾能力。 总而言之,无论是技术层面还是管理层面,Elasticsearch的应用都需要我们保持高度的警觉和敏锐的洞察力。正如古语所说:“千里之堤,溃于蚁穴。”只有注重每一个细节,才能真正发挥这项技术的巨大潜力。未来,随着更多创新解决方案的涌现,相信Elasticsearch将在推动数字经济发展的过程中扮演越来越重要的角色。
2025-04-20 16:05:02
63
春暖花开
转载文章
...内容的解释都应该是相一致,而缺点可以是非常昂贵的。那么如何去寻找一本好的教材呢?答案很简单,就是一些顶尖大学的本科或研究生课程所需的线性代数教材。 我建议的一些基础性的教材包括一下几本(仅供参考): Gilbert Strang,2016·第五版·线性代数概述 Sheldon Alex,2015·第三版·线性代数应该这样学 Ivan Savov,2017·没有废话的线性代数指南 此外,建议的一些更高层次的教材如下: Gene Golub 和 Charles Van Loan,2012·矩阵计算 Lloyd Trefethen 和 David Bau,1997·数值线性代数 另外推荐一些关于多元统计的好教材,这是线性代数和数值统计方法的集合。 Richard Johnson 和 Dean Wichern,2012·应用多元统计分析 Wolfgang Karl Hardle 和 Leopold Simar,2015·应用多元统计分析 也有一些在线的书籍,这些书籍可以在维基百科线性代数词条的最后一部分内容中可以看到。 线性代数大学课程 大学的线性代数课程是有用的,这使得本科生学习到他们应该掌握的线性代数内容。而作为一名机器学习实践者,大学的线性代数课程内容可能超过你所需掌握的内容,但这也能为你学习机器学习相关线性代数内容打下坚实的基础。 现在许多大学课程提供幻灯片的讲义、笔记等PDF电子版内容。有些大学甚至提供了预先录制的讲座视频,这无疑是珍贵的。 我鼓励你通过使用大学课程教材,深入学习相关课程来加深对机器学习中特定主题的理解。而不需要完全从头学到尾,这对于机器学习从业者来说太费时间了。 美国顶尖学校推荐的课程如下: Gilbert Strang·麻省理工学院·线性代数 Philip Klein·布朗大学·计算科学中的矩阵 Rachel Thomas·旧金山大学·针对编程者的线性代数计算 线性代数在线课程 与线性代数大学课程不同,在线课程作为远程教育而言显得不是那么完整,但这对于机器学习从业者而言学起来相当的快。推荐的一些在线课程如下: 可汗学院·线性代数 edX·线性代数:前沿基础 问答平台 目前网络上存在大量的问答平台,读者们可以在上面进行相关话题的讨论。以下是我推荐的一些问答平台,在这里要注意,一定要记得定期访问之前发布的问题及坛友的解答。 数学栈交换中的线性代数标记 交叉验证的线性代数标记 堆栈溢出的线性代数标记 Quora上的线性代数主题 Reddit上的数学主题 Numpy资源 如果你是用Python实现相关的机器学习项目,那么Numpy对你而言是非常有帮助的。 Numpy API文档写得很好,以下是一些参考资料,读者可以阅读它们来了解更多关于Numpy的工作原理及某些特定的功能。 Numpy参考 Numpy数组创建例程 Numpy数组操作例程 Numpy线性代数 Scipy线性代数 如果你同时也在寻找关于Numpy和Scipy更多的资源,下面有几个好的参考教材: 2017·用Python进行数据分析 2017·Elegant Scipy 2015·Numpy指南 作者信息 Jason Brownlee,机器学习专家,专注于机器学习教育 文章原标题《Top Resources for Learning Linear Algebra for Machine Learning》,作者:Jason Brownlee, 译者:海棠,审阅:袁虎。 原文链接 干货好文,请关注扫描以下二维码: 本篇文章为转载内容。原文链接:https://blog.csdn.net/yunqiinsight/article/details/79722954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:21:43
326
转载
转载文章
...合控件,用于展示大量数据的列表或网格布局。在本文语境中,RecyclerView被用来实现首页商品列表的滚动展示,并通过监听其滚动事件来统计每个子item(即商品)的曝光量。 OnScrollListener , OnScrollListener是RecyclerView提供的一种接口,允许开发者监听RecyclerView的滚动状态和滚动过程。在本文的具体应用中,当用户滑动RecyclerView时,通过实现OnScrollListener接口并覆盖其中的onScrollStateChanged和onScrolled方法,可以精确捕捉到滚动的状态变化以及滚动的具体位置信息,从而计算出哪些商品条目正在屏幕内显示,进而统计它们的曝光次数。 StaggeredGridLayoutManager , StaggeredGridLayoutManager是RecyclerView支持的一种布局管理器,它可以创建交错网格布局效果,即每一行或者每一列的item高度(宽度)可以不一致,形成错落有致的视觉效果。在实现曝光量统计的过程中,由于不同类型的布局管理器获取可见item范围的方法略有差异,StaggeredGridLayoutManager需要特殊处理,通过findFirstVisibleItemPositions和findLastVisibleItemPositions方法获取当前屏幕上所有span内的首尾可见item位置,再进一步确定并遍历整个屏幕内可见的所有子view进行曝光统计。
2023-07-29 13:55:00
322
转载
转载文章
...够,还需要MySQL数据库与驱动,log4j的jar等等。下面我们开始今天的旅行: 第一步:创建数据库表 在Navicat下执行如下sql命令创建数据库mybatis和表t_user [sql] view plaincopy print? CREATE DATABASE IF NOT EXISTS mybatis; [sql] view plaincopy print? USE mybatis; [sql] view plaincopy print? create table t_user ( user_id int(11) NOT NULL AUTO_INCREMENT, user_name varchar(20) not null, user_age varchar(20) not null, PRIMARY KEY (user_id) )ENGINE=InnoDB DEFAULT CHARSET=utf8; 我们先看一下项目的完整目录,再继续下面的内容 第二步:添加jar包 对于下面代码的内容,我们就不再一一贴出来,只是把最重要的内容贴出来,大家可以下载源码。 第三步:创建model 创建一个model包并在其下创建一个User.Java文件。 [java] view plaincopy print? package com.tgb.model; / 用户 @author liang / public class User { private int id; private String age; private String userName; public User(){ super(); } public int getId() { return id; } public void setId(int id) { this.id = id; } public String getAge() { return age; } public void setAge(String age) { this.age = age; } public String getUserName() { return userName; } public void setUserName(String userName) { this.userName = userName; } public User(int id, String age, String userName) { super(); this.id = id; this.age = age; this.userName = userName; } } 第四步:创建DAO接口 创建一个包mapper,并在其下创建一个UserMapper.java文件作为DAO接口。 [java] view plaincopy print? package com.tgb.mapper; import java.util.List; import com.tgb.model.User; public interface UserMapper { void save(User user); boolean update(User user); boolean delete(int id); User findById(int id); List<User> findAll(); } 第五步:实现DAO接口 在dao包下创建一个UserMapper.xml文件作为上一步创建的DAO接口的实现。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <!-- namespace:必须与对应的接口全类名一致 id:必须与对应接口的某个对应的方法名一致 --> <mapper namespace="com.tgb.mapper.UserMapper"> <insert id="save" parameterType="User"> insert into t_user(user_name,user_age) values({userName},{age}) </insert> <update id="update" parameterType="User"> update t_user set user_name={userName},user_age={age} where user_id={id} </update> <delete id="delete" parameterType="int"> delete from t_user where user_id={id} </delete> <!-- mybsits_config中配置的alias类别名,也可直接配置resultType为类路劲 --> <select id="findById" parameterType="int" resultType="User"> select user_id id,user_name userName,user_age age from t_user where user_id={id} </select> <select id="findAll" resultType="User"> select user_id id,user_name userName,user_age age from t_user </select> </mapper> 这里对这个xml文件作几点说明: 1、namespace必须与对应的接口全类名一致。 2、id必须与对应接口的某个对应的方法名一致即必须要和UserMapper.java接口中的方法同名。 第六步:Mybatis和Spring的整合 对于Mybatis和Spring的整合是这篇博文的重点,需要配置的内容在下面有详细的解释。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd"> <!-- 1. 数据源 : DriverManagerDataSource --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/mybatis" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- 2. mybatis的SqlSession的工厂: SqlSessionFactoryBean dataSource:引用数据源 MyBatis定义数据源,同意加载配置 --> <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> <property name="dataSource" ref="dataSource"></property> <property name="configLocation" value="classpath:config/mybatis-config.xml" /> </bean> <!-- 3. mybatis自动扫描加载Sql映射文件/接口 : MapperScannerConfigurer sqlSessionFactory basePackage:指定sql映射文件/接口所在的包(自动扫描) --> <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer"> <property name="basePackage" value="com.tgb.mapper"></property> <property name="sqlSessionFactory" ref="sqlSessionFactory"></property> </bean> <!-- 4. 事务管理 : DataSourceTransactionManager dataSource:引用上面定义的数据源 --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"></property> </bean> <!-- 5. 使用声明式事务 transaction-manager:引用上面定义的事务管理器 --> <tx:annotation-driven transaction-manager="txManager" /> </beans> 第七步:mybatis的配置文件 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd"> <configuration> <!-- 实体类,简称 -设置别名 --> <typeAliases> <typeAlias alias="User" type="com.tgb.model.User" /> </typeAliases> <!-- 实体接口映射资源 --> <!-- 说明:如果xxMapper.xml配置文件放在和xxMapper.java统一目录下,mappers也可以省略,因为org.mybatis.spring.mapper.MapperFactoryBean默认会去查找与xxMapper.java相同目录和名称的xxMapper.xml --> <mappers> <mapper resource="com/tgb/mapper/userMapper.xml" /> </mappers> </configuration> 总结 Mybatis和Spring的集成相对而言还是很简单的,祝你成功。 源码下载:SpringMVC+Spring4+Mybatis3 下篇博文我们将Hibernate和Mybatis进行一下详细的对比。 本篇文章为转载内容。原文链接:https://blog.csdn.net/konglongaa/article/details/51706991。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-05 11:56:25
111
转载
转载文章
...协调多线程间的通信和数据共享,防止因并发访问共享资源导致的数据不一致问题。 分布式 , 在Java编程语境下,分布式意味着Java能够很好地支持构建分布式系统应用。Java提供了丰富的网络编程API,允许开发者编写可在不同网络节点间通信和协同工作的软件组件,如RMI(Remote Method Invocation)、EJB(Enterprise JavaBeans)等技术,以及对HTTP、TCP/IP协议的支持,使得Java程序可以方便地部署到分布式环境中,实现高可用性和可扩展性。
2023-03-25 09:18:50
84
转载
Kotlin
...配置文件解析错误、或数据传输过程中的数据类型不匹配等。这些问题不仅影响用户体验,还可能导致应用崩溃或产生不可预测的行为。 应对策略与最佳实践 1. 输入验证:在接收外部输入时,实施严格的数据验证,确保所有参数符合预期的类型和格式。使用Kotlin的类型系统和模式匹配特性,可以实现简洁而强大的验证逻辑。 2. 类型转换与异常处理:合理利用Kotlin的类型转换和异常处理机制,如as?操作符和try-catch块,优雅地处理类型不匹配或转换失败的情况。 3. 依赖注入:采用依赖注入(DI)模式可以降低组件间的耦合度,使得在不同环境中复用代码更加容易,同时也便于进行测试和调试。 4. 单元测试与集成测试:通过编写针对不同场景的单元测试和集成测试,可以在开发早期发现并修复非法参数相关的错误,提高代码质量和稳定性。 5. 代码审查与持续集成:引入代码审查流程和自动化持续集成/持续部署(CI/CD)工具,可以帮助团队成员及时发现潜在的代码问题,包括非法参数异常的处理。 结论 在面对非法参数异常等挑战时,Kotlin提供了丰富的工具和机制,帮助开发者构建健壮、可维护的应用。通过采用上述策略和最佳实践,不仅可以有效减少错误的发生,还能提升代码的可读性和可维护性。随着Kotlin在更多领域的广泛应用,未来在处理类似问题时,开发者将能够更好地利用语言特性,实现更高的开发效率和产品质量。
2024-09-18 16:04:27
113
追梦人
转载文章
... 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
NodeJS
...是生产环境中都能保持一致的状态。这话让我一下就想起了小时候玩积木的场景——不管你东拆西挪、反复折腾,只要那些最基本的积木块没动,整座“高楼”就稳得跟啥似的,塌不下来! 那么问题来了:如果我想在我的Node.js项目里用上Docker,该怎么操作呢?别急,咱们一步一步来。 --- 2. 为什么选择Docker? 首先,让我们聊聊为什么要用Docker。简单来说,Docker解决了两个核心痛点: - 环境一致性:想象一下,你在本地调试好的Node.js程序,在服务器上跑却报错。哎呀,这可能是你的服务器上装的软件版本不一样,或者是系统设置没调成一个样儿,所以才出问题啦!Docker可厉害了,它把整个运行环境——比如Node.js、各种依赖库,还有配置文件啥的——全都打包成一个“镜像”,就像是给你的应用做一个完整的备份。这样,无论你什么时候部署,都像是复制了一份一模一样的东西,绝不会出岔子! - 高效部署:传统的部署方式可能是手动上传文件到服务器再启动服务,不仅费时还容易出错。而Docker只需要推送镜像,然后在目标机器上拉取并运行即可,省去了很多麻烦。 当然,这些优点的背后离不开Docker的核心概念——镜像、容器和仓库。简单来说啊,镜像就像是做菜的菜谱,容器就是按照这个菜谱写出来的菜,仓库呢,就是放这些菜谱的地方,想做菜的时候随时拿出来用就行啦!听起来是不是有点抽象?没关系,接下来我们会一步步实践! --- 3. 准备工作 搭建Node.js项目 既然要学怎么用Docker部署Node.js应用,那我们得先有个项目吧?这里我假设你已经会用npm初始化一个Node.js项目了。如果没有的话,可以按照以下步骤操作: bash mkdir my-node-app cd my-node-app npm init -y 这会在当前目录下生成一个package.json文件,用于管理项目的依赖。接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
36
海阔天空
转载文章
...查。 2020年监测数据显示,新生代农民工占比达到50.1%,男性占比高于女性。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高。 2020年就业人数前五位的行业依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 2020年北京市外来新生代农民工监测报告 为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查,2020年监测数据显示,新生代农民工(出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口)占比达到50.1%,已经成为农民工的主体。 一、新生代农民工总体特征 男性占比高于女性,差距进一步加大。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 31-40岁农民工占比提高。新生代农民工平均年龄31.4岁,比上年增加0.4岁。其中,31-40岁的占比为57.9%,比上年提高3.2个百分点;21-30岁的占比为39.9%,16-20岁的占比为2.2%,分别比上年下降2.6个和0.6个百分点。 大学本科以上学历新生代农民工占比增加。新生代农民工中大学本科以上学历占比为21.2%,比上年提高7.9个百分点。其中,大学本科学历的占比为20.0%,研究生学历的占比为1.2%。 外来新生代农民工主要来自北京周边地区。其中,河北、河南两省占比最大,河北省占比为37.3%,比上年同期提高3.5个百分点,河南省占比为12.3%,比上年同期下降3.3个百分点。 二、新生代农民工就业情况 (一)就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高 调查样本中,2020年就业人数前五位的行业与上年一致,依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 除上述五大行业外,从事信息传输、软件和信息技术服务业的新生代农民工比例为7.9%,比上年提高3.7个百分点,在所有行业中增幅最大。 (二)收入水平整体提高,内部差距拉大 调查样本中,新生代农民工月均收入6214元,比上年增加364元,增长6.2%。其中,66.5%月均收入在5000元及以上,比上年高8.6个百分点。 1.不同行业差距较大 新生代农民工从业人数最多的七个行业按照收入水平排序依次为:信息传输、软件和信息技术服务业,建筑业,交通运输、 仓储和邮政业,制造业,批发零售业,住宿和餐饮业,居民服务、修理和其他服务业。月均收入分别为10571元、6587元、6489元、6017元、5888元、5668元和5195元。其中,收入最高的信息传输、软件和信息技术服务业从业人员月均收入比上年同期增长15.5%;从业人数最多、收入最低的居民服务、修理和其他服务业从业人员月均收入比上年同期降低2.6%。 2.不同收入段间收入差距加大 高收入段人员收入增速高于中低收入段。月均收入5000元及以上人员平均月收入为7507元,比上年同期提高2.8个百分点;月均收入4000-5000元人员平均月收入为4175元,比上年同期降低3.4个百分点;月均收入4000元以下人员平均月收入为3064元,比上年同期提高1.1个百分点。 (三)自营人员收入高,工作强度大 自营就业的新生代农民工月均收入6716元,比务工就业人员高568元;自营就业的新生代农民工平均每周工作6.5天,每天工作9.5小时,分别比务工就业人员多0.9天和0.7小时。 三、新生代农民工生活情况 (一)消费支出下降,吃穿住消费占新生代农民工总消费支出的7成以上 受疫情影响,未来收入的不确定性增加,新生代农民工户均消费支出降低。2020年,新生代农民工家庭户均生活消费支出42395元,比上年减少1833元,下降4.1%。 按照金额排序,新生代农民工消费支出排在前三位的依次为:食品烟酒、居住、衣着及其他日用品和服务,分别为14032元、10861元和5141元,前三位消费支出占总消费支出的70.8%。 (二)居住性质略有改变,居住满意度小幅提升 租赁私房人员占比减少,单位提供住房比例提升。从住房性质来看,新生代农民工主要以租赁私房为主,租赁私房的占60.5%,比上年同期降低3.2个百分点;单位提供住房的占33.1%,比上年同期提高4.7个百分点。 单位提供住房,居住消费支出减少,新生代农民工对现在居住条件表示满意的占66.5%,比上年提高3.0个百分点,其中,表示非常满意的占18.6%,比较满意的占47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
转载文章
...单位的二进制流,各个数据项目严格按照顺序紧凑地排列在Class文件之中,中间没有添加任何分隔符,Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。当遇到需要占用8位字节以上空间的数据项时,就按照高位在前的方式分割成若干个8位字节进行存储。 Class文件格式采用类似于C语言结构体的伪结构来存储数据,这种伪结构只有两种数据类型:无符号数和表。 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节、8个字节的无符号数,无符号数可以来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串值。 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,所有表都习惯性的以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class文件本质上就是一张表,它的数据项构成如下图。 2.魔数(Magic Number) 每一个Class文件的头4个字节成为魔数(Magic Number),它的唯一作用是确定这个文件是否是一个能被虚拟机接收的Class文件。很多文件存储标准中都是用魔数来进行身份识别,比如gif、png、jpeg等都有魔数。使用魔数主要是来识别文件的格式,相比于通过文件后缀名识别,这种方式准确性更高,因为文件后缀名可以随便更改,但更改二进制文件内容的却很少。Class类文件的魔数是Oxcafebabe,cafe babe?咖啡宝贝?至于为什么是这个, 这个名字在java语言诞生之初就已经确定了,它象征着著名咖啡品牌Peet's Coffee中深受欢迎的Baristas咖啡,Java的商标logo也源于此。 3.文件版本(Version) 在魔数后面的4个字节就是Class文件的版本号,第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。Java的版本号是从45开始的,JDK1.1之后的每个JDK大版本发布主版本号向上加1(JDK1.0~1.1使用的版本号是45.0~45.3),比如我这里是十六进制的Ox0034,也就是十进制的52,所以说明该class文件可以被JDK1.8及以上的虚拟机执行,否则低版本虚拟机执行会报java.lang.UnsupportedClassVersionError错误。 4.常量池(Constant Pool) 在主版本号紧接着的就是常量池的入口,它是Class文件结构中与其他项目关联最多的数据类型,也是占用空间最大的数据之一。常量池的容量由后2个字节指定,比如这里我的是Ox001d,即十进制的29,这就表示常量池中有29项常量,而常量池的索引是从1开始的,这一点需要特殊记忆,因为程序员习惯性的计数法是从0开始的,而这里不一样,所以我这里常量池的索引范围是1~29。设计者将第0项常量空出来是有目的的,这样可以满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义。 通过javap -v命令反编译出class文件之后,我们可以看到常量池的内容 常量池中主要存放两大类常量:字面量和符号引用。比如文本字符、声明为final的常量值就属于字面量,而符号引用则包含下面三类常量: 类和接口的全限名 字段的名称和描述符 方法的名称和描述符 在之前的文章(详谈类加载的全过程)中有详细讲到,在加载类过程的第二大阶段连接的第三个阶段解析的时候,会将常量池中的符号引用替换为直接引用。相信很多人在开始了解那里的时候也是一头雾水,作者我也是,当我了解到常量池的构成的时候才明白真正意思。Java代码在编译的时候,是在虚拟机加载Class文件的时候才会动态链接,也就是说Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法获得真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。 常量池中每一项常量都是一张表,这里我只找到了JDK1.7之前的常量池项目类型表,见下图。 常量池项目类型表: 常量池常量项的结构总表: 比如我这里测试的class文件第一项常量,它的标志位是Ox0a,即十进制10,即表示tag为10的常量项,查表发现是CONSTANT_Methodref_info类型,和上面反编译之后的到的第一个常量是一致的,Methodref表示类中方法的符号引用。查上面《常量池常量项的结构总表》可以看到Methodref中含有3个项目,第一个tag就是上述的Ox0a,那么第二个项目就是Ox0006,第三个项目就是Ox000f,分别指向的CONSTANT_Class_info索引项和CONSTANT_NameAndType_info索引项为6和15,那么反编译的结果该项常量指向的应该是6和15,查看上面反编译的图应证我们的推测是对的。后面的常量项就以此类推。 这里需要特殊说明一下utf8常量项的内容,这里我以第29项常量项解释,也就是最后一项常量项。查《常量池常量项的结构总表》可以看到utf8项有三个内容:tag、length、bytes。tag表示常量项类型,这里是Ox01,表示是CONSTANT_Utf8_info类型,紧接着的是长度length,这里是Ox0015,即十进制21,那么再紧接着的21个字节都表示该项常量项的具体内容。特别注意length表示的最大值是65535,所以Java程序中仅能接收小于等于64KB英文字符的变量和变量名,否则将无法编译。 5.访问标志(Access Flags) 在常量池结束后,紧接着的两个字节代表访问标志(Access Flags),该标志用于识别一些类或者接口层次的访问信息,其中包括:Class是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
转载文章
...间与本地时间比较,不一致修改本机时间即可。 NtpClient.h //// Created by lwang on 2023-03-18.//ifndef NTP_CLIENT_Hdefine NTP_CLIENT_Hinclude <stdio.h>include <stdlib.h>include <string.h>include <time.h>include <iostream>include <unistd.h>include <sys/select.h>include <sys/time.h>include <sys/socket.h>include <arpa/inet.h>include <netdb.h>include <errno.h>include <endian.h>include <map>include <string>include <mutex>using namespace std;define NTP_LI 0define NTP_VERSION_NUM 3define NTP_MODE_CLIENT 3define NTP_MODE_SERVER 4define NTP_STRATUM 0define NTP_POLL 4define NTP_PRECISION -6define NTP_MIN_LEN 48define NTP_SERVER_PORT 123define NTP_SERVER_ADDR "119.28.183.184"define TIMEOUT 2define BUFSIZE 1500define JAN_1970 0x83aa7e80define NTP_CONV_FRAC32(x) (uint64_t)((x) ((uint64_t)1 << 32))define NTP_REVE_FRAC32(x) ((double)((double)(x) / ((uint64_t)1 << 32)))define NTP_CONV_FRAC16(x) (uint32_t)((x) ((uint32_t)1 << 16))define NTP_REVE_FRAC16(x) ((double)((double)(x) / ((uint32_t)1 << 16)))define USEC2FRAC(x) ((uint32_t)NTP_CONV_FRAC32((x) / 1000000.0))define FRAC2USEC(x) ((uint32_t)NTP_REVE_FRAC32((x)1000000.0))define NTP_LFIXED2DOUBLE(x) ((double)(ntohl(((struct l_fixedpt )(x))->intpart) - JAN_1970 + FRAC2USEC(ntohl(((struct l_fixedpt )(x))->fracpart)) / 1000000.0))struct s_fixedpt{uint16_t intpart;uint16_t fracpart;};struct l_fixedpt{uint32_t intpart;uint32_t fracpart;};struct ntphdr{if __BYTE_ORDER == __BID_ENDIANunsigned int ntp_li : 2;unsigned int ntp_vn : 3;unsigned int ntp_mode : 3;endifif __BYTE_ORDER == __LITTLE_ENDIANunsigned int ntp_mode : 3;unsigned int ntp_vn : 3;unsigned int ntp_li : 2;endifuint8_t ntp_stratum;uint8_t ntp_poll;int8_t ntp_precision;struct s_fixedpt ntp_rtdelay;struct s_fixedpt ntp_rtdispersion;uint32_t ntp_refid;struct l_fixedpt ntp_refts;struct l_fixedpt ntp_orits;struct l_fixedpt ntp_recvts;struct l_fixedpt ntp_transts;};class NtpClient {public:NtpClient();virtual ~NtpClient();void GetNtpTime(std::string &ntpTime);in_addr_t HostTransfer(const char host);int PaddingNtpPackage(void buf, size_t size);double GetOffset(const struct ntphdr ntp, const struct timeval recvtv);private:int m_sockfd;};endif / NTP_CLIENT_H / NtpClient.cpp //// Created by lwang on 2023-03-18.//include "NtpClient.h"NtpClient::NtpClient() { }NtpClient::~NtpClient() {}in_addr_t NtpClient::HostTransfer(const char host){in_addr_t saddr;struct hostent hostent;if ((saddr = inet_addr(host)) == INADDR_NONE){if ((hostent = gethostbyname(host)) == NULL){return INADDR_NONE;}memmove(&saddr, hostent->h_addr, hostent->h_length);}return saddr;}int NtpClient::PaddingNtpPackage(void buf, size_t size) // 构建并发送NTP请求报文{if (!size)return -1;struct ntphdr ntp;struct timeval tv;memset(buf, 0, BUFSIZE);ntp = (struct ntphdr )buf;ntp->ntp_li = NTP_LI;ntp->ntp_vn = NTP_VERSION_NUM;ntp->ntp_mode = NTP_MODE_CLIENT;ntp->ntp_stratum = NTP_STRATUM;ntp->ntp_poll = NTP_POLL;ntp->ntp_precision = NTP_PRECISION;gettimeofday(&tv, NULL); // 把目前的时间用tv 结构体返回ntp->ntp_transts.intpart = htonl(tv.tv_sec + JAN_1970);ntp->ntp_transts.fracpart = htonl(USEC2FRAC(tv.tv_usec));size = NTP_MIN_LEN;return 0;}double NtpClient::GetOffset(const struct ntphdr ntp, const struct timeval recvtv) // 偏移量{double t1, t2, t3, t4;t1 = NTP_LFIXED2DOUBLE(&ntp->ntp_orits);t2 = NTP_LFIXED2DOUBLE(&ntp->ntp_recvts);t3 = NTP_LFIXED2DOUBLE(&ntp->ntp_transts);t4 = recvtv->tv_sec + recvtv->tv_usec / 1000000.0;return ((t2 - t1) + (t3 - t4)) / 2;}void NtpClient::GetNtpTime(std::string &ntpTime){char buffer[64] = {0};char cmd[128] = {0};tm local;char buf[BUFSIZE];size_t nbytes;int maxfd1;struct sockaddr_in servaddr;fd_set readfds;struct timeval timeout, recvtv, tv;double offset;servaddr.sin_family = AF_INET;servaddr.sin_port = htons(NTP_SERVER_PORT);servaddr.sin_addr.s_addr = HostTransfer(NTP_SERVER_ADDR);if ((m_sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){perror("socket error");return ;}if (connect(m_sockfd, (struct sockaddr )&servaddr, sizeof(struct sockaddr)) != 0){perror("connect error");return ;}nbytes = BUFSIZE;if (PaddingNtpPackage(buf, &nbytes) != 0){fprintf(stderr, "construct ntp request error \n");exit(-1);}send(m_sockfd, buf, nbytes, 0);FD_ZERO(&readfds);FD_SET(m_sockfd, &readfds);maxfd1 = m_sockfd + 1;timeout.tv_sec = TIMEOUT;timeout.tv_usec = 0;if (select(maxfd1, &readfds, NULL, NULL, &timeout) > 0){if (FD_ISSET(m_sockfd, &readfds)){if ((nbytes = recv(m_sockfd, buf, BUFSIZE, 0)) < 0){perror("recv error");exit(-1);}// 计算C/S时间偏移量gettimeofday(&recvtv, NULL);offset = GetOffset((struct ntphdr )buf, &recvtv);gettimeofday(&tv, NULL);tv.tv_sec += (int)offset;tv.tv_usec += offset - (int)offset;local = localtime((time_t )&tv.tv_sec);strftime(buffer, 64, "%Y-%m-%d %H:%M:%S", local);ntpTime = std::string(buffer);} }return ;} main.cpp include "NtpClient.h"int main(){std::string ntpTime = "";char curBuf[64] = {0};struct timeval cur;tm local;NtpClient client;client.GetNtpTime(ntpTime);cout << "ntpTime: " << ntpTime << endl;gettimeofday(&cur, NULL);local = localtime((time_t )&cur.tv_sec);strftime(curBuf, 64, "%Y-%m-%d %H:%M:%S", local);std::string curTime = std::string(curBuf);cout << "curTime: " << curTime << endl;if (curTime != ntpTime){cout << "start time calibrate!" << endl;std::string cmd = "sudo date -s \"" + ntpTime + "\"";system(cmd.c_str());cout << "cmd: " << cmd << endl;}else{cout << "time seem" << endl;}return 0;} 推荐一个零声学院免费教程,个人觉得老师讲得不错, 分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis, fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker, TCP/IP,协程,DPDK等技术内容,点击立即学习: 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_46935110/article/details/129683157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:56:47
112
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
lastlog
- 显示每个用户最后一次成功登录的时间和相关信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"