前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[参数列表后的语法异常处理]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...容。 什么时候该抛出异常,抛出什么异常?什么时候该捕获异常,捕获之后怎么处理异常?你可能已经使用异常一段时间了,但对 .NET/C 的异常机制依然有一些疑惑。那么,可以阅读本文。 本文适用于已经入门 .NET/C 开发,已经开始在实践中抛出和捕获异常,但是对 .NET 异常机制的用法以及原则比较模糊的小伙伴。通过阅读本文,小伙伴们可以迅速在项目中使用比较推荐的异常处理原则来处理异常。 本文内容 快速了解 .NET 的异常机制 Exception 类 捕捉异常 引发异常 创建自定义异常 finally 异常堆栈跟踪 异常处理原则 try-catch-finally 该不该引发异常? 该不该捕获异常? 应用程序全局处理异常 抛出哪些异常? 异常的分类 其他 一些常见异常的原因和解决方法 AccessViolationException 快速了解 .NET 的异常机制 Exception 类 我们大多数小伙伴可能更多的使用 Exception 的类型、Message 属性、StackTrace 以及内部异常来定位问题,但其实 Exception 类型还有更多的信息可以用于辅助定位问题。 Message 用来描述异常原因的详细信息 如果你捕捉到了异常,一般使用这段描述能知道发生的大致原因。 如果你准备抛出异常,在这个信息里面记录能帮助调试问题的详细文字信息。 StackTrace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...正确的位置。 下面的列表提供了有关本课程针对谁的一些一般指导。 如果您没有完全匹配这些点,请不要惊慌,您可能只需要在一个或另一个区域刷牙以跟上。 知道如何编写一些代码的开发人员。这意味着,一旦您了解基本语法,就可以选择像Python这样的新编程语言,这对您来说并不重要。这并不意味着您是一名向导编码员,而是可以毫不费力地遵循基本的类似于C的语言。 懂一点机器学习的开发人员。这意味着您了解机器学习的基础知识,例如交叉验证,一些算法和偏差方差折衷。这并不意味着您是机器学习博士,而是您知道地标或知道在哪里查找。 这门迷你课程既不是Python的教科书,也不是机器学习的教科书。 从一个懂一点机器学习的开发人员到一个可以使用Python生态系统获得结果的开发人员,Python生态系统是专业机器学习的新兴平台。 在Python机器学习方面需要帮助吗? 参加我为期2周的免费电子邮件课程,发现数据准备,算法等(包括代码)。 单击立即注册,并获得该课程的免费PDF电子书版本。 立即开始免费的迷你课程! 迷你课程概述 该微型课程分为14节课。 您可以每天完成一堂课(推荐),也可以在一天内完成所有课程(核心!)。这实际上取决于您有空的时间和您的热情水平。 以下是14个课程,可帮助您入门并提高使用Python进行机器学习的效率: 第1课:下载并安装Python和SciPy生态系统。 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 第3课:从CSV加载数据。 第4课:了解具有描述性统计信息的数据。 第5课:通过可视化了解数据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...布订阅模式 1.1 列表的局限 通过队列的 rpush 和 lpop 可以实现消息队列(队尾进队头出),但是消费者需要不停地调用 lpop 查看 List 中是否有等待处理的消息(比如写一个 while 循环)。 为了减少通信的消耗,可以 sleep()一段时间再消费,但是会有两个问题: 1、如果生产者生产消息的速度远大于消费者消费消息的速度,List 会占用大量的内存。 2、消息的实时性降低。 list 还提供了一个阻塞的命令:blpop,没有任何元素可以弹出的时候,连接会被阻塞。 基于 list 实现的消息队列,不支持一对多的消息分发。 1.2 发布订阅模式 除了通过 list 实现消息队列之外,Redis 还提供了一组命令实现发布/订阅模式。 这种方式,发送者和接收者没有直接关联(实现了解耦),接收者也不需要持续尝试获取消息。 1.2.1 订阅频道 首先,我们有很多的频道(channel),我们也可以把这个频道理解成 queue。订阅者可以订阅一个或者多个频道。消息的发布者(生产者)可以给指定的频道发布消息。只要有消息到达了频道,所有订阅了这个频道的订阅者都会收到这条消息。 需要注意的注意是,发出去的消息不会被持久化,因为它已经从队列里面移除了,所以消费者只能收到它开始订阅这个频道之后发布的消息。 下面我们来看一下发布订阅命令的使用方法。 订阅者订阅频道:可以一次订阅多个,比如这个客户端订阅了 3 个频道。 subscribe channel-1 channel-2 channel-3 发布者可以向指定频道发布消息(并不支持一次向多个频道发送消息): publish channel-1 2673 取消订阅(不能在订阅状态下使用): unsubscribe channel-1 1.2.2 按规则(Pattern)订阅频道 支持 ?和 占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
Python
...Python编程语言处理正数求和问题后,我们可以进一步探索其在实际应用场景中的价值。近期,数据分析领域的一项实时研究引起了广泛关注:科研人员利用Python进行大规模气象数据处理时,面临了类似的问题。由于原始数据中包含正负数值,研究人员需要快速准确地计算特定参数(如温度增量)的正向变化总和。通过借鉴文中提到的Python正数筛选与累加方法,并结合abs()函数确保结果正确性,成功实现了对复杂数据集的有效分析。 此外,在金融风控领域,Python同样扮演着关键角色。在评估投资组合收益时,分析师需要精确计算正收益部分的累积和,以排除亏损交易的影响。运用文中介绍的条件判断循环结构,结合Python强大的pandas库进行数据清洗和计算,使得复杂的财务数据分析变得更为高效且精准。 更进一步,Python内置函数的强大性和灵活性,不仅体现在abs()这样的数学运算上,还表现在众多其他场景中。例如,Python 3.9版本引入了新特性——":= walrus operator",它可以简化if条件语句内部的赋值操作,使代码更加简洁易读。这一更新对于解决类似本文所述问题的程序编写具有重要意义,让开发者能够更好地应对实际编程挑战,提升代码质量及执行效率。 综上所述,无论是基础的正数求和问题,还是前沿的数据科学、金融分析等领域,Python以其丰富全面的功能和不断优化的语法设计,持续赋能广大开发者实现高效、准确的数据处理与业务逻辑构建。
2023-04-28 23:59:16
1590
软件工程师
Java
... 同时,针对现代多核处理器环境下的并行计算需求,研究者和工程师们不断探索如何优化Java线程的性能表现。有文章专门探讨了在高并发场景下,合理结合使用join和yield等方法以及锁、信号量等并发工具,以减少上下文切换开销,提升系统整体吞吐量和响应速度。 最后,对于异常处理机制如InterruptedException的研究也不容忽视。在复杂的多线程环境中,如何正确捕获和处理这类异常,确保程序健壮性和一致性,是每个Java开发者需要深入思考的问题。建议阅读相关教程或案例分析,掌握在实际编程中妥善应对中断请求的最佳实践。
2023-03-22 08:55:31
355
键盘勇士
JSON
...ON数据转换为字典和列表之后,进一步了解JSON在现代编程实践中的应用及其重要性是十分必要的。JSON因其简洁、易于阅读和编写的特点,已成为API接口、Web服务以及数据库传输等场景下首选的数据交换格式。 近期(时效性),GitHub于2022年推出了改进后的GraphQL API,它支持JSON格式的数据交互,允许开发者更高效地查询和获取所需数据,这无疑再次印证了JSON在数据交换领域的主导地位。同时,随着Python 3.9及更高版本对JSON模块功能的持续优化,如添加对datetime对象的原生支持,使得JSON与Python类型之间的转换更为便捷且兼容性更强。 此外,深入探究JSON安全方面的话题也具有现实意义。由于JSON常用于处理用户输入或从外部源获取的数据,因此确保其安全性至关重要。例如,防范JSON注入攻击需要对解析JSON时进行严格的输入验证和清理。而在Python中,合理使用json.loads()方法配合object_hook参数可以实现对潜在恶意内容的有效检测和拦截。 综上所述,掌握Python中JSON的处理不仅限于基础的编码解码操作,还应关注其在实际开发中的应用场景、最新技术动态以及相关的安全问题,以提升代码质量及应用程序的安全防护能力。
2024-03-03 16:01:36
529
码农
Java
...ava类型提供了类型参数化类型的完美支撑。Java中的泛型许可程序员编写具有复用性、类型安全性和可读性以及减少代码重复量等优点的代码。 起首,让我们来看看泛型方法。泛型方法是一种将类型类型参数化的方法。所谓类型参数化是指,我们可以在呼叫方法时传递类型参数,在编写方法时使用该参数。以下是泛型方法的语法规则: public <T> void genericMethod(T parameter) { //泛型函数体 } 在上面的语法中,<T>是类型参数,它可以是任何Java符号,在函数体中可以使用,参数T是方法的参数,可以是任何Java类。 接下来,我们来看看泛型类。泛型类是指可以在定义时使用一个或多个类型参数的类。以下是泛型类的语法规则: public class GenericClass<T> { private T memberVar; } 在上面的语法中,<T>是类型参数,在类的定义中被使用,它可以是任何Java符号,类成员memberVar是T类型的。 泛型方法和泛型类的使用可以大大提高程序的可读性和复用性。同时,Java中的泛型还可以确保类型安全性,避免了一些由类型转换错误导致的错误。
2023-01-06 19:10:18
357
码农
Java
在深入理解Java异常机制的基础上,进一步探讨现代编程实践中如何有效利用和优化这一特性显得尤为重要。近期,随着Java 17的发布,其对异常处理机制也进行了一些改进和增强,例如引入了 sealed接口和类来更精确地控制异常的扩展性,有助于开发者更好地管理和捕获特定类型的异常。 在实际开发中,遵循“Fail Fast”原则是提升系统稳定性和可维护性的重要手段。通过合理的异常设计与抛出策略,能快速定位问题并阻止错误传播。例如,在Spring框架的最新版本中,对Controller层的异常处理进行了优化,允许开发者自定义全局异常处理器,以统一的方式处理各类业务异常,从而提供更为友好的用户体验。 此外,对于资源管理相关的异常,如IOException或SQLException,Java提倡使用try-with-resources语句自动关闭资源,这不仅能简化代码,还能确保在发生异常时资源一定能得到正确释放,避免了潜在的内存泄漏问题。 从软件工程的角度来看,学术界和工业界都在持续研究如何提高异常处理的效率和准确性。例如,有研究者提出了基于机器学习预测异常行为的方法,使得程序能够在运行时提前预判并预防可能出现的错误,极大地提升了系统的稳健性和响应速度。 因此,对Java异常机制的理解不应仅停留在语法层面,更要结合最新的技术发展、最佳实践以及前沿理论研究成果,不断优化和完善我们的异常处理逻辑,使程序具备更强的健壮性和可靠性。
2023-08-12 22:57:07
316
编程狂人
Java
...否则无法使用。在方法参数列表中声明的参数也视为局部变量,它们的有效范围只存在于对应方法的执行过程中。 生命周期 , 在计算机编程领域,特别是针对Java中的变量而言,生命周期是指一个变量从创建到销毁的过程。对于成员变量来说,其生命周期始于对象创建(通过new关键字实例化),终于对象被垃圾回收器回收。而对于局部变量,则始于它被声明和初始化之时,终于其所处的代码块执行结束或者方法调用返回之时。理解不同类型的变量生命周期有助于开发者更好地管理内存,避免出现未初始化或意外访问已销毁变量的问题,提高程序的健壮性和安全性。
2023-07-02 10:26:04
287
算法侠
ElasticSearch
...据,并且还能麻溜儿地处理这些数据。 二、什么是ElasticSearch? 简单来说,ElasticSearch是一个基于Lucene的开源搜索引擎,能够进行全文搜索、实时分析和索引管理。它的设计理念是提供一种易于扩展、高性能且实时的搜索解决方案。 三、Painless scripting编程实践 在ElasticSearch中,我们可以通过脚本语言进行各种复杂的操作。这就是我要详细介绍的Painless scripting。 四、Painless scripting的基本概念 Painless是ElasticSearch的一种新的脚本语言,它被设计成一种易学易用的语言,可以方便地与ElasticSearch的数据模型集成。 五、Painless scripting的优势 1. 简单易学 Painless script语言的设计目标就是使用户能够快速上手,并且其语法也尽可能接近Java。 2. 高性能 Painless script语言是在JVM上运行的,因此它的性能非常优秀。 3. 安全性 ElasticSearch对Painless script语言进行了严格的安全检查,防止恶意攻击。 六、Painless scripting的应用场景 1. 数据过滤 我们可以使用Painless脚本来过滤出我们需要的数据。 2. 数据转换 如果我们需要对数据进行一些特殊的处理,例如计算某个字段的平均值或者总和,也可以使用Painless脚本来实现。 3. 数据聚合 Painless脚本可以帮助我们对大量的数据进行聚合操作,例如计算某段时间内的日均访问量。 七、Painless scripting的基本语法 1. 变量定义 在Painless脚本中,我们可以使用var关键字来定义变量。 2. 控制结构 Painless脚本支持if/else、for等控制结构。 3. 函数调用 我们可以直接调用ElasticSearch中的函数,例如avg()、sum()等。 4. 异常处理 在Painless脚本中,我们可以使用try/catch来捕获并处理异常。 八、Painless scripting的示例代码 java GET my-index/_search { "script_fields": { "average_price": { "script": { "source": """ Double total = doc['price'].value(); int count = doc['count'].value(); return total / count; """, "lang": "painless" } } } } 在这段代码中,我们使用了Painless脚本来计算文档中价格的平均值。 九、结论 总的来说,Painless scripting是一种强大而灵活的工具,它可以让我们在ElasticSearch中实现许多复杂的功能。学习并熟练掌握Painless scripting这项技能后,我真心相信咱们的工作效率绝对会蹭蹭往上涨,效果显著到让你惊讶。
2023-02-04 22:33:34
479
风轻云淡-t
VUE
...用,利用其独特的模板语法、响应式数据绑定机制和组件化系统实现高效的数据更新和视图渲染。 双向绑定技术 , 双向绑定是Vue.js中的核心特性之一,在前端开发中用于同步视图与模型的数据状态。在本文提供的Vue博客制作教程中,当我们在模板中使用 插值表达式时,实际上就是在利用Vue的双向绑定功能。这意味着当模型数据发生变化时,视图会自动更新;反之,如果视图层发生改变(如用户交互),也会相应地更新底层的数据模型。 v-for指令 , v-for是Vue.js中的一种迭代或遍历指令,它允许开发者基于数组或者对象的属性来循环渲染一个列表或多个元素。在上述博客示例代码中,v-for=\ post in posts\ 用于遍历定义在组件data对象中的posts数组,并为每一篇博客文章生成对应的HTML结构,如标题和内容部分。这极大地简化了动态列表渲染的过程,提升了开发效率和代码可读性。 路由管理(Vue Router) , Vue Router是Vue.js官方提供的路由库,专门用于Vue.js应用程序中的页面导航和路由控制。尽管在给出的文章片段中并未直接提到Vue Router,但在实际的博客网站开发过程中,它对于处理多页面切换、参数传递及页面间的联动逻辑等至关重要。通过Vue Router,开发者能够轻松构建包含多个视图、具有不同URL路径的现代Web应用。 状态管理(Vuex) , Vuex是Vue.js生态中的状态管理模式+库,它专为管理Vue应用中复杂的状态而设计。虽然文中未详细提及Vuex,但在复杂的博客项目中,全局状态管理是非常关键的一环。Vuex帮助开发者集中存储并管理所有组件共享的状态数据,提供了一套明确的规则保证状态以可预测的方式发生变化,从而使得大型应用的状态管理和维护变得更加简单和可控。
2023-02-07 16:45:07
118
数据库专家
转载文章
在处理网站开发中与MySQL数据库交互时,尤其是文件上传等复杂操作,可能会遇到因MySQL严格模式引发的各种错误。本文所讨论的“SQLSTATE[HY000]: General error: 1364 Field 'xxxxx' doesn't have a default value”就是一个典型例子。为了解决这类问题,开发者需深入理解MySQL的sql-mode配置及其对数据验证的影响。 近期,随着MySQL 8.0版本的广泛使用,数据库的严格性设置得到了进一步强化,这要求开发者更加关注表结构设计和SQL语句编写规范。例如,MySQL官方文档建议,在迁移到新版本前应审查现有的sql-mode设置,并根据业务需求进行适当调整(参见:https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html)。 另外,考虑到数据一致性及安全性,尽管放宽严格模式可以解决部分插入异常,但并不意味着完全摒弃严格模式的优点。实际上,诸如STRICT_TRANS_TABLES等严格模式选项有助于提前发现潜在的数据问题,防止脏数据入库。因此,在实际项目中,应当权衡灵活性与数据完整性,选择最合适的sql-mode组合。 此外,为了更好地应对因MySQL严格模式引起的问题,开发人员还应该熟悉并掌握错误日志分析、事务控制、以及利用触发器、存储过程等手段确保数据完整性。同时,结合具体业务场景,通过合理的表结构设计(如设置默认值或允许字段为空),可以从根本上避免类似问题的发生。 综上所述,深入理解MySQL的运行模式并合理配置sql-mode参数对于优化数据库性能、保证数据安全性和完整性至关重要。同时,结合最新的MySQL版本特性与最佳实践,可有效预防和解决在网站开发过程中可能遇到的相关问题。
2023-12-02 23:16:25
289
转载
.net
...我们需要对可能出现的异常进行适当的处理。这篇文章呢,咱们就从.Net这个大本营出发,来好好唠唠怎么对付Web服务这家伙抛回来的异常情况,讲得明明白白、清清楚楚哈! 2. .NET中的异常类型 .NET中的异常分为两种主要类型:未托管异常和托管异常。未托管异常是由操作系统引发的,如访问无效内存地址等。托管异常这东西,其实是由.NET框架自个儿搞出来的,就比如说你试图访问数组的一个不存在的位置,或者稀里糊涂地拿着个空指针到处用,这些情况就会触发托管异常。对于这两种类型的异常,我们都需要进行相应的处理。 3. 使用try-catch语句捕获异常 在.NET中,我们可以使用try-catch语句来捕获并处理异常。以下是一个简单的示例: csharp try { // 这里是可能会抛出异常的代码 } catch (Exception ex) { // 这里是处理异常的代码 Console.WriteLine("发生了一个错误: " + ex.Message); } 在这个示例中,如果try块中的代码抛出了异常,那么程序会立即跳转到对应的catch块中进行处理。 4. 捕获特定类型的异常 如果我们只关心某种特定类型的异常,可以使用多个catch块来分别处理不同的异常。例如,如果我们只关心数组越界的异常,我们可以这样做: csharp try { // 这里是可能会抛出异常的代码 } catch (ArrayIndexOutOfRangeException ex) { // 处理数组越界的异常 Console.WriteLine("发生了数组越界的错误: " + ex.Message); } catch (Exception ex) { // 如果不是数组越界的异常,就在这里处理 Console.WriteLine("发生了一个错误: " + ex.Message); } 5. 在Web服务中处理异常 在Web服务中,我们可能需要处理来自客户端的各种请求。这些请求可能会由于各种乱七八糟的原因出岔子,比如参数填得不对劲、数据库连接突然掉链子啦等等。我们需要对这些异常进行适当的处理,以保证Web服务的稳定运行。 6. 结论 .NET为我们提供了一套强大的异常处理机制,可以帮助我们在开发过程中有效地处理各种异常。甭管是系统自带的未托管异常,还是咱们自定义的托管异常,无论是那些基本常见的小错误,还是独具匠心的自定义异常,我们都能手到擒来,用try-catch大法或者其他招数,妥妥地把它们给有效处理喽! 7. 问答环节 你是否在.NET开发中遇到过异常处理的问题?你是如何解决这些问题的呢?欢迎留言分享你的经验和建议。
2023-03-10 23:09:25
492
夜色朦胧-t
Scala
...隐式转换可以帮助我们处理很多常见的编程问题。以下是Scala中的隐式转换的一些常见应用场景: 1)类型参数的自动推导:当我们调用一个带有类型参数的方法时,Scala会尝试寻找与该类型参数匹配的隐式值。例如: java def foo[T](t: T): Unit = { println(s"The type of t is $t") } foo("Hello, World!") 在这个例子中,Scala会尝试找到一个可以将字符串转换为T类型的隐式转换,并且找到了scala.Predef.StringOpstoString的隐式转换。 2)隐式转换类:Scala中的隐式转换不仅可以应用于类型参数,也可以应用于对象。例如: java class RichString(val str: String) extends AnyVal { def startsWith(prefix: String): Boolean = str.startsWith(prefix) } object RichString { implicit val stringRich: RichString = new RichString("") } val richStr = "Hello, World!" richStr.startsWith("Hello") 在这个例子中,Scala会尝试找到一个可以将String转换为RichString类型的隐式转换,并且找到了RichString对象。 3)隐式参数解析:我们可以通过在方法或函数的参数列表中声明一个类型为隐式的参数,然后让编译器在编译期间自动推导出该隐式参数的值。例如: java import scala.math.sqrt def area(radius: Double)(implicit ev: => Double = sqrt(4)): Double = { Math.PI radius radius } area(5) 在这个例子中,Scala会尝试找到一个可以将Double转换为Double类型的隐式转换,并且找到了scala.math.sqrt的隐式转换。 序号3:Scala中的隐式转换原理 Scala中的隐式转换是一种编译时机制,它允许我们在代码中省略某些显式类型声明。当你在用Scala编程时,如果编译器找不到一个恰好匹配特定类型的明确类型声明,它就会像个侦探一样,在当前的作用域范围内搜寻一番,看看是否藏着符合要求的隐式类型转换“小秘密”。如果碰巧找到了这样一个隐式转换,编译器就会在程序运行的时候,悄无声息地执行这个转换操作,把参数的类型自动变成目标类型所需要的样子。 例如,考虑下面的代码片段: java class MyClass { val myVar: Int = 5 } val obj = new MyClass() println(obj.myVar + " Hello") // 编译错误 在这个例子中,Scala编译器无法将MyClass的实例转换为String类型,因为没有定义这样的转换。如果我们想要使用隐式转换来解决这个问题,我们可以这样做: java object MyImplicits { implicit val intToString: Int => String = _.toString } val obj = new MyClass() println(MyImplicits.intToString(obj.myVar) + " Hello") // 输出:5 Hello 在这个例子中,我们定义了一个名为intToString的隐式转换,它可以将Int类型转换为String类型。然后我们将这个隐式转换引入到我们的代码中,使得在调用println(obj.myVar + " Hello")时,Scala编译器可以找到这个隐式转换并将其用于将obj.myVar转换为String类型。 总的来说,Scala中的隐式转换是一个强大的工具,它可以帮助我们写出更简洁、更易于理解的代码。但是,咱们也得留个心眼儿,别乱用隐式转换,要不然代码可能会变得让人摸不着头脑,维护起来也够你头疼的。
2023-02-01 13:19:52
120
月下独酌-t
.net
...on是一个特定类型的异常,当尝试通过键从Dictionary或其他关联键值对的集合类中获取对应值,而该键实际上并未存在于集合中时,由系统抛出。此异常提示开发者尝试访问的数据不存在,需要进行错误处理或预先检查以确保键的有效性。 Dictionary , 在.NET编程中,Dictionary是一种泛型集合类型,它实现了IDictionary<TKey, TValue>接口,提供了一种基于键高效查找和存储数据的方法。Dictionary将每个键与其关联的值相关联,允许通过键快速检索对应的值,并且保证了键的唯一性。在文章中,Dictionary是引发KeyNotFoundException的主要场景之一。 TryGetValue方法 , TryGetValue是.NET框架中Dictionary类提供的一个实例方法,用于安全地获取与指定键关联的值。该方法接受两个参数。
2023-04-04 20:01:34
522
心灵驿站
PHP
...遇到各种各样的错误和异常。嘿,你知道吗?SQLQueryException就是我们在捣鼓数据库时经常会遇到的一种查询错误,算是个挺常见的小插曲。本文将详细介绍如何解决PHP中的SQLQueryException。 二、什么是SQLQueryException? SQLQueryException是PHP中的一个内置异常,它发生在执行SQL查询语句时出现问题。一般来说,这多半是因为语法有误、你搜的东西没找对或者是权限不够才出现这种情况的。 三、SQLQueryException解决方法 1. 检查SQL查询语句是否正确 这是最常见的SQLQueryException解决方案。首先,我们需要检查SQL查询语句是否有语法错误或者无效的操作。如果是,那么我们就需要修正这些问题,然后重新运行查询语句。 例如,假设我们的SQL查询语句如下: sql SELECT FROM users WHERE username = 'admin' AND password = 'password' 如果我们在执行这段代码时遇到了SQLQueryException,那么我们可以尝试使用phpinfo()函数来查看MySQL服务器的状态,看看是否存在语法错误或者无效的操作。瞧这个例子,你会发现用户名那块儿应该是小写字母,可咱们的代码里却给写成了大写。因此,我们只需要将用户名字段改为小写即可解决问题: sql SELECT FROM users WHERE username = 'admin' AND password = 'password' 2. 检查数据库连接 除了检查SQL查询语句之外,我们还需要检查数据库连接是否正常。如果数据库连接这环节出了岔子,就算你的SQL查询语句写得再完美无瑕,照样可能引发SQLQueryException这个小恶魔出来捣乱。 例如,假设我们的数据库服务器无法访问,那么我们在执行SQL查询语句时就会遇到SQLQueryException。要搞定这个问题,我们可以试着重启一下数据库服务器,或者瞧瞧网络连接是否一切正常。就像电脑卡顿时咱们会先选择重启一样,数据库服务器有时候也需要“刷新”一下自己。另外,也别忘了看看是不是网络这家伙在关键时刻掉链子了~ bash sudo service mysql restart 3. 使用try-catch结构捕获异常 如果我们不确定SQL查询语句是否有问题,或者不确定数据库连接是否正常,那么我们可以使用try-catch结构来捕获SQLQueryException。这样一来,当我们逮到异常情况时,就能做出相应的应对措施,而不是让程序“砰”地一下崩溃掉。 例如,我们可以使用以下代码来捕获SQLQueryException: php try { $conn = new PDO("mysql:host=localhost;dbname=myDB;charset=utf8", "username", "password"); $stmt = $conn->prepare("SELECT FROM users WHERE username=:username AND password=:password"); $stmt->execute(array( ":username" => $username, ":password" => $password )); } catch (PDOException $e) { echo "Error!: " . $e->getMessage(); } 在这个例子中,如果我们在执行SQL查询语句时遇到了SQLQueryException,那么程序就会跳转到catch语句中,并打印出错误信息。这样,我们就可以及时发现并处理SQLQueryException了。 四、总结 通过以上介绍,我们可以看出SQLQueryException是一种比较常见的数据库查询错误。为了更顺溜地搞定这个问题,咱们得先瞧瞧SQL查询语句是不是敲对了,再瞅瞅数据库连接是否顺畅。还有啊,别忘了用try-catch这个小法宝来兜住可能出现的异常情况,这样就万无一失啦!只要咱们把这些小技巧都掌握熟练了,就能轻松搞掂SQLQueryException,让它再也不能困扰咱们啦!
2023-05-04 22:50:29
88
月影清风-t
Shell
...在Shell中捕获并处理信号? 在Linux Shell编程的世界里,进程间的通信和协作往往离不开对系统信号的巧妙运用。在咱们这个领域里,trap命令可是个大宝贝,它能够帮我们把特定的信号给逮住,一旦接收到这些信号,就能按照我们自定义的方式来操作,可灵活多啦!今天,咱们就一块儿来好好唠唠怎么巧妙运用trap命令,让咱的Shell脚本变得更结实、更机灵。 1. trap命令的基本概念 首先,让我们揭开trap命令的神秘面纱。在Shell脚本中,trap命令用于指定在接收到指定信号时要执行的命令或函数。它的基本语法如下: bash trap command signal_list 其中,command是要在接收到信号时执行的命令或函数,而signal_list则是一个或多个以空格分隔的信号名称或数字。 例如,我们可以设置当脚本接收到SIGINT(即用户按下Ctrl+C)时打印一条消息然后退出: bash !/bin/bash trap 'echo "Caught SIGINT, exiting now..."; exit' INT while true; do echo "This is an infinite loop" sleep 1 done 在这个例子中,如果我们试图中断这个无限循环,shell将捕获到SIGINT信号,并执行预设的命令——打印信息并退出脚本。 2. 多个信号的捕获与处理 trap命令可以同时为多个信号指定处理程序,只需将它们列在signal_list中即可: bash !/bin/bash trap 'echo "Caught a signal: $1"; exit' INT TERM HUP 主体代码... 在此例中,脚本会在接收到SIGINT(中断)、SIGTERM(终止)或SIGHUP(挂起)任一信号时,输出相应的信息并退出。 3. 清理操作与临时退出 除了用于直接响应信号外,trap命令还可以用来进行必要的清理工作,比如关闭文件描述符、删除临时文件等。假设我们在脚本中打开了一个日志文件: bash !/bin/bash LOGFILE=log.txt exec 3>> "$LOGFILE" 将文件描述符3关联到日志文件 设置一个trap来清理资源 trap 'echo "Cleaning up..."; exec 3>&-; exit' EXIT 主体代码,往日志文件写入数据 while :; do date >>&3 sleep 1 done 在这段代码中,无论脚本是正常结束还是因信号退出,都会先执行trap中的命令,关闭关联的日志文件,从而确保资源得到妥善释放。 4. 恢复默认信号处理 有时候,我们需要在完成某些任务后恢复信号的默认处理方式。这可以通过重新设置trap命令实现: bash !/bin/bash 首先捕获SIGINT并打印信息 trap 'echo "Interupt received but ignored for now.";' INT 执行一些需要防止被中断的任务 your_critical_task_here 恢复SIGINT的默认行为(即终止进程) trap - INT echo "Now SIGINT will terminate the script." 后续代码... 通过这样的设计,我们可以在关键操作期间暂时忽略中断信号,待操作完成后,再恢复信号的默认处理机制。 总结起来,trap命令赋予了Shell脚本更强大的生存能力,使其能够优雅地应对各种外部事件。要真正把Shell编程这门手艺玩得溜,掌握trap命令的使用绝对是你不能绕过的关键一环,这一步走稳了,你的编程技能绝对能蹭蹭往上涨。希望以上示例能帮助大家更好地理解和应用这一强大功能,让你的脚本变得更加聪明、可靠!
2024-02-06 11:30:03
131
断桥残雪
Struts2
...尾”阶段闹脾气、抛出异常的情况,其实并不算少见。那么,如何理解和妥善处理这类异常呢?本文将带您一起探索这个主题。 2. Struts2 Interceptor的工作原理及流程 首先,让我们回顾一下Struts2 Interceptor的基本工作原理。每个Interceptor按照配置文件中定义的顺序执行,分为“预处理”和“后处理”两个阶段: - 预处理阶段(intercept()方法前半部分):主要用于对Action调用之前的请求参数进行预处理,例如数据校验、权限检查等。 java public String intercept(ActionInvocation invocation) throws Exception { // 预处理阶段代码 try { // 进行数据校验或权限检查... } catch (Exception e) { // 处理并可能抛出异常 } // 调用下一个Interceptor或执行Action String result = invocation.invoke(); // 后处理阶段代码 // ... return result; } - 后处理阶段(intercept()方法后半部分):主要是在Action方法执行完毕,即将返回结果给视图层之前,进行一些资源清理、日志记录等工作。 3. Interceptor抛出异常的场景与处理 假设我们在预处理阶段进行用户权限验证时发现当前用户无权访问某个资源,此时可能会选择抛出一个自定义的AuthorizationException。 java public String intercept(ActionInvocation invocation) throws Exception { // 模拟权限验证失败 if (!checkPermission()) { throw new AuthorizationException("User has no permission to access this resource."); } // ... } 当Interceptor抛出异常时,Struts2框架默认会停止后续Interceptor的执行,并通过其内部的异常处理器链来处理该异常。若未配置特定的异常处理器,则最终会显示一个错误页面。 4. 自定义异常处理策略 对于这种情况,开发者可以根据需求定制异常处理策略。比方说,你可以亲手打造一个定制版的ExceptionInterceptor小助手,让它专门逮住并妥善处理这类异常情况。或者呢,你也可以在struts.xml这个配置大本营里,安排一个全局异常的乾坤大挪移,把特定的异常类型巧妙地对应到相应的Action或结果上去。 xml /error/unauthorized.jsp 5. 总结与探讨 在面对Interceptor拦截器抛出异常的问题时,理解其运行机制和异常处理流程至关重要。作为开发者,咱们得机智地运用Struts2给出的异常处理工具箱,巧妙地设计和调配那些Interceptor小家伙们,这样才能稳稳保证系统的健壮性,让用户体验溜溜的。同时呢,咱也得把代码的可读性和可维护性照顾好,让处理异常的过程既够严谨又充满弹性,可以方便地扩展。这说到底,就是在软件工程实践中的一种艺术活儿。 通过以上的探讨和实例分析,我们不仅揭示了Struts2 Interceptor在异常处理中的作用,也展现了其在实际开发中的强大灵活性和实用性。希望这篇文章能帮助你更好地驾驭Struts2,更从容地应对各种复杂情况下的异常处理问题。
2023-03-08 09:54:25
159
风中飘零
c++
...于模板函数,它的基本语法如下: cpp template T myFunction(T arg) { // ... } 在这个例子中,myFunction是一个模板函数,它可以接受任何类型(由typename T指定)的参数。当我们呼叫这个函数的时候,就相当于给编译器发了个任务,它会根据我们塞给它的实际参数类型,灵活地决定生成对应的代码。就像是个聪明的厨师,你给他不同的食材,他就能给你做出不同的菜式。 三、函数模板的具体化 函数模板的具体化是指将一个模板函数或者模板类转换为具体的函数或者类。在C++中,我们可以通过以下方式来具体化一个函数模板: 1. 通过函数实参的类型来具体化 这是最常见的具体化方式。当你在使用模板函数的时候,就像拿着一个神奇的模具,只要塞入特定类型的“材料”(也就是参数),编译器这个大厨就会立刻根据这个模具为你现场“烹饪”出对应的代码来。 例如,如果我们有一个模板函数print(),它可以打印任意类型的值: cpp template void print(const T& value) { std::cout << value << std::endl; } 我们可以这样调用它: cpp print(123); // 输出:123 print("hello"); // 输出:hello 在这个例子中,编译器会根据我们传递的具体参数类型来决定生成什么样的代码。 2. 通过typedef来具体化 有时候,我们可能希望将一个模板函数或者模板类转换为一个具体的名字。嘿,你知道吗?在这关键时刻,我们可以祭出一个叫“typedef”的小法宝,给原有的类型起个新名字。这样一来,我们就能用这个新鲜出炉的类型名去呼唤模板函数或者模板类了,是不是很酷炫呢? 例如,我们可以这样定义一个模板函数: cpp template T add(T x, T y) { return x + y; } 然后,我们可以使用typedef来创建一个新的类型名: cpp typedef int Int; typedef double Double; Int addInt(Int x, Int y) { // 具体化后的版本 return x + y; } Double addDouble(Double x, Double y) { // 具体化后的版本 return x + y; } 在这个例子中,我们分别对add函数进行了两次具体化,一次是将int类型的具体化版本命名为addInt,另一次是将double类型的具体化版本命名为addDouble。 四、结论 在C++中,函数模板是一种非常强大的工具,它可以让我们编写出更加灵活和通用的代码。但是,我们在使用函数模板时,也需要了解如何具体化它。希望通过以上的介绍,能够帮助你更好地理解和使用C++函数模板。
2023-09-27 10:22:50
552
半夏微凉_t
Go Gin
...,Go Gin被用于处理HTTP请求和响应,以及实现RESTful API服务。通过使用Go Gin,开发人员能够方便地定义路由、处理请求参数,并对各种异常情况(如数据库插入异常)进行统一且优雅的处理。 JSON(JavaScript Object Notation) , JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。在本文提供的代码示例中,ShouldBindJSON方法就是用来从HTTP请求中解析并绑定JSON格式的数据到Go语言结构体变量(这里指User类型),从而将客户端提交的用户信息转换为服务器端可操作的对象。 并发冲突 , 在多线程或多进程环境下,当多个操作尝试同时访问和修改同一数据资源时,如果没有合适的同步机制,可能会导致数据不一致或预期外的结果,这种情况被称为并发冲突。在实际开发在线商店系统时,例如在高并发场景下处理用户注册请求,可能出现多个请求同时尝试插入相同的用户名等信息到数据库,此时就需要妥善处理并发冲突,确保数据的一致性和完整性。
2023-05-17 12:57:54
470
人生如戏-t
Javascript
...起来整洁清爽,还能在处理字符串时变得更加灵活。特别是在你需要插入一些复杂的表达式时,它就显得特别好用了。接下来,我们就一步一步探索如何玩转它们吧! 1. 什么是模板字面量? 首先,让我们从基础开始。嘿,你知道吗?ES6搞了个新玩意儿叫模板字面量,这东西超酷的!你可以直接在字符串里塞进变量和各种表达式,简直不要太方便!你可能已经见过这种东西了,它们看起来就像这样: javascript const name = "Alice"; console.log(Hello, ${name}!); 这段代码会输出 Hello, Alice!。这里的关键在于反引号( )和花括号({}),它们让一切变得不一样。 2. 简单的嵌入 变量和表达式 现在,让我们深入一点。模板字面量不仅限于插入简单的变量。你还可以插入任何有效的JavaScript表达式。比如,我们想输出两个数字相加的结果: javascript const num1 = 5; const num2 = 7; console.log(The sum is ${num1 + num2}.); 这里,${num1 + num2} 就是一个表达式,它的值会被计算并插入到最终的字符串中。 3. 复杂表达式的嵌入 函数调用和条件判断 但真正的乐趣在于处理更复杂的场景。想象一下,你现在正忙着设计一个用户界面,得让它能根据用户的输入,自个儿变出点新东西来。这时候,模板字面量就能大显身手了。 假设我们需要根据年龄来显示不同的欢迎消息: javascript function getGreeting(age) { if (age < 18) { return 'young'; } else if (age < 65) { return 'adult'; } else { return 'senior'; } } const age = 25; console.log(Welcome, you are a ${getGreeting(age)}.); 这段代码中,我们通过调用getGreeting()函数来决定输出哪个词。这不仅仅简化了代码结构,也让逻辑更加清晰易读。 4. 多行字符串与标签模板 模板字面量还有更多玩法,比如多行字符串和标签模板。先来看看多行字符串,这是非常实用的功能,特别是在编写HTML片段或长文本时: javascript const html = This is a multi-line string. ; console.log(html); 再来看看标签模板。这是一种高级用法,允许你在字符串被解析之前对其进行处理。虽然有点复杂,但非常适合做模板引擎或数据绑定等场景: javascript function tag(strings, ...values) { let result = ''; strings.forEach((str, i) => { result += str + (values[i] || ''); }); return result; } const name = 'Alice'; const greeting = tagHello, ${name}!; console.log(greeting); // 输出: Hello, Alice! 这里的tag函数接收两个参数:一个是原始字符串数组,另一个是所有插入表达式的值。通过这种方式,我们可以对最终的字符串进行任意处理。 5. 结论 模板字面量的价值 总之,模板字面量是现代JavaScript开发中不可或缺的一部分。不管是简化日常生活的小事,还是搞定那些繁琐的业务流程,它们都能让你省心不少。希望今天的分享能帮助你在未来的项目中更好地利用这一强大的工具! --- 希望这篇教程对你有所帮助,如果你有任何疑问或想要了解更多细节,别犹豫,直接留言告诉我吧!让我们一起在编程的世界里不断探索前进!
2024-12-10 15:48:06
97
秋水共长天一色
ZooKeeper
...挑战性的之一就是中断异常(InterruptedException)。这个问题,对任何一个在运行时需要用到线程和同步机制的系统来说,都是个不得了的大问题!今天,咱们就来唠唠嗑,聊聊在 ZooKeeper 这个家伙里头,到底该怎么准确无误地应对那个 InterruptedException 的小妖精吧! 二、什么是 InterruptedException? InterruptedException 是一个在 Java 中表示线程被中断的运行时异常。当线程突然被中断时,它会毫不犹豫地抛出一个异常,这种情况常常发生在我们让线程苦苦等待某个操作完成的时刻,就像我们在等一个IO操作顺利完成那样。 三、为什么我们需要处理 InterruptedException? 在多线程编程中,我们经常需要在一个线程等待另一个线程执行某些操作,这时就可能会发生 InterruptedException。如果不处理这个异常,程序就会崩溃。因此,我们需要学会正确地捕获和处理 InterruptedException。 四、如何在 ZooKeeper 中处理 InterruptedException? 在 ZooKeeper 中,我们可以使用 zookeeper.create 方法创建节点,并设置 createMode 参数为 CreateMode.EPHEMERAL_SEQUENTIAL,这样创建的节点会自动删除,而不需要手动删除。这种方式可以避免因长时间未删除节点而导致的数据泄露问题。 下面是一个简单的示例: java try { ZooKeeper zk = new ZooKeeper("localhost:2181", 3000, new Watcher() { @Override public void process(WatchedEvent event) { System.out.println("Received watch event : " + event); } }); byte[] data = new byte[10]; String path = "/node"; try { zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new RuntimeException(e); } } catch (IOException | KeeperException e) { e.printStackTrace(); } 在这个示例中,我们首先创建了一个 ZooKeeper 对象,并设置了超时时间为 3 秒钟。然后,我们创建了一个节点,并将节点的数据设置为 null。如果在创建过程中不小心遇到 InterruptedException 这个小插曲,我们会把当前线程的状态给恢复原状,然后抛出一个新的 RuntimeException,就像把一个突然冒出来的小麻烦重新打包成一个新异常扔出去一样。 五、总结 在 ZooKeeper 中,我们可以通过设置创建模式为 EPHEMERAL_SEQUENTIAL 来自动删除节点,从而避免因长时间未删除节点而导致的数据泄露问题。同时呢,咱们也得留意一下,得妥善处理那个 InterruptedException,可别小看了它,要是没整对的话,可能会让程序闹脾气直接罢工。
2023-05-26 10:23:50
114
幽谷听泉-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chown user:group file.txt
- 改变文件的所有者和组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"