前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Python解析JSON并存储到数据库 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 设置 page.json 3.3 vue 配置 3.4 tabBar组件代码 3.5 setRole方法 1. 需求背景 公司要求开发一个小程序,要求二种不同权限的人群都可以使用,使用时根据不同的权限,获取不同的tabbar,以及展示对应不同的内容。 登录页面分为 用户登录 及 管理员登录 1.2 用户登录和管理员登录的 tabbar 根据账号角色进行对应展示 1.1 源码下载 【源码】uni-app 微信小程序根据角色动态的更改底部tabbar 2. 问题前提及思路 uniapp 本身的动态设置tabbar方法 uni.setTabBarItem(OBJECT),但是使用这个方法刷新切换时会短暂白屏以及uni.setTabBarItem只能满足动态设置tabbar一项的内容,无法实现多项的需求。所有综合考虑决定还是使用uview-ui的Tabbar底部导航栏组件。 最终选择了uni-app的uview-ui(UI框架)+ vuex来完成这个功能。其中,vuex主要是用来存储当前的tabbar内容的。 3. 开始撸 3.1 设置 tabbar.js 配置不同角色不同的菜单 在utils文件夹下新建一个tabbar.js,来存储不同权限下的底部导航数据。我这里有两种不同的权限,第二种权限比第一种权限多了两项菜单。 // 普通用户tabbarlet tab1 = [{"pagePath": "/pages/loginLogRecord/index","text": "登录记录","iconPath": "/static/icon_bx.png","selectedIconPath": "/static/icon_bx_hover.png"},{"pagePath": "/pages/accessRecord/index","text": "存取记录","iconPath": "/static/icon_adress.png","selectedIconPath": "/static/icon_adress_hover.png"},{"pagePath": "/pages/person/index","text": "我的","iconPath": "/static/icon_user.png","selectedIconPath": "/static/icon_user_hover.png"}]// 管理员用户tabbarlet tab2 = [{"pagePath": "/pages/loginLogRecord/index","text": "登录记录","iconPath": "/static/icon_bx.png","selectedIconPath": "/static/icon_bx_hover.png"},{"pagePath": "/pages/accessRecord/index","text": "存取记录","iconPath": "/static/icon_adress.png","selectedIconPath": "/static/icon_adress_hover.png"},{"pagePath": "/pages/authorizationList/index","text": "授权名单","iconPath": "/static/authorization.png","selectedIconPath": "/static/authorization_hover.png"},{"pagePath": "/pages/inventory/index","text": "盘点","iconPath": "/static/inventory.png","selectedIconPath": "/static/inventory_hover.png"},{"pagePath": "/pages/person/index","text": "我的","iconPath": "/static/icon_user.png","selectedIconPath": "/static/icon_user_hover.png"}]export default [tab1,tab2] 3.2 设置 page.json 在page.json文件里,把tabbar里的几个页面去重放进去。只是单纯的写个路径,什么都不要添加。test,iconPath,selectedIconPath 字段全部删掉这里不需要配置。 "tabBar": {"color": "333333","selectedColor": "328CFA","backgroundColor": "FFFFFF","list": [{"pagePath": "pages/loginLogRecord/index"},{"pagePath": "pages/accessRecord/index"},{"pagePath": "pages/authorizationList/index"},{"pagePath": "pages/inventory/index"},{"pagePath": "pages/person/index"}]} 3.3 vue 配置 uniapp是可以直接使用vuex的,所以,直接在项目的根目录下新建一个store文件夹,存储相关数据。 import Vue from 'vue'import Vuex from 'vuex'Vue.use(Vuex)import tabBar from '@/utils/tabbar.js'const store = new Vuex.Store({state: {wx_token: '',tabBarList: [],roleId: 0, //0 普通员工,1管理员},mutations: {// 设置wx_tokensetWxtoken(state, data) {state.wx_token = data;uni.setStorageSync('wx_token',data)},// 设置用户角色IDsetRoleId(state, data) {state.roleId = data;uni.setStorageSync('roleId',data)state.tabBarList = tabBar[data];uni.setStorageSync('tabBarList',tabBar[data])},},})export default store 在入口文件 main.js 中使用 import Vue from 'vue'import App from './App'import uView from "uview-ui";import store from './store/index'Vue.use(uView);Vue.config.productionTip = falseVue.prototype.$store = storeApp.mpType = 'app'const app = new Vue({...App,store})app.$mount() 3.4 tabBar组件代码 <template><view><u-tabbar :list="tabBarList" :active-color="activeColor" :inactive-color="inactiveColor" :height="84":border-top="borderTop"></u-tabbar></view></template><script>import store from '@/store'export default {props:{tabBarList:{type:Array,default:uni.getStorageSync('tabBarList')} },data() {return {borderTop: true,inactiveColor: '909399',activeColor: '328CFA',} },}</script> 3.5 setRole方法 登录时,获取返回的权限,然后再调用setRole方法 <script>import { mapMutations } from 'vuex';export default {data() {return {roleId:0,};},methods: {methods: {...mapMutations(['setRoleId']),},//登录login() {this.setRoleId(this.roleId)// 0或者1uni.switchTab({url: '../index/index' //然后跳转到登录后的首页})} }}</script> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_36410795/article/details/109075488。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-06 15:14:00
136
转载
Spark
...park在物联网设备数据同步与协调 1. 引言 嗨,朋友们!今天我们要聊一个超级酷炫的话题——Spark如何帮助我们在物联网设备之间实现高效的数据同步与协调。哎呀,这可是我头一回仔细琢磨这个话题,心里那个激动啊,还带着点小紧张,就跟要上台表演似的。话说回来,Spark这个大数据处理工具,在对付海量数据时确实有一手。不过,说到像物联网设备这种分布广、要求快速响应的情况,事情就没那么简单了。那么,Spark到底能不能胜任这项任务呢?让我们一起探索一下吧! 2. Spark基础介绍 2.1 Spark是什么? Spark是一种开源的大数据分析引擎,它能够快速处理大量数据。它的核心是一个叫RDD的东西,其实就是个能在集群里到处跑的数据集,可以让你轻松地并行处理任务。Spark还提供了多种高级API,包括DataFrame和Dataset,它们可以简化数据处理流程。 2.2 为什么选择Spark? 简单来说,Spark之所以能成为我们的首选,是因为它具备以下优势: - 速度快:Spark利用内存计算来加速数据处理。 - 易于使用:提供了多种高级API,让开发变得更加直观。 - 灵活:支持批处理、流处理、机器学习等多种数据处理模式。 2.3 实战代码示例 假设我们有一个简单的数据集,存储在HDFS上,我们想用Spark读取并处理这些数据。下面是一个简单的Scala代码示例: scala // 导入Spark相关包 import org.apache.spark.sql.SparkSession // 创建SparkSession val spark = SparkSession.builder() .appName("IoT Data Sync") .getOrCreate() // 读取数据 val dataDF = spark.read.format("csv").option("header", "true").load("hdfs://path/to/iot_data.csv") // 显示前5行数据 dataDF.show(5) // 关闭SparkSession spark.stop() 3. 物联网设备数据同步与协调挑战 3.1 数据量大 物联网设备产生的数据量通常是海量的,而且这些数据往往需要实时处理。你可以想象一下,如果有成千上万的传感器在不停地吐数据,那得有多少数字在那儿疯跑啊!简直像海里的沙子一样多。 3.2 实时性要求高 物联网设备的数据往往需要实时处理。比如,在一个智能工厂里,如果传感器没能及时把数据传给中央系统做分析,那可能就会出大事儿,比如生产线罢工或者隐藏的安全隐患突然冒出来。 3.3 设备多样性 物联网设备种类繁多,不同设备可能采用不同的通信协议。这就意味着我们需要一个统一的方式来处理这些异构的数据源。 3.4 网络条件不稳定 物联网设备通常部署在各种环境中,网络条件往往不稳定。这就意味着我们需要的方案得有点抗压能力,在网络不给力的时候还能稳稳地干活。 4. 如何用Spark解决这些问题 4.1 使用Spark Streaming Spark Streaming 是Spark的一个扩展模块,专门用于处理实时数据流。它支持多种数据源,包括Kafka、Flume、TCP sockets等。下面是一个使用Spark Streaming从Kafka接收数据的例子: scala // 创建SparkStreamingContext val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) // 创建Kafka流 val kafkaStream = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, Subscribe[String, String](topicsSet, kafkaParams) ) // 处理接收到的数据 kafkaStream.foreachRDD { rdd => val df = spark.read.json(rdd.map(_.value())) // 进一步处理数据... } // 开始处理流数据 ssc.start() ssc.awaitTermination() 4.2 利用DataFrame API简化数据处理 Spark的DataFrame API提供了一种结构化的方式来处理数据,使得我们可以更容易地编写复杂的查询。下面是一个使用DataFrame API处理数据的例子: scala // 假设我们已经有了一个DataFrame df import spark.implicits._ // 添加一个新的列 val enrichedDF = df.withColumn("timestamp", current_timestamp()) // 保存处理后的数据 enrichedDF.write.mode("append").json("hdfs://path/to/enriched_data") 4.3 弹性分布式数据集(RDD)的优势 Spark的核心概念之一就是RDD。RDD是一种不可变的、分区的数据集合,支持并行操作。这对于处理物联网设备产生的数据特别有用。下面是一个使用RDD的例子: scala // 创建一个简单的RDD val dataRDD = spark.sparkContext.parallelize(Seq(1, 2, 3, 4, 5)) // 对RDD进行映射操作 val mappedRDD = dataRDD.map(x => x 2) // 收集结果 val result = mappedRDD.collect() println(result.mkString(", ")) 4.4 容错机制 Spark的容错机制是其一大亮点。它通过RDD的血统信息(即RDD的操作历史)来重新计算丢失的数据。这就让Spark在处理像物联网设备这样的网络环境不稳定的情况时特别给力。 5. 结论 通过上述讨论,我们可以看到Spark确实是一个强大的工具,可以帮助我们有效地处理物联网设备产生的海量数据。虽说在实际操作中可能会碰到些难题,但只要我们好好设计和优化一下,Spark绝对能搞定这个活儿。希望这篇文章对你有所帮助,也欢迎你在实践中继续探索和分享你的经验!
2025-01-06 16:12:37
72
灵动之光
转载文章
...是DBServer(数据库)、M2Server(M2控制台)、LoginGate(游戏网关)、GGService(登录网关)、ItemLogServer(日志),这五个程序都在服务器的任务栏上面运行了吗?如果运行了,那么进入第2个。 2、服务器的端口是不是开放了? 架设战神引擎服务器,默认需要用到的端口有这些,5600、5100、6000、7000、7100、8080、10000、20000、27017(MongoDB芒果数据库)等,这些是战神引擎默认的端口,你看看这些端口在当前架设的服务器上是不是开放了,如果不确定,可以去tool.chinaz.com/port/这个网站扫描看看。 3、引擎里面的IP是否是当前服务器的IP地址? 战神服务端里面的有4个配置文件需要修改里面的IP地址,分别在是这些文件,把这些文件别人的IP换成架设服务器所在的IP地址。 D:\mud2.0\DBServer\DBService.ini D:\mud2.0\GateServer\GameGate\MirGate.ini D:\mud2.0\GateServer\logingate\LoginGate.ini D:\mud2.0\Mir200\Gs1!Setup.txt 4、引擎里面的端口是不是修改过,在这里帮主推荐使用默认的。 跟第二条一样,引擎尽量使用默认的端口,如果修改了端口,导致引擎相互之间无法连接成功,引擎启动失败,门自然也不会开。 5、列表文件是不是存在 战神引擎列表文件有两份,分别是serverlist.json和serverlist.lua,路径如下,看看是不是有这两份文件。 D:\mud2.0\logincenter\logincenter_win\config\serverlist.json D:\mud2.0\logincenter\logincenter_win\application\controllers\serverlist.lua 这2分文件是否存在,如果存在,那么看第6条,答案就在最上面。 6、列表文件里面的IP、端口、格式是不是正确的(这个导致不开门的原因最多) 按照正常的流程,开门之后,就会出现黄色的列表信息,如下图,没有出现,那么可能serverlist.lua文件有问题,这其中包括了里面的列表格式,这个非常重要,你们在修改的时候,记得只修改里面的IP和游戏名字,端口默认8088即可。更不要添加标点符号等,多一个或少空格都会导致这份文件无法加载,从而出现了不开门的情况,如果开门了,到这里点击进不去,也是因为你修改修改的时候,破坏了标准的Lua格式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_43410101/article/details/108263880。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-27 13:11:20
376
转载
NodeJS
...{ // 假设我们从数据库获取用户列表 const users = [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ]; res.json(users); }); // 启动微服务并监听指定端口 app.listen(3000, () => { console.log('User service is running on port 3000...'); }); 上述代码中,我们创建了一个简单的基于 Express 的微服务,它提供了一个获取用户列表的接口。这个啊,其实就是个入门级的小栗子。在真实的项目场景里,这个服务可能会跟数据库或者其他服务“打交道”,从它们那里拿到需要的数据。然后,它会通过API Gateway这位“中间人”,对外提供一个统一的服务接口,让其他应用可以方便地和它互动交流。 4. 微服务间通信 使用gRPC或HTTP 在微服务架构下,各个服务间的通信至关重要。Node.js 支持多种通信方式,例如 gRPC 和 HTTP。以下是一个使用 HTTP 进行微服务间通信的例子: javascript // 在另一个服务中调用上述用户服务 const axios = require('axios'); app.get('/orders/:userId', async (req, res) => { try { const response = await axios.get(http://user-service:3000/users/${req.params.userId}); const user = response.data; // 假设我们从订单服务获取用户的订单信息 const orders = getOrdersFromDatabase(user.id); res.json(orders); } catch (error) { res.status(500).json({ error: 'Failed to fetch user data' }); } }); 在这个例子中,我们的“订单服务”通过HTTP客户端向“用户服务”发起请求,获取特定用户的详细信息,然后根据用户ID查询订单数据。 5. 总结与思考 利用 Node.js 构建微服务架构,我们可以享受到其带来的快速响应、高并发处理能力以及丰富的生态系统支持。不过呢,每种技术都有它最适合施展拳脚的地方和需要面对的挑战。比如说,当碰到那些特别消耗CPU的任务时,Node.js可能就不是最理想的解决方案了。所以在实际操作中,咱们得瞅准具体的业务需求和技术特性,小心翼翼地掂量一下,看怎样才能恰到好处地用 Node.js 来构建一个既结实又高效的微服务架构。就像是做菜一样,要根据食材和口味来精心调配,才能炒出一盘色香味俱全的好菜。同时,随着我们提供的服务越来越多,咱们不得不面对一些额外的挑战,比如怎么管理好这些服务、如何进行有效的监控、出错了怎么快速恢复这类问题。这些问题就像是我们搭建积木过程中的隐藏关卡,需要我们在构建和完善服务体系的过程中,不断去摸索、去改进、去优化,让整个系统更健壮、更稳定。
2023-02-11 11:17:08
128
风轻云淡
Spark
...ka的集成。这可是大数据领域里一个超级实用且热门的话题。不管你是刚入门的小白还是有经验的大神,学会了Spark和Kafka的结合使用,在处理实时数据流时肯定会觉得轻松很多,简直像开了外挂一样! 1.1 为什么选择Spark与Kafka? 想象一下,你正在处理海量的数据流,而且这些数据是不断更新的,怎么办?这时候,Spark与Kafka的组合就派上用场了。Spark这家伙处理海量数据那是真快,而Kafka就像是个传送带,能把这些数据飞快地倒腾来倒腾去。两者结合,简直是天作之合! 1.2 本文结构 接下来,我会从基础概念讲起,然后一步步带你了解如何将Spark与Kafka集成起来。最后,我们还会一起动手实践几个具体的例子。别担心,我不会只是给你一堆枯燥的文字,而是会尽量用口语化的方式讲解,并穿插一些我个人的理解和思考过程。让我们开始吧! 2. 基础概念 2.1 Spark简介 Spark,全名Apache Spark,是一款开源的大数据处理框架。它的亮点在于能飞快地处理数据,还能在内存里直接运算,让处理大数据变得超级顺畅,简直爽翻天!Spark提供了多种API,包括Java、Scala、Python等,非常灵活易用。 2.2 Kafka简介 Kafka,全名Apache Kafka,是一个分布式的消息系统,主要用来处理实时数据流。这个东西特别能扛,能存好多数据,还不容易丢,用来搭建实时的数据流和应用再合适不过了。 2.3 Spark与Kafka集成的优势 - 实时处理:Spark可以实时处理Kafka中的数据。 - 灵活性:Spark支持多种编程语言,Kafka则提供丰富的API接口,两者结合让开发更加灵活。 - 高吞吐量:Spark的并行处理能力和Kafka的高吞吐量相结合,能够高效处理大规模数据流。 3. 实战准备 在开始之前,你需要先准备好环境。确保你的机器上已经安装了Java、Scala以及Spark。说到Kafka,你可以直接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
ReactJS
...Suspense进行数据获取? 1. 初识Suspense 一个改变游戏规则的功能 嗨朋友们!今天我们来聊聊React中的一个超级酷炫的功能——Suspense。如果你在React的世界里混得久了,那你一定懂,处理数据获取这事简直让人抓狂,分分钟想砸手机有木有!以前啊,我们要想搞定异步数据加载,那可真是费劲了,得靠一堆复杂的东西,什么状态管理啦,回调地狱啦,弄不好就把自己绕晕了。但自从Suspense登场后,这一切都变得简单多了! Suspense本质上是一个API,它允许我们在组件中声明性地等待某些资源加载完成,比如数据、图片或者其他模块。这样搞啊,我们就只用操心正事儿了,那些乱七八糟的加载状态啥的,就不用再费劲去琢磨啦! 让我举个例子吧:想象一下你正在做一个电商网站,用户点击某个商品时需要从服务器拉取详细信息。之前的做法大概是这样:用 useState 和 useEffect 来发请求拿数据,然后在页面上先显示个“加载中”,要是出了问题就换成“加载失败”。简单说就是一边等数据,一边给用户一个状态提示呗。但有了Suspense之后,你可以直接告诉React:“嘿,等我这个数据加载完再渲染这部分内容。”听起来是不是很爽? 那么问题来了,具体怎么用呢?别急,咱们慢慢来探索! --- 2. 基本概念与工作原理 首先,我们需要明确一点:Suspense并不是万能药,它主要用来解决“懒加载”和“数据获取”的场景。简单来说,这个主意就是用一个“边框小部件”把那些可能会拖时间的操作围起来,顺便提前说好,要是这些操作没搞定,就给用户展示点啥,免得他们干等着抓狂。 什么是边界组件? 边界组件就是那种负责“守门”的家伙,它会拦截你的组件树中的异步操作。嘿,你听说过没?只要某个小部件发现它得等着数据过来,它就马上开启“备胎模式”,啥叫备胎模式呢?就是先用个临时的东西占着位置,一直撑到后台的活干完,正式的内容才会上场。简单说吧,就是等数据的时候,先给你看个“过渡版”的,不让你干等着发呆! 听起来有点抽象?没关系,咱们看代码! jsx import React, { Suspense } from 'react'; function App() { return ( 我的电商网站 {/ 这里就是我们的边界组件 /} 加载中... }> ); } export default App; 在这个例子中,标签包裹住了组件。想象一下,当想要展示商品信息的时候,它可不是那种直接蹦出来的急性子。首先,它会先客气地说一句“加载中...”给大家打个招呼,然后静静地等后台把数据准备好。一旦数据到位了,它才开始认真地把商品的详细信息乖乖地显示出来。有点像服务员上菜前先说一声“稍等”,然后再端上热腾腾的大餐! --- 3. 实现数据获取 从零开始构建一个简单的例子 接下来,我们动手实践一下,看看如何结合Suspense实现数据获取。假设我们要做一个博客应用,每篇文章都需要从后端获取标题和正文内容。 第一步:创建数据源 为了模拟真实环境,我们可以用fetch API来模拟后端服务: javascript // mockApi.js export const fetchPost = async (postId) => { const response = await fetch(https://jsonplaceholder.typicode.com/posts/${postId}); return response.json(); }; 这里我们用了一个公共的JSONPlaceholder API来获取假数据。当然,在生产环境中你应该替换为自己的API地址。 第二步:定义数据加载逻辑 现在我们需要让React知道如何加载这个数据。我们可以创建一个专门用于数据加载的组件,比如叫PostLoader: jsx // PostLoader.js import React, { useState, useEffect } from 'react'; const PostLoader = ({ postId }) => { const [post, setPost] = useState(null); const [error, setError] = useState(null); useEffect(() => { let isMounted = true; fetchPost(postId) .then((data) => { if (isMounted) { setPost(data); } }) .catch((err) => { if (isMounted) { setError(err); } }); return () => { isMounted = false; }; }, [postId]); if (error) { throw new Error('Failed to load post'); } return post; }; export default PostLoader; 这段代码的核心在于throw new Error这一行。当我们遇到错误时,不是简单地返回错误提示,而是直接抛出异常。这是为了让Suspense能够捕获到它并执行后备渲染。 第三步:整合Suspense 最后一步就是将所有东西组合起来,让Suspense接管整个流程: jsx // App.js import React, { Suspense } from 'react'; import PostLoader from './PostLoader'; const PostDetails = ({ postId }) => { const post = ; return ( {post.title} {post.body} ); }; const App = () => { return ( 欢迎来到我的博客 正在加载文章... }> ); }; export default App; 在这个例子中,会确保如果未能及时加载数据,它会显示“正在加载文章...”。 --- 4. 高级玩法 动态导入与代码分割 除了数据获取之外,Suspense还可以帮助我们实现代码分割。这就相当于你把那些不怎么常用的功能模块“藏”起来,等需要用到的时候再慢慢加载,这样主页面就能跑得飞快啦! 例如,如果你想按需加载某个功能模块,可以这样做: javascript // LazyComponent.js const LazyComponent = React.lazy(() => import('./LazyModule')); function App() { return ( 主页面 加载中... }> ); } 在这里,React.lazy配合Suspense实现了动态导入。当用户访问包含的部分时,React会自动加载对应的模块文件。 --- 5. 总结与反思 好了,到这里我们已经掌握了如何使用Suspense进行数据获取的基本方法。虽然它看起来很简单,但实际上背后涉及了很多复杂的机制。比如,它是如何知道哪些组件需要等待的?又是如何优雅地处理错误的? 我个人觉得,Suspense最大的优点就在于它让开发者摆脱了手动状态管理的束缚,让我们可以更专注于用户体验本身。不过呢,这里还是得提防点小问题,比如说可能会让程序跑得没那么顺畅,还有就是对那些老项目的支持可能没那么友好。 总之,Suspense是一个非常强大的工具,但它并不适合所有场景。作为开发者,我们需要根据实际情况权衡利弊,合理选择是否采用它。 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流哦~ 😊
2025-04-12 16:09:18
87
蝶舞花间
转载文章
...件及package.json文件放到这里,有需要的朋友,可以直接copy一份去配置,毕竟这个配置很臭很长,深入学习感觉又没有太大必要(23333~) {"name": "vue-tsx-template","private": true,"version": "0.0.0","scripts": {"dev": "vite","build": "vue-tsc --noEmit && vite build","preview": "vite preview","fix": "eslint --fix --ext .js,.jsx,.tsx,.vue src && prettier "},"dependencies": {"vue": "^3.2.25"},"devDependencies": {"@typescript-eslint/eslint-plugin": "^5.23.0","@typescript-eslint/parser": "^5.23.0","@vitejs/plugin-vue": "^2.3.3","@vitejs/plugin-vue-jsx": "^1.3.10","autoprefixer": "^10.4.7","eslint": "^8.15.0","eslint-config-airbnb-base": "^15.0.0","eslint-config-prettier": "^8.5.0","eslint-plugin-import": "^2.26.0","eslint-plugin-prettier": "^4.0.0","eslint-plugin-vue": "^8.7.1","postcss": "^8.4.13","prettier": "^2.6.2","sass": "^1.51.0","tailwindcss": "^3.0.24","typescript": "^4.5.4","vite": "^2.9.9","vue-eslint-parser": "^9.0.1","vue-tsc": "^0.34.7"} } 下面是.eslintrc.js文件 module.exports = {env: {browser: true,es2021: true,node: true,// 处理 defineProps 报错'vue/setup-compiler-macros': true,},extends: ['eslint:recommended','airbnb-base','prettier','plugin:prettier/recommended','plugin:vue/vue3-recommended','plugin:@typescript-eslint/recommended','plugin:import/recommended','plugin:import/typescript',],parser: 'vue-eslint-parser',parserOptions: {ecmaVersion: 'latest',parser: '@typescript-eslint/parser',sourceType: 'module',},plugins: ['vue', '@typescript-eslint'],rules: {// 防止prettier与eslint冲突'prettier/prettier': 'error',// eslint-plugin-import es module导入eslint规则配置,旨在规避拼写错误问题'import/no-unresolved': 0,'import/extensions': ['error',{js: 'never',jsx: 'never',ts: 'never',tsx: 'never',json: 'always',},],// 使用导出的名称作为默认属性(主要用作导出模块内部有 default, 和直接导出两种并存情况下,会出现default.proptry 这种问题从在的情况)'import/no-named-as-default-member': 0,'import/order': ['error', { 'newlines-between': 'always' }],// 导入确保是否在首位'import/first': 0,// 如果文件只有一个导出,是否开启强制默认导出'import/prefer-default-export': 0,'import/no-extraneous-dependencies': ['error',{devDependencies: [],optionalDependencies: false,},],/ 关于typescript语法校验 参考文档: https://www.npmjs.com/package/@typescript-eslint/eslint-plugin/'@typescript-eslint/no-extra-semi': 0,// 是否禁止使用any类型'@typescript-eslint/no-explicit-any': 0,// 是否对于null情况做非空断言'@typescript-eslint/no-non-null-assertion': 0,// 是否对返回值类型进行定义校验'@typescript-eslint/explicit-function-return-type': 0,'@typescript-eslint/member-delimiter-style': ['error', { multiline: { delimiter: 'none' } }],// 结合eslint 'no-use-before-define': 'off',不然会有报错,需要关闭eslint这个校验,主要是增加了对于type\interface\enum'no-use-before-define': 'off','@typescript-eslint/no-use-before-define': ['error'],'@typescript-eslint/explicit-module-boundary-types': 'off','@typescript-eslint/no-unused-vars': ['error',{ignoreRestSiblings: true,varsIgnorePattern: '^_',argsIgnorePattern: '^_',},],'@typescript-eslint/explicit-member-accessibility': ['error', { overrides: { constructors: 'no-public' } }],'@typescript-eslint/consistent-type-imports': 'error','@typescript-eslint/indent': 0,'@typescript-eslint/naming-convention': ['error',{selector: 'interface',format: ['PascalCase'],},],// 不允许使用 var'no-var': 'error',// 如果没有修改值,有些用const定义'prefer-const': ['error',{destructuring: 'any',ignoreReadBeforeAssign: false,},],// 关于vue3 的一些语法糖校验// 超过 4 个属性换行展示'vue/max-attributes-per-line': ['error',{singleline: 4,},],// setup 语法糖校验'vue/script-setup-uses-vars': 'error',// 关于箭头函数'vue/arrow-spacing': 'error','vue/html-indent': 'off',},} 4、加入单元测试 单元测试,根据自己项目体量及重要性而去考虑是否要增加,当然单测可以反推一些组件 or 方法的设计是否合理,同样如果是一个稳定的功能在加上单元测试,这就是一个很nice的体验; 我们单元测试是基于jest来去做的,具体安装单测的办法如下,跟着我的步骤一步步来; 安装jest单测相关的依赖组件库 pnpm add @testing-library/vue @testing-library/user-event @testing-library/jest-dom @types/jest jest @vue/test-utils -D 安装完成后,发现还需要安装前置依赖 @testing-library/dom @vue/compiler-sfc我们继续补充 安装babel相关工具,用ts写的单元测试需要转义,具体安装工具如下pnpm add @babel/core babel-jest @vue/babel-preset-app -D,最后我们配置babel.config.js module.exports = {presets: ['@vue/app'],} 配置jest.config.js module.exports = {roots: ['<rootDir>/test'],testMatch: [// 这里我们支持src目录里面增加一些单层,事实上我并不喜欢这样做'<rootDir>/src//__tests__//.{js,jsx,ts,tsx}','<rootDir>/src//.{spec,test}.{js,jsx,ts,tsx}',// 这里我习惯将单层文件统一放在test单独目录下,不在项目中使用,降低单测文件与业务组件模块混合在一起'<rootDir>/test//.{spec,test}.{js,jsx,ts,tsx}',],testEnvironment: 'jsdom',transform: {// 此处我们单测没有适用vue-jest方式,项目中我们江永tsx方式来开发,所以我们如果需要加入其它的内容// '^.+\\.(vue)$': '<rootDir>/node_modules/vue-jest','^.+\\.(js|jsx|mjs|cjs|ts|tsx)$': '<rootDir>/node_modules/babel-jest',},transformIgnorePatterns: ['<rootDir>/node_modules/','[/\\\\]node_modules[/\\\\].+\\.(js|jsx|mjs|cjs|ts|tsx)$','^.+\\.module\\.(css|sass|scss|less)$',],moduleFileExtensions: ['ts', 'tsx', 'vue', 'js', 'jsx', 'json', 'node'],resetMocks: true,} 具体写单元测试的方法,可以参考项目模板中的组件单元测试写法,这里不做过多的说明; 5、封装axios请求库 这里呢其实思路有很多种,如果有自己的习惯的封装方式,就按照自己的思路,下面附上我的封装代码,简短的说一下我的封装思路: 1、基础的请求拦截、相应拦截封装,这个是对于一些请求参数格式化处理等,或者返回值情况处理 2、请求异常、错误、接口调用成功返回结果错误这些错误的集中处理,代码中请求就不再做trycatch这些操作 3、请求函数统一封装(代码中的 get、post、axiosHttp) 4、泛型方式定义请求返回参数,定义好类型,让我们可以在不同地方使用有良好的提示 import type { AxiosRequestConfig, AxiosResponse } from 'axios'import axios from 'axios'import { ElNotification } from 'element-plus'import errorHandle from './errorHandle'// 定义数据返回结构体(此处我简单定义一个比较常见的后端数据返回结构体,实际使用我们需要按照自己所在的项目开发)interface ResponseData<T = null> {code: string | numberdata: Tsuccess: booleanmessage?: string[key: string]: any}const axiosInstance = axios.create()// 设定响应超时时间axiosInstance.defaults.timeout = 30000// 可以后续根据自己http请求头特殊邀请设定请求头axiosInstance.interceptors.request.use((req: AxiosRequestConfig<any>) => {// 特殊处理,后续如果项目中有全局通传参数,可以在这儿做一些处理return req},error => Promise.reject(error),)// 响应拦截axiosInstance.interceptors.response.use((res: AxiosResponse<any, any>) => {// 数组处理return res},error => Promise.reject(error),)// 通用的请求方法体const axiosHttp = async <T extends Record<string, any> | null>(config: AxiosRequestConfig,desc: string,): Promise<T> => {try {const { data } = await axiosInstance.request<ResponseData<T>>(config)if (data.success) {return data.data}// 如果请求失败统一做提示(此处我没有安装组件库,我简单写个mock例子)ElNotification({title: desc,message: ${data.message || '请求失败,请检查'},})} catch (e: any) {// 统一的错误处理if (e.response && e.response.status) {errorHandle(e.response.status, desc)} else {ElNotification({title: desc,message: '接口异常,请检查',})} }return null as T}// get请求方法封装export const get = async <T = Record<string, any> | null>(url: string, params: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'get',url,params,}const data = await axiosHttp<T>(config, desc)return data}// Post请求方法export const post = async <T = Record<string, any> | null>(url: string, data: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'post',url,data,}const info = await axiosHttp<T>(config, desc)return info} 请求错误(状态码错误相关提示) import { ElNotification } from 'element-plus'function notificat(message: string, title: string) {ElNotification({title,message,})}/ @description 获取接口定义 @param status {number} 错误状态码 @param desc {string} 接口描述信息/export default function errorHandle(status: number, desc: string) {switch (status) {case 401:notificat('用户登录失败', desc)breakcase 404:notificat('请求不存在', desc)breakcase 500:notificat('服务器错误,请检查服务器', desc)breakdefault:notificat(其他错误${status}, desc)break} } 6、关于vue-router 及 pinia 这两个相对来讲简单一些,会使用vuex状态管理,上手pinia也是很轻松的事儿,只是更简单化了、更方便了,可以参考模板项目里面的用法example,这里附上router及pinia配置方法,路由守卫,大家可以根据项目的要求再添加 import type { RouteRecordRaw } from 'vue-router'import { createRouter, createWebHistory } from 'vue-router'// 配置路由const routes: Array<RouteRecordRaw> = [{path: '/',redirect: '/home',},{name: 'home',path: '/home',component: () => import('page/Home'),},]const router = createRouter({routes,history: createWebHistory(),})export default router 针对与pinia,参考如下: import { createPinia } from 'pinia'export default createPinia() 在入口文件将router和store注入进去 import { createApp } from 'vue'import App from './App'import store from './store/index'import './style/index.css'import './style/index.scss'import 'element-plus/dist/index.css'import router from './router'// 注入全局的storeconst app = createApp(App).use(store).use(router)app.mount('app') 说这些比较枯燥,建议大家去github参考项目说明文档,下载项目,自己过一遍,喜欢的朋友收藏点赞一下,如果喜欢我构建好的项目给个star不丢失,谢谢各位看官的支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_37764929/article/details/124860873。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 12:27:41
117
转载
转载文章
...宝和余额宝使用不同的数据库 如图: 2、分布式事务解决方案 1、基于数据库XA协议的两段提交 XA协议是数据库支持的一种协议,其核心是一个事务管理器用来统一管理两个分布式数据库,如图 事务管理器负责跟支付宝数据库和余额宝数据库打交道,一旦有一个数据库连接失败,另一个数据库的操作就不会进行,一个数据库操作失败就会导致另一个数据库回滚,只有他们全部成功两个数据库的事务才会提交。 基于XA协议的两段和三段提交是一种严格的安全确认机制,其安全性是非常高的,但是保证安全性的前提是牺牲了性能,这个就是分布式系统里面的CAP理论,做任何架构的前提需要有取舍。所以基于XA协议的分布式事务并发性不高,不适合高并发场景。 2、基于activemq的解决方案 如图: 1、支付宝扣款成功时往message表插入消息 2、message表有message_id(流水id,标识夸系统的一次转账操作),status(confirm,unconfirm) 3、timer扫描message表的unconfirm状态记录往activemq插入消息 4、余额宝收到消息消费消息时先查询message表如果有记录就不处理如果没记录就进行数据库增款操作 5、如果余额宝数据库操作成功往余额宝message表插入消息,表字段跟支付宝message一致 6、如果5操作成功,回调支付宝接口修改message表状态,把unconfirm状态转换成confirm状态 问题描述: 1、支付宝设计message表的目的 如果支付宝往activemq插入消息而余额宝消费消息异常,有可能是消费消息成功而事务操作异常,有可能是网络异常等等不确定因素。如果出现异常而activemq收到了确认消息的信号,这时候activemq中的消息是删除了的,消息丢失了。设置message表就是有一个消息存根,activemq中消息丢失了message表中的消息还在。解决了activemq消息丢失问题 2、余额宝设计message表的目的 当余额宝消费成功并且数据库操作成功时,回调支付宝的消息确认接口,如果回调接口时出现异常导致支付宝状态修改失败还是unconfirm状态,这时候还会被timer扫描到,又会往activemq插入消息,又会被余额宝消费一边,但是这条消息已经消费成功了的只是回调失败而已,所以就需要有一个这样的message表,当余额宝消费时先插入message表,如果message根据message_id能查询到记录就说明之前这条消息被消费过就不再消费只需要回调成功即可,如果查询不到消息就消费这条消息继续数据库操作,数据库操作成功就往message表插入消息。 这样就解决了消息重复消费问题,这也是消费端的幂等操作。 基于消息中间件的分布式事务是最理想的分布式事务解决方案,兼顾了安全性和并发性! 接下来贴代码: 支付宝代码: @Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws userID:转账的用户ID amount:转多少钱/@Autowired@Qualifier("activemq")OrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId,String messageId, int amount) {try {orderService.updateAmount(amount,messageId, userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";}@RequestMapping("/callback")public String callback(String param) {JSONObject parse = JSONObject.parseObject(param);String respCode = parse.getString("respCode");if(!"OK".equalsIgnoreCase(respCode)) {return null;}try {orderService.updateMessage(param);}catch (Exception e) {e.printStackTrace();return "fail";}return "ok";} } public interface OrderService {public void updateAmount(int amount, String userId,String messageId);public void updateMessage(String param);} @Service("activemq")@Transactional(rollbackFor = Exception.class)public class OrderServiceActivemqImpl implements OrderService {Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;@AutowiredJmsTemplate jmsTemplate;@Overridepublic void updateAmount(final int amount, final String messageId, final String userId) {String sql = "update account set amount = amount - ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[]{amount, userId});if (count == 1) {//插入到消息记录表sql = "insert into message(user_id,message_id,amount,status) values (?,?,?,?)";int row = jdbcTemplate.update(sql,new Object[]{userId,messageId,amount,"unconfirm"});if(row == 1) {//往activemq中插入消息jmsTemplate.send("zg.jack.queue", new MessageCreator() {@Overridepublic Message createMessage(Session session) throws JMSException {com.zhuguang.jack.bean.Message message = new com.zhuguang.jack.bean.Message();message.setAmount(Integer.valueOf(amount));message.setStatus("unconfirm");message.setUserId(userId);message.setMessageId(messageId);return session.createObjectMessage(message);} });} }}@Overridepublic void updateMessage(String param) {JSONObject parse = JSONObject.parseObject(param);String messageId = parse.getString("messageId");String sql = "update message set status = ? where message_id = ?";int count = jdbcTemplate.update(sql,new Object[]{"confirm",messageId});if(count == 1) {logger.info(messageId + " callback successfull");} }} activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> spring-dispatcher.xml <beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"xmlns:context="http://www.springframework.org/schema/context"xmlns:task="http://www.springframework.org/schema/task" xmlns:aop="http://www.springframework.org/schema/aop"xmlns:tx="http://www.springframework.org/schema/tx"xmlns:util="http://www.springframework.org/schema/util" xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/utilhttp://www.springframework.org/schema/util/spring-util-3.2.xsdhttp://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsdhttp://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-3.2.xsdhttp://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsdhttp://www.springframework.org/schema/txhttp://www.springframework.org/schema/tx/spring-tx-3.0.xsdhttp://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"><!-- 引入同文件夹下的redis属性配置文件 --><!-- 解决springMVC响应数据乱码 text/plain就是响应的时候原样返回数据--><import resource="../activemq/activemq.xml"/><!--<context:property-placeholder ignore-unresolvable="true" location="classpath:config/core/core.properties,classpath:config/redis/redis-config.properties" />--><bean id="propertyConfigurerForProject1" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"><property name="order" value="1" /><property name="ignoreUnresolvablePlaceholders" value="true" /><property name="location"><value>classpath:config/core/core.properties</value></property></bean><mvc:annotation-driven><mvc:message-converters register-defaults="true"><bean class="org.springframework.http.converter.StringHttpMessageConverter"><property name="supportedMediaTypes" value = "text/plain;charset=UTF-8" /></bean></mvc:message-converters></mvc:annotation-driven><!-- 避免IE执行AJAX时,返回JSON出现下载文件 --><bean id="mappingJacksonHttpMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"><property name="supportedMediaTypes"><list><value>text/html;charset=UTF-8</value></list></property></bean><!-- 开启controller注解支持 --><!-- 注:如果base-package=com.avicit 则注解事务不起作用 TODO 读源码 --><context:component-scan base-package="com.zhuguang"></context:component-scan><mvc:view-controller path="/" view-name="redirect:/index" /><beanclass="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /><bean id="handlerAdapter"class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"></bean><beanclass="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"><property name="mediaTypes"><map><entry key="json" value="application/json" /><entry key="xml" value="application/xml" /><entry key="html" value="text/html" /></map></property><property name="viewResolvers"><list><bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /><bean class="org.springframework.web.servlet.view.UrlBasedViewResolver"><property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /><property name="prefix" value="/" /><property name="suffix" value=".jsp" /></bean></list></property></bean><!-- 支持上传文件 --> <!-- 控制器异常处理 --><bean id="exceptionResolver"class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver"><property name="exceptionMappings"><props><prop key="java.lang.Exception">error</prop></props></property></bean><bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"><property name="driverClass"><value>${jdbc.driverClassName}</value></property><property name="jdbcUrl"><value>${jdbc.url}</value></property><property name="user"><value>${jdbc.username}</value></property><property name="password"><value>${jdbc.password}</value></property><property name="minPoolSize" value="10" /><property name="maxPoolSize" value="100" /><property name="maxIdleTime" value="1800" /><property name="acquireIncrement" value="3" /><property name="maxStatements" value="1000" /><property name="initialPoolSize" value="10" /><property name="idleConnectionTestPeriod" value="60" /><property name="acquireRetryAttempts" value="30" /><property name="breakAfterAcquireFailure" value="false" /><property name="testConnectionOnCheckout" value="false" /><property name="acquireRetryDelay"><value>100</value></property></bean><bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate"><property name="dataSource" ref="dataSource"></property></bean><bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"><property name="dataSource" ref="dataSource"/></bean><tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true" /><aop:aspectj-autoproxy expose-proxy="true"/></beans> logback.xml <?xml version="1.0" encoding="UTF-8"?><!--scan:当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。scanPeriod:设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒当scan为true时,此属性生效。默认的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
500
转载
转载文章
...0.9.dev0) python(conda) python 3.8.13 local IDE vscode 1. 安装TVM 1.1 下载源码 从github上拉取源码git clone --recursive https://github.com/apache/tvm tvm --recursive指令:由于tvm依赖了很多第三方的开源库(子模块) 加入该参数之后也将相应的子模块一起进行clone 或者直接下载源码https://tvm.apache.org/download 1.2 创建虚拟环境及安装依赖库 使用conda创建tvm的虚拟python环境,python版本为3.8,虚拟环境名为tvmenv: conda create -n tvmenv python=3.8 编辑tvm目录下的conda/build-environment.yaml文件: conda/build-environment.yaml Build environment that can be used to build tvm.name: tvmenv The conda channels to lookup the dependencieschannels:- anaconda- conda-forge 将name的值改为刚刚创建的虚拟环境名tvmenv 执行下面的指令,将构建tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
88
转载
JQuery插件下载
...著称。该插件通过利用JSON数组的强大功能来存储和展示数据,使得开发者可以轻松创建出直观的时间轴效果。用户不仅能够便捷地组织和记录一系列事件,还能以时间顺序将这些事件可视化呈现。其高度可定制性和易用性使其成为众多应用场景的理想选择,例如构建社交平台上的个人时间线、博客文章按时间排序的发布历史,以及企业内部用于展示关键里程碑和事务的时间表等。此外,jqtimeline.js还拥有良好的扩展性,能够无缝集成到其他jQuery插件中,进一步丰富网页功能及用户体验。这款插件凭借其实现简单、代码结构清晰的特点,深受开发者喜爱,让时间和事件的管理与展示变得既专业又灵活。 点我下载 文件大小:331.96 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-04 11:36:32
122
本站
Python
Python是一种广泛使用的编程语言,它可以用于很多应用场景,其中包括模拟签收工单。 导入相关模块 import random 定义签收状态列表 status_list = ['已签收', '未签收'] 模拟签收工单函数 def simulate_receipt(num_of_orders): for i in range(num_of_orders): 生成工单号 order_num = random.randint(1000000, 9999999) 随机生成签收状态 status = random.choice(status_list) 输出结果 print(f'工单号:{order_num},签收状态:{status}') 调用函数进行模拟 simulate_receipt(10) 以上代码中,我们使用了Python中的random模块生成随机的工单号和签收状态,最后调用函数进行模拟。 在实际应用中,我们可以根据数据库中的工单信息进行模拟签收,以便测试签收流程的准确性和健壮性。
2023-09-26 11:29:18
154
代码侠
MySQL
...L是一个开源的关系型数据库管理系统,广泛应用于互联网行业和企业级应用中,支持多种SQL语句进行数据查询、更新、管理等操作。在本文的上下文中,MySQL是用户权限管理、查看与配置的核心平台。 mysql.user , mysql.user是MySQL系统内部的一个重要表,用于存储关于所有用户的账户信息和权限设置。该表中记录了每个用户的用户名(User)、允许连接的主机名或IP地址(Host)以及各个用户的全局权限分配情况,如SELECT、INSERT、UPDATE和DELETE等基本权限。 SHOW GRANTS , SHOW GRANTS是MySQL中的一个内置SQL命令,专门用来显示指定用户的所有权限。在文章中,通过执行SHOW GRANTS FOR username @ hostname 语句,可以详细列出该用户从特定主机登录时所拥有的所有全局权限或数据库权限,有助于管理员理解和管理各个用户的实际操作权限范围。
2023-04-12 13:59:00
92
软件工程师
Python
数据类型 , 在编程语言中,数据类型是一种属性或分类,用于定义变量可以存储的数据的种类。在本文中提到的Python列表就是一种数据类型,它允许存储整数、字符串、浮点数等多种不同类型的数据元素,并且这些元素可以在内存中按顺序排列,通过索引进行访问和操作。 列表(List) , 在Python编程语言中,列表是一种有序的可变序列容器,可以容纳任意数量和类型的Python对象。列表使用方括号 来表示,元素之间用逗号分隔。例如,文章中的my_list = 1, 3, 5, 7, 9 就是一个包含整数元素的列表。列表支持多种操作,如添加、删除、修改元素,以及获取长度、查找最大最小值、求和、计算平均值等统计分析操作。 索引(Index) , 在Python列表中,索引是用于定位和访问列表内元素的唯一标识符。列表的索引是从0开始计数的整数,正索引表示从左向右读取元素的位置,而负索引则从右向左计数,-1表示最后一个元素。例如,在代码index = my_list.index(7)中,index变量将被赋值为列表my_list中数字7首次出现的索引位置,即它的索引编号。
2023-10-05 18:16:18
360
算法侠
JQuery
...能需要更高级的字符串解析功能,例如处理嵌套分隔符、正则表达式匹配等。为此,可以关注近期发布的JavaScript库如lodash和ramda,它们提供了丰富的字符串操作函数,增强了对复杂字符串处理的能力。 举例来说,lodash库中的_.split()函数不仅支持基础的字符串分割,还能结合lodash的其他函数实现深度字符串处理逻辑。另外,对于CSV、JSON等特殊格式的字符串转换,可以借助于专门的数据处理库如papaparse(CSV)和json5(JSON),这些库能帮助开发者高效准确地将字符串内容转化为可进一步操作的数据结构。 同时,随着ES6及后续版本的发布,JavaScript语言本身也在不断强化对字符串操作的支持,诸如模板字面量、扩展运算符以及新增的String.prototype.matchAll()等方法,都为字符串处理提供了更为强大的内建能力。 因此,前端开发者在面对字符串分割问题时,除了掌握基础的split()方法之外,还应持续关注和学习现代JavaScript特性和相关工具库的发展,以便在实际项目中更加灵活高效地进行字符串处理。通过深入了解并合理运用这些资源,能够有效提升代码质量与开发效率,更好地应对各种前端开发挑战。
2023-12-16 18:58:28
409
逻辑鬼才
MySQL
...dump是MySQL数据库自带的一种用于备份数据库的命令行工具,它可以将一个或多个MySQL数据库完整地导出为SQL脚本文件,包括表结构、数据记录以及触发器、存储过程等数据库对象。在文章中,用户通过执行mysqldump命令并指定用户名、密码和要导出的数据库名,将源MySQL服务器上的数据导出到本地的一个.sql文件中。 SQL文件 , SQL(Structured Query Language)文件是一种包含一系列SQL语句的文本文件,这些语句可以用来创建数据库表结构、插入数据、更新数据或者执行其他数据库操作。在本文上下文中,通过使用mysqldump工具从源MySQL数据库导出的数据被保存在一个SQL文件中,然后可以在目标MySQL服务器上通过执行该文件中的SQL语句来恢复或导入数据。 数据库服务器 , 数据库服务器是一种专门运行数据库管理系统软件,并负责存储、处理和管理大量结构化数据的计算机系统。在迁移MySQL数据的过程中,涉及到至少两个数据库服务器,即源数据库服务器(需要从其上导出数据)和目标数据库服务器(需要将数据导入到其中)。数据库服务器通常具备高可用性、容错性和可扩展性等特点,以满足不同规模的应用场景需求。
2023-02-12 10:44:09
72
数据库专家
MySQL
... 是一款开源的关系型数据库管理系统,广泛应用于网站、应用开发以及企业级数据存储场景中。在本文上下文中,MySQL 提供了丰富的系统变量设置功能,允许用户根据实际需求调整数据库的运行参数,以优化性能和资源使用。 系统变量 , 在 MySQL 中,系统变量是指由数据库服务器维护的一系列配置项,这些变量可以影响数据库的行为和性能特征,例如连接数上限(max_connections)、缓冲池大小(innodb_buffer_pool_size)等。用户可以根据不同的业务需求来查看、修改这些系统变量,以达到调优数据库的目的。 my.cnf , my.cnf 是 MySQL 数据库的主要配置文件,用于存储全局级别的配置选项和系统变量设定。当 MySQL 服务启动时,会读取并应用该文件中的配置信息。通过编辑 my.cnf 文件并更改系统变量的默认值,用户可以实现永久性地改变 MySQL 服务的运行参数,确保即使在重启服务后,新的系统变量值仍能生效。
2023-09-12 09:01:49
113
算法侠
Docker
...夹放入容器,更涉及到数据持久化、卷管理和多容器间的数据共享等复杂场景。例如,Docker提供了-v或--volume选项用于创建数据卷,实现宿主机与容器之间的数据共享和持久化存储,即使容器被删除,数据依然得以保留。 近期,Docker推出了Compose V2版本,进一步简化了多容器应用程序的部署和管理,其中就包括对多个服务间共享文件夹的优化配置。通过在docker-compose.yml文件中定义volumes关键字,可以轻松指定不同服务间的文件夹挂载关系,这对于微服务架构中的日志共享、配置同步等需求提供了极大便利。 此外,Kubernetes作为容器编排领域的领导者,其PersistentVolume(PV)和PersistentVolumeClaim(PVC)机制为在Pod间共享文件夹提供了更为强大的解决方案。用户可以根据实际需求声明存储资源,实现跨节点甚至跨集群的数据共享。 深入理解并掌握这些高级功能,不仅可以确保在开发、测试到生产环境迁移过程中数据的一致性和完整性,更能提升容器化应用的可维护性和扩展性。对于持续关注云原生技术发展的开发者来说,不断跟进学习Docker及Kubernetes在数据管理方面的最新进展是十分必要的。
2023-11-22 11:10:48
520
键盘勇士
MySQL
随着数据库安全性的日益重要,MySQL用户账号和密码的管理方式也在不断进化。在最新版本中,MySQL采用更高级别的加密算法存储用户密码,如SHA256等,确保即使数据库被非法获取,密码也不会轻易泄露。此外,为了进一步加强安全性,MySQL 8.0引入了 caching_sha2_password 身份验证插件作为默认的身份验证方法,提供了一种更加安全且高效的密码认证机制。 近期,针对MySQL数据库的安全事件频发,各大云服务商和企业纷纷升级自家数据库系统的安全防护措施。例如,某知名云服务商就推出了数据库审计服务,可以实时记录并分析MySQL用户的登录行为、查询操作等,一旦发现异常,立即告警,从而有效防止恶意查看或篡改数据的行为。 另外,在日常运维中,管理员应遵循最小权限原则,为每个MySQL用户分配仅满足其工作需求的最低权限,并定期更新密码策略,包括强制密码复杂度、设置定期更换密码等措施。同时,利用SSL/TLS加密技术保护MySQL客户端与服务器之间的通信,也是防止中间人攻击、保障密码传输安全的重要手段。 对于忘记MySQL密码的情况,除了上述提到的通过命令行工具以具有足够权限的用户重置密码外,还可以借助第三方MySQL管理工具,如phpMyAdmin、Navicat等,它们通常提供了更为直观的操作界面来处理这类问题,大大降低了数据库管理的门槛。 综上所述,MySQL账号和密码的管理不仅涉及到查询和重置这些基本操作,更涵盖了数据库访问控制、密码加密存储、安全审计等多个层面,需要结合最新的安全技术和最佳实践,以实现对MySQL数据库的有效安全管理。
2024-01-21 10:37:36
53
算法侠
Python
...数字标识(码点)。在Python中,Unicode字符串是以Unicode编码表示的字符串类型,记作str。在本文上下文中,提到的\ ²34\ 就是一个包含Unicode字符(如上标2)的Unicode字符串,通过isnumeric()函数可以检测该字符串是否仅由Unicode数字字符组成。 类型检查 , 在编程领域,类型检查是指程序运行时或编译期间对变量、表达式或函数参数的数据类型的验证过程。在Python中,尽管其为动态类型语言,但在处理用户输入或其他不确定来源的数据时,进行类型检查是保障代码正确执行的关键步骤。例如,文章中讨论了如何使用isdigit()、isnumeric()和isdecimal()等函数对字符串进行类型检查,判断其是否符合特定数字类型的要求。 input()函数 , 在Python编程中,input()函数用于接收用户的键盘输入,返回值是一个字符串类型。用户可以根据提示在命令行界面或交互式环境中输入文本、数字或其他信息。结合本文内容,当需要检查用户输入是否为数字时,首先调用input()函数获取用户输入并将其作为字符串存储,随后利用Python内置的字符串方法进行进一步的类型检查与验证。
2023-01-16 10:24:29
404
软件工程师
MySQL
...L是一个开源的关系型数据库管理系统,广泛应用于网站和应用开发中。在本文的语境中,MySQL是用户进行数据存储、查询和管理的基础服务,当出现“Table database_name.table_name doesn t exist”错误时,意味着在MySQL中无法找到指定的数据库表。 权限 , 在数据库系统如MySQL中,权限是指用户对数据库或其中的对象(例如表)执行特定操作的能力。这些权限可以细分为创建、读取、更新、删除等不同类型,根据角色的不同而有所区别。在文章中提到,如果用户报告找不到数据库表,可能是由于没有足够的权限访问该表导致的。 数据库连接故障 , 在计算机网络和数据库技术领域中,数据库连接故障指的是客户端应用程序与MySQL服务器之间的通信出现问题,无法建立或维持有效的连接状态。可能的原因包括但不限于服务器未运行、网络中断、登录凭据错误(如用户名、密码不正确)、连接超时等。在本文的上下文中,数据库连接故障可能导致用户即使拥有正确的数据库和表名,也无法成功访问到所需的数据库表。
2023-11-28 12:42:54
56
算法侠
MySQL
...何在MySQL中写入数据后,我们可以进一步关注数据库管理系统的最新动态和最佳实践。近日,MySQL 8.0版本引入了一系列重大更新,包括对安全性、性能以及SQL语法的改进。例如,新的窗口函数提供了更强大的数据分析能力,而Caching_sha2_password身份验证插件则增强了数据库连接的安全性。 同时,随着云技术的发展,各大云服务商如阿里云、AWS等纷纷推出MySQL托管服务,用户无需关心底层服务器运维,即可轻松实现高可用性和扩展性。对于开发人员来说,了解如何在云环境下高效地进行数据写入操作,比如利用批量插入API减少网络延迟,或者通过参数化查询防止SQL注入攻击,成为了必不可少的知识点。 此外,关于数据库优化策略,一篇来自Oracle官方博客的文章《Maximizing MySQL Performance: Tips from the Experts》深度解读了如何通过索引设计、查询优化以及合理使用存储引擎等手段提升MySQL的数据写入效率。文中引用了大量实战案例,为数据库管理员和开发者提供了宝贵的参考经验。 综上所述,在掌握基本的MySQL数据写入操作之外,紧跟数据库技术发展的步伐,关注安全增强、云服务特性及性能优化技巧,是现代开发者必备的技能升级路径。
2023-06-05 22:29:31
72
算法侠
Docker
...r容器中的文件管理、数据持久化以及多容器间的共享存储更为便捷和安全。 同时,随着微服务架构的广泛应用,Docker Compose工具因其对多容器应用程序定义和部署的简化而备受瞩目。通过Compose文件,开发人员可以轻松配置多个容器间的数据卷挂载策略,从而确保服务间数据的可靠传输与同步。 另外,对于数据敏感型应用,诸如数据库容器等,Docker持续优化其对存储驱动的支持,如支持本地存储、网络存储(NFS、iSCSI)以及云服务商提供的块存储服务,这无疑提升了容器环境中数据的安全性和可用性。 此外,业界也在积极研究和发展基于Docker的新型文件系统解决方案,例如结合分布式存储系统以满足大规模集群环境下容器对高性能、高可用文件读写的诉求。这些前沿技术和实践为Docker在企业级应用场景中提供了更强大的支撑,也体现了容器技术在持续演进中不断解决实际问题的决心与创新力。 总之,深入掌握Docker容器中的文件读写机制,并关注其在云原生领域的发展动态和技术革新,将有助于我们在构建现代化、可扩展的应用架构时,更好地利用Docker的优势,提升开发运维效率,保障业务系统的稳定运行。
2023-12-30 15:13:37
472
编程狂人
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
scp local_file user@remote_host:destination_path
- 安全复制文件到远程主机。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"