前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[CMakeListtxt 文件结构与语法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hadoop
...Google的GFS文件系统的分布式文件系统。HDFS这小家伙可机灵了,它知道大文件是个难啃的骨头,所以就耍了个聪明的办法,把大文件切成一块块的小份儿,然后把这些小块分散存到不同的服务器上,这样一来,不仅能储存得妥妥当当,还能同时在多台服务器上进行处理,效率杠杠滴!这种方式可以大大提高数据的读取速度和写入速度。 3.2 MapReduce MapReduce是Hadoop的另一个核心组件,它是用于处理大量数据的一种编程模型。MapReduce的运作方式就像这么回事儿:它先把一个超大的数据集给剁成一小块一小块,然后把这些小块分发给一群计算节点,大家一起手拉手并肩作战,同时处理各自的数据块。最后,将所有结果汇总起来得到最终的结果。 下面是一段使用MapReduce计算两个整数之和的Java代码: java import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } 在这个例子中,我们首先定义了一个Mapper类,它负责将文本切分成单词,并将每个单词作为一个键值对输出。然后呢,我们捣鼓出了一个Reducer类,它的职责就是把所有相同的单词出现的次数统统加起来。 以上就是Hadoop的一些基本信息以及它的主要组件介绍。如果你对此还有任何疑问或者想要深入了解,欢迎留言讨论!
2023-12-06 17:03:26
409
红尘漫步-t
转载文章
...装包,包含所有的安装文件。与其相对的是在线安装,即在条件允许且网络良好的条件下采用网络安装的方式。在线安装方式的缺点是在不太好的网络状况下容易出现长时间等待或安装失败的情况,这种情况下只能进行离线安装。 二、安装步骤 1.安装nginx所需依赖 1.1 安装gcc和gcc-c++ 1.1.1 下载依赖包 gcc依赖下载镜像地址: 官网:https://gcc.gnu.org/releases.html 阿里云镜像站:http://mirrors.aliyun.com/centos/7/os/x86_64/Packages/ CentOS 镜像站点:https://vault.centos.org/7.5.1804/os/x86_64/Packages/ 只需下载如下依赖即可:cpp-4.8.5-44.el7.x86_64.rpmgcc-4.8.5-44.el7.x86_64.rpmglibc-devel-2.17-317.el7.x86_64.rpmglibc-headers-2.17-317.el7.x86_64.rpmkernel-headers-3.10.0-1160.el7.x86_64.rpmlibmpc-1.0.1-3.el7.x86_64.rpmmpfr-3.1.1-4.el7.x86_64.rpm----------------------------------------------gcc-c++-4.8.5-44.el7.x86_64.rpmlibstdc++-4.8.5-44.el7.x86_64.rpmlibstdc++-devel-4.8.5-44.el7.x86_64.rpm 1.1.2 上传依赖包 下载完成后,将依赖包上传到服务器,若权限不足不能上传,可以通过 sudo chmod -R 777 文件夹路径名命令增加权限 1.1.3 安装依赖 进入上传目录,输入rpm -Uvh .rpm --nodeps --forc命令进行批量安装,出现下图则说明安装成功 1.1.4 验证安装 使用gcc-v和g++ -v命令查看版本,若出现版本详情则说明离线安装成功,如下图示: 1.2 安装pcre 1.2.1 下载pcre 下载地址:http://www.pcre.org/ 1.2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压,解压命令tar -xvf pcre-8.45.tar.gz 1.2.3 编译安装 进入解压目录,依次执行以下命令: ./configure make make install 1.3 下载安装zlib 1. 3.1 下载zlib 下载地址:http://www.zlib.net/ 1.3.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.3.3 配置 进入解压目录输入 ./configure 1.3.4 编译安装 进入解压目录输入make && make install 1.4 下载安装openssl tips:检查是否已安装openssl,输入命令openssl version,若出现版本信息,则无需安装;若没有安装则继续安装 1.4.1 下载 地址:https://www.openssl.org/source/ 1.4.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.4.3 配置 进入解压目录输入 ./configure 1.4.4 编译安装 进入解压目录输入 make && make install 1.4.5 验证 安装完成后,控制台输入openssl version,出现版本信息则说明安装成功 2. 下载安装nginx 2.1 下载nginx安装包 下载地址:https://nginx.org/en/download.html 2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 2.3 配置 进入解压目录进行配置安装地址:./configure --prefix=/home/develop/nginx 2.4 编译 make 2.5 安装 make install 2.6 检查并启动 2.6.1 检查 进入安装目录下的sbin文件夹,输入./nginx -t,如下图则说明安装成功: 2.6.2 启动 启动nginx,命令:./nginx 2.7 访问 浏览器访问nginx,前提是80端口可以访问 2.8 设置开启自启动 tips:此步骤为可选项 将nginx的sbin目录添加到rc.local文件中: 编辑rc.local文件 vim /etc/rc.local 在最后一行加入如下内容 /home/develop/nginx/sbin/nginx 总结 以上就是离线安装nginx的详细步骤,希望可以帮到有需要的小伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Shiny_boy_/article/details/126965658。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 08:28:14
106
转载
Etcd
...eus.yml 配置文件示例 global: scrape_interval: 15s scrape_configs: - job_name: 'etcd' static_configs: - targets: ['localhost:9101'] etcd-exporter监听端口 metrics_path: '/metrics' 同时,编写针对Etcd的Prometheus查询语句,可以让我们洞察集群性能: promql 查询过去5分钟内所有Etcd节点的平均写操作延迟 avg(etcd_request_duration_seconds_bucket{operation="set", le="+Inf"})[5m] 2. 内建诊断工具 etcdctl etcdctl 是官方提供的命令行工具,不仅可以用来与Etcd进行交互(如读写键值对),还内置了一系列诊断命令来排查问题。例如,查看成员列表、检查leader选举状态或执行一致性检查: bash 查看集群当前成员信息 etcdctl member list 检查Etcd的领导者状态 etcdctl endpoint status --write-out=table 执行一次快照以诊断数据完整性 etcdctl snapshot save /path/to/snapshot.db 此外,etcdctl debug 子命令提供了一组调试工具,比如dump.consistent-snap.db可以导出一致性的快照数据,便于进一步分析潜在问题。 3. 日志和跟踪 对于更深层次的问题定位,Etcd的日志输出是必不可少的资源。通过调整日志级别(如设置为debug模式),可以获得详细的内部处理流程。同时,结合分布式追踪系统如Jaeger,可以收集和可视化Etcd调用链路,理解跨节点间的通信延迟和错误来源。 bash 设置etcd日志级别为debug ETCD_DEBUG=true etcd --config-file=/etc/etcd/etcd.conf.yaml 4. 性能调优与压力测试 在了解了基本的监控和诊断手段后,我们还可以利用像etcd-bench这样的工具来进行压力测试,模拟大规模并发读写请求,评估Etcd在极限条件下的性能表现,并据此优化配置参数。 bash 使用etcd-bench进行基准测试 ./etcd-bench -endpoints=localhost:2379 -total=10000 -conns=100 -keys=100 在面对复杂的生产环境时,人类工程师的理解、思考和决策至关重要。用上这些监视和诊断神器,咱们就能化身大侦探,像剥洋葱那样层层深入,把躲藏在集群最旮旯的性能瓶颈和一致性问题给揪出来。这样一来,Etcd就能始终保持稳如磐石、靠谱无比的运行状态啦!记住了啊,老话说得好,“实践出真知”,想要彻底驯服Etcd这匹“分布式系统的千里马”,就得不断地去摸索、试验和改进。只有这样,才能让它在你的系统里跑得飞快,发挥出最大的效能,成为你最得力的助手。
2023-11-29 10:56:26
385
清风徐来
转载文章
...2、设置签名 3.将文件/目录从工作区追加到暂存区 4.查看状态 5.把暂存区的文件移除 6.把文件从暂存区上传到本地库 7.将文件变为未暂存状态 8.创建远程仓库并推送 9.删除远程仓库 10.拉取远程仓库 三、其他命令 1.查看命令信息指令 2.查看版本的提交记录 3.进入不同版本 4.分支操作 5.比较文件 四、遇到的错误 一、下载 用于 Windows 安装程序的 32 位 Git。 用于 Windows 安装程序的 64 位 Git。 二、基本命令 git命令和linux的命令基本相同,大部分linux命令在git中都可以使用。 1.初始化本地库 a.首先新建一个文件夹,进入文件夹,点击鼠标右键,找到菜单中的 Git Bash Here,点击进入命令界面。 b.输入命令 git init 初始化本地仓库 你会发现你的文件夹内多出一个 .git文件证明你的本地仓库初始化成功。 有的电脑可能会隐藏后缀名的文件,无法看到 .git文件,你需要去电脑设置可查看隐藏文件。方法:进入此电脑,点击上方查看,勾选隐藏的项目即可查看被隐藏的文件。 2、设置签名 签名主要是设置用户名和email地址,有两种级别:一种是项目级别 git config user.name 用户名, git config user.email邮箱地址;另一种是系统用户级别 git config --global user.name 用户名, git config --global user.email 邮箱地址。项目级别是优先于系统级别的,但二者至少设置一个。一般只用项目级别就行。 用 cat .git/config可以查看设置的项目签名。 3.将文件/目录从工作区追加到暂存区 命令 :git add 文件/目录 4.查看状态 命令:git status。 第一行信息告诉我们,目前正处于master分支; 第二行信息告诉我们,本地库还没有上传任何文件; 第三、四、五行信息告诉我们,可以用以下命令把暂存区的文件(绿色文件)上传到本地库。 5.把暂存区的文件移除 代码:git rm --cached 文件名。注意文件只是从暂存区中移除,并没有在目录中被删除。 未追加在暂存区的文件显示红色。 6.把文件从暂存区上传到本地库 命令:git commit -m "注释内容" 文件名。 这是查看状态可以看到暂存区已经没有文件可以上传到本地库,说明你上传成功。 7.将文件变为未暂存状态 命令:git rest HEAD 文件名。对在暂存区的文件进行操作。 8.创建远程仓库并推送 a.首先我们要有一个github或gitee账号: github官网:https://github.com/ gitee官网:https://gitee.com/ b.然后在里面创建一个远程仓库(以gihub为例): 登录进入主页面,找到并点击右上角的加号,点击 New repository,然后填写仓库信息。或者找到点击左方的 New选项。进入创建界面,填入信息。 下面三个选项可根据需要勾选。点击 Create...就创建号一个仓库了。 c.复制仓库地址 找到左上方导航Code选项,点击进入该选项 有两个地址:HTTP地址和SSH地址。我一般用HTTP地址(简单)。 如果你创建远程仓库时选择了下面的三个选项,可能你的Code界面会有所差别,点击右方的 Code即可查看仓库地址。 然后进入git命令界面:输入命令 git remote add origin(别名) 地址为你复制的地址创建别名并储存。命令 git remote -v查看你设置过的地址。 d.最后进行推送操作,将本地仓库推送到远程仓库。 命令 git push -u origin(你要推送到的远程仓库地址) master(你要推送的分支).在第一次推送是用上 -u选项,之后就可以不用。 该界面为成功推送,你再刷新你的github或gitee仓库,这是你上传的文件将出现在远程仓库表明推送成功。 注意:1.如果创建远程仓库时勾选了下面的三个选项,则可能你刷新时没发现有新文件推送到仓库,这是先找到红色划线位置,查看当前分支是否自己推送的分支,找到正确分支再看是否正确推送。 2.如果你是第n次推送,必须要在和远程仓库版本一样的条件下进行修改后推送,否则无法推送(不能跨多个版本推送)。 3.如果推送不成功,可能是你修改前的版本和远程库的版本不一致造成,先进行拉取,在修改推送。 9.删除远程仓库 首先进入要删除的远程仓库,点击上方导航条中的 Settings选项 然后找到进入左边菜单栏中的 Options选项,鼠标划到最下面找到 点击Delete this repository选项 最后按指示输入github用户名和密码进行删除即可。 10.拉取远程仓库 命令:git pull origin master。 在打算更新远程库时,先拉取远程库然后修改或添加,否则可能报错。 表明拉取成功。 注意:若你的本地仓库进行了修该导致无法拉去成功,则尝试用 git pull --rebase命令进行拉取。 三、其他命令 1.查看命令信息指令 命令:git help 2.查看版本的提交记录 命令:git log 以每条版本日志显示一行:git log --pretty=oneline 简写哈希值的方式:git log --oneline 可以看到前进后退步数:git reflog 3.进入不同版本 先用 git reflog命令查看哈希值 a.命令:git reset --hard 哈希值(索引) b.命令:git reset --hard HEAD^,该命令只能后退(查看当前版本之前的版本),后面几个 ^ 则后退几步。 c.命令:git reset --hard~,该命令只能后退(查看当前版本之前的版本),后退 (数值) 步; 4.分支操作 命令:git branch -v,查看所有分支 命令:git branch 分支名,创建分支 命令:git checkout 分支名,切换分支 5.比较文件 命令:git diff 文件名,工作区和暂存区比较 命令:git diff HEAD 文件名,当前版本比较 命令:git diff HEAD^ 文件名,历史版本比较 四、遇到的错误 git config --global http.sslVerify false 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_56180999/article/details/117634968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-18 13:38:15
75
转载
Go-Spring
... 使用环境变量与配置文件进行灵活配置 在软件开发领域,配置管理是构建可扩展、可维护应用的关键环节。嘿,兄弟!如果你在用Go语言搞应用开发,那GoSpring框架绝对是你的超级好帮手!它就像个魔法师,能让你的应用配置变得既高效又灵活,就像是给你的应用穿上了一件超酷的魔法斗篷,让你随心所欲地调整和控制它的各种设置,简直不要太爽!本文将深入探讨如何利用GoSpring通过环境变量和配置文件来实现应用的动态配置,从而提升应用的灵活性和可定制性。 一、引入GoSpring GoSpring是一个基于Go语言的微服务框架,它提供了丰富的功能,如自动路由、健康检查、日志记录等,旨在简化微服务架构的开发和部署。Hey,小伙伴们!GoSpring 这家伙可真聪明,它能理解咱们编程时的各种小秘密,比如环境变量和配置文件这种事儿。这东西就像咱们做饭时的调料,根据不同的场合加点盐,加点酱油,让味道刚刚好。GoSpring 就是这么干的,它让开发者们能轻松地调整应用的行为,不管是在家做饭(开发本地环境)还是去朋友家吃饭(部署到远程服务器),都能得心应手,满足各种口味的需求。是不是觉得它更像一个贴心的朋友,而不是冷冰冰的机器人呢? 二、环境变量的运用 环境变量是操作系统提供的变量,可以在运行时修改程序的行为。在GoSpring中,通过os包的Env变量,可以方便地读取和设置环境变量。例如: go package main import ( "fmt" "os" ) func main() { // 读取环境变量 environment := os.Getenv("ENVIRONMENT") fmt.Printf("当前环境为:%s\n", environment) // 设置环境变量 os.Setenv("ENVIRONMENT", "production") environment = os.Getenv("ENVIRONMENT") fmt.Printf("设置后的环境为:%s\n", environment) } 这段代码展示了如何读取和设置环境变量。哎呀,你知道吗?在咱们的实际操作里,这些变量就像魔法师的魔法棒一样,能帮我们区分出开发、测试、生产这些不同的工作环境。就像是在厨房里,你有专门的调料盒来放做菜时需要用到的不同调料,这样就能确保每道菜的味道都刚刚好。咱们这些变量也是这么个道理,它们帮助我们确保在不同环境下程序运行得既稳定又高效! 三、配置文件的集成 配置文件是存储应用配置信息的一种常见方式。GoSpring通过内置的配置解析器,支持读取JSON、YAML或XML格式的配置文件。下面是一个简单的JSON配置文件示例: json { "app": { "name": "MyApp", "version": "1.0.0", "environment": "development" }, "database": { "host": "localhost", "port": 5432, "username": "myuser", "password": "mypassword", "dbname": "mydb" } } 在Go代码中,我们可以使用yaml或json包来解析这个配置文件: go package main import ( "encoding/json" "fmt" "io/ioutil" "log" "github.com/spf13/viper" ) func main() { viper.SetConfigFile("config.json") // 设置配置文件路径 if err := viper.ReadInConfig(); err != nil { // 读取配置文件 log.Fatalf("Error reading config file: %v", err) } // 获取配置数据 appName := viper.GetString("app.name") appVersion := viper.GetString("app.version") dbHost := viper.GetString("database.host") fmt.Printf("应用名称:%s, 版本:%s, 数据库主机:%s\n", appName, appVersion, dbHost) } 通过这种方式,我们可以在不修改代码的情况下,通过更改配置文件来改变应用的行为,极大地提高了应用的可维护性和灵活性。 四、整合环境变量与配置文件 在实际项目中,通常会结合使用环境变量和配置文件来实现更复杂的配置管理。例如,可以通过环境变量来控制配置文件的加载路径,或者根据环境变量的值来选择使用特定的配置文件: go package main import ( "os" "path/filepath" "testing" "github.com/spf13/viper" ) func main() { // 设置环境变量 os.Setenv("CONFIG_PATH", "path/to/your/config") // 读取配置文件 viper.SetConfigType("yaml") // 根据你的配置文件类型进行设置 viper.AddConfigPath(os.Getenv("CONFIG_PATH")) // 添加配置文件搜索路径 err := viper.ReadInConfig() if err != nil { log.Fatalf("Error reading config file: %v", err) } // 获取配置数据 // ... } 通过这种方式,我们可以根据不同环境(如开发、测试、生产)使用不同的配置文件,同时利用环境变量动态调整配置路径,实现了高度灵活的配置管理。 结语 GoSpring框架通过支持环境变量和配置文件的集成,为开发者提供了强大的工具来管理应用配置。哎呀,这种灵活劲儿啊,可真是帮了大忙!它就像个魔法师,能让你的开发工作变得轻松愉快,效率嗖嗖的往上窜。而且,别看它这么灵巧,稳定性却是一点儿也不含糊。不管是在哪个环境里施展它的魔法,都能保持一贯的好状态,稳如泰山。这就像是你的小伙伴,无论走到哪儿,都能给你带来安全感和惊喜,你说赞不赞?哎呀,兄弟,你懂的,现在咱们的应用就像个大家庭,人多了,事儿也杂了,对吧?这时候,怎么管好这个家庭,让每个人都各司其职,不乱套,就显得特别重要了。这就得靠咱们合理的配置管理策略来搞定。比如说,得有个清晰的分工,谁负责啥,一目了然;还得有规矩,比如更新软件得按流程来,不能随随便便;还得有监控,随时看看家里人都在干啥,有问题能及时发现。这样,咱们的应用才能健健康康地成长,不出岔子。所以,合理的配置管理策略,简直就是咱们应用界的定海神针啊!嘿,兄弟!这篇文章就是想给你开开小灶,让你能轻松掌握 GoSpring 在配置管理这块儿的厉害之处。别担心,我不会用一堆冰冷的术语把你吓跑,咱俩就像老朋友聊天一样,把这玩意儿讲得跟吃饭喝水一样简单。跟着我,你就能发现 GoSpring 配置管理有多牛逼,怎么用都顺手,让你的工作效率嗖嗖地往上涨!咱们一起探索,一起享受技术带来的乐趣吧!
2024-09-09 15:51:14
75
彩虹之上
转载文章
... patent下载的文件是以公开号命名的,所以对照要下载的和已下载的公开号就能看出哪些专利没有下载成功。 我这里写了一个python小脚本。 import pandas as pdimport os读取待下载专利的公开号,地址修改成你自己存放的位置df = pd.read_excel("target.xlsx",header= 0, usecols= "B").drop_duplicates()取前11位作为对比(以中国专利作为参考)PublicNumber_tgt = list(map(lambda x: x[0:11],df["公开(公告)号"].to_list()))读取已下载专利的公开号,地址修改成你自己存放的位置filelist=os.listdir(r'C:\Users\mornthx\Desktop\专利全文')取前11位作为对比PublicNumber_dl = list(map(lambda x: x[0:11],filelist))比较两者差值diff = set(PublicNumber_tgt).difference(set(PublicNumber_dl))print(diff) 没下载的专利具体问题具体解决就好了。 希望能帮到大家! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_38688347/article/details/124000919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-21 12:55:28
274
转载
Flink
...过JobGraph的结构对最终性能的影响? - 你有没有尝试过调整ExecutionPlan的某些参数来提升应用程序的效率? 4. 实践中的挑战与解决方案 最后,我想分享一些我在使用Flink过程中遇到的实际问题及解决方案。 问题1:数据倾斜导致性能瓶颈 - 原因分析:数据分布不均匀可能导致某些算子处理的数据量远大于其他算子,从而形成性能瓶颈。 - 解决办法:可以通过重新设计JobGraph,比如引入更多的分区策略或调整算子的并行度来缓解这个问题。 问题2:内存溢出 - 原因分析:长时间运行的任务可能会消耗大量内存,尤其是在处理大数据集时。 - 解决办法:合理设置Flink的内存管理策略,比如增加JVM堆内存或利用Flink的内存管理API来控制内存使用。 --- 好了,朋友们,这就是我对Flink中的JobGraph和ExecutionPlan的理解和分享。希望这篇文章能让你深深体会到它们的价值,然后在你的项目里大展身手,随意挥洒!如果你有任何疑问或者想要进一步讨论的话题,欢迎随时留言交流! 记住,学习技术就像一场旅行,重要的是享受过程,不断探索未知的领域。希望我们在数据流的世界里都能成为勇敢的探险家!
2024-11-05 16:08:03
111
雪落无痕
Javascript
...。 首先,在HTML文件中添加以下代码: html 然后,在JavaScript文件中添加以下代码: javascript // 获取本地视频 const localStream = await navigator.mediaDevices.getUserMedia({ audio: true, video: true }); // 创建RTC对讲机 const pc = new RTCPeerConnection(); // 添加媒体流 pc.addTransceiver('audio'); pc.addTransceiver('video'); // 获取远程视频容器 const remoteVideo = document.getElementById('remoteVideo'); // 将本地视频流添加到远程视频容器 pc.getSenders().forEach((sender) => { sender.track.id = 'localVideo'; remoteVideo.srcObject = sender.track; }); // 接收媒体流 pc.ontrack = (event) => { event.streams.forEach((stream) => { stream.getTracks().forEach((track) => { track.id = 'remoteVideo'; const videoElement = document.createElement('video'); videoElement.srcObject = track; document.body.appendChild(videoElement); }); }); }; // 连接到其他客户端 function connect(otherUserURL) { // 创建新的RTCPeerConnection对象 const otherPC = new RTCPeerConnection(); // 设置回调函数,处理ICE候选信息和数据通道 otherPC.onicecandidate = (event) => { if (!event.candidate) return; pc.addIceCandidate(event.candidate); }; otherPC.ondatachannel = (event) => { event.channel.binaryType = 'arraybuffer'; channel.send('hello'); }; // 发送offer const offerOptions = { offerToReceiveAudio: true, offerToReceiveVideo: true }; pc.createOffer(offerOptions).then((offer) => { offer.sdp = SDPUtils.replaceBUNDLE_ID(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICEServers(offer.sdp, iceServers); return otherPC.setRemoteDescription(new RTCSessionDescription(offer)); }).then(() => { return otherPC.createAnswer(); }).then((answer) => { answer.sdp = SDPUtils.replaceBUNDLE_ID(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICEServers(answer.sdp, iceServers); return pc.setRemoteDescription(new RTCSessionDescription(answer)); }).catch((err) => { console.error(err.stack || err); }); } 在这个例子中,我们首先通过getUserMedia API获取用户的实时音频和视频流,然后创建一个新的RTCPeerConnection对象,并将媒体流添加到这个对象中。 接着,我们设置了回调函数,处理ICE候选信息和数据通道。当你收到ICE候选信息的时候,我们就把它塞到本地的那个RTCPeerConnection对象里头;而一旦收到数据通道的消息,我们就会把它的binaryType调成'arraybuffer'模式,然后就可以在通道里畅所欲言,发送各种消息啦。 最后,我们调用connect函数,与其他客户端建立连接。在connect函数里头,我们捣鼓出了一个崭新的RTCPeerConnection对象,就像组装一台小机器一样。然后呢,我们还给这个小家伙绑定了几个“小帮手”——回调函数,用来专门处理ICE候选信息和数据通道这些重要的任务,让它们能够实时报告状况,确保连接过程顺畅无阻。然后呢,我们给对方发个offer,就像递出一份邀请函那样。等对方接收到后,他们会回传一个answer,这就好比他们给出了接受邀请的答复。我们就把这个answer,当作是我们本地RTCPeerConnection对象的远程“地图”,这样一来,连接就算顺利完成啦! 五、结论 WebRTC技术为我们提供了一种方便、快捷、安全的点对点通信方式,大大提高了应用的交互性和实时性。当然啦,这只是个入门级的小例子,实际上的运用场景可能会复杂不少。不过别担心,只要咱们把WebRTC的核心原理和使用技巧都整明白了,就能根据自身需求灵活施展拳脚,开发出更多既有趣又有用的应用程序,保证让你玩得飞起! 未来,随着5G、物联网等技术的发展,WebRTC将会发挥更大的作用,成为更多应用场景的首选方案。让我们一起期待这个充满可能的新时代吧!
2023-12-18 14:38:05
315
昨夜星辰昨夜风_t
Consul
....json 的策略文件,该文件定义了 Token 的权限范围。策略文件可能包含如下内容: json { "policies": [ { "name": "read-only-access", "rules": [ { "service": "", "operation": "read" } ] } ] } 这个策略允许拥有此 Token 的用户读取任何服务的信息,但不允许执行其他操作。 四、使用 Token 访问资源 有了 Token,我们就可以在 Consul 的客户端库中使用它来进行资源的访问。以下是使用 Go 语言的客户端库进行访问的例子: go package main import ( "fmt" "log" "github.com/hashicorp/consul/api" ) func main() { // 创建一个客户端实例 client, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { log.Fatal(err) } // 使用 Token 进行认证 token := "your-token-here" client.Token = token // 获取服务列表 services, _, err := client.KV().List("", nil) if err != nil { log.Fatal(err) } // 打印服务列表 for _, service := range services { fmt.Println(service.Key) } } 在这个例子中,我们首先创建了一个 Consul 客户端实例,并指定了要连接的 Consul 服务器地址。然后,我们将刚刚生成的 Token 设置为客户端的认证令牌。最后,我们调用 KV().List() 方法获取服务列表,并打印出来。 五、管理 Token 为了保证系统的安全性,我们需要定期管理和更新 Token。这包括但不限于创建、更新、撤销 Token。以下是如何撤销一个 Token 的示例: bash 撤销 Token consul acl revoke-token my_token_name 六、总结 通过使用 Consul 的 Token 授权功能,我们能够为不同的用户或角色提供细粒度的访问控制,从而增强了系统的安全性。哎呀,你知道吗?从生成那玩意儿(就是Token)开始,到用它在真实场景里拿取资源,再到搞定Token的整个使用周期,Consul 给咱们准备了一整套既周全又灵活的方案。就像是给你的钥匙找到了一个超级棒的保管箱,不仅安全,还能随时取出用上,方便得很!哎呀,兄弟,咱们得好好规划一下Token策略,就像给家里的宝贝设置密码一样。这样就能确保只有那些有钥匙的人能进屋,避免了不请自来的家伙乱翻东西。这样一来,咱们的敏感资料就安全多了,不用担心被不怀好意的人瞄上啦! 七、展望未来 随着业务的不断扩展和复杂性的增加,对系统安全性的需求也会随之提高。利用 Consul 的 Token 授权机制,结合其他安全策略和技术(如多因素认证、访问控制列表等),可以帮助构建更加健壮、安全的分布式系统架构。嘿,你听过这样一句话没?就是咱们得一直努力尝试新的东西,不断实践,这样才能让咱们的系统在面对那些越来越棘手的安全问题时,还能稳稳地跑起来,不卡顿,不掉链子。就像是个超级英雄,无论遇到什么险境,都能挺身而出,保护好大家的安全。所以啊,咱们得加油干,让系统变得更强大,更聪明,这样才能在未来的挑战中,立于不败之地!
2024-08-26 15:32:27
123
落叶归根
转载文章
... value="数据结构">数据结构</option><option value="操作系统原理">操作系统原理</option><option value="软件工程概论">软件工程概论</option><option value="算法分析与设计">算法分析与设计</option><option value="Java编程基础">Java编程基础</option><option value="计算机网络">计算机网络</option><option value="数据库系统原理及应用">数据库系统原理及应用</option><option value="软件设计">软件设计</option><option value="软件测试">软件测试</option><option value="Java Web应用程序开发">Java Web应用程序开发</option><option value="组网工程">组网工程</option><option value="软件项目管理">软件项目管理</option><option value="云计算与大数据技术">云计算与大数据技术</option><option value="粮油信息处理及模式识别">粮油信息处理及模式识别</option><option value="软件开发案例分析">软件开发案例分析</option><option value="软件交互设计">软件交互设计</option></select>按住Ctrl按钮来选择多个项目</p><p>个人简历:<textArea name="cv" rows="3" cols="35" align="top" ></textArea></p><p><center><input type="submit" value="注册" name="submit"></center></p></form></h3></font><script type="text/javascript">function changeAge() {console.log("调用了函数");var nowData = new Date();console.log(nowData.getUTCFullYear());var nowYear = nowData.getUTCFullYear();console.log(document.getElementById("year").value)var year = document.getElementById("year").value;var age = nowYear - year;var e = document.getElementById("age");e.value = age;}</script></body></HTML> (2)result.jsp <%@ page contentType="text/html; charset=GB2312"%><%! public String handleStr(String s){try{ byte [] bb=s.getBytes("GB2312");s=new String(bb);}catch(Exception exp){}return s;}%><HTML><body bgcolor=yellow><font size=3><% request.setCharacterEncoding("GB2312");String username=request.getParameter("username");String pwd=request.getParameter("pwd");String sex=request.getParameter("sex");String year=request.getParameter("year");String month=request.getParameter("month");String day=request.getParameter("day");String age=request.getParameter("age");String hobbies[]=request.getParameterValues("hobbies");String course[]=request.getParameterValues("course");String cv=request.getParameter("cv");%>注册个人信息如下:<br><table border=2><tr><td><% out.print("用户名");%></td><td><% out.print("密码"); %></td><td><% out.print("性别"); %></td><td><% out.print("出生日期"); %></td><td><% out.print("年龄"); %></td><td><% out.print("爱好"); %></td><td><% out.print("所学课程"); %></td><td><% out.print("个人简历"); %></td></tr><tr><td><% out.print(username); %></td><td><% out.print(pwd); %></td><td><% out.print(sex); %></td><td><% out.print(year+"年"+month+"月"+day+"日"); %></td><td><% out.print(age); %></td><td><% if(hobbies==null){out.println("无");}else{ for(int m=0;m<hobbies.length;m++){out.print(handleStr(hobbies[m])+" ");} }%></td><td><% if(course==null){out.println("无");}else{ for(int n=0;n<course.length;n++){out.print(handleStr(course[n])+" ");} }%></td><td><% out.print(cv); %></td></tr></table></font></body></HTML> 3.运行结果 4.总结分析 在大体功能实现的基础上,虽然实现了用户信息登录与记录,但是此界面只能输入并记录一个用户 ,无法实现多用户,有待改正。另外,在登录界面年龄下拉列表没用考录闰年与平年的区别,把每个月份都设置为了31天。 求大佬改正。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Pluto_ssy/article/details/121049221。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-15 09:02:21
113
转载
NodeJS
...发器(如API调用、文件上传等事件)自动执行代码,并按实际执行时间计费,从而实现高度可扩展性和成本效益。 npm , npm(Node Package Manager)是Node.js的包管理器,提供了便捷的方式来安装、共享和更新Node.js模块。开发者可以通过npm从全球最大的开源JavaScript软件库下载第三方代码包,以便在自己的项目中复用他人开发的功能组件,极大地提高了开发效率。
2024-01-24 17:58:24
144
青春印记-t
转载文章
...息时间排列的一个链表结构 为什么 Handler 会报内存泄漏? 因为是内部类持有外部类的对象, sendMessage 的时候会调用到 Handler 的 enqueueMessage 方法,msg.target = this; Message 会持有 handler,而 handler 持有调用 handler 的对象,所以 gc 不能回收 Binder 篇 Binder 的定向制导,如何找到目标 Binder,唤起进程或者线程呢? Binder 实体服务其实有两种: 一是通过 addService 注册到 ServiceManager 中的服务,比如 ActivityManagerService、PackageManagerService、PowerManagerService 等,一般都是系统服务; 还有一种是通过 bindService 拉起的一些服务,一般是开发者自己实现的服务 这里先看通过 addService 添加的被 ServiceManager 所管理的服务 ServiceManager 是比较特殊的服务,所有应用都能直接使用,因为 ServiceManager 对于 Client 端来说 Handle 句柄是固定的,都是 0,所以 ServiceManager 服务并不需要查询,可以直接使用 Binder 为什么会有两棵 binder_ref 红黑树? Binder_proc 中存在两棵 binder_ref 红黑树,其实两棵红黑树中的节点是复用的,只是查询方式不同,一个通过 Handle 句柄,一个通过 node 节点查找 refs_by_node 红黑树主要是为了 Binder驱动往用户空间写数据所使用的,而 refs_by_desc 是用户空间向 Binder 驱动写数据使用的,只是方向问题 比如在服务 addService 的时候,binder 驱动会在在 ServiceManager 进程的 binder_proc 中查找 binder_ref 结构体 Binder 是如何做到一次拷贝的 用户空间的虚拟内存地址是映射到物理内存中的 对虚拟内存的读写实际上是对物理内存的读写,这个过程就是内存映射 这个内存映射过程是通过系统调用 mmap() 来实现的 Binder借助了内存映射的方法,在内核空间和接收方用户空间的数据缓存区之间做了一层内存映射,就相当于直接拷贝到了接收方用户空间的数据缓存区,从而减少了一次数据拷贝 Binder机制是如何跨进程的 在内核空间创建一块接收缓存区, 实现地址映射:将内核缓存区、接收进程用户空间映射到同一接收缓存区 发送进程通过系统调用(copy_from_user)将数据发送到内核缓存区;由于内核缓存区和接收进程用户空间存在映射关系,故相当于也发送了接收进程的用户空间,实现了跨进程通信 就举例这么多了,面试题也不是几个就能全部覆盖的,毕竟面试官不是吃素的,他会换着花样问你;有想跳槽拿高薪的 Android 开发的朋友,我这里分享一份 Handler、Binder 精选面试 PDF 文档;私信发送 “面试” 直达获取;想拿高薪的人很多,就看你肯不肯努力了 面试题 PDF 文档内容展示: Handler 机制之 Thread Handler 机制之 ThreadLocal Handler 机制之 SystemClock 类 Handler 机制之 Looper 与 Handler 简介 Android 跨进程通信 IPC 之 Binder 之 Framewor k层 C++ 篇 Android 跨进程通信 IPC 之 Binder 之 Framework 层 Java 篇 Android 跨进程通信 IPC 之 Binder 的补充 Android 跨进程通信 IPC 之 Binder 总结 小伙伴们如果有需要以上这些资料:私信发送 “面试” 直达获取,承诺100%免费! 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62167422/article/details/127129133。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-15 10:35:50
217
转载
Kubernetes
...你只需要维护一份配置文件,就能确保所有集群的状态一致。 --- 4. 我的思考与总结 兄弟们,写到这里,我觉得有必要停下来聊一聊我的感受。说实话,搞多集群的管理和优化这事吧,真挺费脑子的,特别是当你摊上一堆复杂得让人头大的业务场景时,那感觉就像是在迷宫里找出口,越走越晕。但只要你掌握了核心原理,并且善于利用现有的工具,其实也没那么可怕。 我觉得,Kubernetes 的多集群方案就像是一把双刃剑。它既给了我们无限的可能性,也带来了不少挑战。所以啊,在用它的过程中,咱们得脑袋清醒点,别迷迷糊糊的。别害怕去试试新鲜玩意儿,说不定就有惊喜呢!而且呀,心里得有根弦,感觉不对就赶紧调整策略,灵活一点总没错。 最后,我想说的是,技术的世界永远没有终点。就算咱们今天聊了个痛快,后面还有好多好玩的东西在等着咱们呢!所以,让我们一起继续学习吧!
2025-04-04 15:56:26
21
风轻云淡
转载文章
...rymonth表(表结构如下)中,然后在Linux的MySQL命令行中根据订单总数、消费总额、国家表主键三列均逆序排序的方式,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中; spark.sql("select nationkey,regexp_replace(nationname,'\'','') as nationname,regionkey,regexp_replace(regionname,'\'','') as regionname,sum(totalnum) as totalorder,sum(totalprice) as totalconsumption,year,month from nationeverymonth group by nationkey,regionkey,month,nationname,year,regionname;") 我为了方便查询和之后的操作,将上面的查询结果导入到新表nationeverymonths 查表 接下来将hive中的数据导入mysql中 package com.atguigu.spark.sqlimport org.apache.spark.SparkConfimport org.apache.spark.sql.SparkSessionimport java.util.Propertiesobject DataHiveToMySQL {def main(args: Array[String]): Unit = {val sparkConf = new SparkConf().setMaster("local[]").setAppName("sparkSQL")val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()val result=spark.sql("select from ods.nationeverymonths")val props=new Properties()props.setProperty("user","root")props.setProperty("password","123456")props.setProperty("driver","com.mysql.jdbc.Driver")result.write.mode("overwrite").jdbc("jdbc:mysql://192.168.230.132:3306/user?serverTimezone=UTC&characterEncoding=UTF-8&useSSL=false", "nationeverymonth", props)println("导入成功")spark.stop()} } 运行可见导入成功 进入MySQL中查看结果 可见数据成功导入 接下来按照要求查询: 2.请根据dwd层表计算出某年每个国家的平均消费额和所有国家平均消费额相比较结果(“高/低/相同”),存入MySQL数据库shtd_store的nationavgcmp表(表结构如下)中,然后在Linux的MySQL命令行中根据订单总数、消费总额、国家表主键三列均逆序排序的方式,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中; 在解这道题的时候遇见一个问题,在求所有国家平均消费额的时候一直报错,由于没有数据这道题的题意还是有点没看明白,于是我就用了最简单的办法先新增一列,再单独将所有国家平均消费额求出来然后再插入,如果各位大佬有解决这个问题的办法希望能指导一下 先将每个国家的平均消费额求出来 spark.sql("select nationkey,nationname,avg(totalconsumption) as nationavgconsumption from nationeverymonths group by nationkey,nationname") 再新增一列所有国家平均消费额 spark.sql("alter table nationeverymonths add columns(avg_allstring)") 再将查询到的所有国家平均消费额导入进去 spark.sql("insert overwrite table nationeverymonths1 select nationkey,nationname,avg_totalconsumpt,1500 from nationeverymonths1") 再次查表 按照题意添加比较结果字段 spark.sql("select ,case when avg_totalconsumpt>avg_all then '高' when avg_totalconsumpt<avg_all then '低' when avg_totalconsumpt=avg_all then '相同' else 'null' end as comparison from nationeverymonths1").show 最后的排序语句和题一一样 本篇文章为转载内容。原文链接:https://blog.csdn.net/guo_0423/article/details/126352162。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-01 10:55:33
319
转载
Flink
...状态数据定期持久化到文件系统中,适用于状态较大但要求一定程度容错性的场景)以及RocksDBStateBackend(利用嵌入式键值数据库RocksDB对状态进行持久化存储,适合大规模状态存储及高度容错的需求)。选择合适的State Backend对于优化Flink作业性能和实现高效的容错恢复至关重要。
2023-10-06 21:05:47
389
月下独酌
Dubbo
...因。要是你日志的配置文件,比如说logback.xml,搞错了设定,那就等于给日志输出挖了个坑。这样一来,日志就无法顺畅地“说话”了,我们也就没法通过这些日志来摸清系统的运行状况,了解它到底是怎么干活儿的了。 解决这个问题的方法也很简单,只需要检查日志配置文件中的配置是否正确即可。比如,我们可以瞅瞅日志输出的目的地是不是设定对了,还有日志的详细程度级别是否也调得恰到好处,这些小细节都值得我们关注检查一下。 四、代码示例 为了更直观地理解环境配置问题和日志配置错误,下面给出一些代码示例。 首先,来看一下不正确的环境变量设置。假设我们在没有设置JAVA_HOME的情况下尝试启动Dubbo,那么就会出现以下错误: Exception in thread "main" java.lang.UnsatisfiedLinkError: no javassist in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867) at java.lang.Runtime.loadLibrary0(Runtime.java:870) at java.lang.System.loadLibrary(System.java:1122) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:39) at com.alibaba.dubbo.common.logger.LoggerFactory.getLogger(LoggerFactory.java:51) at com.alibaba.dubbo.config.ApplicationConfig.(ApplicationConfig.java:114) at com.example.demo.DemoApplication.main(DemoApplication.java:12) Caused by: java.lang.ClassNotFoundException: javassist at java.net.URLClassLoader.findClass(URLClassLoader.java:382) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 6 more 可以看出,由于JAVA_HOME环境变量未设置,所以无法找到Java的安装路径,从而导致了这个错误。 接下来,来看一下不正确的日志配置。假设我们在日志配置文件中错误地指定了日志输出的目标位置,那么就会出现以下错误: 2022-03-08 15:29:54,742 ERROR [main] org.apache.log4j.ConsoleAppender - Error initializing ConsoleAppender appenders named [STDOUT] org.apache.log4j.AppenderSkeleton$InvalidAppenderException: No such appender 'STDOUT' in category [com.example.demo]. at org.apache.log4j.Category.forcedLog(Category.java:393) at org.apache.log4j.Category.access$100(Category.java:67) at org.apache.log4j.Category$AppenderAttachedObject.append(Category.java:839) at org.apache.log4j.AppenderSkeleton.doAppend(AppenderSkeleton.java:248) at org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(AppenderAttachableImpl.java:51) at org.apache.log4j.Category.callAppenders(Category.java:206) at org.apache.log4j.Category.debug(Category.java:267) at org.apache.log4j.Category.info(Category.java:294) at org.apache.log4j.Logger.info(Logger.java:465) at com.example.demo.DemoApplication.main(DemoApplication.java:16) 可以看出,由于日志配置文件中的配置错误,所以无法将日志输出到指定的位置,从而导致了这个错误。 五、总结 通过以上分析,我们可以看出,环境配置问题和日志配置错误都是非常严重的问题,如果不及时处理,就会导致Dubbo无法正常运行,从而影响我们的工作。所以呢,咱们得好好学习、掌握这些知识点,这样一来,在实际工作中碰到问题时,就能更有效率地避开陷阱,解决麻烦了。同时,我们也应该养成良好的编程习惯,比如定期检查环境变量和日志配置文件,确保它们的正确性。
2023-06-21 10:00:14
435
春暖花开-t
MemCache
...,而不涉及复杂的数据结构和事务管理。这就好比你有一款游戏,它的规则设定里就没有考虑过时间旅行或者穿越时空的事情。所以,你不能在游戏中实现回到过去修改错误或者尝试不同的未来路径。同理,这个系统也一样,它的设计初衷没有考虑到版本更新时的逻辑问题,所以自然也就无法直接支持多版本控制了。 第三部分:实现多版本控制的方法 1. 使用命名空间进行版本控制 一个简单的策略是为每个数据项创建一个命名空间,其中包含当前版本的键和历史版本的键。例如: python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=0) def set_versioned_data(key, version, data): mc.set(f'{key}_{version}', data) mc.set(key, data) 保存最新版本 设置数据 set_versioned_data('product', 'v1', {'name': 'Product A', 'price': 10}) 更新数据并设置新版本 set_versioned_data('product', 'v2', {'name': 'Product A (Updated)', 'price': 15}) 2. 利用时间戳进行版本控制 另一种方法是在数据中嵌入一个时间戳字段,作为版本标识。这种方法在数据频繁更新且版本控制较为简单的情况下适用。 python import time def set_timestamped_data(key, timestamp, data): mc.set(f'{key}_{timestamp}', data) mc.set(key, data) 设置数据 set_timestamped_data('product', int(time.time()), {'name': 'Product A', 'price': 10}) 更新数据 set_timestamped_data('product', int(time.time()) + 1, {'name': 'Product A (Updated)', 'price': 15}) 第四部分:优化与挑战 在实际应用中,选择何种版本控制策略取决于具体业务需求。比如说,假设你老是得翻查过去的数据版本,那用时间戳或者命名空间跟数据库的搜索功能搭伙用,可能会是你的最佳选择。就像你去图书馆找书,用书名和出版日期做检索,比乱翻一气效率高多了。这方法就像是给你的数据做了个时间轴或者标签系统,让你想看哪段历史一搜就出来,方便得很!同时,考虑到内存资源的限制,应合理规划版本的数量,避免不必要的内存占用。 结论 Memcached本身不提供内置的多版本控制功能,但通过一些简单的编程技巧,我们可以实现这一需求。无论是使用命名空间还是时间戳,关键在于根据业务逻辑选择最适合的实现方式。哎呀,你知不知道在搞版本控制的时候,咱们得好好琢磨琢磨性能优化和资源管理这两块儿?这可是关乎咱们系统稳不稳定的头等大事,还有能不能顺畅运行的关键!别小瞧了这些细节,它们能让你的程序像开了挂一样,不仅跑得快,而且用起来还特别省心呢!所以啊,做这些事儿的时候,可得细心点,别让它们成为你系统的绊脚石! 后记 在开发过程中,面对复杂的数据管理和版本控制需求,灵活运用现有工具和技术,往往能取得事半功倍的效果。嘿!小伙伴们,咱们一起聊聊天呗。这篇文章呢,就是想给那些正跟咱们遇到相似难题的编程大神们一点灵感和方向。咱们的目标啊,就是一块儿把技术这块宝地给深耕细作,让它开出更绚烂的花,结出更甜美的果子。加油,程序员朋友们,咱们一起努力,让代码更有灵魂,让技术更有温度!
2024-09-04 16:28:16
97
岁月如歌
Spark
...park中核心的数据结构,代表一个不可变、可分区的分布式数据集合。在Spark处理过程中,RDD可以记录其生成和转换操作的历史记录,即血统(Lineage)信息。当数据部分丢失或传输中断时,Spark能根据这些历史操作自动重新计算受影响的数据,而非从源头重新获取全部数据,从而提供了一种高效且容错性强的数据处理机制。 CheckPointing机制 , 在Spark中,CheckPointing是一种持久化存储策略,用于提高数据容错性和减少故障恢复时间。通过调用RDD的checkpoint()方法,Spark将RDD的数据以确定性方式保存到可靠的存储系统(如HDFS)上。这样,在发生节点故障或者数据丢失时,Spark可以从检查点直接读取数据进行任务恢复,避免了依赖整个血统链条进行重算,大大提升了系统的稳定性和效率。 宽窄依赖 , 在Spark的任务调度与执行模型中,宽窄依赖是用来描述不同任务之间的数据依赖关系的概念。窄依赖指的是父RDD的一个分区最多被子RDD的一个分区所依赖,这种依赖关系支持在单个节点上进行快速、局部的错误恢复;而宽依赖则指父RDD的一个分区可能被多个子RDD分区所依赖,通常会导致stage间的划分,并需要进行shuffle操作。对于数据传输中断问题,Spark会根据任务间的宽窄依赖关系采取不同的应对策略,比如对窄依赖任务进行局部重试,对宽依赖任务则依据血统信息划分stage并并行重试内部任务,确保数据处理流程能够有效地抵御网络波动等异常情况的影响。
2024-03-15 10:42:00
576
星河万里
Redis
...端,提供了丰富的数据结构和分布式服务,其中就包括对分布式锁的优化实现。它采用Redis的Lua脚本、Redis事务以及watch命令等多种机制相结合的方式,确保了在高并发场景下获取和释放锁的操作是原子性的,有效避免了本文所述的“两人同时获得锁”的诡异现象。 此外,Redisson还支持可重入锁、公平锁、读写锁等多种锁类型,满足不同业务场景下的需求。通过定期自动续期功能,可以防止因网络抖动或进程阻塞导致的锁超时失效问题,极大地提高了系统的稳定性和可靠性。 与此同时,随着云原生技术的发展,Kubernetes等容器编排工具日益普及,Redis Cluster或者Sentinel集群部署模式成为主流。Redisson对此提供了良好的支持,使得开发者能够更加便捷地在分布式环境中利用Redis构建高性能、高可用的服务。 总之,在面对复杂的分布式系统开发时,深入理解和合理运用诸如Redisson这样的工具库,不仅可以解决Redis在实现分布式锁时的并发难题,更能提升整体系统的架构水平和运维效率。对于关注此类话题的技术人员而言,不断跟进并学习这些最新实践无疑具有极高的价值。
2023-05-29 08:16:28
269
草原牧歌_t
Hadoop
...它允许用户通过标准的文件系统接口(如NFS、SMB等)访问云存储,从而实现数据的本地缓存和自动迁移。这种架构设计旨在降低迁移数据到云端的复杂性,并提高数据处理效率。 三、HCSG的核心组件与功能 1. 数据缓存层 负责在本地存储数据的副本,以便快速读取和减少网络延迟。 2. 元数据索引 记录所有存储在云中的数据的位置信息,便于数据查找和迁移。 3. 自动迁移策略 根据预设规则(如数据访问频率、存储成本等),决定何时将数据从本地存储迁移到云存储。 四、安装与配置HCSG 步骤1: 确保你的环境具备Hadoop和所需的云存储服务(如Amazon S3、Google Cloud Storage等)的支持。 步骤2: 下载并安装HCSG软件包,通常可以从Hadoop的官方或第三方仓库获取。 步骤3: 配置HCSG参数,包括云存储的访问密钥、端点地址、本地缓存目录等。这一步骤需要根据你选择的云存储服务进行具体设置。 步骤4: 启动HCSG服务,并通过命令行或图形界面验证其是否成功运行且能够正常访问云存储。 五、HCSG的实际应用案例 案例1: 数据备份与恢复 在企业环境中,HCSG可以作为数据备份策略的一部分,将关键业务数据实时同步到云存储,确保数据安全的同时,提供快速的数据恢复选项。 案例2: 大数据分析 对于大数据处理场景,HCSG能够提供本地缓存加速,使得Hadoop集群能够更快地读取和处理数据,同时,云存储则用于长期数据存储和归档,降低运营成本。 案例3: 实时数据流处理 在构建实时数据处理系统时,HCSG可以作为数据缓冲区,接收实时数据流,然后根据需求将其持久化存储到云中,实现高效的数据分析与报告生成。 六、总结与展望 Hadoop Cloud Storage Gateway作为一种灵活且强大的工具,不仅简化了数据迁移和存储管理的过程,还为企业提供了云存储的诸多优势,包括弹性扩展、成本效益和高可用性。嘿,兄弟!你听说没?云计算这玩意儿越来越火了,那HCSG啊,它在咱们数据世界里的角色也越来越重要了。就像咱们生活中离不开水和电一样,HCSG在数据管理和处理这块,简直就是个超级大功臣。它的应用场景多得数不清,无论是大数据分析、云存储还是智能应用,都有它的身影。所以啊,未来咱们在数据的海洋里畅游时,可别忘了感谢HCSG这个幕后英雄! 七、结语 通过本文的介绍,我们深入了解了Hadoop Cloud Storage Gateway的基本概念、核心组件以及实际应用案例。嘿,你知道吗?HCSG在数据备份、大数据分析还有实时数据处理这块可是独树一帜,超能打的!它就像是个超级英雄,无论你需要保存数据的安全网,还是想要挖掘海量信息的金矿,或者是需要快速响应的数据闪电侠,HCSG都能搞定,简直就是你的数据守护神!嘿,兄弟!你准备好了吗?我们即将踏上一段激动人心的数字化转型之旅!在这趟旅程里,学会如何灵活运用HCSG这个工具,绝对能让你的企业在竞争中脱颖而出,赢得更多的掌声和赞誉。想象一下,当你能够熟练操控HCSG,就像一个魔术师挥舞着魔杖,你的企业就能在市场中轻松驾驭各种挑战,成为行业的佼佼者。所以,别犹豫了,抓紧时间学习,让HCSG成为你手中最强大的武器吧!
2024-09-11 16:26:34
109
青春印记
Saiku
...小项目那样,首先得把文件给解压开来,接着麻溜地跳进目录里头。然后,就像启动魔法咒语一样,咱们运行那个特定的启动脚本,就比如说叫“start-saiku.sh”。最后,只需在你的浏览器地址栏输入localhost,再加上指定的那个端口数字,嗖一下,就能打开Saiku酷炫的界面啦! (2) 配置数据源 - 虽然不能给出具体代码示例,但在此环节,你需在Saiku的配置文件中添加你的数据库连接信息,就像人类在面对新环境时需要找到“水源”一样重要。例如,为MySQL配置数据源时,需要填写诸如URL、用户名、密码以及数据立方体名称等详细参数。 4. 在云端服务器配置和使用Saiku (1) 远程部署 - 当Saiku需要在云端服务器上运行时,我们需要考虑网络延迟、安全性和资源分配等问题。首先,你可以通过SSH这类工具,把Saiku服务像打包行李一样上传到服务器上。接着,就像启动一台新电脑那样,在服务器上输入神秘的启动命令,确保这个服务能够在云端畅快地跑起来。 (2) 跨域访问与安全配置 - 如果你的应用跨越了不同网络环境,可能会遇到跨域问题。这时,你可以在Nginx或Apache等反向代理服务器上做相应配置,允许外部网络访问Saiku服务。同时,别忘了加强安全性,比如启用HTTPS,配置防火墙规则等。 5. 针对复杂网络环境的高级配置技巧 - 在复杂的网络环境下,可能涉及多个子网、VPC或者混合云架构,这就需要更精细的路由规划和网络策略设定。比如说,假如Saiku服务藏在一个私有子网里头,而用户又在另一个不同的网络环境里玩,这时候可能就需要捣鼓一下NAT网关啦,或者搞个VPC对等连接什么的,目的就是为了确保大家能既安全又准确地“摸”到Saiku服务。 6. 结语 配置和使用Saiku的过程,就像是在迷宫中寻找出路,需要我们不断地尝试、理解并解决问题。尽管没有具体的代码片段,但每个步骤背后都蕴含着丰富的技术细节和实践经验。只有彻底搞懂每一步操作背后的门道和原理,你才能在任何网络环境里都像老司机那样,轻松玩转这款强大的数据分析神器。 以上内容虽未包含实际代码,但在实践中,每一项配置和设置都会转化为对配置文件或系统参数的具体操作。希望这篇指南能像一位贴心的朋友,手把手带你掌握在各种网络环境下配置和使用Saiku的大招秘籍,而且读完之后,你还能兴奋地想要去解锁更多关于它的新技能呢!
2023-08-17 15:07:18
166
百转千回
Material UI
...传播通常遵循其组件树结构进行。哎呀,有时候编程的时候,开发者可能会碰到一个挺头疼的问题。就是明明自己在父组件里传了个参数过去,结果到子组件那,参数怎么就不按自己的预期来显示或者用上了呢?这事儿可真让人抓狂!就像是你精心准备的礼物,结果到了朋友手里,他们却不知道怎么打开,或者完全没发现一样。得好好检查一下,看看是哪儿出了差错,是不是哪里代码没写对,或者是逻辑有点小bug,得把这些问题一个个揪出来解决才行。这通常涉及到了几个关键因素: - 默认值冲突:当组件的默认属性与传入的Props发生冲突时,可能导致某些属性未被应用。 - 属性覆盖:在嵌套组件中,如果直接覆盖了父组件的属性,可能会影响到Props的传播。 - React生命周期方法:在某些生命周期方法内处理Props,可能会影响其后续传播。 实例一:默认值冲突导致的传播问题 假设我们有一个Button组件,它有一个默认的color属性为primary: jsx import React from 'react'; import Button from '@material-ui/core/Button'; const MyComponent = () => { return ( Secondary Button ); }; export default MyComponent; 如果我们在渲染MyComponent时,直接传入了一个color属性,那么这个属性将覆盖掉Button组件的默认color属性: jsx 此时,按钮将显示为默认的primary颜色,而不是预期的secondary颜色。这是因为Props的覆盖关系导致了默认值的丢失。 解决方案:避免覆盖默认值 要解决这个问题,确保传入的Props不会覆盖组件的默认属性。可以采用以下策略: - 使用对象解构:在函数组件中,通过对象解构来明确指定需要覆盖的属性,其他默认属性保持不变。 jsx const MyComponent = ({ color }) => { return ( Custom Color Button ); }; 实例二:属性覆盖与正确传播 现在,我们定义一个包含color属性的MyComponent函数组件,并尝试通过传入不同的参数来观察Props的正确传播: jsx const MyComponent = ({ color }) => { return ( {color} Button ); }; 在这里,我们可以清晰地看到,无论传入secondary还是primary作为color值,按钮都正确地显示了所选颜色,因为我们在MyComponent中明确地控制了color属性的值,从而避免了默认值的覆盖问题。 总结与建议 在使用Material UI时,确保对Props的管理足够细致是关键。为了避免那些让人头疼的默认值冲突,咱们得好好规划一下控件属性怎么传递。就像是给家里的水管线路做个清晰的指引图,确保每一滴水都流向该去的地方,而不是乱窜。这样一来,咱就能大大降低出错的概率,让程序运行得更顺畅,用户体验也更好。哎呀,用React的时候啊,记得好好管理Props这玩意儿!别让它乱跑,要不然后面可就一团糟了。每次组件活蹦乱跳的生命周期里,都得仔细盯着Props,确保它们乖乖听话,既不逃也不躲,一直稳稳当当地在你掌控之中。这样,你的代码才不会像无头苍蝇一样乱撞,保持清爽整洁,运行起来也顺畅多了! 结语:从困惑到掌握 面对Props传播的问题,通过实践和理解背后的工作原理,我们能够逐步克服挑战,提升在Material UI项目中的开发效率和质量。记住,每一次调试和解决问题的过程都是学习和成长的机会。在未来的开发旅程中,相信你会更加熟练地驾驭Material UI,创造出更多令人惊艳的应用。
2024-09-28 15:51:28
101
岁月静好
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -f /var/log/messages
- 实时查看日志文件新增内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"