前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[表结构 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...具备的专业技能、知识结构、综合素质以及适应变化的能力,在同行中脱颖而出,获取更多工作机会、晋升空间及资源的优势。文章语境中强调中年人需要不断提升职场竞争力以应对来自年轻一代和行业变革的挑战。 潜力股与优质股 , 这两个名词来源于股票市场的概念,在职场语境下,“潜力股”比喻具有较大发展潜力、有望在未来取得显著成就的年轻人;“优质股”则比喻已经积累了丰富经验、专业技能突出且持续发挥高价值贡献的员工。文中指出中年人若想突破瓶颈,需要将自己从“潜力股”转变为“优质股”,即通过实际行动力提升和自我投资,实现职业生涯质的飞跃。 终身学习 , 终身学习是一种持续不断的学习态度和生活方式,意味着个体在任何年龄阶段都不停止对新知识、新技能的学习与掌握。在文中,终身学习被强调为中年人应对职场竞争、保持职业活力的重要途径,通过不断学习和进修,更新自身的知识体系和技能树,以适应快速发展的社会和职场环境。
2023-06-29 14:16:29
119
转载
转载文章
...码地址,关于代码目录结构可以参考代码仓库的说明文档,喜欢的朋友可以转评赞给一个,点个收藏不丢失,下面呢我介绍一下基本构建思路; 1、关于项目中使用tsx 要想项目中运行tsx,我们就得考虑到tsx语法糖编译的问题,这里就得用到@vitejs/plugin-vue-jsx插件,详细用法参考github文档,安装后,在vite的plugin中直接调用即可; import { defineConfig } from 'vite'import vue from '@vitejs/plugin-vue'import vueJsx from '@vitejs/plugin-vue-jsx'// https://vitejs.dev/config/export default defineConfig({plugins: [vue(), vueJsx()]}) 2、安装tailwindcss 关于tailwindcss + vite方案,它的官网有了很友好的方案,这块大家按部就班的安装就够了,没有多少复杂度,参考地址,选择tailwindcss主要是它提供了一些快速样式,比如padding、margin、background等,如果我们项目是后台管理系统,tailwindcss会大大降低我们写css样式的工作,大家可以去学习一波在项目中用起来,熟悉了以后就觉得他是在是太方便了。 这里不做用法的介绍,就推荐一个vscode插件Tailwind CSS IntelliSense,安装后,在项目中我们就可以只能提示,如下所示: 3、关于eslint + prettier 代码统一规范 关于代码规范,一般小一点公司不太会做这方面的工程化配置,但是eslint等这些代码规范工具,会让我们团队的代码更规范,风格更统一,团队协作更加方便,我简单说一下配置eslint及prettier的办法 (1)首先安装eslint工具库 pnpm add eslint -D pnpm eslint --init (2)安装外部的语法eslint规范及import校验规范 选择对应的项目内容,这里我的项目用到(vue, typescript,browser)这个,当然有这个还不够,我们需要安装如下两个工具包 pnpm add eslint-plugin-import // 主要对于es与typescript import 路径的一个eslint校验 pnpm add eslint-config-airbnb-base // 这个是airbnb出的一套eslint语法规范的工具库,如果自己公司没有对应的代码规范,这个是很实用的一套 (3)编写vue3相关的规范 项目中我们用到的是eslint-plugin-vue这个vue代码校验规范工具,里面有很多内容及配置项功能,我们这里推荐大家在配置代码规范,可以参考官方的说明文档,链接放在这里; (4)安装和配置prettier 这个相对来讲比较简单一些,我们直接安装pnpm add eslint-plugin-prettier eslint-config-prettier prettier -D,这里我们需要注意的是prettier与eslint冲突问题; 上面是配置时候的基本流程,最终结果我将eslintrc文件及package.json文件放到这里,有需要的朋友,可以直接copy一份去配置,毕竟这个配置很臭很长,深入学习感觉又没有太大必要(23333~) {"name": "vue-tsx-template","private": true,"version": "0.0.0","scripts": {"dev": "vite","build": "vue-tsc --noEmit && vite build","preview": "vite preview","fix": "eslint --fix --ext .js,.jsx,.tsx,.vue src && prettier "},"dependencies": {"vue": "^3.2.25"},"devDependencies": {"@typescript-eslint/eslint-plugin": "^5.23.0","@typescript-eslint/parser": "^5.23.0","@vitejs/plugin-vue": "^2.3.3","@vitejs/plugin-vue-jsx": "^1.3.10","autoprefixer": "^10.4.7","eslint": "^8.15.0","eslint-config-airbnb-base": "^15.0.0","eslint-config-prettier": "^8.5.0","eslint-plugin-import": "^2.26.0","eslint-plugin-prettier": "^4.0.0","eslint-plugin-vue": "^8.7.1","postcss": "^8.4.13","prettier": "^2.6.2","sass": "^1.51.0","tailwindcss": "^3.0.24","typescript": "^4.5.4","vite": "^2.9.9","vue-eslint-parser": "^9.0.1","vue-tsc": "^0.34.7"} } 下面是.eslintrc.js文件 module.exports = {env: {browser: true,es2021: true,node: true,// 处理 defineProps 报错'vue/setup-compiler-macros': true,},extends: ['eslint:recommended','airbnb-base','prettier','plugin:prettier/recommended','plugin:vue/vue3-recommended','plugin:@typescript-eslint/recommended','plugin:import/recommended','plugin:import/typescript',],parser: 'vue-eslint-parser',parserOptions: {ecmaVersion: 'latest',parser: '@typescript-eslint/parser',sourceType: 'module',},plugins: ['vue', '@typescript-eslint'],rules: {// 防止prettier与eslint冲突'prettier/prettier': 'error',// eslint-plugin-import es module导入eslint规则配置,旨在规避拼写错误问题'import/no-unresolved': 0,'import/extensions': ['error',{js: 'never',jsx: 'never',ts: 'never',tsx: 'never',json: 'always',},],// 使用导出的名称作为默认属性(主要用作导出模块内部有 default, 和直接导出两种并存情况下,会出现default.proptry 这种问题从在的情况)'import/no-named-as-default-member': 0,'import/order': ['error', { 'newlines-between': 'always' }],// 导入确保是否在首位'import/first': 0,// 如果文件只有一个导出,是否开启强制默认导出'import/prefer-default-export': 0,'import/no-extraneous-dependencies': ['error',{devDependencies: [],optionalDependencies: false,},],/ 关于typescript语法校验 参考文档: https://www.npmjs.com/package/@typescript-eslint/eslint-plugin/'@typescript-eslint/no-extra-semi': 0,// 是否禁止使用any类型'@typescript-eslint/no-explicit-any': 0,// 是否对于null情况做非空断言'@typescript-eslint/no-non-null-assertion': 0,// 是否对返回值类型进行定义校验'@typescript-eslint/explicit-function-return-type': 0,'@typescript-eslint/member-delimiter-style': ['error', { multiline: { delimiter: 'none' } }],// 结合eslint 'no-use-before-define': 'off',不然会有报错,需要关闭eslint这个校验,主要是增加了对于type\interface\enum'no-use-before-define': 'off','@typescript-eslint/no-use-before-define': ['error'],'@typescript-eslint/explicit-module-boundary-types': 'off','@typescript-eslint/no-unused-vars': ['error',{ignoreRestSiblings: true,varsIgnorePattern: '^_',argsIgnorePattern: '^_',},],'@typescript-eslint/explicit-member-accessibility': ['error', { overrides: { constructors: 'no-public' } }],'@typescript-eslint/consistent-type-imports': 'error','@typescript-eslint/indent': 0,'@typescript-eslint/naming-convention': ['error',{selector: 'interface',format: ['PascalCase'],},],// 不允许使用 var'no-var': 'error',// 如果没有修改值,有些用const定义'prefer-const': ['error',{destructuring: 'any',ignoreReadBeforeAssign: false,},],// 关于vue3 的一些语法糖校验// 超过 4 个属性换行展示'vue/max-attributes-per-line': ['error',{singleline: 4,},],// setup 语法糖校验'vue/script-setup-uses-vars': 'error',// 关于箭头函数'vue/arrow-spacing': 'error','vue/html-indent': 'off',},} 4、加入单元测试 单元测试,根据自己项目体量及重要性而去考虑是否要增加,当然单测可以反推一些组件 or 方法的设计是否合理,同样如果是一个稳定的功能在加上单元测试,这就是一个很nice的体验; 我们单元测试是基于jest来去做的,具体安装单测的办法如下,跟着我的步骤一步步来; 安装jest单测相关的依赖组件库 pnpm add @testing-library/vue @testing-library/user-event @testing-library/jest-dom @types/jest jest @vue/test-utils -D 安装完成后,发现还需要安装前置依赖 @testing-library/dom @vue/compiler-sfc我们继续补充 安装babel相关工具,用ts写的单元测试需要转义,具体安装工具如下pnpm add @babel/core babel-jest @vue/babel-preset-app -D,最后我们配置babel.config.js module.exports = {presets: ['@vue/app'],} 配置jest.config.js module.exports = {roots: ['<rootDir>/test'],testMatch: [// 这里我们支持src目录里面增加一些单层,事实上我并不喜欢这样做'<rootDir>/src//__tests__//.{js,jsx,ts,tsx}','<rootDir>/src//.{spec,test}.{js,jsx,ts,tsx}',// 这里我习惯将单层文件统一放在test单独目录下,不在项目中使用,降低单测文件与业务组件模块混合在一起'<rootDir>/test//.{spec,test}.{js,jsx,ts,tsx}',],testEnvironment: 'jsdom',transform: {// 此处我们单测没有适用vue-jest方式,项目中我们江永tsx方式来开发,所以我们如果需要加入其它的内容// '^.+\\.(vue)$': '<rootDir>/node_modules/vue-jest','^.+\\.(js|jsx|mjs|cjs|ts|tsx)$': '<rootDir>/node_modules/babel-jest',},transformIgnorePatterns: ['<rootDir>/node_modules/','[/\\\\]node_modules[/\\\\].+\\.(js|jsx|mjs|cjs|ts|tsx)$','^.+\\.module\\.(css|sass|scss|less)$',],moduleFileExtensions: ['ts', 'tsx', 'vue', 'js', 'jsx', 'json', 'node'],resetMocks: true,} 具体写单元测试的方法,可以参考项目模板中的组件单元测试写法,这里不做过多的说明; 5、封装axios请求库 这里呢其实思路有很多种,如果有自己的习惯的封装方式,就按照自己的思路,下面附上我的封装代码,简短的说一下我的封装思路: 1、基础的请求拦截、相应拦截封装,这个是对于一些请求参数格式化处理等,或者返回值情况处理 2、请求异常、错误、接口调用成功返回结果错误这些错误的集中处理,代码中请求就不再做trycatch这些操作 3、请求函数统一封装(代码中的 get、post、axiosHttp) 4、泛型方式定义请求返回参数,定义好类型,让我们可以在不同地方使用有良好的提示 import type { AxiosRequestConfig, AxiosResponse } from 'axios'import axios from 'axios'import { ElNotification } from 'element-plus'import errorHandle from './errorHandle'// 定义数据返回结构体(此处我简单定义一个比较常见的后端数据返回结构体,实际使用我们需要按照自己所在的项目开发)interface ResponseData<T = null> {code: string | numberdata: Tsuccess: booleanmessage?: string[key: string]: any}const axiosInstance = axios.create()// 设定响应超时时间axiosInstance.defaults.timeout = 30000// 可以后续根据自己http请求头特殊邀请设定请求头axiosInstance.interceptors.request.use((req: AxiosRequestConfig<any>) => {// 特殊处理,后续如果项目中有全局通传参数,可以在这儿做一些处理return req},error => Promise.reject(error),)// 响应拦截axiosInstance.interceptors.response.use((res: AxiosResponse<any, any>) => {// 数组处理return res},error => Promise.reject(error),)// 通用的请求方法体const axiosHttp = async <T extends Record<string, any> | null>(config: AxiosRequestConfig,desc: string,): Promise<T> => {try {const { data } = await axiosInstance.request<ResponseData<T>>(config)if (data.success) {return data.data}// 如果请求失败统一做提示(此处我没有安装组件库,我简单写个mock例子)ElNotification({title: desc,message: ${data.message || '请求失败,请检查'},})} catch (e: any) {// 统一的错误处理if (e.response && e.response.status) {errorHandle(e.response.status, desc)} else {ElNotification({title: desc,message: '接口异常,请检查',})} }return null as T}// get请求方法封装export const get = async <T = Record<string, any> | null>(url: string, params: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'get',url,params,}const data = await axiosHttp<T>(config, desc)return data}// Post请求方法export const post = async <T = Record<string, any> | null>(url: string, data: Record<string, any>, desc: string) => {const config: AxiosRequestConfig = {method: 'post',url,data,}const info = await axiosHttp<T>(config, desc)return info} 请求错误(状态码错误相关提示) import { ElNotification } from 'element-plus'function notificat(message: string, title: string) {ElNotification({title,message,})}/ @description 获取接口定义 @param status {number} 错误状态码 @param desc {string} 接口描述信息/export default function errorHandle(status: number, desc: string) {switch (status) {case 401:notificat('用户登录失败', desc)breakcase 404:notificat('请求不存在', desc)breakcase 500:notificat('服务器错误,请检查服务器', desc)breakdefault:notificat(其他错误${status}, desc)break} } 6、关于vue-router 及 pinia 这两个相对来讲简单一些,会使用vuex状态管理,上手pinia也是很轻松的事儿,只是更简单化了、更方便了,可以参考模板项目里面的用法example,这里附上router及pinia配置方法,路由守卫,大家可以根据项目的要求再添加 import type { RouteRecordRaw } from 'vue-router'import { createRouter, createWebHistory } from 'vue-router'// 配置路由const routes: Array<RouteRecordRaw> = [{path: '/',redirect: '/home',},{name: 'home',path: '/home',component: () => import('page/Home'),},]const router = createRouter({routes,history: createWebHistory(),})export default router 针对与pinia,参考如下: import { createPinia } from 'pinia'export default createPinia() 在入口文件将router和store注入进去 import { createApp } from 'vue'import App from './App'import store from './store/index'import './style/index.css'import './style/index.scss'import 'element-plus/dist/index.css'import router from './router'// 注入全局的storeconst app = createApp(App).use(store).use(router)app.mount('app') 说这些比较枯燥,建议大家去github参考项目说明文档,下载项目,自己过一遍,喜欢的朋友收藏点赞一下,如果喜欢我构建好的项目给个star不丢失,谢谢各位看官的支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_37764929/article/details/124860873。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 12:27:41
116
转载
转载文章
...indows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...的D3DMATRIX结构的_31、_32、_33和_34成员的符号取反。 要得到等同于右手系的效果,可以使用D3DXMatrixPerspectiveRH和D3DXMatrixOrthoRH函数定义投影矩阵。但是,要小心使用D3DXMatrixLookAtRH函数,并相应地颠倒背面剔除的顺序及放置立方体贴图。 虽然左手坐标系和右手坐标系是最为常用的系统,但在三维软件中还使用许多其它坐标系。例如,对三维建模应用程序而言,使用y轴指向或背向观察者的坐标系统并非罕见。在这种情况下,任意轴(x,y或z)的正半轴指向观察者的被定义为右手系。任意轴(x,y或z)的正半轴背向观察者的被定义为左手系。如果正在移植一个基于左手系进行建模的应用程序,z轴向上,那么除了前面的步骤外,还必须旋转所有的顶点数据(译注:如果原来的坐标系为正x轴向里,正y轴向左,正z轴向上,那么传给Direct3D的顶点的x值对应原来的y值,y值对应原来的z值,z值对应原来的x值,亦即旋转顶点数据)。 对三维坐标系统中定义的三维物体执行的最基本操作是变换、旋转和缩放。可以合并这些基本变换以创建一个新的变换矩阵。细节请参阅三维变换。 即使合并相同的变换操作,不同的合并顺序得到的结果是不可交换的——矩阵相乘的顺序很重要。 三维图元 三维图元是组成单个三维实体的顶点集合。三维坐标系统中最简单的图元是点的集合,称为点表。 通常三维图元是多边形。一个多边形是由至少三个顶点描绘的三维形体。最简单的多边形是三角形。Microsoft® Direct3D®使用三角形组成大多数多边形,因为三角形的三个顶点一定是共面的。应用程序可以用三角形组合成大而复杂的多边形及网格(mesh)。 下图显示了一个立方体。立方体的每个面由两个三角形组成。整个三角形的集合构成了一个立方体图元。可以将纹理和材质应用于图元的表面使它们看起来像是实心的。 可以使用三角形创建具有光滑曲面的图元。下图显示了如何用三角形模拟一个球体。应用了材质后,渲染得到的球体看起来是弯曲的。如果使用高洛德着色,结果更是如此。更多信息请参阅高洛德着色。 表面和顶点法向量 网格中的每个面有一个垂直的法向量。该向量的方向由定义顶点的顺序及坐标系统是左手系还是右手系决定。表面法向量从表面上指向正向面那一侧,如果把表面水平放置,正向面朝上,背向面朝下,那么表面法向量为垂直于表面从下方指向上方。在Microsoft® Direct3D®中,只有面的正向是可视的。一个正向面是顶点按照顺时针顺序定义的面。 任何不是正向面的面都是背向面。由于Direct3D不总是渲染背向面,因此背向面要被剔除。如果想要渲染背向面的话,可以改变剔除模式。更多信息请参阅剔除状态。 Direct3D在计算高洛德着色、光照和纹理效果时使用顶点法向。 Direct3D使用顶点法向计算光源和表面间的夹角,对多边形进行高洛德着色。Direct3D计算每个顶点的颜色和亮度值,并对图元表面所覆盖的所有像素点进行插值。Direct3D使用夹角计算光强度,夹角越大,表面得到的光照就越少。 如果正在创建的物体是平直的,可将顶点法向设为与表面垂直,如下图所示。该图定义了一个由两个三角形组成的平直表面。 但是,更可能的情况是物体由三角形带(triangle strips)组成且三角形不共面。要对整个三角形带的三角形平滑着色的一个简单方法是首先计算与顶点相关联的每个多边形表面的表面法向量。可以这样计算顶点法向,使顶点法向与顶点所属的每个表面的法向的夹角相等。但是,对复杂图元来说这种方法可能不够有效。 这种方法如下图所示。图中有两个表面,S1与S2,它们的邻边在上方。S1与S2的法向量用蓝色显示。顶点的法向量用红色显示。顶点法向量与S1表面法向的夹角和顶点法向量与S2表面法向的夹角相同。当对这两个表面进行光照计算和高洛德着色时,得到结果是中间的边被平滑着色,看起来像是弧形的(而不是有棱角的)。 如果顶点法向偏向与它相关联的某个面,那么会导致那个面上的点光强度的增加或减少。下图显示了一个例子。这些面的邻边依然朝上。顶点法向倾向S1,与顶点法向与表面法向有相同的夹角相比,这使顶点法向与光源间的夹角变小。 可以用高洛德着色在三维场景中显示一些有清晰边缘的物体。要达到这个目的,只要在需要产生清晰边缘的表面交线处,把表面法向复制给交线处顶点的法向,如下图所示。 如果使用DrawPrimitive方法渲染场景,要将有锋利边缘的物体定义为三角形表,而非三角形带。当将物体定义为三角形带时,Direct3D会将它作为由多个三角形组成的单个多边形处理。高洛德着色被同时应用于多边形每个表面的内部和表面之间。结果产生表面之间平滑着色的物体。因为三角形表由一系列不相连的三角形面组成,所以Direct3D对多边形每个面的内部使用高洛德着色。但是,没有在表面之间应用高洛德着色。如果三角形表的两个或更多的三角形是相邻的,那么在它们之间看起来会有一条锋利边缘。 另一种可选的方法是在渲染具有锋利边缘的物体时改变到平面着色模式。这在计算上是最有效的方法,但它可能导致场景中的物体不如用高洛德着色渲染的物体真实。 三角形光栅化法则 顶点指定的点经常不能精确地对应到屏幕上的像素。此时,Microsoft® Direct3D®使用三角形光栅化法则决定对于给定三角形使用哪个像素。 三角形光栅化法则 点、线光栅化法则 点精灵光栅化法则 三角形光栅化法则 Direct3D在填充几何图形时使用左上填充约定(top-left filling convention)。这与Microsoft Windows®的图形设备接口(GUI)和OpenGL中的矩形使用的约定相同。Direct3D中,像素的中心是决定点。如果中心在三角形内,那么该像素就是三角形的一部分。像素中心用整数坐标表示。 这里描述的Direct3D使用的三角形光栅化法则不一定适用于所有可用的硬件。测试可以发现这些法则的实现间的细微变化。 下图显示了一个左上角为(0,0),右下角为(5,5)的矩形。正如大家想象的那样,此矩形填充25个像素。矩形的宽度由right减left定义。高度由bottom减top定义。 在左上填充约定中,上表示水平span在垂直方向上的位置,左表示span中的像素在水平方向上的位置。一条边除非是水平的,否则不可能是顶边——一般来说,大多数三角形只有左边或右边。 左上填充约定确定当一个三角形穿过像素的中心时Direct3D采取的动作。下图显示了两个三角形,一个在(0,0),(5,0)和(5,5),另一个在(0,5),(0,0)和(5,5)。在这种情况下第一个三角形得到15个像素(显示为黑色),而第二个得到10个像素(显示为灰色),因为公用边是第一个三角形的左边。 如果应用程序定义一个左上角为(0.5,0.5),右下角为(2.5,4.5)的矩形,那么这个矩形的中心在(1.5,2.5)。当Direct3D光栅化器tessellate这个矩形时,每个像素的中心都毫无异义地分别位于四个三角形中,此时就不需要左上填充约定。下图显示了这种情况。矩形内的像素根据在Direct3D中被哪个三角形包含做了相应的标注。 如果将上例中的矩形移动,使之左上角为(1.0,1.0),右下角为(3.0,5.0),中心为(2.0,3.0),那么Direct3D使用左上角填充约定。这个矩形中大多数的像素跨越两个或更多的三角形的边界,如下图所示。 这两个矩形会影响到相同的像素。 点、线光栅化法则 点和点精灵一样,都被渲染为与屏幕边缘对齐的四边形,因此它们使用与多边形同样的渲染法则。 非抗锯齿线段的渲染法则与GDI使用的法则完全相同。 更多有关抗锯齿线段的渲染,请参阅ID3DXLine。 点精灵光栅化法则 对点精灵和patch图元的渲染,就好像先把图元tessellate成三角形,然后将得到的三角形进行光栅化。更多信息,请参阅点精灵。 矩形 贯穿Microsoft® Direct3D®和Microsoft Windows®编程,都是用术语包围矩形来讨论屏幕上的物体。由于包围矩形的边总是与屏幕的边平行,因此矩形可以用两个点描述,左上角和右下角。当在屏幕上进行位块传输(Blit = Bit block transfer)或命中检测时,大多数应用程序使用RECT结构保存包围矩形的信息。 C++中,RECT结构有如下定义。 typedef struct tagRECT { LONG left; // 这是左上角的x坐标。 LONG top; // 这是左上角的y坐标。 LONG right; // 这是右下角的x坐标。 LONG bottom; // 这是右下角的y坐标。 } RECT, PRECT, NEAR NPRECT, FAR LPRECT; 在上例中,left和top成员是包围矩形左上角的x-和y-坐标。类似地,right和bottom成员组成右下角的坐标。下图直观地显示了这些值。 为了效率、一致性及易用性, Direct3D所有的presentation函数都使用矩形。 三角形插值对象(interpolants) 在渲染时,流水线会贯穿每个三角形的表面进行顶点数据插值。有五种可能的数据类型可以进行插值。顶点数据可以是各种类型的数据,包括(但不限于):漫反射色、镜面反射色、漫反射阿尔法(三角形透明度)、镜面反射阿尔法、雾因子(固定功能流水线从镜面反射的阿尔法分量中取得,可编程顶点流水线则从雾寄存器中取得)。顶点数据通过顶点声明定义。 对一些顶点数据的插值取决于当前的着色模式,如下表所示。 着色模式 描述 平面 在平面着色模式下只对雾因子进行插值。对所有其它的插值对象,整个面都使用三角形第一个顶点的颜色。 高洛德 在所有三个顶点间进行线性插值。 根据不同的颜色模型,对漫反射色和镜面反射色的处理是不同的。在RGB颜色模型中,系统在插值时使用红、绿和蓝颜色分量。 颜色的阿尔法成员作为单独的插值对象对待,因为设备驱动程序可以以两种不同的方法实现透明:使用纹理混合或使用点画法(stippling)。 可以用D3DCAPS9结构的ShadeCaps成员确定设备驱动程序支持何种插值。 向量、顶点和四元数 贯穿Microsoft® Direct3D®,顶点用于描述位置和方向。图元中的每个顶点由指定其位置的向量、颜色、纹理坐标和指定其方向的法向量描述。 四元数给三元素向量的[ x, y, z]值增加了第四个元素。用于三维旋转的方法,除了典型的矩阵以外,四元数是另一种选择。四元数表示三维空间中的一根轴及围绕该轴的一个旋转。例如,一个四元数可能表示轴(1,1,2)和1度的旋转。四元数包含了有价值的信息,但它们真正的威力源自可对它们执行的两种操作:合成和插值。 对四元数进行插值与合成它们类似。两个四元数的合成如下表示: 将两个四元数的合成应用于几何体意味着“把几何体绕axis2轴旋转rotation2角度,然后绕axis1轴旋转rotation1角度”。在这种情况下,Q表示绕单根轴的旋转,该旋转是先后将q2和q1应用于几何体的结果。 使用四元数,应用程序可以计算出一条从一根轴和一个方向到另一根轴和另一个方向的平滑、合理的路径。因此,在q1和q2间插值提供了一个从一个方向变化到另一个方向的简单方法。 当同时使用合成与插值时,四元数提供了一个看似复杂而实际简单的操作几何体的方法。例如,设想我们希望把一个几何体旋转到某个给定方向。我们已经知道希望将它绕axis2轴旋转r2度,然后绕axis1轴旋转r1度,但是我们不知道最终的四元数。通过使用合成,我们可以在几何体上合成两个旋转并得到最终单个的四元数。然后,我们可以在原始四元数和合成的四元数间进行插值,得到两者之间的平滑转换。 Direct3D扩展(D3DX)工具库包含了帮助用户使用四元数的函数。例如,D3DXQuaternionRotationAxis函数给一个定义旋转轴的向量增加一个旋转值,并在由D3DXQUTERNION结构定义的四元数中返回结果。另外,D3DXQuaternionMultiply函数合成四元数,D3DXQuaternionSlerp函数在两个四元数间进行球面线性插值(spherical linear interpolation)。 Direct3D应用程序可以使用下列函数简化对四元数的使用。 D3DXQuaternionBaryCentric D3DXQuaternionConjugate D3DXQuaternionDot D3DXQuaternionExp D3DXQuaternionIdentity D3DXQuaternionInverse D3DXQuaternionIsIdentity D3DXQuaternionLength D3DXQuaternionLengthSq D3DXQuaternionLn D3DXQuaternionMultiply D3DXQuaternionNormalize D3DXQuaternionRotationAxis D3DXQuaternionRotationMatrix D3DXQuaternionRotationYawPitchRoll D3DXQuaternionSlerp D3DXQuaternionSquad D3DXQuaternionToAxisAngle Direct3D应用程序可以使用下列函数简化对三成员向量的使用。 D3DXVec3Add D3DXVec3BaryCentric D3DXVec3CatmullRom D3DXVec3Cross D3DXVec3Dot D3DXVec3Hermite D3DXVec3Length D3DXVec3LengthSq D3DXVec3Lerp D3DXVec3Maximize D3DXVec3Minimize D3DXVec3Normalize D3DXVec3Project D3DXVec3Scale D3DXVec3Subtract D3DXVec3Transform D3DXVec3TransformCoord D3DXVec3TransformNormal D3DXVec3Unproject D3DX工具库提供的数学函数中包含了许多辅助函数,可以简化对二成员和四成员向量的使用 http://www.gesoftfactory.com/developer/3DCS.htm 本篇文章为转载内容。原文链接:https://blog.csdn.net/okvee/article/details/3438011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-24 12:49:42
271
转载
转载文章
...rea_struct结构体,然后调用设备驱动程序中定义的mmap函数。 2.mmap系统调用 mmap将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。munmap执行相反的操作,删除特定地址区域的对象映射。 当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内存写时不会写入超过当前文件大小的内容. 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。 基于文件的映射,在mmap和munmap执行过程的任何时刻,被映射文件的st_atime可能被更新。如果st_atime字段在前述的情况下没有得到更新,首次对映射区的第一个页索引时会更新该字段的值。用PROT_WRITE 和 MAP_SHARED标志建立起来的文件映射,其st_ctime 和 st_mtime在对映射区写入之后,但在msync()通过MS_SYNC 和 MS_ASYNC两个标志调用之前会被更新。 用法: include <sys/mman.h> void mmap(void start, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void start, size_t length); 返回说明: 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void )-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错 EAGAIN:文件已被锁定,或者太多的内存已被锁定 EBADF:fd不是有效的文件描述词 EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制 ENODEV:指定文件所在的文件系统不支持内存映射 ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许 ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区 参数: start:映射区的开始地址。 length:映射区的长度。 prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 PROT_EXEC //页内容可以被执行 PROT_READ //页内容可以被读取 PROT_WRITE //页可以被写入 PROT_NONE //页不可访问 flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。 MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。 MAP_DENYWRITE //这个标志被忽略。 MAP_EXECUTABLE //同上 MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。 MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。 MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。 MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。 MAP_FILE //兼容标志,被忽略。 MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。 offset:被映射对象内容的起点。 3.munmap系统调用 include <sys/mman.h> int munmap( void addr, size_t len ) 该调用在进程地址空间中解除一个映射关系,addr是调用mmap()时返回的地址,len是映射区的大小。当映射关系解除后,对原来映射地址的访问将导致段错误发生。 4.msync系统调用 include <sys/mman.h> int msync ( void addr , size_t len, int flags) 一般说来,进程在映射空间的对共享内容的改变并不直接写回到磁盘文件中,往往在调用munmap()后才执行该操作。可以通过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...关键字,用于异常处理结构(try-catch-finally)中。无论 try 块中的代码是否引发异常,finally 块中的代码都将被执行。其主要用途是在执行完 try 块后清理资源,比如关闭文件、网络连接或者释放其他系统资源,以确保即使在发生异常的情况下,也能正确地完成清理操作,避免资源泄露等问题。 应用程序全局处理异常 , 在 .NET 应用程序中,存在一些应用程序域级别的全局异常处理机制,例如 AppDomain.UnhandledException 和 AppDomain.FirstChanceException 等事件。这些全局异常处理方式允许开发人员注册一个统一的事件处理器,用来捕获和处理整个应用程序中未被任何局部 catch 块捕获到的异常,或者是首次出现但尚未处理的异常。全局异常处理常用于记录崩溃日志、进行最后的资源清理以及向用户展示友好的错误提示信息等场景,对于保证应用系统的稳定性和可靠性至关重要。
2023-04-13 13:38:26
59
转载
转载文章
...通过模仿人脑神经网络结构进行复杂数据建模与分析,能够实现对图像、语音、文本等多种类型数据的高级抽象和理解。在本文语境下,深度学习被应用于证件照生成任务中的图像分割算法,如U-Net网络和SeedNet网络,以精确提取人物轮廓并替换背景。 图像分割算法 , 图像分割是指将图像划分为多个具有特定含义的区域或对象的过程,在计算机视觉领域是一项基础且关键的技术。在本文中,深度学习技术下的图像分割算法用于证件照生成,能智能识别并分离出照片中的人物主体,以便于后续对背景进行更换或编辑,保证证件照的专业性和规范性。 SeedNet网络 , SeedNet是《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》一文中提出的多阶段分割网络模型,该模型采用了多任务学习策略,旨在提高对图像中特定区域(例如手部)的分割精度和整体效果。在本文研究中,作者选取了SeedNet网络的第一阶段进行实验,并展示了其在证件照生成背景分割上的应用效果。
2023-07-11 23:36:51
131
转载
转载文章
...为一种开源指令集体系结构,在嵌入式领域逐渐崭露头角,得到了SiFive等公司的大力推广和应用,有关RISC-V的生态建设和市场前景可深入研究。 2. Linux内核更新与优化:Linux 5.13版内核正式发布,该版本在硬件支持、性能优化以及安全增强等方面有显著提升,尤其对于嵌入式设备的支持更加全面。例如,对新型NAND Flash控制器的原生支持得到加强,有助于提高存储效率和稳定性。 3. Linux文件系统创新:科研人员正不断探索新的文件系统技术以适应大数据时代的需求。如Facebook主导开发的开源文件系统——Rocksteady,旨在提供超大规模数据中心所需的高效能、高稳定性和低延迟特性。此外,持久化内存(PMEM)技术的发展也在推动着Linux文件系统的变革,如pmemfs文件系统,它利用持久性内存的优势实现高性能的数据存取。 4. 跨平台开发与容器化趋势:随着云原生理念的普及,嵌入式开发开始关注容器化技术在边缘计算场景的应用。Docker和Kubernetes等工具正在帮助开发者更便捷地构建和部署跨平台的嵌入式应用,通过统一的容器环境简化了不同处理器架构间的移植难题。 5. 用户权限管理与安全实践:针对Linux系统安全问题,近年来有许多关于如何强化用户权限管理的研究报告和技术文章发表。例如,SELinux策略的深入解读,以及如何结合最小权限原则进行服务账户设置,避免因权限过高导致的安全风险,这些内容都是嵌入式系统安全运维的重要参考。
2023-11-23 17:18:30
79
转载
转载文章
...可以改变网页的内容、结构样式。 2.DOM 树 文档:一个页面就是一个文档,DOM 中使用 document 表示 元素:页面中的所有标签都是元素,DOM 中使用 element 表示 节点:网页中的所有内容都是节点(标签、属性、文本、注释等),DOM 中使用 node 表示 文档树(Dom树):以html为根节点,形成的一颗倒立的树状结构,我们成为DOM树;这个树上所有的东西都叫节点,节点有很多类,比如文本节点,元素节点等等,这些节点如果我们通过DOM方法去获取或者其他的操作去使用就叫做DOM对象,所有节点都是DOM对象 二.获取元素的方法 1.获取页面中的元素可以使用以下几种方式 根据ID获取 根据标签名获取 通过HTML5新增的方法获取 特殊元素获取 1.根据ID获取 使用getElementByld()方法可以获取带有ID的元素对象 getElementByld(),是document下的一个方法 代码演示 <body><div id="time">2020-11-26</div><script>// 1.因为我们文档页面从上往下加载,所以先得有标签 所以我们的script写在标签下面// 2. document文档 get 获得 element 元素 by 通过 驼峰命名法// 3.参数 id是大小写敏感的字符串// 4.返回的是一个对象var timer = document.getElementById('time');console.log(timer);// 5.console.dir 打印我们返回得的元素对象 更好的查看里面的属性和方法console.dir(timer);</script></body> 2.根据标签名获取 使用getElementsByTagName()方法可以返回带有指定标签名的对象的集合 语法如下 document.getElementsByTagName('标签名') 注意: 1.因为得到的是一个对象的集合,使用我们想要操作里面的元素就需要遍历 得到元素对象是动态的 代码演示 <body><ul><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li></ul><ul id="nav"><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li></ul><script>// 1.返回的是 获取过来元素对象的集合 以伪数组的形式存储的var lis = document.getElementsByTagName('li')console.log(lis);// 2.如果想要依次打印里面的元素对象我们可以采取遍历方式for (var i = 0; i < lis.length; i++) {console.log(lis[i]);}// 3.这里可以是可以获取标签的.getElementsByTagName()可以得到这个元素里面的某些标签var nav1 = document.getElementById('nav') //这个获取nav元素var navli = nav.getElementsByTagName('li') //这里是获取nav 里面的li标签 要先获取 nav元素在获取里面的liconsole.log(navli);</script></body> 3.通过 HTML5 新增的方法获取(注意兼容) 1. document.getElementsByClassName(‘类名’);// 根据类名返回元素对象集合 2. document.querySelector('选择器'); // 根据指定选择器返回第一个元素对象 3. document.querySelectorAll('选择器'); // 根据指定选择器返回所有元素对象集合 注意:querySelector 和 querySelectorAll里面的选择器需要加符号,比如:document.querySelector(’nav’); 代码演示 <body><div class="box">盒子1</div><div class="box">盒子2</div><div id="nav"><ul><li>首页</li><li>产品</li></ul></div><script>// 1. getElementsByClassName 根据类名获得某些元素集合var boxs = document.getElementsByClassName('box');console.log(boxs);// 2. querySelector 返回指定选择器的第一个元素对象 切记 里面的选择器需要加符号 .box navvar firstBox = document.querySelector('.box');console.log(firstBox);var nav = document.querySelector('nav');console.log(nav);var li = document.querySelector('li');console.log(li);// 3. querySelectorAll()返回指定选择器的所有元素对象集合var allBox = document.querySelectorAll('.box');console.log(allBox);var lis = document.querySelectorAll('li');console.log(lis);</script> 4.获取特殊元素(body,html) 获取body元素 - doucumnet.body // 返回body元素对象 获取html元素 . document.documentElement // 返回html元素对象 代码演示 <body><script>// 获取bdoy元素var bodyEle = document.bodyconsole.log(bodyEle); //返回body元素// 获取html元素var htmlEle = document.documentElementconsole.log(htmlEle); //返回html元素</script></body> 三.事件基础 1.事件概述 JavaScript 使我们有能力创建动态页面,而事件是可以被 JavaScript 侦测到的行为。 简单理解: 触发— 响应机制。 网页中的每个元素都可以产生某些可以触发 JavaScript 的事件,例如,我们可以在用户点击某按钮时产生一个 事件,然后去执行某些操作。 代码演示 <body><button id="btn">浩哥</button><script>// 点击一个按钮,弹出一个对话框// 1.事件是有三部分组成的 1.事件源 2.事件类型 3.事件处理程序 也称为事件三要素// (1).事件源 事件被触发的对象 var but = document.getElementById('btn')// (2).事件类型 如何触发 什么事件 比如鼠标点击(onclick) 还是鼠标经过还是????// (3).事件处理程序 通过一个函数赋值的方式 完成 因为函数就是实现某种功能的but.onclick = function() {alert('浩哥爱编程')}</script></body> 2.执行事件的步骤 1. 获取事件源DOM对象(意思是你要获取那个元素) 2. 注册事件(绑定事件 意思是通过什么方式来处理比如是鼠标经过还是鼠标点击等等行为) 3. 添加事件处理程序(采取函数赋值形式 意思是你想做啥) 代码演示 <body><div>123</div><script>// 事件执行步骤 点击div 控制台输出我被选中了// 1.获取事件源var div = document.querySelector('div')// 2.绑定事件 注册事件// div.onclick// 3.添加事件处理程序div.onclick = function() {console.log('我被点击了');}</script></body> 3.常见的鼠标事件 onmouseenter鼠标移入事件 onmouseleave鼠标移出事件 四.操作元素 JS的DOM操作可以改变网页内容、结构和样式,利用DOM操作元素来改变元素里面的内容、属性等。注意以下都是属性 1.操作元素内容(改变元素内容) elemeny.innerText 从起始位置到终止位置的内容,但它去除html标签,同时空格和换行也会去掉 elemernt.innerHTML 起始位置到终止位置的全部内容,包括html标签,同时保留空格和换行 elemernt.Content可以获取隐藏元素的文本,包含换行和空白 代码演示 <title>Document</title><style>div,p {height: 30px;width: 300px;line-height: 30px;text-align: center;color: fff;background-color: pink;}</style></head><body><button>显示当前系统时间</button><div>某个时间</div><p>123</p><script>// 当我们点击了按钮,div里面的文字会发生变化// 1.获取元素 注意这里的按钮 和div都要获取到 因为 点击按钮div里面要发生变化所以都要获取var but = document.querySelector('button');var div = document.querySelector('div');// 2.绑定事件// but.onclick// 3.程序处理but.onclick = function() {// 改变元素内容 element(元素).innerTextdiv.innerText = '2020-11-27'}// 4.我们元素可以不用添加事件,就可以直接显示日期var p = document.querySelector('p');p.innerText = '2020-11-27';</script> elemeny.innerText和elemeny.innerHTML的区别 代码演示 <body><div></div><p></p><ul><li> 文字</li><li>123</li></ul><script>// innertText 和 innertHTML 的区别// 1. innerText 不识别html标签 非标准 去除空格和换行var div = document.querySelector('div');div.innerText = '<strong>今天是:</strong> 2020';// 2.innertHTML 识别html标签 W3C标准 保留空格和换行的 推荐尽量使用这个 因为这个是标准var p = document.querySelector('p')p.innerHTML = '<strong>今天是:</strong> 2020';// 3.这俩个属性是可读写的 意思是 除了改变内容还可以元素读取里面的内容的var ul = document.querySelector('ul')console.log(ul.innerText);console.log(ul.innerHTML);// .4innerHtml innerText 之间的区别:设置内容的时候,如果内容当中包含标签字符串 innerHtml会有标签的特性,也就是说标签会在页面上生效如果内容当中包含标签字符串 innerText会把标签原样展示在页面上,不会让标签生效读取内容的时候,如果标签内部还有其它标签,innerHtml会把标签内部带着其它的标签全部输出如果标签内部还有其它标签,innerText只会输出所有标签里面的内容或者文本,不会输出标签如果标签内部没有其它标签,他们两个一致;都是读取文本内容,innerHtml会带空白和换行</script></body> 2. 操作常见元素属性 innerText、innerHTML 改变元素内容 src、href id、alt、title 代码演示 <body><button id="ldh">刘德华</button><button id="zxy">张学友</button><br><img src="./images/ldh.jpg" alt="" width="200px" height="200px" title="刘德华" id="img"><script>// 修改属性 src// 我们可以操作元素得方法 来修改元素得属性 就是 元素的是什么属性 在重新给值就可以完成相应的赋值操作了// 1.获取元素var ldh = document.getElementById('ldh')var zxy = document.getElementById('zxy')var img = document.getElementById('img')// 2.注册事件 程序处理zxy.onclick = function() {// 当我们点击了图片的时候图片路径就发生变化 这里的.表示 的 得意思 img对象下的src属性img.src = './images/zxy.jpg';// 当我们变换图片得同时里面得title也要跟着变 所以前面要加上img.img.title = '张学友';}ldh.onclick = function() {img.src = './images/ldh.jpg';img.title = '刘德华';}</script> 3.操作表单元素属性 利用DOM可以操作如下表单元素的属性 type、value、checked、selected、disabled 代码演示: <body><button>按钮</button><input type="text" value="输入内容"><script>// 我想把value里面的输入内容改变为 被点击了// 1.获取元素var but = document.querySelector('button')var input = document.querySelector('input')// 2.注册事件 处理程序but.onclick = function() {// input.innerHTML = '被点击了'; 这个是 普通盒子 比如 div 标签里面的内容// 表单里面的值 文字内容是通过value来修改的input.value = '被点击了'// 如果需要某个表单被禁用 不能再点击了使用 disabled 我们想要这个按钮 button禁用// but.disabled = true// 还有一种写法// this指向的是事件函数的调用者 谁调用就指向谁 这里调用者是btnthis.disabled = true}</script></body> 4.操作元素样式属性 我们可以通过 JS 修改元素的大小、颜色、位置等样式。 1.element.style 行内样式操作 注意: JS 里面的样式采取驼峰命名法 比如 fontSize、 backgroundColor JS 修改 style 样式操作,产生的是行内样式,所以行内式比内嵌式高 代码演示 <style>div {width: 200px;height: 200px;background-color: red;}</style></head><body><div></div><script>// 要求点击div变成粉色 height变为250px// 1.获取元素var div = document.querySelector('div');// 2.注册事件 处理程序div.onclick = function() {// div.style里面的属性 采取的是驼峰命名法// this等于div this调用者 谁调用谁执行this.style.backgroundColor = 'pink'this.style.height = '250px'}</script> 2.element.className 类名样式操作 注意: 如果样式修改较多,可以采取操作类名方式更改元素样式。 class因为是个保留字,因此使用className来操作元素类名属性 className 会直接更改元素的类名,会覆盖原先的类名。 代码演示 <style>div {width: 100px;height: 100px;background-color: pink;}.change {background-color: purple;color: fff;font-size: 25px;margin-top: 100px;}</style></head><body><div class="first">文本</div><script>// 1. 使用 element.style 获得修改元素样式 如果样式比较少 或者 功能简单的情况下使用var test = document.querySelector('div');test.onclick = function() {// this.style.backgroundColor = 'purple';// this.style.color = 'fff';// this.style.fontSize = '25px';// this.style.marginTop = '100px';// 让我们当前元素的类名改为了 change// 2. 我们可以通过 修改元素的className更改元素的样式 适合于样式较多或者功能复杂的情况 如果想继续添加样式即在change添加即可// 3. 如果想要保留原先的类名,我们可以这么做 多类名选择器// this.className = 'change';this.className = 'first change';}</script> 5.自定义属性的操作 js给我们规定了可以自己添加属性 在操作元素属性的时候,元素.语法只能操作元素天生具有的属性,如果是自定义的属性,通过.语法是无法操作的只能通过getAttribute和setAttribute去操作,他俩是通用的方法,无论元素天生的还是自定义的都可以可以操作 1.获取属性值 element.属性 获取属性值。 element.getAttribute(‘属性’); 区别: element.属性 获取内置属性值(元素本身自带的属性 如果是自定义属性不能被获取) element.getAttribute(‘属性’);主要获得自定义的属性 (标准) 我们自定义的属性 2.设置属性值 element.属性 = ‘值’ 设置内置属性值 element.setAttribute(‘属性’,‘值’) 区别: element.属性 设置内置属性值 element.setAttribute(‘属性’);主要设置自定义的属性(标准) 3.移除属性 element.removeAttribute(‘属性’); 代码演示 <body><div id="demo" index="1" class="nav"></div><script>var div = document.querySelector('div');// 1.获取元素的属性值// (1) element.属性console.log(div.id);// (2) element.getAttribute('属性') get获取得到 attribute属性的意思 我们自己添加的属性称之为自定义属性console.log(div.getAttribute('id')); //democonsole.log(div.getAttribute('index')); // 1// 2.设置元素的属性值// (1) element.属性 = '值' div.id = 'test'div.className = 'navs'// (2) element.setAttribute('属性','值')div.setAttribute('index', 2);div.setAttribute('class', 'footer') //这里就是class 不是className 比较特殊// 3.移除属性 removeAttribute(属性)div.removeAttribute('index');</script></body> 只要是自定义属性最好都是用element.setAttribute(‘属性’,‘值’)来设置 如果是自带属性用element.属性来设置 6.H5自定义属性 自定义属性的目的:第一、是为了保存属性 第二、并且使用数据。有一些数据可以保存到页面中而不用保存到数据库中。 自定义属性获取是通过getAttribute(‘属性’) 获取的 但是有些自定义属性很容易引起歧义,不容易判断是元素还是自定义属性 H5给我们新增了自定义属性: 1.设置H5自定义属性 H5规定自定义属性data-开头做为属性名并且赋值 比如<div data-index:“1”> 或者使用JS设置element.setAttribute(‘deta-index’,2) 2.获取H5自定义属性 兼容性获取 element.getAttribute(‘data-index’) 推荐开发中使用这个 H5新增element.dataset.index 或者element.datase[‘index’] ie 11以上才支持 代码演示 <body><div getTime="10" data-index="20" data-name-list="40"></div><script>// 获取元素var div = document.querySelector('div');console.log(div.geTime); //undefined getTime是自定义属性不能直接通过元素的属性来获取 而是用自定义属性来获取的getAttribute(‘属性’)console.log(div.getAttribute('getTime')); //10// H5添加自定义属性的写法以data-开头div.setAttribute('data-time', 30)// 1.兼容性获取H5自定义属性console.log(div.getAttribute('data-time')); // 30// 2.H5新增的获取自定义属性的方法 它只能获取data-开头的// dataset 是一个集合的意思存放了所有以data开头的自定义属性 如果你想取其中的某一个只需要在dataset.的后面加上自定义属性名即可console.log(div.dataset);console.log(div.dataset.time); // 30// 还有一种方法dataset['属性']console.log(div.dataset['time']); // 30// 如果自定义属性里面有多个-链接的单词 我们获取的时候采取驼峰命名法 不用要-了console.log(div.dataset.nameList); // 40console.log(div.dataset['nameList']); // 40</script></body> 五.节点操作 1.为什么要学习节点操作 获取元素通常使用俩种方式 (1)利用DOM提供的方法获取元素 但是逻辑性不强 繁琐 (2)利用节点层级关系获取元素 如 利用父子,兄弟关系获取元素 逻辑性强,但是兼容性不怎么好 2.节点概述 网页中的所有内容都是节点(标签、属性、文本、注释等等) ,在DOM中,节点使用node表示。HTML DOM 树中的所有节点均可通过javascript进行访问,所有HTML元素(节点) 均可被修改,也可以创建或删除 一般地,节点至少拥有nade Type(节点类型)、nodeName(节点名称)和nodeValue(节点值) 这三个基本属性 元素节点 nodeType 为 1 属性节点 node Name为 2 文本节点 nodeValue为 3 (文本节点包含文字、空格、换行等等) 实际开发中,节点操作主要操作的是元素节点 3.节点层级 利用DOM树可以把节点划分为不同得层级关系,常见得是父子兄层级关系 1.父级节点 1.node.parentNode parenNode属性可以返回某节点得父节点,注意是最近的父节点哟!!! 如果指定的节点没有父节点就返回null 代码演示 <body><div class="box"><div class="box1"></div></div><script>var box1 = document.querySelector('.box1')// 得到的是离元素最近的父节点(亲爸爸) 得不到就返回得是nullconsole.log(box1.parentNode); // parentNode 翻译过来就是父亲的节点</script></body> 2.子级节点操作 1.parentNode.children(非标准) parentNode.children 是一个只读属性,返回所有的子元素节点。它只返回子元素节点,其余节点不返回(重点记住这个就好,以后重点使用) 虽然children是一个非标准,但是得到了各个浏览器的支持,我们大胆使用即可!!! 代码演示 <body><ul><li>1</li><li>1</li><li>1</li><li>1</li></ul><script>// DOM 提供的方法(APL)获取 这样获取比较麻烦var ul = document.querySelector('ul')var lis = ul.querySelectorAll('li')// children子节点获取 ul里面所有的小li 放心使用没有限制兼容性 实际开发中经常使用的console.log(ul.children);</script> 如何返回子节点的第一个和最后一个? 2.parentNode.firstElementChild firstElementChild返回第一个子元素节点,找不到则返回unll 3.parentNode.lastElementChild lastElementChild返回最后一个子元素节点,找不到则返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 谨慎使用 但是我们有解决方案 如果想要第一个子元素节点,可以使用 parentNode.chilren[0] 如果想要最后一个子元素节点,可以使用 parentNode.chilren[parentNode.chilren.length - 1] 代码演示 <body><ul><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li></ul><script>var ul = document.querySelector('ul')// 1.firstElementChild 返回第一个子元素节点 ie9 以上才支持注意兼容console.log(ul.firstElementChild);// 2.lastElementChild返回最后一个子元素节点console.log(ul.lastElementChild);// 3.实际开发中用到的既没有兼容性问题又可以返回子节点的第一个和最后一个console.log(ul.children[0]);console.log(ul.children[ul.children.length - 1]); //ul.children.length - 1获取的永远是子节点最后一个</script></body> 3.兄弟节点 1.node.nextSibling nextSibling 返回当前元素的下一个兄弟节点,找不到则返回null。注意包含所有的节点 2.node.previousSibling previousSibling 返回当前元素上一个兄弟节点,找不到则返回null。注意包含所以有的节点 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// 返回当前元素的下一个兄弟节点nextSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.nextSibling); //这里返回的是text 因为它的下一个兄弟节点是换行// 返回的是当前元素的上一个节点previousSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.previousSibling); //这里返回的是text 因为它的上一个兄弟节点是换行</script></body> 3.node.nexElementSibling nexElementSibling 返回当前元素下一个兄弟元素节点,找不到返回null 4.node.previousElementSibling previousElementSibling返回当前元素上一个兄弟节点,找不到返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// nextElementSiblingd得到下一个兄弟元素节点console.log(div.nextElementSibling); // span // previousElementSibling 得到的是上一个兄弟元素节点console.log(div.previousElementSibling); // null 因为它上面没有兄弟元素了返回空的</script></body> 怎么解决兼容性问题呢? 可以封装一个兼容性函数(简单了解即可 在实际开发中用的不多) function getNextElementSibling(element) {var el = element;while (el = el.nextSibling) {if (el.nodeType === 1) {return el;} }return null;} 4.创建节点 1.document.createElement('tagName') document.createElement( ) 方法创建由 tagName 指定的 HTML 元素。因为这些元素原先不存在的是根据我们的需求动态生成的,所有我们也称为动态创建元素节点 我们创建了节点要给添加到节点里面去 称为 添加节点 1.node.appendChild(child) node.appendChild( )方法将一个节点添加到指定父节点的子节点列表末尾 2.node.insertBefore(child,指定添加元素位置) node.insertBefore( ) 方法将一个节点添加到父节点的指定子节点前面 代码演示 <body><ul><li>1</li></ul><script>// 1.创建节点 createElementvar li = document.createElement('li')// 2.添加节点 创建了节点要添加到某一个元素身上去 叫添加节点 node.appendChild(child) done 父级 child 子级 如果前面有元素了则在后面追加元素类似数组中的push依次追加var ul = document.querySelector('ul')ul.appendChild(li)// 3.添加节点 node.insertBefore(child,指定元素) 在子节点前面添加子节点 child子级你要添加的元素var lili = document.createElement('li')ul.insertBefore(lili, ul.children[0]) //ul.children 这句话的意思是添加到ul父亲的子节点第一个// 总结 如果想在页面中添加元素分为俩步骤1.创建元素 2.添加元素</script></body> 5.删除节点 node.removeChild(child) node.removeChlid()方法从DOM 中删除一个子节点,返回删除的节点 简单点就是从父元素中删除某一个孩子node就是父亲child就是孩子 删除的节点.remove(没有参数) 注意:ie不支持 代码演示 <body><button>按钮</button><ul><li>熊大</li><li>熊二</li><li>熊三</li></ul><script>// 1.获取元素var ul = document.querySelector('ul')var but = document.querySelector('button');// 2.删除元素// but.onclick = function() {// ul.removeChild(ul.children[0])// }// 3.点击按钮键依次删除,最后没有删除内容了 就禁用按钮 disabled = true 禁用按钮语法but.onclick = function() {if (ul.children.length == 0) {this.disabled = true} else {ul.removeChild(ul.children[0])} }</script></body> 6.复制节点(克隆节点) node.cloneNode() node.dloneNode()方法返回调用该方法节点得一个副本,也称为克隆节点/拷贝节点 注意 1.如果括号参数为空或者为false,则是浅拷贝,只复制里面得标签,不复制内容 2.如果括号参数为true,则是深度拷贝,会复制节点本身以及里面所有的内容 代码演示 <body><ul><li>1</li><li>2</li><li>3</li></ul><script>// 1.获取元素var ul = document.querySelector('ul');// 2.复制元素 node.cloneNode() 如果参数括号为空或者false则只会复制元素不会复制内容,如果待有参数true则内容和元素都会被复制var lis = ul.children[0].cloneNode(true);// 3.获取元素ul.appendChild(lis)</script></body> 7.替换(改)节点 node.replaceChild(新节点,替换到什么位置) 代码演示 <body><ul class="list"><li>1</li><li>2</li></ul><script>// 替换(改)节点 父节点.replaceChild(新元素, 替换到什么位置)// (1)获取父元素var ulNode = document.querySelector('.list');// (2)创建新的元素var liRead = document.createElement('li')// (3)给新元素添加内容liRead.innerHTML = '5';// (4)替换元素ulNode.replaceChild(liRead, ulNode.children[1])</script></body> 8.三种动态创建元素区别 document.write() element.innerHTML document.createElement() 区别 document.write()是直接将内容写入页面的内容流,但是文档流执行完毕,它则会导致页面全部重绘 element.innerHTML是将内容写入某个DOM节点,不会导致页面全部重绘 element.innerHTML 创建多个元素效率更高(不要拼接字符串,采取数组形式拼接),结果有点复杂 createElement()创建多个元素效率低一点点,但是结果更加清晰 总结:不同浏览器下,innerHTML效率要比createElement()高 代码演示 <body><button>点击</button><p>abc</p><div class="inner"></div><div class="create"></div><script>// window.onload = function() {// document.write('<div>123</div>');// }// 三种创建元素方式区别 // 1. document.write() 创建元素 如果页面文档流加载完毕,再调用这句话会导致页面重绘// var btn = document.querySelector('button');// btn.onclick = function() {// document.write('<div>123</div>');// }// 2. innerHTML 创建元素var inner = document.querySelector('.inner');// for (var i = 0; i <= 100; i++) {// inner.innerHTML += '<a href="">百度</a>'// }var arr = [];for (var i = 0; i <= 100; i++) {arr.push('<a href="">百度</a>');}inner.innerHTML = arr.join('');// 3. document.createElement() 创建元素var create = document.querySelector('.create');for (var i = 0; i <= 100; i++) {var a = document.createElement('a');create.appendChild(a);}</script></body> 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_46978034/article/details/110190352。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-04 13:36:05
247
转载
转载文章
...,对于大型项目的组织结构优化具有重要意义。友元在现代C++设计模式中仍然发挥着不可替代的作用,特别是在实现组件间深度交互时,如游戏引擎中不同系统间的紧密协作,往往借助友元关系来突破封装限制,实现高效的底层数据访问。 另外,对于对象数组、对象指针以及静态成员的讨论,实则指向了更为复杂的内存管理和对象生命周期问题。近期一篇来自ACM Queue的文章《深入剖析C++内存模型》对此做了深度解读,并探讨了在多线程环境下的同步控制和内存一致性问题,这对于理解并有效利用C++进行高性能并发编程至关重要。 总之,掌握好本文所述的基础知识是至关重要的,而与时俱进地了解最新实践和技术趋势,将有助于我们更高效、安全地运用C++进行软件开发,解决实际工程中的复杂问题。
2024-01-29 12:38:23
544
转载
转载文章
...以及常见的参数 数据结构基本都问了一遍:链表、队列等 Java内存模型:常问的JVM分代模型,以及JDK1.8后的区别,最后还问了JVM相关的调优参数 分布式锁的实现比较技术 一面题目 自我介绍 擅长哪方面的技术? java有哪些锁中类?(乐观锁&悲观锁、可重入锁&Synchronize等)。 比较重要的数据结构,如链表,队列,栈的基本原理及大致实现 J.U.C下的常见类的使用。Threadpool的深入考察;blockingQueue的使用 Java内存分代模型,GC算法,JVM常见的启动参数;CMS算法的过程。 Volatile关键字有什么用(包括底层原理) 线程池的调优策略 Spring cloud的服务注册与发现是怎么设计的? 分布式系统的全局id如何实现 分布式锁的方案,redis和zookeeper那个好,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...缓存)和网络缓存三层结构。当需要加载图片时,首先检查内存缓存中是否存在该图片,若存在则直接使用;若不存在,则查询本地缓存,如果找到则从本地读取并加载至内存缓存;若本地也未存储,则发起网络请求下载图片,并将下载后的图片同时保存至内存缓存和本地缓存,以便后续快速访问。这样做的目的是减少对网络带宽和内存资源的消耗,防止因频繁加载图片导致的卡顿、延迟甚至OOM问题,提升应用性能和用户体验。在文中,面试者详细介绍了自己如何利用这一机制来优化项目中的图片处理部分。
2023-06-19 17:42:52
336
转载
转载文章
...重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...有构成意识所需的神经结构,神经化学及神经生理基础物质,并且能展现出有意图的行为。因此,证据已充分显示,负责产生意识的神经基础物质并非人类所独有。非人类动物,包括所有哺乳动物,鸟类,以及章鱼等其他生物,均拥有这些神经基础物质。” 确实,我承认心流并不只存在与人类,而是存在与所有生物之中。但是笛卡尔的理念也并不是完全错误的,因为心流虽然是生命的特质,但不是人类的特质,我想笛卡尔的理论中把心灵换做灵魂可能会更妥当一些,尽管灵魂的存在目前还是个未知数。或许我说完接下来的例子,会解释的更充分些。 对于心流的存在,生物学家给出了一个简单的不能再简单的解释,那就是,如果没有感觉和欲望,那么就无法解释生物的各种行为。拿人来做例子或许会比较难以理解,但是拿动物做例子却简单的过分,那就是:当人去踢狗的时候,如果狗没有感到疼痛,愤怒,产生躲避的欲望,那么它就会因此而受到伤害。也就是说,这些种种的感觉与欲望,是那些最原始的东西,即进化论为了使生命更好的活着而产生的,只因人类把自己放在比动物高很多个层次的阶级上,而忽略了这个很简单的问题。 心流的产生 问题的关键,在于心流的产生。这样稍微改动下,上文所提到的笛卡尔的理论或许会更合理些:人与动物都存在感觉与欲望,但是动物的感觉与欲望是依靠自身结构在外界的输入下产生的一种内部输出,而人类的感觉和欲望则是一种可以被称作“灵魂”的东西控制下产生的。从而确立了人类高于动物的地位。 前者很容易理解,现在的科学研究也已经很透彻了。例如兔子见到狮子,电信号便从眼睛传到大脑,刺激某些神经元,又结合之前的记忆神经元,放出更多的信号,整条线路的神经元一一受到刺激,最后指令传到肾上腺,让肾上腺素传遍全身,心脏的跳动也随之加快,肾上腺素也使信号的传递速度更快了些,同时在运动中枢的神经元也向腿部肌肉发出信号,让肌肉随着信号有序的完成伸展和收缩。外在的表现就是兔子从狮子旁边逃之夭夭。至于其中的恐惧的感觉和想要逃跑的欲望,都只不过是内部神经元信号的一种状态。 而对于后者,则难以解释。正因为对前者的理解透彻,对后者的解释才显得很难说通。两个过程本来是相同的过程,只是后者多了对于每个人有且唯一的“灵魂”的存在的介入,但是,它究竟何时介入,如何介入,正如前者所描述的,在这样一个信号的传递网络里,究竟有哪一步,是需要“灵魂”来控制的。思前想后,好像并没有必须存在的那么一个步骤。也就是可能,前者所描述的那个信号传递步骤,适用于所有生物,当然也包括人类。 简单的总结 简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...CDN服务 5 目录结构 6 基本模板 7 浏览器支持 8 浏览器兼容 让 IE8 支持H5新标签 IE兼容模式 国产浏览器切换webkit内核 2 BootStrap布局 1 概览 1.1 移动设备优先 1.2 Normalize.css 1.3 布局容器 2 栅格系统 2.1 栅格系统简介 2.2 栅格参数 2.3 栅格系统使用 2.4 不同屏幕设置不同宽度 2.5 列偏移 2.6 列位置移动 3 排版 3.1 标题 3.2 突出显示 3.3 对齐 3.4 改变大小写 3.5 引用 3.6 列表 4 代码 4.1 内联代码 4.2 用户输入 4.3 代码块 4.3 变量 4.4 程序输出 5 表格 5.1 基本 5.2 条纹状表格 5.3 带边框的表格 5.4 鼠标悬停 5.5 紧缩表格 5.6 状态类 5.7 响应式表格 6 表单 6.1 基本实例 6.2 内联表单 6.3 水平排列的表单 6.4 表单控件 输入框 文本域 多选和单选框 下拉列表 静态内容 帮助文字 校验状态 添加额外的图标 控件尺寸 7 按钮 7.1 可作为按钮使用的标签或元素 7.2 预定义样式 7.3 尺寸 7.4 激活状态 7.5 禁用状态 8 图片 8.1 响应式图片 8.2 图片形状 9 辅助类 9.1 文本颜色 9.2 背景色 9.3 三角符号 9.4 浮动 9.5 让内容块居中 9.6 清除浮动 9.7 显示或隐藏内容 9.10 图片替换 10 响应式工具 10.1 不同视口下隐藏显示 10.2 打印类 1 BootStrap基础 1 什么是BootStrap 由Twitter的设计师Mark Otto和Jacob Thornton合作开发,是一个CSS/HTML框架简洁、直观、强悍的前端开发框架,让web开发更迅速、简单。 2 BootStrap的版本 BootStrap2 BootStrap3 BootStrap4 3 BootStrap 下载 用于生产环境的Bootstrap Bootstrap Less 源码Bootstrap Sass 源码 4 CDN服务 <!-- 新 Bootstrap 核心 CSS 文件 --><link rel="stylesheet" href="http://cdn.bootcss.com/bootstrap/3.3.5/css/bootstrap.min.css"><!-- 可选的Bootstrap主题文件(一般不用引入) --><link rel="stylesheet" href="http://cdn.bootcss.com/bootstrap/3.3.5/css/bootstrap-theme.min.css"><!-- jQuery文件。务必在bootstrap.min.js 之前引入 --><script src="http://cdn.bootcss.com/jquery/1.11.3/jquery.min.js"></script><!-- 最新的 Bootstrap 核心 JavaScript 文件 --><script src="http://cdn.bootcss.com/bootstrap/3.3.5/js/bootstrap.min.js"></script> 5 目录结构 生产环境版 bootstrap/├── css/│ ├── bootstrap.css│ ├── bootstrap.css.map│ ├── bootstrap.min.css│ ├── bootstrap-theme.css│ ├── bootstrap-theme.css.map│ └── bootstrap-theme.min.css├── js/│ ├── bootstrap.js│ └── bootstrap.min.js└── fonts/├── glyphicons-halflings-regular.eot├── glyphicons-halflings-regular.svg├── glyphicons-halflings-regular.ttf├── glyphicons-halflings-regular.woff└── glyphicons-halflings-regular.woff2 6 基本模板 <!DOCTYPE html><html lang="zh-CN"><head><!-- 上述3个meta标签必须放在最前面,任何其他内容都必须跟随其后! --><title>Bootstrap 101 Template</title><!-- Bootstrap --><link href="css/bootstrap.min.css" rel="stylesheet"><!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries --><!-- WARNING: Respond.js doesn't work if you view the page via file:// --><!--[if lt IE 9]><script src="//cdn.bootcss.com/html5shiv/3.7.2/html5shiv.min.js"></script><script src="//cdn.bootcss.com/respond.js/1.4.2/respond.min.js"></script><![endif]--></head><body><h1>你好,世界!</h1><!-- jQuery (necessary for Bootstrap's JavaScript plugins) --><script src="//cdn.bootcss.com/jquery/1.11.3/jquery.min.js"></script><!-- Include all compiled plugins (below), or include individual files as needed --><script src="js/bootstrap.min.js"></script></body></html> 7 浏览器支持 手机浏览器 ——- Chrome Firefox Safari Android Supported Supported N/A iOS Supported Supported Supported 桌面浏览器 ——— Chrome Firefox Internet Explorer Opera Safari Mac Supported Supported N/A Supported Supported Windows Supported Supported Supported Supported Not supported 8 浏览器兼容 让 IE8 支持H5新标签 页面中引入respond.js <!-- 注意: 页面必须通过服务器访问 --><script src="https://cdn.bootcss.com/respond.js/1.4.2/respond.min.js"></script> IE兼容模式 页面中添加如下代码 <meta http-equiv="X-UA-Compatible" content="IE=edge"> 国产浏览器切换webkit内核 页面中添加如下代码 <meta name="renderer" content="webkit"> 2 BootStrap布局 1 概览 1.1 移动设备优先 为了确保适当的绘制和触屏缩放,需要在 <head> 之中添加 viewport 元数据标签。 在移动设备浏览器上,通过为视口(viewport)设置 meta 属性为 user-scalable=no 可以禁用其缩放(zooming)功能。这样禁用缩放功能后,用户只能滚动屏幕,就能让你的网站看上去更像原生应用的感觉。注意,这种方式我们并不推荐所有网站使用,还是要看你自己的情况而定! 1.2 Normalize.css BootStrap内置了Normalize.css 1.3 布局容器 Bootstrap 需要为页面内容和栅格系统包裹一个 .container 容器。我们提供了两个作此用处的类。注意,由于 padding 等属性的原因,这两种 容器类不能互相嵌套。 .container 类用于固定宽度并支持响应式布局的容器。 <div class="container">...</div> .container-fluid 类用于 100% 宽度,占据全部视口(viewport)的容器。 <div class="container-fluid">...</div> 2 栅格系统 Bootstrap 提供了一套响应式、移动设备优先的流式栅格系统,随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多12列 2.1 栅格系统简介 栅格系统用于通过一系列的行(row)与列(column)的组合来创建页面布局,你的内容就可以放入这些创建好的布局中。下面就介绍一下 Bootstrap 栅格系统的工作原理: “行(row)”必须包含在 .container (固定宽度)或 .container-fluid (100% 宽度)中,以便为其赋予合适的排列(aligment)和内补(padding)。 通过“行(row)”在水平方向创建一组“列(column)”。 你的内容应当放置于“列(column)”内,并且,只有“列(column)”可以作为行(row)”的直接子元素。 类似 .row 和 .col-xs-4 这种预定义的类,可以用来快速创建栅格布局。Bootstrap 源码中定义的 mixin 也可以用来创建语义化的布局。 通过为“列(column)”设置 padding 属性,从而创建列与列之间的间隔(gutter)。通过为 .row 元素设置负值 margin 从而抵消掉为 .container 元素设置的 padding,也就间接为“行(row)”所包含的“列(column)”抵消掉了padding。 负值的 margin就是下面的示例为什么是向外突出的原因。在栅格列中的内容排成一行。 栅格系统中的列是通过指定1到12的值来表示其跨越的范围。例如,三个等宽的列可以使用三个 .col-xs-4 来创建。 如果一“行(row)”中包含了的“列(column)”大于 12,多余的“列(column)”所在的元素将被作为一个整体另起一行排列。 栅格类适用于与屏幕宽度大于或等于分界点大小的设备 , 并且针对小屏幕设备覆盖栅格类。 因此,在元素上应用任何 .col-md-栅格类适用于与屏幕宽度大于或等于分界点大小的设备 , 并且针对小屏幕设备覆盖栅格类。 因此,在元素上应用任何 .col-lg-不存在, 也影响大屏幕设备。 2.2 栅格参数 超小屏幕 手机 (<768px) 小屏幕 平板 (≥768px) 中等屏幕 桌面显示器 (≥992px) 大屏幕 大桌面显示器 (≥1200px) .container 最大宽度 None (自动) 750px 970px 1170px 类前缀 .col-xs- .col-sm- .col-md- .col-lg- 最大列(column)宽 自动 ~62px ~81px ~97px 2.3 栅格系统使用 使用单一的一组 .col-md- 栅格类,就可以创建一个基本的栅格系统,在手机和平板设备上一开始是堆叠在一起的(超小屏幕到小屏幕这一范围),在桌面(中等)屏幕设备上变为水平排列。所有“列(column)必须放在 ” .row 内。 <div class="row"><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div></div><div class="row"><div class="col-md-8">.col-md-8</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-6">.col-md-6</div><div class="col-md-6">.col-md-6</div></div> 2.4 不同屏幕设置不同宽度 <div class="row"><div class="col-xs-12 col-sm-6 col-md-8">.col-xs-12 .col-sm-6 .col-md-8</div><div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div></div><div class="row"><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><!-- Optional: clear the XS cols if their content doesn't match in height --><div class="clearfix visible-xs-block"></div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div></div> 2.5 列偏移 使用 .col-md-offset- 类可以将列向右侧偏移。这些类实际是通过使用 选择器为当前元素增加了左侧的边距(margin)。例如,.col-md-offset-4 类将 .col-md-4 元素向右侧偏移了4个列(column)的宽度。 <div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4 col-md-offset-4">.col-md-4 .col-md-offset-4</div></div><div class="row"><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div></div><div class="row"><div class="col-md-6 col-md-offset-3">.col-md-6 .col-md-offset-3</div></div> 2.6 列位置移动 通过使用 .col-md-push- 和 .col-md-pull- 类就可以很容易的改变列(column)的顺序。 <div class="row"><div class="col-md-9 col-md-push-3">.col-md-9 .col-md-push-3</div><div class="col-md-3 col-md-pull-9">.col-md-3 .col-md-pull-9</div></div> 3 排版 3.1 标题 HTML 中的所有标题标签,<h1> 到 <h6> 均可使用。另外,还提供了 .h1 到 .h6 类,为的是给内联(inline)属性的文本赋予标题的样式。 <h1>h1. Bootstrap heading</h1><h2>h2. Bootstrap heading</h2><h3>h3. Bootstrap heading</h3><h4>h4. Bootstrap heading</h4><h5>h5. Bootstrap heading</h5><h6>h6. Bootstrap heading</h6> 在标题内还可以包含 <small> 标签或赋予 .small 类的元素,可以用来标记副标题。 <h1>h1. Bootstrap heading <small>Secondary text</small></h1><h2>h2. Bootstrap heading <small>Secondary text</small></h2><h3>h3. Bootstrap heading <small>Secondary text</small></h3><h4>h4. Bootstrap heading <small>Secondary text</small></h4><h5>h5. Bootstrap heading <small>Secondary text</small></h5><h6>h6. Bootstrap heading <small>Secondary text</small></h6> 3.2 突出显示 通过添加 .lead 类可以让段落突出显示。 <p class="lead">...</p> 3.3 对齐 <p class="text-left">Left aligned text.</p><p class="text-center">Center aligned text.</p><p class="text-right">Right aligned text.</p><p class="text-justify">Justified text.</p><p class="text-nowrap">No wrap text.</p> 3.4 改变大小写 <p class="text-lowercase">Lowercased text.</p><p class="text-uppercase">Uppercased text.</p><p class="text-capitalize">Capitalized text.</p> 3.5 引用 <blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p></blockquote><blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p><footer>Someone famous in <cite title="Source Title">Source Title</cite></footer></blockquote><blockquote class="blockquote-reverse">...</blockquote> 3.6 列表 无样式列表 <ul class="list-unstyled"><li>...</li></ul> 内联列表 <ul class="list-inline"><li>...</li></ul> 水平排列的内联列表 <dl class="dl-horizontal"><dt>...</dt><dd>...</dd></dl> 4 代码 4.1 内联代码 通过 <code> 标签包裹内联样式的代码片段。 For example, <code><section></code> should be wrapped as inline. 4.2 用户输入 通过 <kbd> 标签标记用户通过键盘输入的内容。 To switch directories, type <kbd>cd</kbd> followed by the name of the directory.<br>To edit settings, press <kbd><kbd>ctrl</kbd> + <kbd>,</kbd></kbd> 4.3 代码块 多行代码可以使用 <pre> 标签。为了正确的展示代码,注意将尖括号做转义处理。 <pre><p>Sample text here...</p></pre> 还可以使用 .pre-scrollable 类,其作用是设置 max-height 为 350px ,并在垂直方向展示滚动条。 4.3 变量 通过 <var> 标签标记变量。 <var>y</var> = <var>m</var><var>x</var> + <var>b</var> 4.4 程序输出 通过 <samp> 标签来标记程序输出的内容。 <samp>This text is meant to be treated as sample output from a computer program.</samp> 5 表格 5.1 基本 为任意 <table> 标签添加 .table 类可以为其赋予基本的样式 <table class="table">...</table> 5.2 条纹状表格 <table class="table table-striped">...</table> 5.3 带边框的表格 <table class="table table-bordered">...</table> 5.4 鼠标悬停 <table class="table table-hover">...</table> 5.5 紧缩表格 <table class="table table-condensed">...</table> 5.6 状态类 通过这些状态类可以为行或单元格设置颜色。 Class 描述 .active 鼠标悬停在行或单元格上时所设置的颜色 .success 标识成功或积极的动作 .info 标识普通的提示信息或动作 .warning 标识警告或需要用户注意 .danger 标识危险或潜在的带来负面影响的动作 5.7 响应式表格 将任何 .table 元素包裹在 .table-responsive 元素内,即可创建响应式表格,其会在小屏幕设备上(小于768px)水平滚动。当屏幕大于 768px 宽度时,水平滚动条消失。 6 表单 6.1 基本实例 单独的表单控件会被自动赋予一些全局样式。所有设置了 .form-control 类的 <input>、<textarea> 和 <select> 元素都将被默认设置宽度属性为 width: 100%;。 将 label 元素和前面提到的控件包裹在 .form-group 中可以获得最好的排列。 <form><div class="form-group"><label for="exampleInputEmail1">Email address</label><input type="email" class="form-control" id="exampleInputEmail1" placeholder="Email"></div><div class="form-group"><label for="exampleInputPassword1">Password</label><input type="password" class="form-control" id="exampleInputPassword1" placeholder="Password"></div><div class="form-group"><label for="exampleInputFile">File input</label><input type="file" id="exampleInputFile"><p class="help-block">Example block-level help text here.</p></div><div class="checkbox"><label><input type="checkbox"> Check me out</label></div><button type="submit" class="btn btn-default">Submit</button></form> 6.2 内联表单 为 <form> 元素添加 .form-inline 类可使其内容左对齐并且表现为 inline-block 级别的控件。只适用于视口(viewport)至少在 768px 宽度时(视口宽度再小的话就会使表单折叠) 6.3 水平排列的表单 通过为表单添加 .form-horizontal 类,并联合使用 Bootstrap 预置的栅格类,可以将 label 标签和控件组水平并排布局。这样做将改变 .form-group 的行为,使其表现为栅格系统中的行(row),因此就无需再额外添加 .row 了 <form class="form-horizontal"><div class="form-group"><label for="inputEmail3" class="col-sm-2 control-label">Email</label><div class="col-sm-10"><input type="email" class="form-control" id="inputEmail3" placeholder="Email"></div></div><div class="form-group"><label for="inputPassword3" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword3" placeholder="Password"></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><div class="checkbox"><label><input type="checkbox"> Remember me</label></div></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><button type="submit" class="btn btn-default">Sign in</button></div></div></form> 6.4 表单控件 输入框 包括大部分表单控件、文本输入域控件,还支持所有 HTML5 类型的输入控件: text、password、datetime、datetime-local、date、month、time、week、number、email、url、search、tel 和 color。 只有正确设置了 type 属性的输入控件才能被赋予正确的样式。 文本域 支持多行文本的表单控件。可根据需要改变 rows 属性。 多选和单选框 默认样式 <div class="checkbox"><label><input type="checkbox" value="">Option one is this and that—be sure to include why it's great</label></div><div class="checkbox disabled"><label><input type="checkbox" value="" disabled>Option two is disabled</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios1" value="option1" checked>Option one is this and that—be sure to include why it's great</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios2" value="option2">Option two can be something else and selecting it will deselect option one</label></div><div class="radio disabled"><label><input type="radio" name="optionsRadios" id="optionsRadios3" value="option3" disabled>Option three is disabled</label></div> 内联单选和多选框 <label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox1" value="option1"> 1</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox2" value="option2"> 2</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox3" value="option3"> 3</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio1" value="option1"> 1</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio2" value="option2"> 2</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio3" value="option3"> 3</label> 不带文本的Checkbox 和 radio <label><input type="checkbox" id="blankCheckbox" value="option1" aria-label="..."></label></div><div class="radio"><label><input type="radio" name="blankRadio" id="blankRadio1" value="option1" aria-label="..."></label></div> 下拉列表 <select class="form-control"><option>1</option><option>2</option><option>3</option><option>4</option><option>5</option></select> 静态内容 如果需要在表单中将一行纯文本和 label 元素放置于同一行,为 <p> 元素添加 .form-control-static 类即可 <form class="form-horizontal"><div class="form-group"><label class="col-sm-2 control-label">Email</label><div class="col-sm-10"><p class="form-control-static">email@example.com</p></div></div><div class="form-group"><label for="inputPassword" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword" placeholder="Password"></div></div></form> 帮助文字 <label class="sr-only" for="inputHelpBlock">Input with help text</label><input type="text" id="inputHelpBlock" class="form-control" aria-describedby="helpBlock">...<span id="helpBlock" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span> 校验状态 Bootstrap 对表单控件的校验状态,如 error、warning 和 success 状态,都定义了样式。使用时,添加 .has-warning、.has-error或 .has-success 类到这些控件的父元素即可。任何包含在此元素之内的 .control-label、.form-control 和 .help-block 元素都将接受这些校验状态的样式。 <div class="form-group has-success"><label class="control-label" for="inputSuccess1">Input with success</label><input type="text" class="form-control" id="inputSuccess1" aria-describedby="helpBlock2"><span id="helpBlock2" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span></div><div class="form-group has-warning"><label class="control-label" for="inputWarning1">Input with warning</label><input type="text" class="form-control" id="inputWarning1"></div><div class="form-group has-error"><label class="control-label" for="inputError1">Input with error</label><input type="text" class="form-control" id="inputError1"></div><div class="has-success"><div class="checkbox"><label><input type="checkbox" id="checkboxSuccess" value="option1">Checkbox with success</label></div></div><div class="has-warning"><div class="checkbox"><label><input type="checkbox" id="checkboxWarning" value="option1">Checkbox with warning</label></div></div><div class="has-error"><div class="checkbox"><label><input type="checkbox" id="checkboxError" value="option1">Checkbox with error</label></div></div> 添加额外的图标 你还可以针对校验状态为输入框添加额外的图标。只需设置相应的 .has-feedback 类并添加正确的图标即可 <div class="form-group has-success has-feedback"><label class="control-label" for="inputSuccess2">Input with success</label><input type="text" class="form-control" id="inputSuccess2" aria-describedby="inputSuccess2Status"><span class="glyphicon glyphicon-ok form-control-feedback" aria-hidden="true"></span><span id="inputSuccess2Status" class="sr-only">(success)</span></div> 控件尺寸 通过 .input-lg 类似的类可以为控件设置高度,通过 .col-lg- 类似的类可以为控件设置宽度。 高度尺寸 创建大一些或小一些的表单控件以匹配按钮尺寸 <input class="form-control input-lg" type="text" placeholder=".input-lg"><input class="form-control" type="text" placeholder="Default input"><input class="form-control input-sm" type="text" placeholder=".input-sm"><select class="form-control input-lg">...</select><select class="form-control">...</select><select class="form-control input-sm">...</select> 水平排列的表单组的尺寸 通过添加 .form-group-lg 或 .form-group-sm 类,为 .form-horizontal 包裹的 label 元素和表单控件快速设置尺寸。 <form class="form-horizontal"><div class="form-group form-group-lg"><label class="col-sm-2 control-label" for="formGroupInputLarge">Large label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputLarge" placeholder="Large input"></div></div><div class="form-group form-group-sm"><label class="col-sm-2 control-label" for="formGroupInputSmall">Small label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputSmall" placeholder="Small input"></div></div></form> 7 按钮 7.1 可作为按钮使用的标签或元素 为 <a>、<button> 或 <input> 元素添加按钮类(button class)即可使用 Bootstrap 提供的样式 <a class="btn btn-default" href="" role="button">Link</a><button class="btn btn-default" type="submit">Button</button><input class="btn btn-default" type="button" value="Input"><input class="btn btn-default" type="submit" value="Submit"> 7.2 预定义样式 <!-- Standard button --><button type="button" class="btn btn-default">(默认样式)Default</button><!-- Provides extra visual weight and identifies the primary action in a set of buttons --><button type="button" class="btn btn-primary">(首选项)Primary</button><!-- Indicates a successful or positive action --><button type="button" class="btn btn-success">(成功)Success</button><!-- Contextual button for informational alert messages --><button type="button" class="btn btn-info">(一般信息)Info</button><!-- Indicates caution should be taken with this action --><button type="button" class="btn btn-warning">(警告)Warning</button><!-- Indicates a dangerous or potentially negative action --><button type="button" class="btn btn-danger">(危险)Danger</button><!-- Deemphasize a button by making it look like a link while maintaining button behavior --><button type="button" class="btn btn-link">(链接)Link</button> 7.3 尺寸 需要让按钮具有不同尺寸吗?使用 .btn-lg、.btn-sm 或 .btn-xs 就可以获得不同尺寸的按钮。 通过给按钮添加 .btn-block 类可以将其拉伸至父元素100%的宽度,而且按钮也变为了块级(block)元素。 7.4 激活状态 添加 .active 类 7.5 禁用状态 为 <button> 元素添加 disabled 属性,使其表现出禁用状态。 为基于 <a> 元素创建的按钮添加 .disabled 类。 8 图片 8.1 响应式图片 在 Bootstrap 版本 3 中,通过为图片添加 .img-responsive 类可以让图片支持响应式布局。其实质是为图片设置了 max-width: 100%;、 height: auto; 和 display: block; 属性,从而让图片在其父元素中更好的缩放。 如果需要让使用了 .img-responsive 类的图片水平居中,请使用 .center-block 类,不要用 .text-center <img src="..." class="img-responsive" alt="Responsive image"> 8.2 图片形状 <img src="..." alt="..." class="img-rounded"><img src="..." alt="..." class="img-circle"><img src="..." alt="..." class="img-thumbnail"> 9 辅助类 9.1 文本颜色 <p class="text-muted">...</p><p class="text-primary">...</p><p class="text-success">...</p><p class="text-info">...</p><p class="text-warning">...</p><p class="text-danger">...</p> 9.2 背景色 <p class="bg-primary">...</p><p class="bg-success">...</p><p class="bg-info">...</p><p class="bg-warning">...</p><p class="bg-danger">...</p> 9.3 三角符号 <span class="caret"></span> 9.4 浮动 <div class="pull-left">...</div><div class="pull-right">...</div> 9.5 让内容块居中 <div class="center-block">...</div> 9.6 清除浮动 通过为父元素添加 .clearfix 类可以很容易地清除浮动(float) <!-- Usage as a class --><div class="clearfix">...</div> 9.7 显示或隐藏内容 <div class="show">...</div><div class="hidden">...</div> 9.10 图片替换 使用 .text-hide 类或对应的 mixin 可以用来将元素的文本内容替换为一张背景图。 <h1 class="text-hide">Custom heading</h1> 10 响应式工具 10.1 不同视口下隐藏显示 .visible-xs- .visible-sm- .visible-md- .visible-lg- .hidden-xs .hidden-sm .hidden-md .hidden-lg.visible--block .visible--inline .visible--inline-block 10.2 打印类 .visible-print-block.visible-print-inline.visible-print-inline-block.hidden-print 打印机下隐藏 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_67155975/article/details/123351126。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-18 14:41:25
150
转载
转载文章
...层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
... (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...语句以逐步获取数据库结构和数据。 预处理语句 (MySQL Prepare Statement) , 预处理语句是MySQL提供的一种预防SQL注入的安全编程方法。在实际应用中,SQL语句分为两部分。 handler语句 (MySQL) , handler语句是MySQL中用于处理存储引擎内部记录的一种特殊语法。通过handler语句,可以在程序中实现逐行读取、更新或删除表中的数据,而无需使用常规的SELECT、UPDATE或DELETE等SQL语句。在该文描述的GYCTF2020比赛中,由于存在严格的过滤规则,参赛者无法直接用常规SQL查询获取数据,因此他们借助handler语句逐行读取表内容,成功破解了题目并得到了flag。 PHP函数CVE-2020-7066 , 这是一个公开的安全漏洞编号,对应PHP 7.2.x、7.3.x以及7.4.x版本中的get_headers()函数存在的安全问题。在特定条件下,当get_headers()函数处理包含零字节(\\0)的URL时,URL会被错误地截断,可能导致信息泄露。在GKCTF2020比赛的签到题目中,选手需要根据这个CVE提示,研究如何构造特定URL,并利用get_headers()函数的这一漏洞,实现信息泄露,进而完成签到或获取flag的操作。
2023-11-13 21:30:33
303
转载
转载文章
...套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 显示文件前10行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"