前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[支持多种媒体格式的jQuery插件 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MemCache
...问题,其产生的原因是多种多样的。要真正把这个问题给揪出来,咱们得把系统工具和实际操作的经验都使上劲儿,得像钻井工人一样深入挖掘Memcached这家伙的工作内幕和使用门道。只有这样,才能真正找到问题的关键所在,并提出有效的解决方案。 感谢阅读这篇文章,希望对你有所帮助!
2024-01-19 18:02:16
95
醉卧沙场-t
Saiku
...断完善与开放SDK的支持,Saiku可以更容易地与其他数据源、分析工具和服务集成,形成一个更为灵活、丰富的数据生态系统。此外,通过建立开发者社区与知识共享平台,Saiku鼓励用户分享最佳实践、代码片段与分析案例,促进了知识的传播与技术创新。这种开放生态不仅加速了新功能的迭代与优化,也为Saiku的长期发展注入了活力。 综上所述,Saiku配置文件编辑器的未来展望聚焦于智能化、个性化与开放性三大核心方向,旨在通过技术创新与用户体验的不断提升,满足日益增长的数字化分析需求,推动数据驱动决策的普及与深化。这一过程不仅需要Saiku团队的持续努力,还需要广大用户、开发者与合作伙伴的共同参与与贡献,携手共创数据可视化与分析的新时代。
2024-10-12 16:22:48
73
春暖花开
c++
...一种动态数组实现,它支持随机访问,并能自动管理内存。向量在内部使用动态数组来存储元素,可以根据需要动态调整大小。在文章中,向量被用作示例,展示了如何在已满的情况下尝试添加元素,从而触发std::length_error异常。 名词 , 异常抛出。 解释 , 在编程中,异常抛出是指在运行时发生错误或异常情况时,程序主动抛出一个异常对象,通知调用者发生了预料之外的事情。在C++中,通过throw关键字抛出异常,可以捕获并处理这些异常以避免程序崩溃。文章中详细介绍了如何使用try-catch块来捕获std::length_error异常,这是一种常见的异常处理机制,用于处理容器大小不足或其他类型的运行时错误。
2024-10-03 15:50:22
51
春暖花开
Golang
...开并解析一个JSON格式的配置文件。如果任何一步失败,我们都会返回一个包含原始错误的错误对象。这样做不仅可以让错误信息更加完整,还便于我们在调用方进行统一处理。 3.3 自定义错误类型 虽然标准库提供的error接口已经足够强大,但在某些场景下,我们可能需要更丰富的错误信息。这时,可以定义自己的错误类型来扩展功能。 go type MyError struct { Message string Code int } func (e MyError) Error() string { return fmt.Sprintf("错误代码%d: %s", e.Code, e.Message) } func doSomething() error { return &MyError{Message: "操作失败", Code: 500} } func main() { err := doSomething() if err != nil { log.Printf("发生错误: %v", err) } } 在这个例子中,我们定义了一个自定义错误类型MyError,它包含了一个消息和一个错误码。这样做的好处是可以根据不同的错误码采取不同的处理策略。 4. 错误信息的最佳实践 最后,我想分享一些我在日常开发中积累的经验,这些经验有助于写出更好的错误信息。 - 明确且具体:错误信息应该直接指出问题所在,避免模糊不清的描述。 - 用户友好的:对于最终用户可见的错误信息,尽量使用通俗易懂的语言。 - 提供解决方案:如果可能的话,给出一些基本的解决建议。 - 避免泄露敏感信息:在生成错误信息时,注意不要暴露敏感数据,如密码或密钥。 结语 错误信息是我们与程序之间的桥梁,它能帮助我们更好地理解问题所在,并找到解决问题的方法。在Go语言里,错误处理不仅仅是个技术活儿,它还代表着一种态度——就是要做出高质量的软件的那种执着精神。希望通过这篇文章,你能在未来的项目中更加重视错误信息的处理,从而写出更加健壮和可靠的代码。 --- 以上内容结合了理论与实践,旨在让你对Go语言中的错误处理有更深的理解。记住,好的错误信息就像是一位优秀的导游,它能带你穿越迷雾,找到正确的方向。
2024-11-09 16:13:46
127
桃李春风一杯酒
转载文章
...。近日,多家知名科技媒体及安全机构报道了关于应用程序过度获取权限的现象,尤其是位置信息、网络访问以及对手机状态和身份读取等敏感权限的使用问题。 例如,《连线》杂志近期发布的一篇深度分析文章指出,某些应用程序在无明显功能需求的情况下申请大量权限,可能导致用户数据泄露风险增大。作者强调,尽管Android系统已逐步强化权限管理机制,但用户自身也需提高警惕,审慎对待每一次权限请求,并定期检查与清理不必要的权限授权。 此外,谷歌公司也在不断优化其Play Store的政策,加强对开发者提交的应用程序进行严格的权限审查。据《TechCrunch》报道,谷歌正计划实施更为细化的权限分类管理,以便用户能更清晰地了解应用所需权限的真实用途,并做出明智的决定。 与此同时,专家建议用户及时更新操作系统以获取最新的安全补丁,同时采用可靠的安全软件监测应用行为,防止滥用权限的行为发生。在未来,随着GDPR(欧盟一般数据保护条例)等法规在全球范围内的影响扩大,如何平衡便利性与隐私保护,将成为Android生态系统持续关注并解决的关键课题。 总之,在这个数字化时代,掌握并有效管理Android应用权限不仅关乎个人隐私,也是维护整个移动网络生态安全的重要环节。用户应不断提升信息安全意识,合理授予应用权限,而开发者则需遵循透明、合法、必要的原则来设计和请求权限,共同构建一个更加安全、可信的移动应用环境。
2023-10-10 14:42:10
104
转载
转载文章
...不会提出很高深的理论支持来描述。 文章若有错误的内容,希望大佬指正 依赖倒置原则 什么是依赖倒置原则: 高层模块不应该依赖低层模块,二者都应该依赖其抽象 抽象不应该依赖细节,细节应该依赖抽象 针对接口编程,不要针对实现编程 即: 每个类尽量继承自接口或者抽象类 优点:减少类之间的耦合,提高代码的稳定性,代码的可读性维护性。 案例: 背景: 现在有一个用户类叫Ggzx(也就是我),想要学习一些课程,简单的来实现调用学习的方法,然后在一个Test类之中输入学习的内容。但是我暂时只学java和web,但是可能我后面还要学习Spring,SpringMVC… 1.面向实现编程 public class Ggzx {public void stduyJava(){System.out.println("学习了java课程");}public void studyWeb(){System.out.println("学习了Web课程");} } public class Test {public static void main(String[] args) {Ggzx ggzx=new Ggzx();ggzx.studyJava();ggzx.studyPython();ggzx.studyGo();} } 分析: 上面使用的面向实现编程,但是Test作为我们控制的"应用层",也就是高层,而Ggzx作为低层,其实这样在比较简单的例子中,其实是没问题的,因为假如不需要扩展,仅仅是实现两个很简单的功能,并没有必要去面向接口开发,但是一般在开发中通常有很复杂的开发环境和开发需求。 现在如果想添加新的功能,学习其他的课程,怎么办??? 继续使用面向实现编程,直接在 Ggzx 类中直接添加新的方法,可以完成这个功能需求。 用上面的方法实现有没有缺点??? 学习的课程和 Ggzx 类耦合比较严重。是学习的课程只能通过Ggzx 才能得到 。并且是想要学习新的课程也要在 Ggzx 类中不断添加和修改 —>高耦合 Ggzx 作为当前 demo 的底层,经常的被改动,高层Test依赖于低层 Ggzx 的实现 ---->对应依赖倒置原则中的:高层过度依赖低层了 2.面向接口编程(简单版) 为了解决上面出现的问题,我们可以考虑把学习的课程抽出来成为一个类。到现在,类和类之间的耦合其实就已经降低很多了。然后将其当做参数传入Ggzx里面,然后调用课程里面的学习方法 //web课程类public class WebCourse {public void studyCourse() {System.out.println("学习了Web课程");} } //这里是Java课程类public class JavaCourse {public void studyCourse() {System.out.println("学习Java课程");} } 当我们写出来这两个类,想要对Ggzx里面的学习方法进行编写的时候,有没有发现其实有一些小问题呢???? Ggzx里面接收这些类的参数是什么?? 难道要这样? //以下是Ggzx类中的内容public void studyJava(JavaCourse javaCourse){}public void studyWeb(WebCourse webCourse){} nonono,如果这样做,虽然当前已经把课程类和 Ggzx 用户剥离一点点了,但是是还是形同虚设,课程类虽然分离开了,但是还是像狗皮膏药一样贴在 Ggzx 类中,但是看着还是很难受,高层 Test 调用方法还是得依赖 Ggzx 里面有什么方法 每次加入新课程,都需要修改底层功能 如何修改??? 接口是个好东西,课程类之间是不是都包含同样一个方法,被学习的方法( studyCourse ),那么我们可以将所有课程类都实现一个ICourse课程! 对应上面的问题,我们该传入什么参数能解决问题??可以传入一个接口 改编后的 UML 图解展示(Ggzx 被废弃,用新的 NewGgzx 代替):(如果没了解过UML类图,或者是纯小白,只需要知道一个大框是一个类,虚线表示实现了箭头方向的接口,小m是方法 即可) 观察上面的UML图 WebCourse 和 JavaCourse 实现自同一个接口 ICourse,每个课程都有自己的 studyXxx 方法。 这样好在什么地方? - 课程类和Ggzx类是解耦的,无论你增加多少个课程类,只要实现了ICourse接口,都能直接传入Ggzx的studyMyCourse()方法中 public interface ICourse {void studyCourse();} public class WebCourse implements ICourse{@Overridepublic void studyCourse() {System.out.println("学习了Web课程");} } public class NewGgzx {public void studyMyCourse(ICourse iCourse){iCourse.studyCourse();} } 上面就是案例的面向接口编程,我们可以看到,在 NewGgzx 类中,我们可以传入一个实现 ICourse 接口的课程类,我们在Test类中调用的时候,只需要传入一个课程类即可调用学习方法,这样当想扩展新的内容,只需要创建一个新的课程类实现 ICourse 即可 Test使用 NewGgzx newGgzx =new NewGgzx();newGgzx.studyMoocCourse(new WebCourse());newGgzx.studyMoocCourse(new com.ggzx.design.priciple.dependenceiversion.JavaCourse()); 从面向实现到面向接口,我们处理问题的方法改变了: 开始时,我们需要考虑在Test类中调用Ggzx里面的哪一种学习方法,即注重调用什么方法能够实现特定的课程 到面向接口编程,我们考虑传入什么课程即可实现学习 当业务需求拓展时,拓展方法也改变了: 面向实现:需要改变底层的代码来协调我们需要使用的功能,用上面的例子来解释就是:当你想要学习一个课程,你就需要改变你底层的实现,增加新的代码 面向接口:想学习什么课程,不会对其他课程造成影响,也不会影响到低层的Ggzx 。实际操作就是增加一门新的课程即可,实现接口之后,传入这个类到Ggzx的方法中就可以学习这一门课了 相对于细节的多变性,抽象的东西更稳定,以抽象为基础搭建的架构比以细节搭建的架构更加稳定 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_52410356/article/details/122828154。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-26 15:35:43
633
转载
Nginx
...022年,某大型社交媒体平台也因权限设置不当,导致数亿用户的数据被泄露。调查发现,该平台的Nginx配置文件中存在多个高危漏洞,包括未加密的API接口和过于宽松的文件权限。这些漏洞被黑客利用,最终酿成了严重的数据泄露事件。 为了避免此类事件的发生,企业和组织应采取以下措施: 1. 严格审查配置文件:在发布前仔细检查Nginx配置文件,确保所有敏感资源都有适当的权限设置。 2. 使用自动化工具:利用如Ansible、Puppet等自动化工具来管理配置文件,减少人为错误。 3. 定期安全审计:聘请第三方安全专家进行定期审计,及时发现并修复潜在的安全隐患。 4. 员工培训:加强对员工的安全意识培训,确保他们了解权限设置的重要性,并能在日常工作中严格执行相关规范。 通过上述措施,我们可以大大降低因权限设置不当而导致的安全风险,从而更好地保护用户数据和企业资产。
2024-12-14 16:30:28
82
素颜如水_
转载文章
...TML文档中的数据,支持CSS选择器来查找元素。在该篇文章的爬虫实践中,Jsoup用于解析从京东页面获取的HTML内容,从中提取出商品SPU、SKU、价格、标题、图片链接等具体信息。
2023-03-13 10:48:12
104
转载
转载文章
...于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
ClickHouse
...的设计初衷并不是为了支持复杂的JOIN操作。它的查询引擎在处理简单的事儿,比如筛选一下数据或者做个汇总啥的,那是一把好手。但要是涉及到多张表格之间的复杂关系,它就有点转不过弯来了,感觉像是被绕晕了的小朋友。 举个例子来说,如果你有一张用户表User和一张订单表Order,你想找出所有购买了特定商品的用户信息,这听起来很简单对不对?但在ClickHouse里,这样的JOIN操作可能会导致性能下降,甚至直接失败。 sql SELECT u.id, o.order_id FROM User AS u JOIN Order AS o ON u.id = o.user_id; 这段SQL看起来很正常,但运行起来可能会让你抓狂。所以接下来,我们就来看看如何在这种情况下找到解决方案。 --- 3. 面临的挑战与解决之道 既然我们知道ClickHouse不太擅长处理复杂的跨表查询,那么我们应该怎么办呢?其实方法还是有很多的,只是需要我们稍微动点脑筋罢了。 方法一:数据预处理 最直接的办法就是提前做好准备。你可以先把两张表格的数据合到一块儿,变成一个新表格,之后就在这个新表格里随便查啥都行。虽然听起来有点麻烦,但实际上这种方法非常有效。 比如说,我们可以创建一个新的视图,将两张表的内容联合起来: sql CREATE VIEW CombinedData AS SELECT u.id AS user_id, u.name AS username, o.order_id FROM User AS u JOIN Order AS o ON u.id = o.user_id; 这样,当你需要查询相关信息时,就可以直接从这个视图中获取,而不需要每次都做JOIN操作。 方法二:使用Materialized Views 另一种思路是利用Materialized Views(物化视图)。简单说吧,物化视图就像是提前算好答案的一张表格。一旦下面的数据改了,这张表格也会跟着自动更新,就跟变魔术似的!这种方式特别适合于那些经常被查询的数据模式。 例如,如果我们知道某个查询会频繁出现,就可以事先定义一个物化视图来加速: sql CREATE MATERIALIZED VIEW AggregatedOrders TO AggregatedTable AS SELECT user_id, COUNT(order_id) AS order_count FROM Orders GROUP BY user_id; 通过这种方式,每次查询时都不需要重新计算这些统计数据,从而大大提高了效率。 --- 4. 实战演练 动手试试看! 好了,理论讲得差不多了,现在该轮到实战环节啦!我来给大家展示几个具体的例子,看看如何在实际场景中应用上述提到的方法。 示例一:合并数据到单表 假设我们有两个表:Sales 和 Customers,它们分别记录了销售记录和客户信息。现在我们想找出每个客户的总销售额。 sql -- 创建视图 CREATE VIEW SalesByCustomer AS SELECT c.customer_id, c.name, SUM(s.amount) AS total_sales FROM Customers AS c JOIN Sales AS s ON c.customer_id = s.customer_id GROUP BY c.customer_id, c.name; -- 查询结果 SELECT FROM SalesByCustomer WHERE total_sales > 1000; 示例二:使用物化视图优化查询 继续上面的例子,如果我们发现SalesByCustomer视图被频繁访问,那么就可以进一步优化,将其转换为物化视图: sql -- 创建物化视图 CREATE MATERIALIZED VIEW SalesSummary ENGINE = MergeTree() ORDER BY customer_id AS SELECT customer_id, name, SUM(amount) AS total_sales FROM Sales JOIN Customers USING (customer_id) GROUP BY customer_id, name; -- 查询物化视图 SELECT FROM SalesSummary WHERE total_sales > 1000; 可以看到,相比之前的视图方式,物化视图不仅减少了重复计算,还提供了更好的性能表现。 --- 5. 总结与展望 总之,尽管ClickHouse在处理跨数据库或表的复杂查询方面存在一定的限制,但这并不意味着它无法胜任大型项目的需求。其实啊,只要咱们好好琢磨一下怎么安排和设计,这些问题根本就不用担心啦,还能把ClickHouse的好处发挥得足足的! 最后,我想说的是,技术本身并没有绝对的好坏之分,关键在于我们如何运用它。希望今天的分享能帮助你在使用ClickHouse的过程中更加得心应手。如果还有任何疑问或者想法,欢迎随时交流讨论哦! 加油,我们一起探索更多可能性吧!
2025-04-24 16:01:03
23
秋水共长天一色
转载文章
...程中启动另一个协程(支持协程嵌套)。 二、Unity中的 yield 语句类型 1、yield break; //打断协程运行 2、yield return null; //挂起协程,并从下一帧继续 3、yield return + “任意数字”; //挂起协程,并从下一帧继续 4、yield return + “bool值”; //挂起协程,并从下一帧继续 5、yield return + “任意字符串”; //挂起协程,并从下一帧继续 6、yield return + “普通Object”; //挂起协程,并从下一帧继续 7、yield return + “任意实现了 IEnumerator 接口的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接实现了 IEnumerator 接口的类有: ------------------------------------------------------------------------------------------------ CustomYieldInstruction (abstarct) ——|> IEnumerator (interface) ------------------------------------------------------------------------------------------------ WaitUnitil (sealed) ——|> CustomYieldInstruction WaitWhile (sealed) ——|> CustomYieldInstruction WaitForSecondsRealtime (非sealed,但未发现子类) ——|> CustomYieldInstruction WWW (非sealed,但未发现子类) ——|> CustomYieldInstruction ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 8、yield return + “任意继承了 YieldInstruction 类 ([UsedByNativeCode],源码C层中无具体实现) 的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接继承了 YieldInstruction 类的类有: ------------------------------------------------------------------------------------------------ WaitForSeconds (sealed) ——|> YieldInstruction Coroutine (sealed) ——|> YieldInstruction (Coroutine 是 StartCoroutine方法的返回值,意味着协程中可嵌套协程) WaitForEndOfFrame (sealed) ——|> YieldInstruction WaitForFixedUpdate (sealed) ——|> YieldInstruction AsyncOperation ——|> YieldInstruction ------------------------------------------------------------------------------------------------ AssetBundleCreateRequest (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRecompressOperation (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRequest (非sealed,但未发现子类) ——|> AsyncOperation ResourceRequest (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.Networking.UnityWebRequestAsyncOperation (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.iOS.OnDemandResourcesRequest (sealed) ——|> AsyncOperation ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 测试验证 第2、3、4、5、6条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 1;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 99; //其他整数Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0.5f; //浮点数值Debug.Log("Time.frameCount: " + Time.frameCount);yield return false; //bool值Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!"; //字符串Debug.Log("Time.frameCount: " + Time.frameCount);yield return new Object(); //任意对象Debug.Log("Time.frameCount: " + Time.frameCount);} } 测试验证 第7条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Func1");yield return Func2();}IEnumerator Func2(){Debug.Log("Func2");yield return Func3();}IEnumerator Func3(){Debug.Log("Func3");yield return null;} } 三、Unity协程实现原理 1、C 的迭代器。 现在已经知道:协程肯定与IEnumerator有关,因为启动协程时需要一个 IEnumerator 对象。 而 IEnumerator 是C实现的 迭代器模式 中的 枚举器(用于迭代的游标)。 迭代器相关接口定义如下: namespace System.Collections{//可枚举(可迭代)对象接口public interface IEnumerable{IEnumerator GetEnumerator();}//迭代游标接口public interface IEnumerator{object Current { get; }bool MoveNext();void Reset();} } 参考 MSDN C文档中对于 IEnumerator、IEnumerable、迭代器 的描述。 利用 IEnumerator 对象,可以对与之关联的 IEnumerable 集合 进行迭代: 1)、通过 IEnumerator 的 Current 方法,可以获取集合中位于枚举数当前位置的元素。 2)、通过 IEnumerator 的 MoveNext 方法,可以将枚举数推进到集合的下一个元素。如果 MoveNext 越过集合的末尾, 则枚举器将定位在集合中最后一个元素之后, 同时 MoveNext 返回 false。 当枚举器位于此位置时, 对 MoveNext 的后续调用也将返回 false 。如果最后一次调用 MoveNext 时返回 false,则 Current 未定义(结果为null)。 3)、通过 IEnumerator 的 Reset 方法,可以将“迭代游标” 设置为其初始位置,该位置位于集合中第一个元素之前。 2、C 的 yield 关键字。 C编译器在生成IL代码时,会将一个返回值类型为 IEnumerator 的方法(其中包含一系列的 yield return 语句),构建为一个实现了 IEnumerator 接口的对象。 注意,yield 是C的关键字,而非Unity定义!IEnumerator 对象 也可以直接用于迭代,并非只能被Unity的 StartCoroutine 使用! using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){IEnumerator e = Func();while (e.MoveNext()){Debug.Log(e.Current);} }IEnumerator Func(){yield return 1;yield return "Hi NRatel!";yield return 3;} } 对上边C代码生成的Dll进行反编译,查看IL代码: 3、Unity 的协程。 Unity 协程是在逐帧迭代的,这点可以从 Unity 脚本生命周期 中看出。 可以大胆猜测一下,实现出自己的协程(功能相似,能够说明逐帧迭代的原理,不是Unity源码): using System;using System.Collections;using System.Collections.Generic;using UnityEngine;public class Test : MonoBehaviour{private Dictionary<IEnumerator, IEnumerator> recoverDict; //key:当前迭代器 value:子迭代器完成后需要恢复的父迭代器private IEnumerator enumerator;private void Start(){//Unity自身的协程//StartCoroutine(Func1());//自己实现的协程StarMyCoroutine(Func1());}private void StarMyCoroutine(IEnumerator e){recoverDict = new Dictionary<IEnumerator, IEnumerator>();enumerator = e;recoverDict.Add(enumerator, null); //完成后不需要恢复任何迭代器}private void LateUpdate(){if (enumerator != null){DoEnumerate(enumerator);} }private void DoEnumerate(IEnumerator e){object current;if (e.MoveNext()){current = e.Current;}else{//迭代结束IEnumerator recoverE = recoverDict[e];if (recoverE != null){recoverDict.Remove(e);}//恢复至父迭代器, 若没有则会至为nullenumerator = recoverE;return;}//null,什么也不做,下一帧继续if (current == null) { return; }Type type = current.GetType();//基础类型,什么也不做,下一帧继续if (current is System.Int32) { return; }if (current is System.Boolean) { return; }if (current is System.String) { return; }//IEnumerator 类型, 等待内部嵌套的IEnumerator迭代完成再继续if (current is IEnumerator){//切换至子迭代器enumerator = current as IEnumerator;recoverDict.Add(enumerator, e);return;}//YieldInstruction 类型, 猜测也是类似IEnumerator的实现if (current is YieldInstruction){//省略实现return;} }IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!";Debug.Log("Time.frameCount: " + Time.frameCount);yield return 3;Debug.Log("Time.frameCount: " + Time.frameCount);yield return new WaitUntil(() =>{return Time.frameCount == 20;});Debug.Log("Time.frameCount: " + Time.frameCount);yield return Func2();Debug.Log("Time.frameCount: " + Time.frameCount);}IEnumerator Func2(){Debug.Log("XXXXXXXXX");yield return null;Debug.Log("YYYYYYYYY");yield return Func3(); //嵌套 IEnumerator}IEnumerator Func3(){Debug.Log("AAAAAAAA");yield return null;Debug.Log("BBBBBBBB");yield return null;} } 对比结果,基本可以达成协程作用,包括 IEnumerator 嵌套。 但是 Time.frameCount 的结果不同,想来实现细节必然是有差别的。 四、部分Unity源码分析 1、CustomYieldInstruction 类 可以继承该类,并实现自己的、需要异步等待的类。 原理: 当协程中 yield return “一个CustomYieldInstruction的子类”; 其实就相当于在原来的 迭代器A 中,插入了一个 新的迭代器B。 当迭代程序进入 B ,如果 keepWaiting 为 true,MoveNext() 就总是返回 true。 上面已经说过,迭代器在迭代时,MoveNext() 返回false 才标志着迭代完成! 那么,B 就总是完不成,直到 keepWaiting 变为 false。 这样 A 运行至 B处就 处于了 等待B完成的状态,相当于A挂起了。 猜测 YieldInstruction 也是类似的实现。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System.Collections;namespace UnityEngine{public abstract class CustomYieldInstruction : IEnumerator{public abstract bool keepWaiting{get;}public object Current{get{return null;} }public bool MoveNext() { return keepWaiting; } public void Reset() {} }} 2、WaitUntil 类 语义为 “等待...直到满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 false (keepWating为true)。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitUntil : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return !m_Predicate(); } }public WaitUntil(Func<bool> predicate) { m_Predicate = predicate; } }} 3、WaitWhile 类 语义为 “等待...如果满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 true (keepWating为true)。 与 WaitUntil 的实现恰好相反。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitWhile : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return m_Predicate(); } }public WaitWhile(Func<bool> predicate) { m_Predicate = predicate; } }} 本篇文章为转载内容。原文链接:https://blog.csdn.net/NRatel/article/details/102870744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-24 16:50:42
389
转载
转载文章
...码,结合图形、语音等多种方式,构建更为立体全面的安全防护体系。 总之,验证码技术的演进充分体现了AI与安全领域的交叉融合,未来将进一步发展为智能、高效且人性化的身份验证机制,持续抵御自动化攻击,保障用户的网络安全。
2023-05-27 09:38:56
249
转载
转载文章
...on对于这些新技术的支持与发展动态。 5. 正则表达式的高级用法与优化:通过阅读最新的正则表达式优化指南,掌握如何编写高性能且易于维护的正则表达式,同时关注re模块的新特性,如regex库提供的扩展功能。 6. 递归算法在数据科学与人工智能中的作用:递归不仅在遍历目录结构时发挥作用,更在深度学习框架、图论算法、自然语言处理等领域有广泛的应用。阅读相关的学术论文或博客文章,了解递归在现代AI领域的具体实践案例。 总之,理论知识与实践相结合才能更好地理解和运用上述编程技术,时刻关注行业动态和最新研究成果,将有助于提高技术水平和应对不断变化的技术挑战。
2023-05-28 18:35:16
90
转载
Mongo
...从部署到监控的全流程支持。通过这一平台,开发者无需关心底层硬件配置,即可快速搭建起高性能的数据库环境。这种“开箱即用”的模式极大地降低了技术门槛,让更多中小企业也能享受到先进的数据库技术带来的便利。 然而,随着MongoDB在全球范围内的普及,也引发了关于数据隐私和安全性的讨论。有专家指出,在跨国企业使用MongoDB的过程中,如何确保符合不同国家和地区的数据保护法规,仍是一个亟待解决的问题。例如,欧盟的《通用数据保护条例》(GDPR)对数据存储和传输提出了严格的要求,而MongoDB是否能够完全满足这些要求,尚需进一步验证。 面对这些问题,MongoDB官方表示将继续加强与国际标准组织的合作,不断完善产品功能,确保其在全球市场的合规性。同时,他们鼓励用户积极参与社区讨论,共同推动MongoDB技术的进步和发展。未来,随着更多创新技术和最佳实践的涌现,相信MongoDB将在更多领域展现出其独特的优势和价值。
2025-04-28 15:38:33
18
柳暗花明又一村_
RabbitMQ
...的应用,通过消息队列支持服务间的异步通信,实现服务间的解耦和负载均衡,提高系统的灵活性和可扩展性。 队列QoS(服务质量)设置 , 指对消息队列的性能参数进行配置,包括消息的持久化、优先级、存活时间等。文中提到了队列QoS设置的重要性,合理配置可以优化消息的处理流程,确保关键消息得到优先处理,并维持系统的稳定运行。
2024-08-01 15:44:54
179
素颜如水
转载文章
...定诊疗方案提供了有力支持。 总之,尽管经典的ID3、C4.5、CART算法奠定了决策树的基础,但决策树算法的研究并未止步,其在理论优化、与其他AI技术融合以及解决现实世界复杂问题等方面展现出了持续的生命力与广阔的应用前景。
2023-08-27 21:53:08
284
转载
Dubbo
...实现服务的平滑升级,支持灰度发布,减少系统切换带来的风险。 5. 配置管理与动态路由:利用外部配置中心(如Nacos、Consul等)集中管理服务配置,支持动态路由规则,适应快速变化的业务需求。 6. 监控与日志体系:建立全面的监控体系,包括服务调用链路追踪、性能指标监控、日志分析等,实时掌握系统状态,快速定位和解决问题。 案例分析:某大型电商平台的Dubbo微服务治理实践 以某大型电商平台为例,该平台在微服务架构改造过程中,采用了上述一系列治理措施,实现了服务的高效稳定运行。通过引入服务注册中心,实现了服务的自动发现与路由;利用健康检查机制,确保了服务的高可用性;通过配置中心统一管理配置,支持服务的快速迭代与部署;此外,借助监控系统,实现了对服务调用链路的全程跟踪,及时发现并解决性能瓶颈。这一系列实践不仅提高了系统的整体性能,也显著提升了用户体验,为电商平台的快速发展提供了坚实的支撑。 结语 Dubbo微服务治理是一个持续迭代的过程,需要企业根据自身业务特点和市场需求,灵活选择和优化治理策略。通过深入理解Dubbo框架的特性和最新发展动态,结合最佳实践案例,企业可以构建出更加稳定、高效、灵活的微服务体系,满足快速变化的业务需求,实现持续的技术创新和业务增长。
2024-08-03 16:26:04
340
春暖花开
HBase
...(HBase内部存储格式)。BlockCache提高了随机读取操作的性能,因为它可以从内存中快速获取数据,而无需直接访问较慢的磁盘存储(如HDFS)。 MemStore , MemStore是HBase为每个Region维护的内存缓冲区,用于暂存待写入HDFS的修改操作。当MemStore达到一定阈值时,会被flush到磁盘形成新的HFile文件。通过这种方式,HBase能够在内存中累积多次写操作并批量写入磁盘,从而减少了磁盘I/O次数,提升了写入性能。同时,由于MemStore中的数据按列族排序,也优化了后续查询和Compaction过程。
2023-03-14 18:33:25
580
半夏微凉
ElasticSearch
...哪儿出错了呢?是数据格式搞拧巴了,还是索引没弄对?要不就是我自己写的代码坑太多了?那种感觉啊,就好比你在厨房按着菜谱一步一步做菜,结果一开锅,发现把一顿饭整成了糊锅底的“黑暗料理”,真是欲哭无泪啊! 二、初步排查 从错误信息入手 既然报错了,那我们就得从错误信息入手。首先,我们得看看ElasticSearch的日志,这是排查问题的第一步。日志里头一般会写得更详细一点,像是到底哪里错了、错得有多惨这种,还有那个堆栈信息啥的,看得人头都大了,但有时候不看又不行啊! 我先打开了ElasticSearch的日志文件(一般在/var/log/elasticsearch/目录下),然后发现日志里显示了一个错误:“MapperParsingException[failed to parse]”。看到这个,我就明白了,可能是数据格式有问题。 这时候我开始反思:是不是我的数据结构不符合ElasticSearch的映射规则?于是我又仔细检查了一下我的数据结构,发现确实有一个字段的数据类型没有定义好。比如说啊,我有个字段叫age,本来应该是整数类型的,但之前手滑写成字符串了,真是自己给自己挖坑。 修正后的代码如下: python actions = [ { "_index": "my_index", "_id": "1", "_source": {"name": "John", "age": 30} 确保age是整数类型 }, { "_index": "my_index", "_id": "2", "_source": {"name": "Jane", "age": 25} } ] 再次运行代码后,果然不再报错了。这就算是舒了口气吧,不过也给我提了个醒:用 ElasticSearch 做批量索引的时候,这数据格式啊,真的一点都不能含糊,不然分分钟让你抓狂! 三、深入分析 为什么会出现这种问题? 虽然问题解决了,但作为一个喜欢刨根问底的人,我还是想知道为什么会发生这样的事情。说白了,就是下次再碰到这种事儿,我可不想抓耳挠腮半天还搞不定,希望能一下子就找到路子! 首先,我想到了ElasticSearch的映射机制。Elasticsearch 会检查每个字段的类型,就像老师检查作业一样认真。要是你传的数据类型跟它预想的对不上号,它就会直接“翻脸”,给你抛个 MapperParsingException 错误,仿佛在说:“哎哟喂,这啥玩意儿?重写!”比如说啊,你有个字段叫age(年龄),本来应该填数字的,结果你非得塞个字符串进去,那ElasticSearch就直接不认你的文档,直接拒收,根本不带商量的! 其次,我还想到,ElasticSearch的bulk API其实是非常强大的,但它也有自己的规则。比如,bulk API要求每条文档必须包含_index、_type(虽然现在已经被废弃了)和_source字段。如果你漏掉了某个字段,或者字段名拼写错误,都会导致批量索引失败。 最后,我还注意到,ElasticSearch的bulk API是基于HTTP协议的,这意味着它对网络环境非常敏感。要是你的网络老是断线,或者你等了半天也没收到回应,那可能就搞不定批量索引这事啦。
2025-04-20 16:05:02
63
春暖花开
ZooKeeper
...的一致性和有序性,并支持高可用性和容错性。 事务日志 , 在ZooKeeper的上下文中,事务日志是记录所有对ZooKeeper服务器上数据变更操作的一种持久化存储机制。每当ZooKeeper接收到客户端的写请求并完成事务处理时,都会将该事务的相关信息按照严格的全局顺序写入事务日志,以确保即使在系统崩溃或重启后也能恢复到一致的状态。 快照文件(Snapshot) , 在ZooKeeper中,快照文件是对某一时刻ZooKeeper服务器内存数据库状态的全量备份。当ZooKeeper服务器运行一段时间后,为了减少恢复时扫描事务日志的时间开销,会定期将当前内存数据库状态生成一个快照文件保存到磁盘。在后续的恢复过程中,ZooKeeper首先加载最近的快照文件,然后重放从快照时间点之后的事务日志,以此快速重建出完整的数据视图。 SSD硬盘(Solid State Drive) , SSD是一种采用闪存作为永久性存储介质的硬盘驱动器,相比于传统的机械硬盘(HDD),具有更快的数据读写速度、更低的延迟以及更高的耐用性。在解决ZooKeeper磁盘I/O性能瓶颈问题时,更换为SSD硬盘可以显著提高数据的读写效率,进而提升整个系统的性能表现。 FPGA加速 , FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,可以通过编程来实现特定的硬件加速功能。在ZooKeeper优化场景下,基于FPGA的数据同步算法可以定制化地加速数据处理过程,尤其针对频繁的I/O操作进行优化,从而在保证数据一致性的同时降低对磁盘I/O资源的需求,有效改善集群整体性能。
2023-02-19 10:34:57
127
夜色朦胧
转载文章
Cassandra
...,Cassandra支持通过快照(snapshots)从commit log中恢复数据。然而,在某些情况下,系统可能会尝试创建过多的快照,导致“CommitLogTooManySnapshotsInProgressException”异常发生。 三、问题原因分析 此异常通常由以下几种情况触发: 1. 频繁的快照操作 在短时间内连续执行大量的快照操作,超过了系统能够处理的并发快照数量限制。 2. 配置不当 默认的快照并发创建数可能不适合特定的部署环境,导致在实际运行时出现问题。 3. 资源限制 系统资源(如CPU、内存)不足,无法支持更多的并发快照创建操作。 四、解决策略与实践 1. 优化快照策略 - 减少快照频率:根据业务需求合理调整快照的触发条件和频率,避免不必要的快照操作。 - 使用增量快照:在一些不需要完整数据集的情况下,考虑使用增量快照来节省资源和时间。 2. 调整Cassandra配置 - 增加快照并发创建数:在Cassandra配置文件cassandra.yaml中增加snapshots.concurrent_compactions的值,但需注意不要超过系统资源的承受范围。 - 优化磁盘I/O性能:确保磁盘I/O性能满足需求,使用SSD或者优化磁盘阵列配置,可以显著提高快照操作的效率。 3. 监控与警报 - 实时监控:使用监控工具(如Prometheus + Grafana)对Cassandra的关键指标进行实时监控,如commit log大小、快照操作状态等。 - 设置警报:当检测到异常操作或资源使用达到阈值时,及时发送警报通知,以便快速响应和调整。 五、案例研究与代码示例 假设我们正在管理一个Cassandra集群,并遇到了“CommitLogTooManySnapshotsInProgressException”。 步骤1:配置调整 yaml 在cassandra.yaml中增加快照并发创建数 snapshots.concurrent_compactions: 10 步骤2:监控配置 yaml 配置Prometheus监控,用于实时监控集群状态 prometheus: enabled: true bind_address: '0.0.0.0' port: 9100 步骤3:实施监控与警报 在Prometheus中添加Cassandra监控指标,设置警报规则,当快照操作异常或磁盘使用率过高时触发警报。 yaml Prometheus监控规则 rules: - alert: HighSnapshotConcurrency expr: cassandra_snapshot_concurrency > 5 for: 1m labels: severity: critical annotations: description: "The snapshot concurrency is high, which might lead to the CommitLogTooManySnapshotsInProgressException." runbook_url: "https://your-runbook-url.com" - alert: DiskUsageHigh expr: cassandra_disk_usage_percentage > 80 for: 1m labels: severity: warning annotations: description: "Disk usage is high, potentially causing performance degradation and failure of snapshot operations." runbook_url: "https://your-runbook-url.com" 六、总结与反思 面对“CommitLogTooManySnapshotsInProgressException”,关键在于综合考虑业务需求、系统资源和配置策略。通过合理的配置调整、有效的监控与警报机制,可以有效地预防和解决此类问题,确保Cassandra集群稳定高效地运行。哎呀,每次碰到这些难题然后搞定它们,就像是在给咱们的系统管理与优化上加了个经验值似的,每次都能让我们在分布式数据库这块领域里走得更远,不断尝试新的东西,不断创新!就像打游戏升级一样,每一次挑战都让咱们变得更强大!
2024-09-27 16:14:44
124
蝶舞花间
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chmod +x script.sh
- 给脚本添加执行权限。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"