前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Java类库兼容性问题]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...主要提供了很多操作 JavaScript 对象的方法,有点像 Object 中操作对象的方法 比如 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() 比如 Reflect.defineProperty(target, propertyKey, attributes) 类似于 Object.defineProperty() 如果我们有 Object 可以做这些操作,那么为什么还需要有Reflect这样的新增对象呢? 这是因为在早期的 ECMA 规范中没有考虑到这种对 对象本身 的操作如何设计会更加规范,所以将这些 API 放到了 Object上面 但是 Object 作为一个构造函数,这些操作实际上放到它身上并不合适 另外还包含一些类似于 in、delete 操作符,让 JS 看起来是会有一些奇怪的 所以在 ES6 中新增了 Reflect,让我们这些操作都集中到了 Reflect 对象上 那么 Object 和 Reflect 对象之间的 API 关系,可以参考 MDN 文档: 比较 Reflect 和 Object 方法 3.2 Reflect 的常见方法 Reflect中有哪些常见的方法呢?它和Proxy是一一对应的,也是13个 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() Reflect.setPrototypeOf(target, prototype) 设置对象原型的函数. 返回一个 Boolean, 如果更新成功,则返回 true Reflect.isExtensible(target) 类似于 Object.isExtensible() Reflect.preventExtensions(target) 类似于 Object.preventExtensions() , 返回一个 Boolean Reflect.getOwnPropertyDescriptor(target, propertyKey) 类似于 Object.getOwnPropertyDescriptor() , 如果对象中存在该属性,则返回对应的属性描述符, 否则返回 undefined Reflect.defineProperty(target, propertyKey, attributes) 和 Object.defineProperty() 类似, 如果设置成功就会返回 true Reflect.ownKeys(target) 返回一个包含所有自身属性(不包含继承属性)的数组 (类似于 Object.keys(), 但不会受 enumerable 影响) Reflect.has(target, propertyKey) 判断一个对象是否存在某个属性,和 in 运算符 的功能完全相同 Reflect.get(target, propertyKey[, receiver]) 获取对象身上某个属性的值,类似于 target[name] Reflect.set(target, propertyKey, value[, receiver]) 将值分配给属性的函数,返回一个 Boolean,如果更新成功,则返回 true Reflect.deleteProperty(target, propertyKey) 作为函数的 delete 操作符,相当于执行 delete target[name] Reflect.apply(target, thisArgument, argumentsList) 对一个函数进行调用操作,同时可以传入一个数组作为调用参数。和 Function.prototype.apply() 功能类似 Reflect.construct(target, argumentsList[, newTarget]) 对构造函数进行 new 操作,相当于执行 new target(...args) 3.3 Reflect 的使用 那么我们可以将之前Proxy案例中对原对象的操作,都修改为Reflect来操作 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return Reflect.get(target, key)// return target[key] // 对原来对象进行了直接操作},set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)Reflect.set(target, key, newValue)// target[key] = newValue // 对原来对象进行了直接操作} })objProxy.name = 'kobe'console.log(objProxy.name)/ 监听到obj对象的name属性被设置值监听到obj对象的name属性被访问了kobe/ 3.4 Receiver的作用 我们发现在使用getter、setter的时候有一个receiver的参数,它的作用是什么呢? 如果我们的源对象(obj)有 setter 、getter 的访问器属性,那么可以通过 receiver 来改变里面的 this const obj = {_name: 'why',get name() {return this._name // 不使用receiver, _name属性的操作不会被objProxy代理,因为this指向obj},set name(newValue) {this._name = newValue} }const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// receiver 是创建出来的代理对象console.log('get 方法被访问-------', key, receiver)console.log(objProxy === receiver) // truereturn Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)} })objProxy.name = 'kobe'console.log(objProxy.name) // kobe/ get 方法被访问------- name { _name: 'kobe', name: [Getter/Setter] }trueget 方法被访问------- _name { _name: 'kobe', name: [Getter/Setter] }truekobe/ 3.5 Reflect 的 construct function Student(name, age) {this.name = namethis.age = age}function Teacher() {}const stu = new Student('why', 18)console.log(stu)console.log(stu.__proto__ === Student.prototype)/ Student { name: 'why', age: 18 }true/// 执行 Student 函数中的内容,但是创建出来的对象是 Teacher 对象const teacher = Reflect.construct(Student, ['why', 18], Teacher)console.log(teacher)console.log(teacher.__proto__ === Teacher.prototype)/ Teacher { name: 'why', age: 18 }true/ 4. 响应式 4.1 什么是响应式? 先来看一下响应式意味着什么?我们来看一段代码: m 有一个初始化的值,有一段代码使用了这个值; 那么在 m 有一个新的值时,这段代码可以自动重新执行 let m = 0// 一段代码console.log(m)console.log(m 2)console.log(m 2)m = 200 上面的这样一种可以自动响应数据变量的代码机制,我们就称之为是响应式的 对象的响应式 4.2 响应式函数设计 首先,执行的代码中可能不止一行代码,所以我们可以将这些代码放到一个函数中: 那么问题就变成了,当数据发生变化时,自动去执行某一个函数; 但是有一个问题:在开发中是有很多的函数的,如何区分一个函数需要响应式,还是不需要响应式呢? 很明显,下面的函数中 foo 需要在 obj 的 name 发生变化时,重新执行,做出相应; bar 函数是一个完全独立于 obj 的函数,它不需要执行任何响应式的操作; // 对象的响应式const obj = {name: 'why',age: 18}function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)}function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行 响应式函数的实现 watchFn 如何区分响应式函数? 这个时候我们封装一个新的函数 watchFn 凡是传入到 watchFn 的函数,就是需要响应式的 其他默认定义的函数都是不需要响应式的 / 封装一个响应式的函数 /let reactiveFns = []function watchFn(fn) {reactiveFns.push(fn)}// 对象的响应式const obj = {name: 'why',age: 18}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行reactiveFns.forEach((fn) => {fn()}) 4.3 响应式依赖的收集 目前收集的依赖是放到一个数组中来保存的,但是这里会存在数据管理的问题: 在实际开发中需要监听很多对象的响应式 这些对象需要监听的不只是一个属性,它们很多属性的变化,都会有对应的响应式函数 不可能在全局维护一大堆的数组来保存这些响应函数 所以要设计一个类,这个类用于管理某一个对象的某一个属性的所有响应式函数: 相当于替代了原来的简单 reactiveFns 的数组; class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe'depend.notify() 4.4 监听对象的变化 那么接下来就可以通过之前的方式来监听对象的变化: 方式一:通过 Object.defineProperty 的方式(vue2采用的方式); 方式二:通过 new Proxy 的方式(vue3采用的方式); 我们这里先以Proxy的方式来监听 class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)depend.notify()} })watchFn(function foo() {const newName = objProxy.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(objProxy.name)})watchFn(function demo() {console.log(objProxy.name, 'demo function ---------')})objProxy.name = 'kobe'objProxy.name = 'james'/ 你好啊,李银河Hello Worldkobekobe demo function ---------你好啊,李银河Hello Worldjamesjames demo function ---------/ 4.5 对象的依赖管理 目前是创建了一个 Depend 对象,用来管理对于 name 变化需要监听的响应函数: 但是实际开发中我们会有不同的对象,另外会有不同的属性需要管理; 如何可以使用一种数据结构来管理不同对象的不同依赖关系呢? 在前面我们刚刚学习过 WeakMap,并且在学习 WeakMap 的时候我讲到了后面通过 WeakMap 如何管理这种响应式的数据依赖: 实现 可以写一个 getDepend 函数专门来管理这种依赖关系 / 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取mapconst map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象const depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 正确的依赖收集 我们之前收集依赖的地方是在 watchFn 中: 但是这种收集依赖的方式我们根本不知道是哪一个 key 的哪一个 depend 需要收集依赖; 只能针对一个单独的 depend 对象来添加你的依赖对象; 那么正确的应该是在哪里收集呢?应该在我们调用了 Proxy 的 get 捕获器时 因为如果一个函数中使用了某个对象的 key,那么它应该被收集依赖 / 封装一个响应式函数 /let activeReactviceFn = nullfunction watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数activeReactviceFn && depend.addDepend(activeReactviceFn)return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 4.6 对 Depend 重构 两个问题: 问题一:如果函数中有用到两次 key,比如 name,那么这个函数会被收集两次 问题二:我们并不希望将添加 reactiveFn 放到 get 中,因为它是属于 Depend 的行为 所以我们需要对 Depend 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
679
转载
转载文章
...合,提升他们解决实际问题的能力。 此外,艺术家和设计师也在利用颜色叠加的原理进行创新实践。例如,荷兰艺术家埃舍尔借助颜色叠加创作出视错觉艺术作品,展示出二维空间内不同颜色相互作用产生的神奇效果。而在时尚界,设计师们通过面料上的颜色叠加与透明度变化,营造出丰富多变且极具层次感的视觉体验。 总的来说,颜色叠加这一基本原理不仅在科普实验中有生动体现,更在科技、教育、艺术等多个领域发挥着重要作用,不断推动着人类对色彩世界的深入理解和广泛利用。
2024-01-20 16:20:26
468
转载
转载文章
...与GPT分区表的有效兼容。 其次,在Windows安装与部署方面,微软于今年发布了Windows 11新版操作系统,不仅引入了全新的用户界面设计,还在安装流程中融入了智能化安装选项和更快捷的驱动识别机制。此外,随着云技术和虚拟化技术的发展,Windows To Go和Azure Sphere等新型安装方式为系统部署提供了更多可能。 在网络配置方面,IPv6在全球范围内的普及速度加快,许多网络设备厂商正致力于提升产品对IPv6协议栈的支持。与此同时,Windows操作系统也在不断更新其网络功能,包括DHCPv6客户端功能增强、DNS-over-HTTPS(DoH)支持以及更完善的组播服务管理工具。此外,Windows防火墙已新增多项高级策略设置,以满足日益复杂的网络安全需求。 最后,关于Office软件中的实用技巧,Microsoft Office 365定期发布更新,提供更丰富的协作工具和智能功能,例如Excel的数据预处理和分析能力得到显著提升,Outlook则集成了更多智能邮件管理和日程安排助手。这些实时更新和新增功能有助于用户提高工作效率,应对各种办公场景挑战。 总之,随着科技不断发展,无论是操作系统的基础架构、网络配置的复杂度还是办公应用的智能化程度都在持续演进,关注行业动态和技术前沿将帮助我们更好地理解和运用文中提及的相关知识。
2023-09-10 16:27:10
270
转载
Ruby
...得很慢,我以为是硬件问题,结果发现是自己在并发编程上犯了错。嘿,今天咱们就来聊聊那些经常犯的小错吧!我呢,打算用一些接地气的例子,跟大家伙儿一起看看这些错误长啥样,顺便学学怎么躲开它们。毕竟谁也不想踩雷不是? --- 2. 什么是并发编程? 简单来说,并发编程就是让程序在同一时间执行多个任务。在Ruby中,我们可以用线程(Thread)来实现这一点。比如说啊,你正在倒腾一堆数据的时候,完全可以把它切成一小块一小块的,然后让每个线程去负责一块,这样一来,效率直接拉满,干活儿的速度蹭蹭往上涨! 但是,问题来了:并发编程虽然强大,但它并不是万能药。哎呀,经常会有这样的情况呢——自个儿辛辛苦苦改代码,还以为是在让程序变得更好,结果一不小心,又给它整出了新麻烦,真是“好心办坏事”的典型啊!接下来,我们来看几个具体的例子。 --- 3. 示例一 共享状态的混乱 场景描述: 假设你正在开发一个电商网站,需要统计用户的购买记录。你琢磨着干脆让多线程上阵,给这个任务提速,于是打算让每个线程各管一拨用户的活儿,分头行动效率肯定更高!看起来很合理对不对? 问题出现: 问题是,当你让多个线程共享同一个变量(比如一个全局计数器),事情就开始变得不可控了。Ruby 的线程可不是完全分开的,这就有点像几个人共用一个记事本,大家都能随便写东西上去。结果就是,这本子可能一会儿被这个写点,一会儿被那个划掉,最后你都不知道上面到底写了啥,数据就乱套了。 代码示例: ruby 错误的代码 counter = 0 threads = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
转载文章
...础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
...化时代,操作系统安全问题的重要性日益凸显。近日,Red Hat Enterprise Linux(RHEL)发布了最新的安全更新,强化了身份验证机制,包括对PAM模块的进一步优化以抵御潜在攻击,并改进了sudoers文件配置的安全策略指导,旨在帮助管理员更精细地控制用户权限。 同时,针对密码安全方面,NIST近期发布的《数字身份指南》中,提倡采用多因素认证以及定期更换密码的做法,并强调了密码复杂度要求的新变化——从过去单纯追求长度和特殊字符组合转变为支持较长的、易记忆的短语。这一转变意味着,系统管理员在设置密码有效期时,应充分考虑新指南的精神,确保密码策略既安全又符合用户的记忆习惯。 此外,开源社区也在积极应对命令历史记录安全风险。例如,一种新的bash插件被开发出来,可实现命令历史记录加密存储,有效防止恶意攻击者通过查看历史记录获取敏感信息。而在端口扫描防御方面,除了传统的NMAP工具之外,一些实时网络监控与入侵检测系统如Zeek (前Bro)也因其高效识别异常网络活动的能力而备受瞩目。 综上所述,随着信息技术的发展和安全威胁的变化,Linux系统的账号安全管理需不断跟进最新研究和技术动态,结合文中所述的基础措施,灵活运用先进的安全技术和管理理念,构建更加稳固的操作系统安全防线。
2023-05-07 23:37:44
95
转载
转载文章
...能正确安装?针对这个问题,在我对自己的Windows 7进行更新的时候,有时也会发生类似的问题,经过研究,已经完美解决,下面给大家解决方案! 如果在检查更新时收到Windows Update错误80070003,则需要删除Windows用于标识计算机更新的临时文件。若要删除临时文件,请停止Windows Update服务,删除临时更新文件,重新启动Windows Update服务,然后再次尝试检查Windows更新。 以下步骤为解决Windows 7更新错误方法,本博客亲测有效。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(通过单击“开始”按钮,再依次单击“控制面板”,然后单击“管理工具”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“停止”。 1.打开“计算机”。 2.双击安装Windows的本地硬盘(通常是驱动器C)。 3.双击Windows文件夹,然后双击SoftwareDistribution文件夹。 4.双击打开DataStore文件夹,然后删除该文件夹中的所有文件。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 5.单击“后退”按钮。在SoftwareDistribution文件夹中,双击打开Download文件夹,删除该文件夹中的所有文件,然后关闭窗口。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(方法同上)”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“启动”。 4.关闭“服务”窗口和“管理工具”窗口。 完成上面操作,你需要重新更新看看可以成功更新了吗,一般因为我们删除了自动更新的一些文件,如果你仔细观察的话,那些文件大小并不是很小,所以我们再更新的时候等待的时间可能会长一些! 【三】:Win10系统提示“无法完成更新正在撤销更改” 更新win10系统补丁之后,系统会提示“window10无法更新,正在撤销”,需要重启好几次,这该怎么办呢?下面小编就向大家介绍一下windows10系统无法完成更新正在撤销更改的解决方法,欢迎大家参考和学习。 系统更新失败,反复重启还是不行,那是不是下载下来的补丁没用了呢??所以我们先要删除Windows更新的缓存文件!在做以下操作之前,首先我们要确认系统内的windows update & BITS服务设置是否开启。 检查方法: 1、按“Win+R”组合键打开运行,输入“services.msc”,点击确定(如果弹出用户账户控制窗口,我们点击“继续”)。 2、双击打开“Background Intelligent Transfer Services”服务。 3、在选项卡点击“常规”,要保证“启动类型”是“自动”或者“手动”。然后点击“服务状态”“启用”按钮。 4. 重复步骤3分别对“Windows Installer”,“Cryptographic Services”, “software licensing service” 以及“Windows Update”这四项服务进行检查。 解决办法: 1、按“Windows+X”打开“命令提示符(管理员)”。 2、输入“net stop wuauserv”回车(我们先把更新服务停止)。 3、输入”%windir%\SoftwareDistribution“回车(删除Download和DataStore文件夹中的所有文件)。 4、最后输入“net start wuauserv”回车(重新开启系统更新服务)。 完成以上的步骤之后,我们就可以在“Windows Update”中再次尝试检查更新即可。 以上就是windows10系统无法完成更新正在撤销更改的解决方法介绍了。遇到同样问题的用户,可以尝试一下这个方法,如果不行,可以留言,小编会继续寻找其他的解决办法。 【四】:Windows更新失败提示错误码80070003怎么办 Windows7,Windows8.1,Windows10在更新过程中,所更新的程序无法安装,导致更新失败,提示错误码80070003。遇到这种情况,无论再试一次,或重启电脑,更新程序仍无法安装,出现错误码80070003提示。关于这个故障,下面小编就为大家介绍一下具体的解决方法吧,欢迎大家参考和学习。 具体解决方法步骤: 1、在电脑更新过程中,更新失败,程序无法安装,出现错误码80070003的提示。如图1 2、打开控制面板,点击“系统和安全”,打开对话框。如图2 3、在打开的对话框中,点击“管理工具”-双击“服务”,在打开的对话框的下方找到“Windows Update"。(如图3),选择Windows Update,点击界面左上角的”停止“按键,或是单击右键选择”停止“。(如图4),以管理员身份进入,如果提示需要输入秘码,则输入秘码。 4、在C盘,打开”Windows"文件夹,-双击打开“SoftwareDistribution"文件夹,找到下面的2个文件夹。打开”DataStore"文件夹,删除里面所有的文件。反回上一步。如图5.1,再打开"Download"文件夹,删除里面所有的文件。(如图5.2) 5、返回第三步的操作,选择Windows Update,右键单击,选择“启动”。 6、做完上面操作后,安装更新文件就会顺利了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42620202/article/details/119158423。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-16 16:18:33
136
转载
转载文章
...码,或是解决实际编程问题,理解并熟练运用特殊方法都是提升Python编程水平的关键所在。
2023-04-19 14:30:42
132
转载
转载文章
...考(续) 在哪里提交问题:https://github.com/docker-library/mysql/issues 支持的架构:(更多信息)amd64 发布的镜像工件详情:repo-info repo 的 repos/mysql/ 目录(历史)(镜像元数据、传输大小等) 镜像更新:official-images repo 的 library/mysql 标签 官方图像 repo 的库/mysql 文件(历史) 此描述的来源:docs repo 的 mysql/ 目录(历史) 2.4. 如何使用镜像 2.4.1. 启动一个mysql服务器实例 启动 MySQL 实例很简单: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 其中 some-mysql 是您要分配给容器的名称, my-secret-pw 是要为 MySQL root 用户设置的密码,而 tag 是指定您想要的 MySQL 版本的标签。 有关相关标签,请参见上面的列表。 以下是示例(通常要设置时区),注意-v 这里是挂载磁盘,请提前创建目录/var/mysql/data,/var/lib/mysql是容器里的原持久化目录: docker run --name mysql202201 -e MYSQL_ROOT_PASSWORD=123456 -e TZ=Asia/Shanghai -v /var/mysql/data:/var/lib/mysql -d mysql:5.7 2.4.2. 从 MySQL 命令行客户端连接到 MySQL 以下命令启动另一个 mysql 容器实例并针对您的原始 mysql 容器运行 mysql 命令行客户端,允许您针对您的数据库实例执行 SQL 语句: $ docker run -it --network some-network --rm mysql mysql -hsome-mysql -uexample-user -p 其中 some-mysql 是原始 mysql 容器的名称(连接到 some-network Docker 网络)。 此镜像也可以用作非 Docker 或远程实例的客户端: $ docker run -it --rm mysql mysql -hsome.mysql.host -usome-mysql-user -p 有关 MySQL 命令行客户端的更多信息,请参阅 MySQL 文档。 2.4.3. 容器外访问和查看 MySQL 日志 docker exec 命令允许您在 Docker 容器内运行命令。 以下命令行将为您提供 mysql 容器内的 bash shell: $ docker exec -it some-mysql bash 第一次启动一个MySQL容器后,需要对账户进行授权,否则无法远程访问,请先使用上面的命令进入容器内,然后使用以下命令连接到mysql服务: mysql -uroot -p 输入密码回车,进入mysql命令界面mysql> 接着授权root远程访问权限: mysql> GRANT ALL PRIVILEGES ON . TO 'root'@'%' IDENTIFIED BY '123456'; 然后就可以远程用MySQL客户端连接到MySQL容器了。 日志可通过 Docker 的容器日志获得: $ docker logs some-mysql 2.4.4. 使用自定义 MySQL 配置文件 MySQL 的默认配置可以在 /etc/mysql/my.cnf 中找到,其中可能包含额外的目录,例如 /etc/mysql/conf.d 或 /etc/mysql/mysql.conf.d。 请检查 mysql 映像本身中的相关文件和目录以获取更多详细信息。 如果 /my/custom/config-file.cnf 是你的自定义配置文件的路径和名称,你可以这样启动你的 mysql 容器(注意这个命令只使用了自定义配置文件的目录路径): $ docker run --name some-mysql -v /my/custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 这将启动一个新容器 some-mysql,其中 MySQL 实例使用来自 /etc/mysql/my.cnf 和 /etc/mysql/conf.d/config-file.cnf 的组合启动设置,后者的设置优先 . 没有 cnf 文件的配置 许多配置选项可以作为标志传递给 mysqld。 这将使您可以灵活地自定义容器,而无需 cnf 文件。 例如,如果要将所有表的默认编码和排序规则更改为使用 UTF-8 (utf8mb4),只需运行以下命令: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci 如果您想查看可用选项的完整列表,只需运行: $ docker run -it --rm mysql:tag --verbose --help 2.4.5. 环境变量 启动 mysql 镜像时,可以通过在 docker run 命令行中传递一个或多个环境变量来调整 MySQL 实例的配置。 请注意,如果您使用已包含数据库的数据目录启动容器,则以下任何变量都不会产生任何影响:任何预先存在的数据库在容器启动时将始终保持不变。 另请参阅 https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html 以获取 MySQL 的环境变量的文档(尤其是 MYSQL_HOST 等变量,已知与此镜像一起使用时会导致问题)。 MYSQL_ROOT_PASSWORD 此变量是必需的,并指定将为 MySQL root 超级用户帐户设置的密码。 在上面的示例中,它被设置为 my-secret-pw。 MYSQL_DATABASE 此变量是可选的,允许您指定要在映像启动时创建的数据库的名称。 如果提供了用户/密码(见下文),则该用户将被授予对此数据库的超级用户访问权限(对应于 GRANT ALL)。 MYSQL_USER、MYSQL_PASSWORD 这些变量是可选的,用于创建新用户和设置该用户的密码。 该用户将被授予对 MYSQL_DATABASE 变量指定的数据库的超级用户权限(见上文)。 要创建用户,这两个变量都是必需的。 请注意,不需要使用此机制来创建超级用户超级用户,默认情况下会使用 MYSQL_ROOT_PASSWORD 变量指定的密码创建该用户。 MYSQL_ALLOW_EMPTY_PASSWORD 这是一个可选变量。 设置为非空值,例如 yes,以允许使用 root 用户的空白密码启动容器。 注意:除非您真的知道自己在做什么,否则不建议将此变量设置为 yes,因为这将使您的 MySQL 实例完全不受保护,从而允许任何人获得完全的超级用户访问权限。 MYSQL_RANDOM_ROOT_PASSWORD 这是一个可选变量。 设置为非空值,如 yes,为 root 用户生成随机初始密码(使用 pwgen)。 生成的根密码将打印到标准输出(生成的根密码:…)。 MYSQL_ONETIME_PASSWORD 一旦初始化完成,将 root(不是 MYSQL_USER 中指定的用户!)用户设置为过期,强制在第一次登录时更改密码。 任何非空值都将激活此设置。 注意:此功能仅在 MySQL 5.6+ 上受支持。 在 MySQL 5.5 上使用此选项将在初始化期间引发适当的错误。 MYSQL_INITDB_SKIP_TZINFO 默认情况下,入口点脚本会自动加载 CONVERT_TZ() 函数所需的时区数据。 如果不需要,任何非空值都会禁用时区加载。 2.4.6. Docker Secrets 作为通过环境变量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
转载文章
...背景下的数字识别差异问题,有研究团队正着手构建包含多元书写风格的全球手写数字数据库,以期通过更全面的数据训练,提升各类设备对手写数字识别的普适性和准确性。同时,也有科研人员积极探索新的图像预处理技术和网络优化算法,如超分辨率技术、注意力机制等,进一步提高识别系统的鲁棒性和精度。 值得注意的是,云端训练与边缘计算的结合正在为OpenMV等嵌入式设备提供强大的后盾支持。例如,阿里云IoT部门最近推出的云端-边缘协同训练方案,允许用户在云端完成大规模数据训练后,将轻量化模型部署至OpenMV等终端设备上,既保证了模型性能,又降低了设备存储和计算压力,对于推动智能硬件在数字识别领域的广泛应用具有深远意义。 总之,在当今AI技术蓬勃发展的大背景下,OpenMV作为微型计算机视觉平台的角色愈发重要,其在手写数字识别项目中的实践不仅体现了技术的先进性,也昭示着未来物联网设备智能化的发展趋势。
2024-01-10 08:44:41
282
转载
转载文章
...QLite损坏修复 问题背景 目前后台服务器应该是不保存聊天记录,口袋助理iOS端的所有聊天记录都存储在一个 SQLite 数据库中,一旦这个数据库损坏,将会丢失用户的聊天记录。 解决思路 预防措施: SQLite 是一个号称每行代码都有对应测试的成熟框架,其代码问题导致的 bug 非常少见。而一般损坏原因主要有3点: 空间不足 设备断电或 AppCrash 文件 sync 失败 针对空间不足: 通过中度的使用和观察,我发现 iOS 端的空间占用是相对合理的,并没有对存储空间的明显浪费。并且 App 会在数据库写入时检查可用空间,如果不足时会抛出空间不足的提示。 针对设备断电或App崩溃: 设备断电属于不可抗力。而 App 崩溃目前我们准备上线 APM 监控平台,预期在一到两个版本的迭代中把崩溃率降低到千分之一以下的行业优秀水平。 针对文件 sync 失败: 调整 synchronous = FULL , 保证每个事务的操作都能写入文件。目前CoreData的默认配置项。 调整 fullfsync = 1 , 保证写入文件顺序和提交顺序一致,拒绝设备重排顺序以优化性能。此项会降低性能。对比得出写入性能大概降低至默认值的25%左右。 优化效果: 根据微信的实践,调整配置项后,损坏率可以降低一半,但并不能完全避免损坏,所以我们还是需要补救措施。 补救措施: 通过查阅 SQLite 的相关资料,发现修复损坏数据库的两种思路和四种方案。 思路一:数据导出 .dump修复 从 master 表中读出一个个表的信息,根据根节点地址和创表语句来 select 出表里的数据,能 select 多少是多少,然后插入到一个新 DB 中。 每个SQLite DB都有一个sqlite_master表,里面保存着全部table和index的信息(table本身的信息,不包括里面的数据哦),遍历它就可以得到所有表的名称和 CREATE TABLE ...的SQL语句,输出CREATE TABLE语句,接着使用SELECT FROM ... 通过表名遍历整个表,每读出一行就输出一个INSERT语句,遍历完后就把整个DB dump出来了。 这样的操作,和普通查表是一样的,遇到损坏一样会返回SQLITE_CORRUPT,我们忽略掉损坏错误, 继续遍历下个表,最终可以把所有没损坏的表以及损坏了的表的前半部分读取出来。将 dump 出来的SQL语句逐行执行,最终可以得到一个等效的新DB。 思路二:数据备份 拷贝: 不能再直白的方式。由于SQLite DB本身是文件(主DB + journal 或 WAL), 直接把文件复制就能达到备份的目的。 .dump备份: 上一个恢复方案用到的命令的本来目的。在DB完好的时候执行.dump, 把 DB所有内容输出为 SQL语句,达到备份目的,恢复的时候执行SQL即可。 Backup API: SQLite自身提供的一套备份机制,按 Page 为单位复制到新 DB, 支持热备份。 综合思路:备份master表+数据导出 WCDB框架: 数据库完整时备份master表,数据库损坏时通过使用已备份的master表读取损坏数据库来恢复数据。成功率大概是70%。缺点在于我们目前项目使用的是CoreData框架,迁移成本非常的高。没有办法使用。 补救措施选型原则: 这么多的方案孰优孰劣?作为一个移动APP,我们追求的就是用户体验,根据资料推断只有万分之一不到的用户会发生DB损坏,不能为了极个别牺牲全体用户的体验。不影响用户体验的方法就是好方案。主要考量指标如下: 一:恢复成功率 由于牵涉到用户核心数据,“姑且一试”的方案是不够的,虽说 100% 成功率不太现实,但 90% 甚至 99% 以上的成功率才是我们想要的。 二:备份大小: 原本用户就可能有2GB 大的 DB,如果备份数据本身也有2GB 大小,用户想必不会接受。 三:备份性能: 性能则主要影响体验和备份成功率,作为用户不感知的功能,占用太多系统资源造成卡顿 是不行的,备份耗时越久,被系统杀死等意外事件发生的概率也越高。 数据导出方案考量: 恢复成功率大概是30%。不需要事先备份,故备份大小和备份性能都是最优的。 备份方案考量: 备份方案的理论恢复成功率都为100%,需要考量的即为备份大小和性能。 拷贝:备份大小等于原文件大小。备份性能最好,直接拷贝文件,不需要运算。 Backup API: 备份大小等于原文件大小。备份性能最差,原因是热备份,需要用到锁机制。 .dump:因为重新进行了排序,备份大小小于原文件。备份性能居中,需要遍历数据库生成语句。 可以看出,比较折中的选择是 Dump ,备份大小具有明显优势,备份性能尚可,恢复性能较差但由于需要恢复的场景较少,算是可以接受的短板。 深入钻研 即使优化后的方案,对于大DB备份也是耗时耗电,对于移动APP来说,可能未必有这样的机会做这样重度的操作,或者频繁备份会导致卡顿和浪费使用空间。 备份思路的高成本迫使我们从另外的方案考虑,于是我们再次把注意力放在之前的Dump方案。 Dump 方案本质上是尝试从坏DB里读出信息,这个尝试一般来说会出现两种结果: DB的基本格式仍然健在,但个别数据损坏,读到损坏的地方SQLite返回SQLITE_CORRUPT错误, 但已读到的数据得以恢复。 基本格式丢失(文件头或sqlite_master损坏),获取有哪些表的时候就返回SQLITE_CORRUPT, 根本没法恢复。 第一种可以算是预期行为,毕竟没有损坏的数据能部分恢复。从成功率来看,不少用户遇到的是第二种情况,这种有没挽救的余地呢? 要回答这个问题,先得搞清楚sqlite_master是什么。它是一个每个SQLite DB都有的特殊的表, 无论是查看官方文档Database File Format,还是执行SQL语句 SELECT FROM sqlite_master;,都可得知这个系统表保存以下信息: 表名、类型(table/index)、 创建此表/索引的SQL语句,以及表的RootPage。sqlite_master的表名、表结构都是固定的, 由文件格式定义,RootPage 固定为 page 1。 正常情况下,SQLite 引擎打开DB后首次使用,需要先遍历sqlite_master,并将里面保存的SQL语句再解析一遍, 保存在内存中供后续编译SQL语句时使用。假如sqlite_master损坏了无法解析,“Dump恢复”这种走正常SQLite 流程的方法,自然会卡在第一步了。为了让sqlite_master受损的DB也能打开,需要想办法绕过SQLite引擎的逻辑。 由于SQLite引擎初始化逻辑比较复杂,为了避免副作用,没有采用hack的方式复用其逻辑,而是决定仿造一个只可以 读取数据的最小化系统。 虽然仿造最小化系统可以跳过很多正确性校验,但sqlite_master里保存的信息对恢复来说也是十分重要的, 特别是RootPage,因为它是表对应的B-tree结构的根节点所在地,没有了它我们甚至不知道从哪里开始解析对应的表。 sqlite_master信息量比较小,而且只有改变了表结构的时候(例如执行了CREATE TABLE、ALTER TABLE 等语句)才会改变,因此对它进行备份成本是非常低的,一般手机典型只需要几毫秒到数十毫秒即可完成,一致性也容易保证, 只需要执行了上述语句的时候重新备份一次即可。有了备份,我们的逻辑可以在读取DB自带的sqlite_master失败的时候 使用备份的信息来代替。 到此,初始化必须的数据就保证了,可以仿造读取逻辑了。我们常规使用的读取DB的方法(包括dump方式恢复), 都是通过执行SQL语句实现的,这牵涉到SQLite系统最复杂的子系统——SQL执行引擎。我们的恢复任务只需要遍历B-tree所有节点, 读出数据即可完成,不需要复杂的查询逻辑,因此最复杂的SQL引擎可以省略。同时,因为我们的系统是只读的, 写入恢复数据到新 DB 只要直接调用 SQLite 接口即可,因而可以省略同样比较复杂的B-tree平衡、Journal和同步等逻辑。 最后恢复用的最小系统只需要: VFS读取部分的接口(Open/Read/Close),或者直接用stdio的fopen/fread、Posix的open/read也可以 B-tree解析逻辑 Database File Format 详细描述了SQLite文件格式, 参照之实现B-tree解析可读取 SQLite DB。 实现了上面的逻辑,就能读出DB的数据进行恢复了,但还有一个小插曲。我们知道,使用SQLite查询一个表, 每一行的列数都是一致的,这是Schema层面保证的。但是在Schema的下面一层——B-tree层,没有这个保证。 B-tree的每一行(或者说每个entry、每个record)可以有不同的列数,一般来说,SQLite插入一行时, B-tree里面的列数和实际表的列数是一致的。但是当对一个表进行了ALTER TABLE ADD COLUMN操作, 整个表都增加了一列,但已经存在的B-tree行实际上没有做改动,还是维持原来的列数。 当SQLite查询到ALTER TABLE前的行,缺少的列会自动用默认值补全。恢复的时候,也需要做同样的判断和支持, 否则会出现缺列而无法插入到新的DB。 解析B-tree方案上线后,成功率约为78%。这个成功率计算方法为恢复成功的 Page 数除以总 Page 数。 由于是我们自己的系统,可以得知总 Page 数,使用恢复 Page 数比例的计算方法比人数更能反映真实情况。 B-tree解析好处是准备成本较低,不需要经常更新备份,对大部分表比较少的应用备份开销也小到几乎可以忽略, 成功恢复后能还原损坏时最新的数据,不受备份时限影响。 坏处是,和Dump一样,如果损坏到表的中间部分,比如非叶子节点,将导致后续数据无法读出。 落地实践: 剥离封装RepairKit: 从WCDB框架中,剥离修复组件,并且封装其C++的原始API为OC管理类。 备份 master 表的时机: 我们发现 SQLite 里面 B+树 算法的实现是 向下分裂 的,也就是说当一个叶子页满了需要分裂时,原来的叶子页会成为内部节点,然后新申请两个页作为他的叶子页。这就保证了根节点一旦下来,是再也不会变动的。master 表只会在新创建表或者删除一个表时才会发生变化,而CoreData的机制表明每一次数据库的变动都要改动版本标识,那么我通过缓存和查询版本标识的变动来确定何时进行备份,避免频繁备份。 备份文件有效性: 既然 DB 可以损坏,那么这个备份文件也会损坏,怎么办呢?我用了双备份,每一个版本备份两个文件,如果一个备份恢复失败,就会启动另一个备份文件恢复。 介入恢复时机: 当CoreData初始化SQLite前,校验SQLite的Head完整性,如果不完整,进行介入修复。 经过我深入研究证明了这已经是最佳做法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 18:22:40
127
转载
转载文章
...:解决资源利用率低的问题 桌面虚拟化:有一些弊端,图形显示层面会有问题 应用虚拟化:没接触过,公司比较穷买不起,基本上只有银行等国企才会用Xenapp ICA 八、虚拟化工具KVM介绍 KVM 全称:Kernel-based Virtual Machine(内核级虚拟化机器) 原本由以色列人创建,现在被红帽收购 ESXI 虚拟套件,现在是免费使用 VMware vSphere Hypervisor – 安装和配置 提示:一台服务器首选ESXI 九、KVM安装 调整虚拟机 虚拟化Intel使用的是Intel VT-X ; 虚拟化AMD使用的是AMD-V 创建虚拟机步骤 1.准备虚拟机硬盘 2.需要系统iso镜像3.需要安装一个vnc的客户端来连接 查看系统环境 [root@linux-node1 ~] cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) [root@linux-node1 ~] uname -r 3.10.0-327.36.2.el7.x86_64 检查是否有vmx或者svm [root@linux-node1 ~] grep -E '(vmx|svm)' /proc/cpuinfo 安装kvm用户态模块 [root@linux-node1 ~] yum list|grep kvm libvirt-daemon-kvm.x86_64 1.2.17-13.el7_2.5 updates pcp-pmda-kvm.x86_64 3.10.6-2.el7 base qemu-kvm.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-common.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-tools.x86_64 10:1.5.3-105.el7_2.7 updates [root@linux-node1 ~] yum install qemu-kvm qemu-kvm-tools libvirt -y libvirt 用来管理kvm kvm属于内核态,不需要安装。但是需要一些类似于依赖的 kvm属于内核态,不需要安装。但是需要安装一些类似于依赖的东西 启动 [root@linux-node1 ~] systemctl start libvirtd.service [root@linux-node1 ~] systemctl enable libvirtd.service 启动之后我们可以使用ifconfig进行查看,libvirtd已经为我们安装了一个桥接网卡 libvirtd为我们启动了一个dnsmasqp,这个主要是用来dhcp连接的,这个工具会给我们的虚拟机分配IP地址 [root@linux-node1 ~] ps -ef|grep dns nobody 5233 1 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelper root 5234 5233 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelperoot 5310 2783 0 14:31 pts/0 00:00:00 grep --color=auto dns 查看磁盘空间大小 最好是20G以上 [root@linux-node1 tmp] df -h 上传镜像 提示:如果使用rz上传镜像可能会出现错误,所以我们使用dd命令,复制系统的镜像。只需要挂载上光盘即可 [root@linux-node1 opt] dd if=/dev/cdrom of=/opt/CentOS-7.2.iso [root@linux-node1 opt] ll total 33792 -rw-r--r-- 1 root root 34603008 Jun 12 18:18 CentOS-7.2-x86_64-DVD-1511.iso 下载VNC 下载地址:http://www.tightvnc.com/download/2.8.5/tightvnc-2.8.5-gpl-setup-64bit.msi 安装完VNC如下图 创建磁盘 提示: qemu-img软件包是我们安装qemu-kvm-tools 依赖给安装上的 [root@linux-node1 opt] qemu-img create -f raw /opt/CentOS-7.2-x86_64.raw 10GFormatting '/opt/Centos-7-x86_64.raw', fmt=raw size=10737418240 [root@linux-node1 opt] [root@linux-node1 opt] ll /opt/Centos-7-x86_64.raw -rw-r--r-- 1 root root 10737418240 Oct 26 14:53 /opt/Centos-7-x86_64.raw-f 制定虚拟机格式,raw是裸磁盘/opt/Centos 存放路径 10G 代表镜像大小 安装启动虚拟机的包 [root@linux-node1 tmp] yum install -y virt-install 安装虚拟机 [root@linux-node1 tmp] virt-install --help 我们可以指定虚拟机的CPU、磁盘、内存等 [root@linux-node1 opt] virt-install --name CentOS-7.2-x86_64 --virt-type kvm --ram 1024 --cdrom=/opt/CentOS-7.2.iso --disk path=/opt/CentOS-7.2-x86_64.raw --network network=default --graphics vnc,listen=0.0.0.0 --noautoconsole --name = 给虚拟机起个名字 --ram = 内存大小 --cdrom = 镜像位置,就是我们上传iso镜像的位置,我放在/tmp下了 --disk path = 指定磁盘--network network= 网络配置 default 就会用我们刚刚ifconfig里面桥接的网卡--graphics vnc,listen= 监听vnc, 分区说明 提示:我们不分交换分区,因为公有云上的云主机都是没有交换分区的 十、Libvirt介绍 libvirt是一个开源免费管理工具,可以管理KVM、VMware等 他需要起一个后台的进程,它提供了API。像openstack就是通过libvirt API来管理虚拟机 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vcp4lgAZ-1596980494935)(libvirt.jpg)] 二、KVM虚拟机和VMware区别 虚拟机监控程序(KVM)是虚拟化平台的根基。从传统供应商到各种开源替代品,可供选择的虚拟机监控程序有很多。 VMware 是一款实现虚拟化的热门产品,可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。 基于内核的虚拟机(KVM)则是 Linux® 系统上的一种开源解决方案。 VMware vSphere 与 VMware ESXi VMware 可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。VMware ESXi 是一个能够直接安装到物理服务器上的裸机虚拟机监控程序,可以帮你整合硬件。你可以用 VMware 的虚拟化技术来创建和部署虚拟机(VM),从而现代化改造自己的基础架构,来交付和管理各种新旧应用。 选用 VMware vSphere 后,你需要使用 VMware 的控制堆栈来管理虚拟机,而且有多个许可证授权级别可供使用。 KVM 开源虚拟化技术 KVM 是一种开源虚拟化技术,能将 Linux 内核转变成可以实现虚拟化的虚拟机监控程序,而且可以替代专有的虚拟化技术(比如 VMware 提供的专有虚拟化技术)。 迁移到基于 KVM 的虚拟化平台,你就可以检查、修改和完善虚拟机监控程序背后的源代码。能够访问源代码,就如同掌握了开启无限可能的钥匙,能够让你虚拟化传统工作负载和应用,并为云原生和基于容器的工作负载奠定基础。由于 KVM 内置于 Linux 内核中,所以使用和部署起来非常方便。 KVM 虚拟机和 VMware vSphere 的主要区别 VMware 可以提供一个完善稳定的虚拟机监控程序,以及出色的性能和多样化的功能。但是,专有虚拟化会阻碍你获得开展云、容器和自动化投资所需的资源。解除供应商锁定,你就可以任享自由、灵活与丰富的资源,从而为未来的云原生和容器化环境打下基础。 生产就绪型的 KVM 具有支持物理和虚拟基础架构的功能,可以让你以更低的运营成本为企业工作负载提供支持。相比使用 VMware vSphere 等其他解决方案,选用基于 KVM 的虚拟化选项能够带来很多优势。 开源Linux KVM的优势: 更低的总拥有成本,从而省下运营预算,用来探索现代化创新技术。 不再受供应商捆绑。无需为不用的产品付费,也不会受到软件选择限制。 跨平台互操作性:KVM 可以在 Linux 和 Windows 平台上运行,所以你可以充分利用现有的基础架构投资。 出色简便性:可以通过单个虚拟化平台,在数百个其他硬件或软件上创建、启动、停止、暂停、迁移和模板化数百个虚拟机。 卓越性能:应用在 KVM 上的运行速度比其他虚拟机监控程序都快。 开源优势:不但能访问源代码,还能灵活地与各种产品集成。 享受 Linux 操作系统的现有功能: 安全防护功能 内存管理 进程调度器 设备驱动程序 网络堆栈 红帽 KVM 企业级虚拟化的优势 选择红帽® 虚拟化,就等于选择了 KVM。红帽虚拟化是一款适用于虚拟化服务器和技术工作站的完整基础架构解决方案。红帽虚拟化基于强大的红帽企业 Linux® 平台和 KVM 构建而成,能让你轻松、敏捷、安全地使用资源密集型虚拟化工作负载。红帽虚拟化可凭借更加优越的性能、具有竞争力的价格和值得信赖的红帽环境,帮助企业优化 IT 基础架构。 红帽的虚拟化产品快速、经济、高效,能够帮助你从容应对当前的挑战,并为未来的技术发展奠定基础。VMware 等供应商提供的纵向扩展虚拟化解决方案不但成本高昂,而且无法帮助企业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 借助红帽虚拟化,你可以尽享开源虚拟机监控程序的所有优势,还能获得企业级技术支持、更新和补丁,使你的环境保持最新状态,持续安心运行。开源和 RESTful API,以及 Microsoft Windows 的认证,可帮你实现跨平台的互操作性。提供的 API 和软件开发工具包(SDK)则有助于将我们的解决方案扩展至你现有和首选管理工具,并提供相关支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34799070/article/details/107900861。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-06 08:58:59
121
转载
转载文章
...对大家有帮助,如果有问题欢迎私信我交流~~~ 如果对你有帮助记得点个赞哦🙈🙈🙈 PS:以下的个人简历/个人陈述/老师推荐信等材料如果有需要的,欢迎关注我的 微 信 公 号【驭风者小窝】发 送【 保研 】领取大礼包~~ 二、个人情况 学校:末流985 专业排名:5% 四六级:515/449 科研竞赛:学过一些机器学习的知识,有几个简单的科研项目;一些比赛获奖,国奖 最终去向:北航计算机学硕 三、关于保研(前期准备/时间安排/个人材料) 专业知识复习:建议在大三下学期开学初期就开始复习专业课,包括:线代、概率论、数据结构、计网、计组、操作系统等(不用复习的特别深入),有的学校有笔试,大多数在面试时会问到一些基础知识(如果老师问到的基础知识都答上来,老师对你的印象肯定会特别好!)。 信息搜集:各学校/学院官网(研招网);学长学姐;保研论坛,微信公众号(后保研、保研人、保研论坛等);QQ群等。同时也要多与同学交流,互相交换信息。 搜集你想去并且基本能去的学校的要求和特点(南京大学夏令营对机考特别看重,难度也比较大,可以在大三就多刷题好好准备),进行一定的准备,可以在网上搜索相关的经验贴。 个人定位:了解你们学校学长学姐的保研去处,最好多跟本校已经保研的学长学姐交流,根据他们的经历以及自己的实力和研究生规划来对自己进行定位。 方向和选择: 人工智能?CV? NLP? 数据库?分布式系统?其他? 硕士?直博? 小老师?大牛老师? 以上这些选择因人而异,最好自己多了解、多与老师学长学姐交流,根据自己的兴趣、目前的发展以及自己未来的规划进行抉择。 夏令营(4-7月):从四月份开始就有的学校开始了夏令营申请,5-6月是夏令营申请的集中时间;参加夏令营基本都在6-7月份。夏令营的好处:老师名额多;时间比较充裕,可以较好的了解学校以及方向等;大多学校夏令营安排住宿。参加夏令营最重要的是专业排名(这是大多数学校初筛的最重要的依据,科研经历/比赛等都是次要的。当然顶会和ACM大牛除外)。 预推免(7-9月):有的学校夏令营开始后马上就开始预推免的报名与进行(例如哈工大从7月份开始到9月份有四批预推免的面试);大多数学校集中在9月中旬。如果夏令营已经有offer了可以在预推免时冲击更好的offer;如果夏令营没有拿到offer,建议此时以稳重为好。 九推:9月28号在推免系统正式填报推免志愿,录取。 个人简历:建议在寒假期间就把自己大学的经历都整理一遍,写好简历的初始版本;然后再找老师、学长学姐帮忙完善。 个人陈述:包括自己的情况介绍、科研经历、研究生期间的规划等,1000-1500字。网上有模板可以借鉴。 老师推荐信:基本都是自己写好找老师签字,如果老师能帮你手写的话,那太好不过了。 联系老师邮件:建议提前写好一个大概的模板,注意格式、内容以及邮件的标题等(例如XX大学-XXX-保研申请)。建议夏令营前或者初审过了及时联系自己喜欢的老师。 以上只是对各方面的简单介绍,每个方面详细的注意点网上好多资料,多多搜集就好。 PS:以上个人简历/个人陈述/老师推荐信模板如果有需要的私信我分享给你! 建议把以上材料都提前收集整理好,保研结束后发现我的材料文件夹3个多G...... 一年多来整理的保研资料 四、上科大信息学院夏令营(7.3-7.6) 本来没有打算报名上科大,一个同学把上科大宣传单给了我一份,看后感觉上科大实力比较强(虽然不是982/211)就报名了。 校园环境 上科大3号报到,4号-6号有开营活动、参观、自己联系老师面试(后来才知道即使拿到优营九月份也要再来面试,也就是说上科大夏令营拿到优营只是免去了九月预推免面试的初审,但是如果你足够优秀,老师比较中意,九月份就是来走一下过场。) 我参加了三个老师的面试。YY老师只是简单问了几个问题,有点水;HXM老师有一轮笔试(考的概率论比较多,编译原理、操作系统、计网也有涉及)+面试;YJY老师的一轮面试是课题组的学长学姐面的(自我介绍+项目),二轮面试和老师聊。 上科大给我的感觉就是学校小而精;老师比较好(比如YJY/GSH/TKW)、科研氛围浓厚、硬件设施完善(双人宿舍,独立卫浴,中央空调;学校地下全是停车场,下雨不用打伞可以直接走地下),但是由于建立才几年的时间,知名度不高。 学生宿舍 五、北理计算机夏令营(7.8-7.10) 北理今年入营的基本都是985和顶尖211,夏令营去了基本都能拿到优营!入营290+,夏令营参营240+,优营220+。 在北理主楼俯瞰 8号报到,领取宿舍钥匙、校园卡(北理夏令营包括食宿,每人发了一张100元的校园卡,可以在食堂、超市消费)。北理校园比较小、路比较窄;研究生宿舍三栋高层,有电梯,四人间,宿舍空间小、比较挤,大多数宿舍有空调(据说是宿舍的同学自己买或者租的),每一层有一个公共洗澡间。 9号上午宣讲,下午机试。机试两道题目难度不大,老师手动输入三个样例给分(4+3+3,每道题目满分10分)。下午机试结束我找到提前联系的LX老师聊了一个小时,老师人很nice,专心学术(据说她的研究生大都有一篇顶会论文)。 10号上午自己找老师面试。我又参加了院长实验室的面试,比较简单。下午正式面试,分了十多个组一起面试,总共四个小时。面试包括英文自我介绍、项目、研究生规划、是否打算读博、基础知识等,每人大概5-7分钟。面试结束就可以离校了。 六、北航计算机夏令营(7.11-7.14) 北航是不包含食宿的,所以入营人数较多,有600+。北航7.11上午报到+宣讲,下午机试分两组。北航机试类似CSP,可以多次提交,以最后一次为准,但是提交后不能实时出成绩。机试两个小时,包括两道题目,第一道题目比较简单,第二道题目稍微难一些,我第二道题目没有写完但是也过了机试,第二道题目即使没有写完也要能写多少写多少,把代码的思路写出来(有可能会人工判)。北航机试可以用CSP成绩代替,基本250分及以上就没问题,每年具体的情况不一样。11号晚上出机试通过名单(大概500+进340+)。 12号分组面试,每人20分钟,从上午八点一直面试到下午三点。面试包括抽取一道政治题谈看法、抽取一段英文读并翻译、基础知识(数学知识+计算机知识)、项目。政治题和英文翻译感觉大家都差不多(除非你英语特别差),主要的是基础知识面试,北航比较爱问数学问题线代、概率论、离散、高数;如果你的项目比较好的话,老师会着重问你的项目。问到我的问题有梯度、可微和可导、大数定理+中心极限定理等。12号晚上出优营名单,大概340+进180。北航是根据夏令营面试排名来定学硕和专硕的,大概有40个学硕的名额,其他都是专硕,不过北航学硕和专硕培养方式没有区别。 这是在我前面面试同学被问到的部分问题 13号领导师意向表,找导师签字,如果没有找到暑假期间或者九月份也可以再联系老师。 14号校医院体检,夏令营结束。 七、计算所(7.13-7.16) 计算所入营还是比较有难度的,但是即使没入营也可以自己联系老师,如果老师同意可以来参加面试,只是夏令营包括食宿,没入营的不包括食宿。计算所是分实验室面试的,可以参加多个实验室的面试,我参加了网数和智信的笔试+机试+面试。 智信12号笔试,14号机试+面试。笔试包括英文论文理解翻译、概率论题、计算机基础知识题目(操作系统,计网等)、CV题目(智信主要是做CV)。机试五道题目,一个小时,题目代码已经写好了,只需你补全,类似LeetCode,在学长的电脑上完成,有C++和Python可选,两种编程语言题目不同。C++用的是VS2017,会由人给你记每道题目完成的时间,会让你演示调试,结束后打包发送到一个邮箱里。 网数只有机试和面试,13号上午机试,15号面试。机试一个小时七道题目,在自己电脑上写然后拷到老师的优盘上。考察了包括链表、二叉树、图等,偏向于工程,据说今年的题目是计算所一个工程博士出的。机试70人,进入面试60人。面试每人15分钟,包括自我介绍,专业知识,是否读博,项目等。 计算所环境 八、一些建议和感想 一些建议: 提前准备,给自己定位,有针对性的准备,多在网上找经验贴;多和本校保研的学长学姐交流,多和同学交流,多搜集信息; 4月份前把简历、推荐信、个人陈述等写好,再不断修改完善; 最好能提前联系一个老师,以免拿到优营而没有找到好老师; 准备好专业知识,线代、概率论、数据结构、计网、计组、操作系统等; 如果编程能力不是特别强,最好大三开始就刷题,LeetCode的中档题难度基本就够用了; 一些体会与感想: 机会是留给有准备的人的,越努力越幸运! 做最坏的打算,做最好的准备。 保研是一场马拉松,坚持到底就是胜利。 遵道而行,但到半途需努力;会心不远,欲登绝顶莫辞劳。 也送给自己一句话:流年笑掷,未来可期! 以上仅代表个人观点与感想,如果对你有帮助记得点赞哦~如有问题,可以关注我的公主号【驭风者小窝】,我会尽我最大的努力帮助你! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-02 23:03:36
120
转载
转载文章
...并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...。因为我不仅仅只是把问题处理完了就完事,而是非得想把和它相关的周边业务逻辑都挖一遍才甘心。因此,班也没少加,好多个周末我都一个人在公司看代码,做测试。 不过这种方式的好处也是显而易见的,我花了大概一年的时间就熟悉了团队里的各种模块和业务。当有老员工离职的时候,我们领导很惆怅。我告诉他不用担心,这些模块我能顶住。有了前期看代码的积累,确实后来的各种事情处理起来都非常的得心应手。入职一年就顶起了团队里的大梁。 而且我还发现我们公司的客户端软件在启动的时候比较慢,通过主动调研和测试,最后给领导提交了一个客户端启动加速的方案。现在能想起来的方式其中一个技术方式是 DLL 的基地址重定位。 02 入职腾讯 在 2011 年下半年,工作了一年多的时候,感觉广播电视领域整体的盘子还是太小了,当时领头企业的营业额一年也就才十个亿左右。再通过和自己在腾讯的同学交流,还是觉得互联网的空间更大。所以也婉拒了领导给的副组长的提拔挽留,又毅然跳到了北京腾讯。 我是 2011 年 11 月加入腾讯的。在项目上,仍然保持和第一家公司时工作类似的风格,全力以赴。不仅仅局限于完成自己手头的工作,主动做一切可能有价值的事情。其中一件事情就是我发现在当时的项目中,存在很多运营后台的开发需求。每次开发一个后台都得有人力去投入。 后来我就在老大的所开发的一套 PHP 框架的基础上进行改进。实现了只要指定一张 Mysql 数据库中的表,就可以自动生成 bootstrap 样式的管理后台界面。支持列表展示、搜索、删除、批量删除、文本框、时间控件等等一切基础功能。再以后涉及管理后台的功能,只需要在这个基础上改造就行了,人力投入降低了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
转载文章
...st 是一个流行的 JavaScript 测试框架,具有丰富的断言库和模拟功能,能够支持单元测试、集成测试等多种测试场景。在文中,作者配置了 Jest 作为项目的单元测试工具,确保代码质量与稳定性,通过编写测试用例来验证代码逻辑的正确性以及预期功能的实现。 Eslint 和 Prettier , Eslint 是一款静态代码检查工具,用于识别并报告 JavaScript 和 TypeScript 代码中的潜在错误、不一致性和不良编码习惯;Prettier 则是一款代码格式化工具,可以自动按照一套统一的规则格式化代码,确保团队间的代码风格一致性。在这篇文章中,作者介绍了如何结合 Eslint 和 Prettier 设置项目规范,以提升代码质量和团队协作效率。
2023-10-05 12:27:41
116
转载
转载文章
...选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...中,特别是在处理旋转问题时,四元数作为一种有效的方法被广泛采用。相较于传统的旋转矩阵,四元数具有更少的数据量(4个浮点数而非9个),并且避免了万向节死锁问题。在Direct3D应用程序中,四元数可以用来描述三维空间中一根轴及绕该轴的旋转,并支持合成和插值操作,这在动画制作和变换计算等方面尤为有用。
2023-10-24 12:49:42
271
转载
转载文章
...防护已不再仅仅是技术问题,更是法律合规的重要组成部分。因此,企业和开发者需要定期进行安全审计和漏洞扫描,确保系统无类似安全隐患。 在教育领域,诸如Vulnhub这样的平台为学习者提供虚拟靶场环境,帮助他们通过实战演练提升发现并修补这些漏洞的能力。此外,许多在线课程和研讨会也开始深度剖析实际案例,讲解如何从防御和攻击两个角度理解和应对SQL注入、文件上传等关键Web应用安全挑战,以培养更多具备实战能力的网络安全人才。
2023-01-02 12:50:54
497
转载
转载文章
... 以及内部异常来定位问题,但其实 Exception 类型还有更多的信息可以用于辅助定位问题。 Message 用来描述异常原因的详细信息 如果你捕捉到了异常,一般使用这段描述能知道发生的大致原因。 如果你准备抛出异常,在这个信息里面记录能帮助调试问题的详细文字信息。 StackTrace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
79
转载
转载文章
...的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除文件中相邻的重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"