前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[计算引擎]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...款强大的批流一体处理引擎,其在实时推荐系统的应用中展现了显著的优势。近期,阿里巴巴集团发布了一项关于利用Flink构建大规模实时推荐系统的实践报告,该报告详述了如何借助Flink的窗口机制和状态管理功能实现实时用户行为分析,并结合深度学习技术动态更新用户Embedding,进而大幅提升推荐效果。 与此同时,随着5G、IoT等技术的发展,数据产生速度呈指数级增长,对实时处理能力的需求愈发迫切。近日,一项关于流处理与批处理融合趋势的研究表明,Flink因其统一的数据处理架构,在面对海量数据洪峰时,相较于传统的Spark等框架,能够更好地满足低延迟、高吞吐的实时计算需求。 此外,Netflix公司也在其博客上分享了如何通过Flink实现个性化内容推荐系统的实时化升级经验。他们指出,Flink的时间窗口特性使得系统能够在捕获到用户最新行为后立即做出响应,优化推荐策略,从而提高用户满意度和留存率。 总之,随着技术生态的不断演进,Flink正在成为众多企业构建高性能、实时推荐系统的首选工具。在未来,随着Flink社区的持续发展和完善,我们有理由期待它将在更多场景下发挥关键作用,助力企业挖掘数据价值,提升业务效能。
2024-03-08 12:34:43
527
转载
Python
...的一家大型银行就因为计算引擎中的浮点数精度问题,出现了交易损失。这进一步强调了在涉及财务、科学计算等对精度要求极高的场景下,合理使用decimal模块进行精确浮点数处理的必要性。 此外,Python社区一直在致力于改进浮点数运算的精度和性能。在Python 3.8版本中,引入了新的float.fromhex()方法优化了特殊浮点数的表示与解析,有助于减少特定情况下的精度损失。同时,Python开发者也在持续关注并借鉴国际标准(如IEEE 754)对浮点数运算的规定与优化策略,力求在未来版本中提供更为精确且高效的浮点数支持。 深入理解Python浮点数的内在机制及其解决方案,对于提升代码质量、保障系统稳定性具有深远意义。因此,无论是初学者还是资深开发者,都应关注这一领域的最新动态和技术进展,以适应不断变化的实际应用场景需求。
2023-07-31 11:30:58
277
翡翠梦境_t
Flink
...阿里巴巴集团在其实时计算平台中深度集成了Flink,并公开分享了如何利用Flink的高性能状态管理与容错机制优化业务流程、提升数据处理效率的经验(参考:《阿里巴巴实时计算引擎Blink:基于Apache Flink的最佳实践》)。此外,Flink社区在2021年发布的Flink 1.13版本中,对状态后端进行了重大改进,包括对RocksDB状态后端性能的优化以及对增量checkpointing的支持,这不仅降低了存储成本,还提升了大规模流处理任务的恢复速度(来源:Apache Flink官方博客)。 同时,针对实时数据分析场景,一篇名为《深入理解Apache Flink状态管理和容错机制在实时风控系统中的应用》的技术文章,详细解读了Flink如何通过精准、高效的状态管理和强大的容错能力,在金融风控等要求高时效性和准确性的场景中发挥关键作用。 另外,对于希望深入学习Flink内部原理的开发者,推荐查阅由Flink核心贡献者撰写的《Stream Processing with Apache Flink: A Guide to Distributed Stream and Batch Processing》一书,该书结合理论与实战,详尽剖析了Flink的各项核心技术,包括其先进的状态管理和容错实现机制。
2023-06-05 11:35:34
462
初心未变-t
SeaTunnel
...Flink 作为核心计算引擎,提供了分布式、高吞吐量、低延迟的数据同步能力,使得 SeaTunnel 能够实现实时数据的可靠传输。 实时数据同步 , 实时数据同步是指在数据生成后立即或近乎立即地将其从源系统传输到目标系统的过程。SeaTunnel 作为一款实时数据同步工具,能够持续不断地捕获、处理并传输数据流,确保数据的时效性和一致性,满足业务对实时性要求较高的场景需求。 云原生(Cloud-Native) , 云原生是一种构建和运行应用程序的方法,它充分利用云计算的优势来实现敏捷开发、弹性伸缩、容错性和可管理性。在文中,随着云原生技术的发展和普及,SeaTunnel 在跨云环境下的数据同步解决方案显得更为重要,因为它能够更好地适应云环境的特性,提供无缝且高效的云间数据迁移服务。 多云环境 , 多云环境是指企业同时使用两个或以上的公有云、私有云或混合云环境,并通过统一的方式管理和操作这些云资源。在这种背景下,SeaTunnel 提供了强大的跨云数据同步功能,帮助企业用户在不同的云平台之间自由、安全地迁移和整合数据,以实现灵活部署、降低成本以及避免厂商锁定等目标。
2023-06-03 09:35:15
136
彩虹之上-t
ClickHouse
...独特的列式存储方式和计算引擎,实现了极致的查询性能,对于实时查询和复杂分析场景有着显著的优势。 2. 稳定性 ClickHouse具有良好的稳定性,能够支持大规模的数据处理和分析,并且能够在分布式环境下提供高可用的服务。 3. 易用性 ClickHouse提供了直观易用的SQL接口,使得数据分析变得更加简单和便捷。 三、使用ClickHouse实现高可用性架构 1. 什么是高可用性架构? 所谓高可用性架构,就是指一个系统能够在出现故障的情况下,仍能继续提供服务,保证业务的连续性和稳定性。在实际应用中,我们通常会采用冗余、负载均衡等手段来构建高可用性架构。 2. 如何使用ClickHouse实现高可用性架构? (1) 冗余部署 我们可以将多个ClickHouse服务器进行冗余部署,当某个服务器出现故障时,其他服务器可以接管其工作,保证服务的持续性。比如说,我们可以动手搭建一个ClickHouse集群,这个集群里头有三个节点。具体咋安排呢?两个节点咱们让它担任主力,也就是主节点的角色;剩下一个节点呢,就作为备胎,也就是备用节点,随时待命准备接替工作。 (2) 负载均衡 通过负载均衡器,我们可以将用户的请求均匀地分发到各个ClickHouse服务器上,避免某一台服务器因为承受过大的压力而出现性能下降或者故障的情况。比如,我们可以让Nginx大显身手,充当一个超级智能的负载均衡器。想象一下,当请求像潮水般涌来时,Nginx这家伙能够灵活运用各种策略,比如轮询啊、最少连接数这类玩法,把请求均匀地分配到各个服务器上,保证每个服务器都能忙而不乱地处理任务。 (3) 数据备份和恢复 为了防止因数据丢失而导致的问题,我们需要定期对ClickHouse的数据进行备份,并在需要时进行恢复。例如,我们可以使用ClickHouse的内置工具进行数据备份,然后在服务器出现故障时,从备份文件中恢复数据。 四、代码示例 下面是一个简单的ClickHouse查询示例: sql SELECT event_date, SUM(event_count) as total_event_count FROM events GROUP BY event_date; 这个查询语句会统计每天的事件总数,并按照日期进行分组。虽然ClickHouse在查询速度上确实是个狠角色,但当我们要对付海量数据的时候,还是得悠着点儿,注意优化查询策略。就拿那些不必要的JOIN操作来说吧,能省则省;还有索引的使用,也得用得恰到好处,才能让这个高性能的家伙更好地发挥出它的实力来。 五、总结 ClickHouse是一款功能强大的高性能数据库系统,它为我们提供了构建高可用性架构的可能性。不过呢,实际操作时咱们也要留心,挑对数据库系统只是第一步,更关键的是,得琢磨出一套科学合理的架构设计方案,还得写出那些快如闪电的查询语句。只有这样,才能确保系统的稳定性与高效性,真正做到随叫随到、性能杠杠滴。
2023-06-13 12:31:28
557
落叶归根-t
Flink
...nk 批流一体的统一计算引擎 (1)Flink的设计哲学 Apache Flink的核心理念是将批视为一种特殊的流——有限流,从而实现了一种基于流处理的架构去同时处理无限流数据和有界数据集。这种设计简直让开发者们乐开了花,从此以后再也不用头疼选择哪种处理模型了。无论是对付那些堆积如山的历史数据,还是实时流动的数据流,都能轻松驾驭,只需要同一套API就能搞定编写工作。这样一来,不仅开发效率噌噌噌地往上飙,连资源利用率也得到了前所未有的提升,真可谓是一举两得的超级福利! (2)批流一体的实现原理 在Flink中,所有的数据都被视作数据流,即便是静态的批数据,也被看作是无界流的一个切片。这就意味着,批处理的任务其实可以理解为流处理的一个小弟,只需要在数据源那里设定一个特定的边界条件,就一切搞定了。这么做的优点就在于,开发者能够用一个统一的编程套路,来应对各种不同的应用场景,轻轻松松实现批处理和流处理之间的无缝切换。就像是你有了一个万能工具箱,甭管是组装家具还是修理电器,都能游刃有余地应对,让批处理和流处理这两种模式切换起来就像换扳手一样自然流畅。 2. 切换批处理与流处理模式的实战演示 (1)定义DataStream API java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class BatchToStreamingExample { public static void main(String[] args) throws Exception { // 创建流处理环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 假设这是批处理数据源(实际上Flink也支持批处理数据源) DataStream text = env.fromElements("Hello", "World", "Flink", "is", "awesome"); // 流处理操作(映射函数) DataStream mappedStream = text.map(new MapFunction() { @Override public String map(String value) { return value.toUpperCase(); } }); // 在流处理环境中提交作业(这里也可以切换到批处理模式下运行) env.execute("Batch to Streaming Example"); } } (2)从流处理模式切换到批处理模式 上述代码是在流处理环境下运行的,但实际上,只需简单改变数据源,我们就可以轻松地处理批数据。例如,我们可以使用readTextFile方法读取文件作为批数据源: java DataStream text = env.readTextFile("/path/to/batch/data.txt"); 在实际场景中,Flink会根据数据源的特性自动识别并调整内部执行策略,实现批处理模式下的优化执行。 3. 深入探讨批流一体的价值 批处理和流处理模式的无缝切换,不仅简化了编程模型,更使资源调度、状态管理以及故障恢复等底层机制得以统一,极大地提高了系统的稳定性和性能表现。同时呢,这也意味着当业务需求风吹草动时,咱能更灵活地扭动数据处理策略,不用大费周章重构大量代码。说白了,就是“一次编写,到处运行”,真正做到灵活应变,轻松应对各种变化。 总结来说,Apache Flink凭借其批流一体的设计理念和技术实现,让我们在面对复杂多变的大数据应用场景时,拥有了更为强大且高效的武器。无论你的数据是源源不断的实时流,还是静待处理的历史批数据,Flink都能游刃有余地完成使命。这就是批流一体的魅力所在,也是我们深入探索和研究它的价值所在。
2023-04-07 13:59:38
504
梦幻星空
SeaTunnel
...还没公布它跟Zeta引擎是怎么紧密合作的具体内容和背后的代码实现细节。所以呢,我暂时没法给你献上一篇基于真实代码实例的、详详细细的技术大揭秘文章。不过,我可以为您提供一篇虚构但符合要求的技术探讨性文章,以模拟如何利用一个假设的“Zeta”高性能计算引擎来提升SeaTunnel在超大规模数据场景下的处理能力。 如何利用Zeta引擎提升SeaTunnel在超大规模数据场景下的处理能力? 1. 引言 在大数据时代,面对PB级别甚至EB级别的海量数据处理需求,我们不断寻求性能更强、效率更高的解决方案。SeaTunnel这款开源工具,真是个海量数据处理和迁移的好帮手,不仅用起来简单方便,而且实力超群,在实际场景中的表现那可真是杠杠的,让人眼前一亮。但是,当面对那种超级复杂、数据量大到离谱的场景时,我们得请出更硬核、爆发力更强的计算引擎小伙伴,比如我们脑海中构思的那个神秘的“Zeta”引擎,来进一步解锁SeaTunnel隐藏的实力。 2. 理解SeaTunnel与Zeta引擎 SeaTunnel通过插件化设计,支持从各类数据源抽取数据,并能灵活转换和加载到多种目标系统中。我们心目中的Zeta引擎,就像一个超级厉害的幕后英雄,它拥有超强的并行处理能力和独门的分布式计算优化秘籍。这样一来,甭管是面对海量数据的实时处理需求,还是批量任务的大挑战,它都能轻松应对,游刃有余。 3. Zeta引擎如何助力SeaTunnel? - 并行处理增强: 假设SeaTunnel原本在处理大规模数据时,可能会因为单节点资源限制而导致处理速度受限。这时,我们可以设想SeaTunnel结合Zeta引擎,通过调用其分布式并行处理能力,将大任务分解为多个子任务在集群环境中并行执行,例如: python 假想代码示例 zeta_engine.parallel_execute(seatunnel_tasks, cluster_resources) 这段假想的代码意在表示SeaTunnel的任务可以通过Zeta引擎并行调度执行。 - 资源优化分配: Zeta引擎还可以动态优化各个任务在集群中的资源分配,确保每个任务都能获得最优的计算资源,从而提高整体处理效能。例如: python 假想代码示例 optimal资源配置 = zeta_engine.optimize_resources(seatunnel_task_requirements) seatunnel.apply_resource(optimal资源配置) - 数据流加速: 对于流式数据处理场景,Zeta引擎可以凭借其高效的内存管理和数据缓存机制,减少I/O瓶颈,使SeaTunnel的数据流处理能力得到显著提升。 4. 实践探讨与思考 虽然上述代码是基于我们的设想编写的,但在实际应用场景中,如果真的存在这样一款名为“Zeta”的高性能引擎,那么它与SeaTunnel的深度融合将会是一次极具挑战性和创新性的尝试。要真正让SeaTunnel在处理超大规模数据时大显神威,你不仅得像侦探破案一样,把它的运作机理摸个门儿清,还得把Zeta引擎的独门绝技用到极致。比如它那神速的数据分发能力、巧妙的负载均衡设计和稳如磐石的故障恢复机制,这些都是咱们实现数据处理能力质的飞跃的关键所在。 5. 结语 期待未来能看到SeaTunnel与类似“Zeta”这样的高性能计算引擎深度集成,打破现有数据处理边界,共同推动大数据处理技术的发展。让我们一起见证这个充满无限可能的融合过程,用技术创新的力量驱动世界前行。 请注意,以上内容完全是基于想象的情景构建,旨在满足您对主题的要求,而非真实存在的技术和代码实现。对于SeaTunnel的实际使用和性能提升策略,请参考官方文档和技术社区的相关资料。
2023-05-13 15:00:12
78
灵动之光
Spark
...发现实时数据处理与流计算领域的发展日新月异。最近,Apache Flink 1.14版本也推出了对事件时间和 watermark 的改进,进一步强化了其在复杂事件处理和乱序数据管理上的能力。该版本优化了watermark生成逻辑,并引入了更为灵活的event time策略配置,使得开发者能够更好地应对不同业务场景下的延迟数据挑战。 另外,随着物联网、金融交易、社交网络等领域的快速发展,实时数据的价值日益凸显,对流处理系统提出了更高要求。例如,阿里巴巴在其2021年双十一活动中,就运用了升级版的实时计算引擎,结合事件时间驱动的数据一致性保障机制,确保了数十亿级别交易数据的实时统计分析准确性。 同时,学术界也在不断探索和完善实时数据处理理论框架,如加州大学伯克利分校AMPLab团队提出的“Lambda架构”,以及斯坦福大学DINOSAUR项目中的“Kappa架构”,都在尝试以不同的方式整合Processing Time和Event Time,旨在构建更高效、更健壮的实时数据处理解决方案。 因此,在实际应用Spark Structured Streaming进行实时数据处理时,关注行业动态和技术前沿,对比研究其他流处理框架的时间模型处理方式,将有助于我们更好地适应快速变化的数据环境,设计出更加符合业务需求的数据处理策略。
2023-11-30 14:06:21
106
夜色朦胧-t
SeaTunnel
...海量数据同步、转换和计算的统一平台,支持批处理和流处理模式。它拥有一个超级热闹的插件生态圈,就像一个万能的桥梁,能够轻松连接各种数据源和目的地,比如 Kafka、MySQL、HDFS 等等,完全不需要担心兼容性问题。而且,对于 Flink、Spark 这些计算引擎大佬们,它也能提供超棒的支持和服务,让大家用起来得心应手,毫无压力。 2. 使用SeaTunnel处理流式数据 2.1 流式数据源接入 首先,我们来看如何使用SeaTunnel从Kafka获取流式数据。以下是一个配置示例: yaml source: type: kafka09 bootstrapServers: "localhost:9092" topic: "your-topic" groupId: "sea_tunnel_group" 上述代码片段定义了一个Kafka数据源,SeaTunnel会以消费者的身份订阅指定主题并持续读取流式数据。 2.2 数据处理与转换 SeaTunnel支持多种数据转换操作,例如清洗、过滤、聚合等。以下是一个简单的字段筛选和转换示例: yaml transform: - type: select fields: ["field1", "field2"] - type: expression script: "field3 = field1 + field2" 这段配置表示仅选择field1和field2字段,并进行一个简单的字段运算,生成新的field3。 2.3 数据写入目标系统 处理后的数据可以被发送到任意目标系统,比如另一个Kafka主题或HDFS: yaml sink: type: kafka09 bootstrapServers: "localhost:9092" topic: "output-topic" 或者 yaml sink: type: hdfs path: "hdfs://namenode:8020/output/path" 3. 实现 ExactlyOnce 语义 ExactlyOnce 语义是指在分布式系统中,每条消息只被精确地处理一次,即使在故障恢复后也是如此。在SeaTunnel这个工具里头,我们能够实现这个目标,靠的是把Flink或者其他那些支持“ExactlyOnce”这种严谨语义的计算引擎,与具有事务处理功能的数据源和目标巧妙地搭配起来。就像是玩拼图一样,把这些组件严丝合缝地对接起来,确保数据的精准无误传输。 例如,在与Apache Flink整合时,SeaTunnel可以利用Flink的Checkpoint机制来保证状态一致性及ExactlyOnce语义。同时,SeaTunnel还有个很厉害的功能,就是针对那些支持事务处理的数据源,比如更新到Kafka 0.11及以上版本的,还有目标端如Kafka、能进行事务写入的HDFS,它都能联手计算引擎,确保从头到尾,数据“零丢失零重复”的精准传输,真正做到端到端的ExactlyOnce保证。就像一个超级快递员,确保你的每一份重要数据都能安全无误地送达目的地。 在配置中,开启Flink Checkpoint功能,确保在处理过程中遇到故障时可以从检查点恢复并继续处理,避免数据丢失或重复: yaml engine: type: flink checkpoint: interval: 60s mode: exactly_once 总结来说,借助SeaTunnel灵活强大的流式数据处理能力,结合支持ExactlyOnce语义的计算引擎和其他组件,我们完全可以在实际业务场景中实现高可靠、无重复的数据处理流程。在这一路的“探险”中,我们可不只是见识到了SeaTunnel那实实在在的实用性以及它强大的威力,更是亲身感受到了它给开发者们带来的那种省心省力、安心靠谱的舒爽体验。而随着技术和需求的不断演进,SeaTunnel也将在未来持续优化和完善,为广大用户提供更优质的服务。
2023-05-22 10:28:27
113
夜色朦胧
Kylin
...一款开源的分布式分析引擎,因其强大的OLAP能力与超高的查询性能而备受瞩目。不过在实际操作的时候,我们可能会遇到一个头疼的问题,那就是得从不同集群的数据源里查询信息。这就涉及到怎样巧妙地设置Kylin,让它能够帮我们搞定这个难题。本文将通过详尽的步骤和实例代码,带您逐步了解并掌握如何配置Kylin来支持跨集群的数据源查询。 1. 理解Kylin跨集群数据源查询 在开始配置之前,首先理解Kylin处理跨集群数据源查询的基本原理至关重要。Kylin的心脏就是构建Cube,这个过程其实就是在玩一场源数据的“预计算游戏”,把各种维度的数据提前捣鼓好,然后把这些多维度、经过深度整合的聚合结果,妥妥地存放在HBase这个大仓库里。所以,当我们想要实现不同集群间的查询互通时,重点就在于怎样让Kylin能够顺利地触及到各个集群的数据源头,并且在此基础之上成功构建出Cube。这就像是给Kylin装上一双可以跨越数据海洋的翅膀,让它在不同的数据岛屿之间自由翱翔,搭建起高效查询的桥梁。 2. 配置跨集群数据源连接 2.1 配置远程数据源连接 首先,我们需要在Kylin的kylin.properties配置文件中指定远程数据源的相关信息。例如,假设我们的原始数据位于一个名为“ClusterA”的Hadoop集群: properties kylin.source.hdfs-working-dir=hdfs://ClusterA:8020/user/kylin/ kylin.storage.hbase.rest-url=http://ClusterA:60010/ 这里,我们设置了HDFS的工作目录以及HBase REST服务的URL地址,确保Kylin能访问到ClusterA上的数据。 2.2 配置数据源连接器(JDBC) 对于关系型数据库作为数据源的情况,还需要配置相应的JDBC连接信息。例如,若ClusterB上有一个MySQL数据库: properties kylin.source.jdbc.url=jdbc:mysql://ClusterB:3306/mydatabase?useSSL=false kylin.source.jdbc.user=myuser kylin.source.jdbc.pass=mypassword 3. 创建项目及模型并关联远程表 接下来,在Kylin的Web界面创建一个新的项目,并在该项目下定义数据模型。在选择数据表时,Kylin会根据之前配置的HDFS和JDBC连接信息自动发现远程集群中的表。 - 创建项目:在Kylin管理界面点击"Create Project",填写项目名称和描述等信息。 - 定义模型:在新建的项目下,点击"Model" -> "Create Model",添加从远程集群引用的表,并设计所需的维度和度量。 4. 构建Cube并对跨集群数据进行查询 完成模型定义后,即可构建Cube。Kylin会在后台执行MapReduce任务,读取远程集群的数据并进行预计算。构建完成后,您便可以针对这个Cube进行快速、高效的查询操作,即使这些数据分布在不同的集群上。 bash 在Kylin命令行工具中构建Cube ./bin/kylin.sh org.apache.kylin.tool.BuildCubeCommand --cube-name MyCube --project-name MyProject --build-type BUILD 至此,通过精心配置和一系列操作,您的Kylin环境已经成功支持了跨集群的数据源查询。在这一路走来,我们不断挠头琢磨、摸石头过河、动手实践,不仅硬生生攻克了技术上的难关,更是让Kylin在各种复杂环境下的强大适应力和灵活应变能力展露无遗。 总结起来,配置Kylin支持跨集群查询的关键在于正确设置数据源连接,并在模型设计阶段合理引用这些远程数据源。每一次操作都像是人类智慧的一次小小爆发,每查询成功的背后,都是我们对Kylin功能那股子钻研劲儿和精心打磨的成果。在这整个过程中,我们实实在在地感受到了Kylin这款大数据处理神器的厉害之处,它带来的便捷性和无限可能性,真是让我们大开眼界,赞不绝口啊!
2023-01-26 10:59:48
83
月下独酌
Hadoop
...作为一个开源的分布式计算框架,以其卓越的大数据存储与处理能力赢得了广泛的认可。本文将深入探讨如何在Hadoop环境中实现高效的数据转换和处理过程,通过实例代码揭示其背后的奥秘。 1. Hadoop生态系统简介 Hadoop的核心组件主要包括HDFS(Hadoop Distributed File System)和MapReduce。HDFS负责海量数据的分布式存储,而MapReduce则提供了并行处理大规模数据集的强大能力。在此基础上,我们可以通过编写特定的Map和Reduce函数,实现对原始数据的转换和处理。 2. 数据转换 Map阶段 让我们首先通过一个简单的示例理解Hadoop MapReduce中的数据转换过程: java import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); for (String eachWord : line.split("\\s+")) { word.set(eachWord); context.write(word, one); // 将单词作为key,计数值1作为value输出 } } } 这段代码是Hadoop实现词频统计任务的Mapper部分,它实现了数据从原始文本格式到键值对形式的转换。当Map阶段读取每行文本时,将其拆分为单个单词,并以单词为键、值为1的形式输出,实现了初步的数据转换。 3. 数据处理 Reduce阶段 接下来,我们看下Reduce阶段如何进一步处理这些键值对,完成最终的数据聚合: java import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer { public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); // 对所有相同键的值进行累加 } context.write(key, new IntWritable(sum)); // 输出每个单词及其出现次数 } } 在上述Reducer类中,对于每一个输入的单词(键),我们将所有关联的计数值(值)相加,得到该单词在整个文本中的出现次数,从而完成了数据的聚合处理。 4. 思考与讨论 Hadoop的魅力在于,通过分解复杂的计算任务为一系列简单的Map和Reduce操作,我们可以轻松地应对海量数据的转换和处理。这种并行计算模型就像是给电脑装上了超级引擎,让数据处理速度嗖嗖地往上窜。而且更棒的是,它把数据分散存放在一整个集群的各个节点上,就像把鸡蛋放在不同的篮子里一样。这样一来,不仅能够轻松应对大规模运算,就算某个节点出个小差错,其他的节点也能稳稳接住,保证整个系统的稳定性和可扩展性杠杠的! 然而,尽管Hadoop在数据处理方面表现出色,但并非所有场景都适用。比如,在那种需要迅速反馈或者频繁做大量计算的情况下,像Spark这类流处理框架或许会是个更棒的选择。这就意味着在咱们实际操作的项目里,面对不同的需求和技术特点时,咱们得像个精明的小侦探,灵活机智地挑出最对味、最适合的数据处理武器和战术方案。 总的来说,借助Hadoop,我们能够构建出高效的数据转换和处理流程,从容应对大数据挑战。不过呢,咱们也得时刻想着把它的原理摸得更透彻些,还有怎么跟其他的技术工具灵活搭配使用。这样一来,咱就能在那些乱七八糟、变来变去的业务环境里头,发挥出更大的作用,创造更大的价值啦!
2023-04-18 09:23:00
468
秋水共长天一色
Apache Solr
...界也开始探索结合实时计算引擎(如Apache Flink、Spark)与Solr进行联合查询的可能性,通过将部分复杂的facet统计任务卸载到这些引擎中处理,实现更高效的大规模数据聚合。例如,某知名电商平台就成功实践了这一方案,他们利用Flink流式处理能力对Solr检索出的数据进行实时统计分析,既确保了facet统计的精确性,又显著提升了响应速度。 此外,随着云原生技术的发展,容器化和Kubernetes等技术也被应用于Solr集群的部署与管理,以实现资源的弹性伸缩,这为解决分布式环境下facet统计的问题提供了新的思路。通过精细调控各分片资源,可以更灵活地应对高并发查询及大数据量facet统计的需求,从而在实际业务场景中取得更好的效果。因此,紧跟Apache Solr项目发展动态以及行业内的最佳实践案例,对于持续优化分布式搜索系统的facet统计功能具有重要意义。
2023-11-04 13:51:42
376
断桥残雪
Spark
...大规模数据处理的开源计算引擎,被设计为在分布式环境中执行快速迭代的数据处理任务。它支持多种编程模型,包括SQL查询、机器学习算法、图计算和流处理等。Spark以其低延迟、高性能和易用性著称,在大数据分析、实时数据处理和机器学习应用中具有广泛的应用。 名词 , 日志记录。 解释 , 日志记录是指系统或应用程序在运行过程中生成并记录事件、操作或状态变化的记录行为。在大数据处理和分布式计算环境下,日志记录尤为重要,因为它能帮助开发者追踪程序的运行状态,诊断错误,优化性能,以及在故障发生时进行快速定位和修复。日志通常包含时间戳、事件描述、相关变量值等信息,以便于事后分析和调试。 名词 , 性能调优。 解释 , 性能调优是指通过修改系统或应用的配置、优化代码结构、调整资源分配等方式,以提高系统运行效率、响应速度和资源利用率的过程。在大数据处理领域,性能调优尤其重要,因为它直接影响到数据处理的速度、成本和可扩展性。通过性能调优,可以降低延迟、减少资源消耗,同时确保系统的稳定性和可靠性。
2024-09-07 16:03:18
141
秋水共长天一色
ElasticSearch
...khouse等大数据计算引擎:鸟枪换炮,其实用作全文索引和搜索的场景并不合适,你可能依旧会使用sql数据库那样用like做交互 2. 方案选择 调研之后,可能会发现对于数据量相对大一点的搜索场景,在当下流行的数据库或计算引擎中,elasticsearch是其中最合适的解决方案。 无论是sql的like、还是mongo的regex,在线上环境下,数据量较多的情况下,都不是很高效的查询,甚至有的公司的dba会禁止在线上使用类似的查询语法。 与elasticsearch是“亲戚”的,大家还常提到lucene、solr,但是无论从现在的发展趋势还是公司运维人才的储备(不得不说当下的运维人才中,对es熟悉的人才会更多一些),elasticsearch是相对较合适的选择。 一些大数据计算引擎,其实更多的适合OLAP场景。当然也完全可以使用,因为比如clickhouse、starrocks等的查询速度已经发展的非常快。但你会发现在中文分词搜索上,实现起来有一定困扰。 所以,如果你不差机器,首选方案还是elasticsearch。 3. elasticsearch的适用场景 3.1 经典的日志搜索场景 提到elasticsearch不得不提到它的几个好朋友: 一些公司里经常用elasticsearch来收集日志,然后用kibana来展示和分析。 展开来说,举个例子,你的app打印日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
Java
...之前有一篇文章介绍了计算机领域的分词器词汇词典:点这里传送过去 但这里面只有计算机领域的术语,对于常用中文,比如“吃饭”、“逛街”...等词汇是不包括的。 所以,如果大家需要对日常中文文章或语料做分词,需要用这里的词典。两个词典可以并存,配置到分词器的配置文件中。 2. 下载地址 点我免费下载 词库txt文件一览(49万多个词汇): 建议:如果你的程序对分词比较敏感,请务必先小范围用少量样本测试试用,看看分词效果是否符合预期,没有问题再放入正式环境。 3. 分词器使用 关于分词器的使用,见本文第一小节的链接,那个链接里面有介绍。 如果你是用的是IKAnalyzer,可以把新的词典加入到配置文件中:IKAnalyzer.cfg.xml 4. 补充说明 尽管该文章以IKAnalyzer为例,但是这个词典是通用的,它的格式是“词汇1\n词汇2\n词汇3\n”,即用回车符分隔的一个个词汇。很多分词器都是通用的。 分词器有很多,大家根据实际需求选择使用。比如: IK Analyzer:一款基于Java开发的开源中文分词工具,广泛应用于Elasticsearch和Solr中。 Ansj:一个高效的Java分词框架,支持多种分词模式如最大匹配、最小切分等。 Stanford Segmenter:斯坦福大学提供的分词器,基于统计模型和规则,具有较高的准确性。 FudanNLP分词器:复旦大学自然语言处理小组研发的分词系统。 jieba分词:Python社区中流行的开源中文分词库,支持精确模式、全模式、搜索引擎模式等多种分词模式。 LTP(哈工大 Language Technology Platform)分词器:哈尔滨工业大学开发的一套全面的自然语言处理工具包,其中包含高质量的分词模块。 THULAC:由清华大学自然语言处理与社会人文计算实验室推出的分词和词性标注工具。 HanLP:由李航团队开发的自然语言处理库,包含高效准确的分词组件。
2024-01-27 19:37:56
370
admin-tim
Docker
...持续演进中不断推动云计算领域的创新与发展。了解并掌握Docker与相关生态系统的发展动态,将有助于我们紧跟技术潮流,优化应用架构设计,提高软件交付效率与质量。
2023-02-25 10:58:36
491
数据库专家
Docker
...应用,并充分使用您的计算资源。 Docker 实例可以使用指令来开启,停止和管控。使用docker run指令开启实例时,您可以将实例执行时的配置传递给该指令。要指定实例,请将实例名称用--name参数指定: docker run --name my-container docker-image 使用上述指令,您可以开启一个名为my-container的新实例,它将基于给定的docker-image执行。请注意,当您指定实例名称时,名称必须是唯一的,否则 Docker 将抛出错误。 此外,要执行指定实例,您可以使用docker start指令,该指令以指定实例名称或 ID 作为参数: docker start my-container 使用上述指令,您可以开启名为my-container的实例。如果您需要停止执行的实例,请使用docker stop指令指定实例名称或 ID: docker stop my-container 现在,您已了解如何使用 Docker 指定实例,您可以开始管控您的应用了。祝你好运!
2023-07-24 13:07:20
782
软件工程师
Docker
...是一种开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包在一起,形成一个可移植、轻量级的运行时环境。在本文语境中,开发者使用Docker来扩展屏幕功能,意味着他们尝试在Docker容器内部署图形化应用,并实现多显示器支持或更大的显示区域。 VirtualGL客户端 , VirtualGL是一个开源软件,用于在Linux环境下高效地将3D图形应用程序的OpenGL渲染输出从高性能计算集群中的服务器节点传输到客户端工作站的本地显示器上。在本文中,当开发者在Docker环境中需要进行图形界面的扩展屏幕操作时,会借助VirtualGL客户端工具以实现在容器内运行的图形应用能够正确显示在宿主机的屏幕上。 xorg.conf文件 , xorg.conf是X Window System(X11)的主要配置文件,它定义了X服务器的硬件设备、输入设备、显示设备、监视器等信息。在本文上下文中,开发者需要对VirtualGL客户端中的xorg.conf文件进行调整或替换为宿主机的xorg.conf文件,以确保X服务器能正确识别和配置显卡驱动以及相关显示设备,从而解决在使用Docker扩展屏幕时出现的黑屏问题。 Xorg , Xorg是开源的X Window System的实现,作为Linux及类Unix系统的核心组件之一,负责管理图形显示和输入设备。在本文中,安装Xorg并创建相应的OpenGL配置文件是解决Docker扩展屏幕黑屏问题的关键步骤之一,目的是为了使容器内的图形应用能够在宿主机上正常渲染并显示出来。
2023-09-04 23:41:28
583
电脑达人
Java
...,如果你的文章领域是计算机领域,可能就需要自己扩充词典。 比如“合并排序树”,在计算机领域可以作为一个单独的词,但使用未加载计算机词典的分词器可能就会分词为——二叉、排序、树。但有的时候我们也想让它作为一个独立的词出现,这样可能会在搜索逻辑中会获得更高的匹配得分,或有其它的更多用途。 2. 下载地址 点我免费下载 改词典是站长用ai训练并整理的,这一版本包含6万多个计算机领域的词汇,能为你的工作带来一些帮助,非常高兴! 但可能也有些不属于计算机领域的词汇被误整理了进去,但对分词逻辑应该是无害的。 词库txt文件一览(60721个词汇): 建议:如果你的程序对分词比较敏感,请务必先小范围用少量样本测试试用,看看分词效果是否符合预期,没有问题再放入正式环境。 3. java示例 这里用IKAnalyzer举例,IKAnalyzer的示例网上有很多,这里简要描述。 3.1 依赖下载 这里提供一个阿里云的仓库,你可以搜索并下载得到对应dependency的坐标并引入到你的pom.xml里面: 阿里云仓库:https://developer.aliyun.com/mvn/search <dependency> <groupId>com.janeluo</groupId> <artifactId>ikanalyzer</artifactId> <version>2012_u6</version> </dependency> 初次以外,你还要引入一个lucene的依赖: <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId> <version>3.6.0</version> </dependency> 3.2 java代码 public static void cut(String text) throws IOException { List terms = new ArrayList(); try (StringReader sr = new StringReader(text)) { IKSegmenter ik = new IKSegmenter(sr, false); Lexeme lex = null; while ((lex = ik.next()) != null) { terms.add(lex.getLexemeText()); } } System.out.println(JSON.toJSONString(terms)); } 用main函数或你代码中的上游逻辑调用上述cut代码,即可输出分词结果。 3.3 加入新的词典 你需要在classpath下面引入IKAnalyzer的配置文件:IKAnalyzer.cfg.xml 并把上边下载好的词典引入进去,如下图: 3.4 切换分词模式 熟悉IKAnalyzer的朋友都知道它有两个分词模式:ik_max_word和ik_smart 在3.2的代码中可以用“new IKSegmenter(sr, false)”的第二个参数做切换,为true则是ik_smart,为false则是ik_max_word。 4. 效果对比测试 这里对下面两个字符串做分词效果测试: String text1 = "阿姆斯里克数据处理查询解析引擎"; String text2 = "基于java语言开发的轻量级的中文分词工具包"; 4.1 未引入新词典的分词效果 4.2 引入新词典的分词效果 上图可以看到,比如“查询解析引擎”、“中文分词工具包”这类的词已经被分词器切割出来了,这在没有新词典的情况下是无法完成的。 5. 补充说明 尽管该文章以IKAnalyzer为例,但是这个词典是通用的,它的格式是“词汇1\n词汇2\n词汇3\n”,即用回车符分隔的一个个词汇。很多分词器都是通用的。 文章是原创的,词典是站长整理的,如有转载,请注明出处,表示感谢!
2024-01-26 17:33:58
407
admin-tim
MySQL
...优化以及合理使用存储引擎等手段提升MySQL的数据写入效率。文中引用了大量实战案例,为数据库管理员和开发者提供了宝贵的参考经验。 综上所述,在掌握基本的MySQL数据写入操作之外,紧跟数据库技术发展的步伐,关注安全增强、云服务特性及性能优化技巧,是现代开发者必备的技能升级路径。
2023-06-05 22:29:31
72
算法侠
Docker
...是一种开源的应用容器引擎,它使用操作系统级的虚拟化技术,将应用程序及其依赖项打包到一个可移植的容器中。在本文语境下,Docker通过提供标准化、轻量级的运行环境,使得开发人员能够更高效地构建、部署和运行应用程序,且最近宣布支持x86架构,意味着在基于x86硬件的设备上可以直接运行Docker容器,无需额外配置或转换。 x86架构 , x86架构是Intel公司开发的一种微处理器系列所采用的指令集架构,广泛应用于个人电脑、服务器以及其他各种计算设备中。在本文中,Docker官方开始支持x86架构意味着用户能够在所有符合x86标准的硬件平台上无缝使用Docker容器技术,降低了学习和应用门槛,提升了跨平台兼容性。 容器化技术 , 容器化技术是一种轻量级的虚拟化方式,通过操作系统级别的隔离机制,在单一操作系统内核上创建多个独立的、安全的、资源受限的运行环境(即容器)。在文章内容中,Docker利用容器化技术,将应用程序与其依赖关系封装成一个可移植的单元,使得应用程序可以在任何安装了Docker的环境中以一致的方式运行,从而简化了软件交付流程并提升了开发运维效率。对于x86架构的支持,则进一步扩展了Docker容器化的适用范围和便捷性。
2023-08-31 13:21:01
540
代码侠
Docker
...是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包到一个可移植的容器中,实现了软件的标准化、组件化和便捷部署。在本文语境下,Docker 用于创建和管理独立运行的容器实例,每个容器拥有自己独立的文件系统、网络配置以及进程空间,从而实现资源隔离和环境一致性。 端口映射 , 端口映射是计算机网络技术中的一个概念,在 Docker 中具体表现为将主机(物理机或虚拟机)上的某个端口与容器内部服务监听的端口进行关联绑定。通过端口映射,外部客户端可以通过访问主机的 IP 地址及指定端口号,间接访问到容器内运行的服务,实现了容器内外网络通信的桥梁作用。 docker run , docker run 是 Docker 容器生命周期管理中的一个重要命令,用于启动一个新的容器实例。该命令可以一次性完成拉取镜像、创建容器并启动容器等一系列操作。在本文中,docker run -p 参数组合被用来执行端口映射,即将主机端口与容器端口对应起来,使得外部可以直接访问主机IP和指定端口来连接到容器内部的服务。 NetworkSettings.Networks , 在 Docker 容器的 inspect 输出信息中,NetworkSettings.Networks 表示容器在网络配置方面的详细信息,包括容器加入的所有网络及其对应的网络接口设置。在本文中,通过 docker inspect 命令结合 --format 参数和特定模板语法查询容器的 IPAddress,获取的是当前容器在某一网络下的内部 IP 地址,这对于需要直接基于容器内部 IP 访问其服务的场景尤为关键。
2023-09-21 17:15:59
837
电脑达人
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
nohup command &
- 使命令在后台持续运行即使退出终端。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"