前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Element-UI Slider组件优...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Mongo
...ient = require('mongodb').MongoClient; const url = 'mongodb://localhost:27017'; async function run() { try { const client = await MongoClient.connect(url); const db = client.db('test'); // 开启事务 const result = await db.startTransaction(); // 更新用户信息 await db.collection('users').updateOne( { _id: 'user_id' }, { $set: { balance: 10 } } ); // 更新商品库存 await db.collection('products').updateOne( { name: 'product_name' }, { $inc: { stock: -1 } } ); // 提交事务 await result.commit(); console.log('Transaction committed successfully!'); } catch (err) { // 回滚事务 await result.abort(); console.error('Error occurred, rolling back transaction:', err); } finally { client.close(); } } run(); 在这个例子中,我们首先连接到本地的MongoDB服务器,然后开启一个事务。接着,我们依次更新用户信息和商品库存。要是执行过程中万一出了岔子,我们会立马把事务回滚,确保数据一致性不掉链子。最后,当所有操作都完成后,我们提交事务,完成这次操作。 五、结论 通过上述的例子,我们深入了解了MongoDB的事务支持以及如何处理多操作的原子性。MongoDB的事务功能真是个大救星,它就像一把超级可靠的保护伞,实实在在地帮我们在处理数据库操作时,确保每一步都准确无误,数据的一致性和完整性得到了妥妥的保障。所以,作为一位MongoDB开发者,咱们真得好好下功夫学习和掌握这门技术。这样一来,在实际项目里遇到各种难缠的问题时,才能更加游刃有余地搞定它们,让挑战变成小菜一碟!
2023-12-06 15:41:34
135
时光倒流-t
Go-Spring
...对网络库进行了一系列优化,有望进一步提升包括Go-Spring在内的各类基于Golang开发的微服务框架在网络通信和负载均衡方面的性能表现。 综上所述,理解并掌握负载均衡技术的同时,持续关注行业动态和技术趋势,将有助于我们在实践中更好地利用Go-Spring等工具构建高性能、高可用的分布式系统。
2023-12-08 10:05:20
530
繁华落尽
c++
...这些新特性的引入不仅优化了现有代码的编写体验,也为未来的技术发展奠定了坚实的基础。随着C++社区的持续努力,我们有理由期待C++在未来能够继续引领编程语言的发展潮流,满足日益复杂和多样化的软件开发需求。
2024-09-14 16:07:23
22
笑傲江湖
Spark
...机,它就会立马出手,优化整体的运行效率,让事情变得更快更顺溜。 2. 推测执行的基本概念 定义 Spark的推测执行是一种提高分布式计算任务效率的方法。换句话说,这个功能就相当于Spark有了个聪明的小脑瓜。当它发现有些任务跑得比乌龟还慢,就猜到可能是硬件闹情绪了,或者数据分配不均在使绊子,于是果断决定派出额外的“小分队”一起并肩作战,加速完成任务。你知道吗,当Spark在运行程序时,如果有某个复制的推测任务抢先完成了,它会很机智地把其他还在苦干的复制任务的结果直接忽略掉,然后挑出这个最快完成复制任务的成果来用。这样一来,就大大减少了整个应用程序需要等待的时间,让效率嗖嗖提升! 原理 在Spark中,默认情况下是关闭推测执行的,但在大型集群环境下开启该特性可以显著提升作业性能。Spark通过监控各个任务的执行进度和速度差异,基于内置的算法来决定是否需要启动推测任务。这种策略能够应对潜在的硬件故障、网络波动以及其他难以预估的因素造成的执行延迟。 3. 如何启用Spark的推测执行 为了直观地展示如何启用Spark的推测执行,我们可以查看SparkConf的配置示例: scala import org.apache.spark.SparkConf val sparkConf = new SparkConf() .setAppName("SpeculationDemo") .setMaster("local[4]") // 或者是集群模式 .set("spark.speculation", "true") // 启用推测执行 val sc = new SparkContext(sparkConf) 在这个示例中,我们设置了spark.speculation为true以启用推测执行。当然,在真实的工作场景里,咱们也得灵活应变,根据实际工作任务的大小和资源状况,对一些参数进行适当的微调。比如那个推测执行的触发阈值(spark.speculation.multiplier),就像调节水龙头一样,要找到适合当前环境的那个“度”。 4. 推测执行的实际效果与案例分析 假设我们正在处理一个包含大量分区的数据集,其中一个分区的数据量远大于其他分区,导致负责该分区的任务执行时间过长。以下是Spark内部可能发生的推测执行过程: - Spark监控所有任务的执行状态和速度。 - 当发现某个任务明显落后于平均速度时,决定启动一个新的推测任务处理相同的分区数据。 - 如果推测任务完成了计算并且比原任务更快,则采用推测任务的结果,并取消原任务。 - 最终,即使存在数据倾斜,整个作业也能更快地完成。 5. 探讨与权衡 尽管推测执行对于改善性能具有积极意义,但并不是没有代价的。额外的任务副本会消耗更多的计算资源,如果频繁错误地推测,可能导致集群资源浪费。所以,在实际操作时,我们得对作业的特性有接地气、实实在在的理解,然后根据实际情况灵活把握,找到资源利用和执行效率之间的那个微妙平衡点。 总之,Spark的推测执行机制是一个聪明且实用的功能,它体现了Spark设计上的灵活性和高效性。当你碰上那种超大规模、复杂到让人挠头的分布式计算环境时,巧妙地利用推测执行这个小窍门,就能帮咱们更好地玩转Spark。这样一来,甭管遇到什么难题挑战,Spark都能稳稳地保持它那傲人的高性能表现,妥妥的!下次你要是发现Spark集群上的任务突然磨磨蹭蹭,不按套路出牌地延迟了,不如尝试把这个神奇的功能开关打开试试,没准就能收获意想不到的惊喜效果!说到底,就像咱们人类在解决问题时所展现的机智劲儿那样,有时候在一片迷茫中摸索出最佳答案,这恰恰就是技术发展让人着迷的地方。
2023-03-28 16:50:42
329
百转千回
转载文章
...力的薪资涨幅,还承诺优化项目分配,以减少不必要的加班压力,并为他们规划了更明确的职业发展路径。此举既体现了公司对人才价值的高度认同,也反映出在快速迭代的技术领域,留住核心人才对企业长期发展的重要性。 与此同时,也有专家指出,面对领导挽留,员工在做决策时需全面考虑自身职业规划、新工作机会的成长空间以及当前公司内部的发展潜力。《哈佛商业评论》最近的一篇文章就深入探讨了“离职与挽留的艺术”,强调个人与组织之间的动态匹配关系,提倡建立开放、诚实且富有建设性的离职对话机制。 此外,根据LinkedIn发布的年度职场趋势报告,全球范围内,越来越多的企业开始注重企业文化建设和员工关怀,以期降低离职率,特别是在软件开发这类高流动率行业中,公司正不断探索更加人性化、激励导向的管理模式,从而有效应对人才竞争激烈的市场环境。 综上所述,在职场抉择的关键时刻,无论是企业通过各种手段挽留人才,还是员工权衡利弊后做出去留决定,都应关注到行业发展趋势、个人成长需求以及组织变革的深层次动因。在这个过程中,企业和员工双方共同塑造着职场生态的未来走向。
2023-04-02 14:22:56
134
转载
MemCache
...刻反思,然后再一步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
88
蝶舞花间
Mahout
...临时放宽限制。 - 优化模型参数:通过实验不同的参数组合,找到最佳配置。 - 特征工程:花时间去理解和筛选最重要的特征,减少不必要的计算量。 4. 实践操作 代码示例 现在,让我们通过一些实际的例子来看看如何在Mahout中处理这个问题。 4.1 示例1:基本的协同过滤推荐 java // 创建数据源 DataModel model = new FileDataModel(new File("data.csv")); // 初始化推荐器 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(5, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 设置迭代次数限制 int maxIterations = 100; for (int i = 0; i < maxIterations; i++) { try { // 进行推荐 List recommendations = recommender.recommend(userId, howMany); System.out.println("Recommendations: " + recommendations); } catch (TooManyIterationsException e) { System.err.println("Warning: " + e.getMessage()); break; } } 在这个例子中,我们为推荐过程设置了最大迭代次数限制,并且捕获了TooManyIterationsException异常,以便及时做出反应。 4.2 示例2:使用SVD++算法进行矩阵分解 java // 数据准备 FileDataModel model = new FileDataModel(new File("ratings.dat")); // SVD++参数设置 int rank = 50; double lambda = 0.065; int iterations = 20; try { // 创建SVD++实例 Recommender recommender = new SVDRecommender( model, new SVDPlusPlusSolver(rank, lambda), iterations ); // 进行预测 List recommendations = recommender.recommend(userId, howMany); System.out.println("Recommendations: " + recommendations); } catch (TooManyIterationsException e) { System.err.println("警告:迭代次数超出预期,检查数据或算法参数!"); } 这里,我们使用了SVD++算法来进行用户行为预测。同样地,我们设置了最大迭代次数,并处理了可能发生的异常情况。 5. 结论 与Mahout同行 通过上述内容,我相信你对Mahout中的TooManyIterationsException有了更深入的理解。嘿,别担心遇到问题,这没啥大不了的。重要的是你要弄清楚问题到底出在哪里,然后找到合适的方法去搞定它。希望这篇文章能帮助你在使用Mahout的过程中更加得心应手,享受机器学习带来的乐趣! --- 这就是我的分享,如果你有任何疑问或想要进一步讨论的话题,请随时留言。让我们一起探索更多关于Mahout的秘密吧!
2024-11-30 16:27:59
87
烟雨江南
Cassandra
...在大规模IoT环境中优化数据管理和分析。研究指出,由于IoT设备产生的数据量巨大且变化迅速,传统的数据管理方案往往难以应对。而Cassandra凭借其分布式架构和高效的数据处理能力,能够很好地满足IoT环境下的需求。 此外,该研究还提出了一种基于Cassandra的新型数据分片和负载均衡算法,旨在进一步提高数据处理速度和系统响应时间。实验结果表明,该算法在大规模IoT环境下表现出色,显著提升了数据管理效率。这一成果不仅为Cassandra在IoT领域的应用提供了新的思路,也为其他分布式数据库的设计提供了借鉴。 除了学术研究,工业界也在积极探索Cassandra的新应用场景。例如,亚马逊AWS在其最新版本的服务中引入了对Cassandra的支持,使得用户可以更加方便地利用Cassandra进行大规模数据分析和实时数据处理。这进一步证明了Cassandra在现代IT架构中的重要地位。 总之,随着技术的发展,Cassandra的应用场景将越来越丰富。无论是学术研究还是工业实践,Cassandra都在不断展现出其独特的优势和潜力。未来,我们有理由期待Cassandra在更多领域发挥重要作用。
2024-10-26 16:21:46
55
幽谷听泉
Kubernetes
...源不足,我们可以考虑优化已有Pod的资源配置,或者为节点设置合适的资源配额限制。例如,通过编辑Deployment或直接修改Pod的yaml配置文件,可以调整容器的CPU和内存请求及限制: yaml apiVersion: apps/v1 kind: Deployment metadata: name: my-app spec: replicas: 3 template: spec: containers: - name: my-container image: my-image resources: requests: cpu: "0.5" memory: "512Mi" limits: cpu: "1" memory: "1Gi" 这样既能确保Pod有充足的资源运行,又能防止单个Pod过度消耗资源,导致其他Pod无法调度。 3. 扩容节点或集群 对于长期存在的资源瓶颈,扩容节点可能是最直接有效的解决方案。根据实际情况,我们有两个灵活的选择:要么给现有的集群添几个新节点,让它们更热闹些;要么就直接把已有节点的规格往上提一提,让它们变得更加强大。以下是一个创建新节点实例的示例: bash 假设你正在使用GCP gcloud compute instances create new-node \ --image-family ubuntu-1804-lts \ --image-project ubuntu-os-cloud \ --machine-type n1-standard-2 \ --scopes cloud-platform \ --subnet default 然后,你需要将这个新节点加入到Kubernetes集群中,具体操作取决于你的集群管理方式。例如,在Google Kubernetes Engine (GKE) 中,新创建的节点会自动加入集群。 4. 使用Horizontal Pod Autoscaler (HPA) 除了手动调整,我们还可以利用Kubernetes的自动化工具——Horizontal Pod Autoscaler (HPA),根据实际负载动态调整Pod的数量。例如: bash 创建HPA对象,针对名为my-app的Deployment,目标CPU利用率保持在50% kubectl autoscale deployment my-app --cpu-percent=50 --min=1 --max=10 这段命令会创建一个HPA,它会自动监控"my-app" Deployment的CPU使用情况,当CPU使用率达到50%时,开始增加Pod数量,直到达到最大值10。 结语 处理Kubernetes节点资源不足的问题,需要我们结合监控、分析和调整策略,同时善用Kubernetes提供的各种自动化工具。在整个这个流程里,持续盯着并摸清楚系统的运行状况可是件顶顶重要的事。为啥呢?因为只有真正把系统给琢磨透了,咱们才能做出最精准、最高效的决定,一点儿也不含糊!记住啊,甭管是咱们亲自上手调整还是让系统自动化管理,归根结底,咱们追求的终极目标就是保证服务能稳稳当当、随时待命。咱得瞅准了,既要让集群资源充分满负荷运转起来,又得小心翼翼地躲开资源紧张可能带来的各种风险和麻烦。
2023-07-23 14:47:19
116
雪落无痕
Cassandra
...order_id UUID PRIMARY KEY, product_id UUID, status TEXT, timestamp TIMESTAMP ); 4.2 使用CQL实现数据插入 接下来,我们来看一下如何插入数据。想象一下,有个新订单刚刚飞进来,咱们得赶紧把它记在咱们的“订单簿”里。 sql INSERT INTO orders (order_id, product_id, status, timestamp) VALUES (uuid(), uuid(), '待支付', toTimestamp(now())); 4.3 实时监控数据 现在数据已经存进去了,那么如何实现实时监控呢?这就需要用到Cassandra的另一个特性——触发器。虽然Cassandra自己没带触发器这个功能,但我们可以通过它的改变流(Change Streams)来玩个变通,实现类似的效果。 4.3.1 启用Cassandra的Change Streams 首先,我们需要启用Cassandra的Change Streams功能。这可以通过修改配置文件cassandra.yaml中的enable_user_defined_functions属性来实现。将该属性设置为true,然后重启Cassandra服务。 yaml enable_user_defined_functions: true 4.3.2 创建用户定义函数 接着,我们创建一个用户定义函数来监听数据变化。 sql CREATE FUNCTION monitor_changes (keyspace_name text, table_name text) RETURNS NULL ON NULL INPUT RETURNS map LANGUAGE java AS $$ import com.datastax.driver.core.Row; import com.datastax.driver.core.Session; Session session = cluster.connect(keyspace_name); String query = "SELECT FROM " + table_name; Row row = session.execute(query).one(); Map changes = new HashMap<>(); changes.put("order_id", row.getUUID("order_id")); changes.put("product_id", row.getUUID("product_id")); changes.put("status", row.getString("status")); changes.put("timestamp", row.getTimestamp("timestamp")); return changes; $$; 4.3.3 实时监控逻辑 最后,我们需要编写一段逻辑来调用这个函数并处理返回的数据。这一步可以使用任何编程语言来实现,比如Python。 python from cassandra.cluster import Cluster from cassandra.auth import PlainTextAuthProvider auth_provider = PlainTextAuthProvider(username='your_username', password='your_password') cluster = Cluster(['127.0.0.1'], auth_provider=auth_provider) session = cluster.connect('your_keyspace') def monitor(): result = session.execute("SELECT monitor_changes('your_keyspace', 'orders')") for row in result: print(f"Order ID: {row['order_id']}, Status: {row['status']}") while True: monitor() 4.4 结论与展望 通过以上步骤,我们就成功地实现了在Cassandra中对数据的实时监控。当然啦,在实际操作中,咱们还得面对不少细碎的问题,比如说怎么处理错误啊,怎么优化性能啊之类的。不过,相信有了这些基础,你已经可以开始动手尝试了! 希望这篇文章对你有所帮助,也欢迎你在实践过程中提出更多问题,我们一起探讨交流。
2025-02-27 15:51:14
69
凌波微步
HessianRPC
...ianRPC的连接池优化策略,带你走进这个看似简单实则复杂的领域。 二、HessianRPC简介 1.1 什么是HessianRPC HessianRPC由Yahoo!开发,它将Java对象序列化为XML或JSON格式,通过HTTP进行传输。其特点是序列化和反序列化速度快,适合对性能要求较高的场景。 1.2 HessianRPC的工作原理 HessianRPC的核心是HessianSerializer,它负责对象的序列化和反序列化。你在手机APP上点击那个神奇的“调用”按钮,它就像个小能手一样,瞬间通过网络把你的请求打包成一个小包裹,然后嗖的一下发送给服务器。服务器收到后,就像拆快递一样迅速处理那些方法,搞定一切后又会给客户端回复反馈,整个过程悄无声息又高效极了。 三、连接池的重要性 2.1 连接池的定义 连接池是一种复用资源的技术,用于管理和维护一个预先创建好的连接集合,当有新的请求时,从连接池中获取,使用完毕后归还,避免频繁创建和销毁连接带来的性能损耗。 2.2 连接池在HessianRPC中的作用 对于HessianRPC,连接池可以显著减少网络开销,特别是在高并发场景下,避免了频繁的TCP三次握手,提高了响应速度。不过嘛,我们要琢磨的是怎么恰当地摆弄那个连接池,别整得太过了反而浪费资源,这是接下来的头等大事。 四、连接池优化策略 3.1 连接池大小设置 - 理论上,连接池大小应根据系统的最大并发请求量来设定。要是设置得不够给力,咱们的新链接就可能像赶集似的不断涌现,让服务器压力山大;可要是设置得太过豪放,又会像个大胃王一样猛吞内存,资源紧张啊。 - 示例代码: java HessianProxyFactory factory = new HessianProxyFactory(); factory.setConnectionPoolSize(100); // 设置连接池大小为100 MyService service = (MyService) factory.create("http://example.com/api"); 3.2 连接超时和重试策略 - 针对网络不稳定的情况,我们需要设置合理的连接超时时间,并在超时后尝试重试。 - 示例代码: java factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setRetryCount(3); // 设置最多重试次数为3次 3.3 连接池维护 - 定期检查连接池的状态,清理无用连接,防止连接老化导致性能下降。 - 示例代码(使用Apache HttpClient的PoolingHttpClientConnectionManager): java CloseableHttpClient httpClient = HttpClients.custom() .setConnectionManager(new PoolingHttpClientConnectionManager()) .build(); 五、连接池优化实践与反思 4.1 实践案例 在实际项目中,我们可以通过监控系统的连接数、请求成功率等指标,结合业务场景调整连接池参数。例如,根据负载均衡器的流量数据动态调整连接池大小。 4.2 思考与挑战 尽管连接池优化有助于提高性能,但过度优化也可能带来复杂性。你知道吗,我们总是在找寻那个奇妙的平衡点,就是在提升功能强大度的同时,还能让代码像诗一样简洁,易读又易修,这事儿挺有意思的,对吧? 六、结论 HessianRPC的连接池优化是一个持续的过程,需要根据具体环境和需求进行动态调整。要想真正摸透它的运作机制,还得把你实践经验的那套和实时监控的数据结合起来,这样咱才能找出那个最对路的项目优化妙招,懂吧?记住,优化不是目的,提升用户体验才是关键。希望这篇文章能帮助你更好地理解和应用HessianRPC连接池优化技术。
2024-03-31 10:36:28
503
寂静森林
Redis
...为我们解决复杂问题、优化系统性能的重要工具。这篇文儿,咱们就来唠唠Redis怎么摇身一变,成为一个超高效的数据字典储存法宝,并且在微服务设计这个大舞台上,它又是如何扮演着不可或缺的关键角色的。 2. Redis 不只是缓存 (1)Redis作为数据字典 想象一下,在日常开发过程中,我们经常需要维护一个全局共享的“数据字典”,它可能是各种静态配置信息,如权限列表、地区编码映射等。这些数据虽然不常变更,但查询频繁。利用Redis的哈希(Hash)数据结构,我们可以轻松实现这样的数据字典: python import redis r = redis.Redis(host='localhost', port=6379, db=0) 存储用户权限字典 r.hset('user:permissions', 'user1', '{"read": true, "write": false}') r.hset('user:permissions', 'user2', '{"read": true, "write": true}') 查询用户权限 user_permissions = r.hget('user:permissions', 'user1') print(user_permissions) 这段代码展示了如何使用Redis Hash存储并查询用户的权限字典,其读取速度远超传统数据库,极大地提高了系统的响应速度。 (2)Redis在微服务设计中的角色 在微服务架构中,各个服务之间往往需要进行数据共享或状态同步。Redis凭借其分布式锁、发布/订阅以及有序集合等功能,能够有效地协调多个微服务之间的交互,确保数据一致性: java import org.springframework.data.redis.core.StringRedisTemplate; import org.springframework.data.redis.core.script.DefaultRedisScript; // 使用Redis实现分布式锁 StringRedisTemplate template = new StringRedisTemplate(); String lockKey = "serviceLock"; Boolean lockAcquired = template.opsForValue().setIfAbsent(lockKey, "locked", 30, TimeUnit.SECONDS); if (lockAcquired) { try { // 执行核心业务逻辑... } finally { template.delete(lockKey); } } // 使用Redis Pub/Sub 实现服务间通信 template.convertAndSend("microservice-channel", "Service A sent a message"); 上述Java示例展现了Redis如何帮助微服务获取分布式锁以处理临界资源,以及通过发布/订阅模式实现实时消息通知,从而提升微服务间的协同效率。 3. Redis在微服务设计咨询中的思考与探索 当我们考虑将Redis融入微服务设计时,有几个关键点值得深入讨论: - 数据一致性与持久化:尽管Redis提供了RDB和AOF两种持久化方式,但在实际场景中,我们仍需根据业务需求权衡性能与数据安全,适时引入其他持久化手段。 - 服务解耦与扩展性:借助Redis Cluster支持的分片功能,可以轻松应对海量数据及高并发场景,同时有效实现微服务间的松耦合。 - 实时性与性能优化:对于实时性要求高的场景,例如排行榜更新、会话管理等,Redis的排序集合(Sorted Set)、流(Stream)等数据结构能显著提升系统性能。 - 监控与运维挑战:在大规模部署Redis时,要充分关注内存使用、网络延迟等问题,合理利用Redis提供的监控工具和指标,为微服务稳定运行提供有力保障。 综上所述,Redis凭借其强大的数据结构和高效的读写能力,不仅能够作为高性能的数据字典,更能在微服务设计中扮演重要角色。然而,这其实也意味着我们的设计思路得“更上一层楼”了。说白了,就是得在实际操作中不断摸索、改进,把Redis那些牛掰的优势,充分榨干、发挥到极致,才能搞定微服务架构下的各种复杂场景需求,让它们乖乖听话。
2023-08-02 11:23:15
218
昨夜星辰昨夜风_
转载文章
...qldump]\nquick\n\n[mysql]\nno-auto-rehash\n\n[client]\nport=3306\nmax_allowed_packet=64M\ndefault-character-set=utf8\n\n[mysqld]\nuser=root\nport=3306\nbasedir=/usr/local/mysql\nsocket=/var/lib/mysql/run/mysql.sock\ntmpdir=/var/lib/mysql/tmp\ndatadir=/var/lib/mysql/data\ndefault_authentication_plugin=mysql_native_password\nskip-grant-tables\nkey_buffer_size=16M" > /etc/my.cnfcat /etc/my.cnf // 查看文件内容chown mysql:mysql /etc/my.cnf // 将该文件的所有者及群组 都设为 mysqlll /etc/my.cnfchmod 777 /usr/local/mysql/support-files/mysql.server //对mysql.server的所有者,群组,其他用户设置读,写,执行,权限cp /usr/local/mysql/support-files/mysql.server /etc/init.d/mysqlchkconfig mysql on // 开机自动启动chown -R mysql:mysql /etc/init.d/mysqlvi /etc/profile // 把 export PATH=$PATH:/usr/local/mysql/bin 放到文件尾端,设置环境变量source /etc/profile // 重新执行刚修改的文件,使之立即生效env // 显示系统的环境变量mysqld --defaults-file=/etc/my.cnf --initializechown -R mysql:mysql /var/lib/mysql/datall /var/lib/mysql/dataservice mysql startservice mysql status // 查看服务状态ps -ef | grep mysqlnetstat -anptnetstat -anpt | grep mysqlnetstat -anpt | grep 3306 显示有关mysql的进程mysql -u root -p -S /var/lib/mysql/run/mysql.sock // 输入密码进入到了mysqlalter user 'root'@'localhost' identified by "123456";flush privileges;create user 'user'@'%' identified by '123456';grant all privileges on . to 'user'@'%' with grant option;flush privileges;select user,host from mysql.user; service mysql stop 停止服务\q回到命令行vi /etc/ld.so.confldconfig 搜索出可共享的动态链接库(格式如lib.so),进而创建出动态装入程序(ld.so)所需的连接和缓存文件。缓存文件默认为/etc/ld.so.cacheln -s /var/ldconfiglib/mysql/run/mysql.sock /tmp/mysql.sock 建立软连接 service 和 chkconfig 都可以用 systemctl 来代替 遇到 Can’t connect to local MySQL server through socket ‘/tmp/mysql.sock’ (2) service mysql stop // 先停用ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock // 建立软连接vi /etc/my.cnf // 修改里面的 socket 路径service mysql start // 重启 Linux chmod 命令 Linux文件的所有者、群组和其他人 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_53318060/article/details/121664128。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-24 19:00:46
119
转载
Nginx
...Gateway功能的优化。通过配置Ingress规则,不仅可以处理静态资源请求转发,还能根据路径、主机名等条件将请求精准地分发至不同后端服务,从而确保即使在复杂多变的分布式环境中也能实现高效的请求路由。 此外,随着服务网格Istio的普及,其内置的Envoy代理也提供了强大的流量控制能力,可替代或补充Nginx在服务间通信中的作用。通过深入研究Istio的VirtualService和DestinationRule配置,开发者能够以声明式的方式精细管理API网关逻辑,进而避免因配置不当导致的前后端访问问题。 综上所述,面对前后端分离项目部署中的挑战,持续关注和学习容器编排平台及服务代理技术的最新发展动态,是提升系统稳定性和运维效率的关键所在。
2023-07-29 10:16:00
57
时光倒流_
Spark
...kSession.builder() .appName("IoT Data Sync") .getOrCreate() // 读取数据 val dataDF = spark.read.format("csv").option("header", "true").load("hdfs://path/to/iot_data.csv") // 显示前5行数据 dataDF.show(5) // 关闭SparkSession spark.stop() 3. 物联网设备数据同步与协调挑战 3.1 数据量大 物联网设备产生的数据量通常是海量的,而且这些数据往往需要实时处理。你可以想象一下,如果有成千上万的传感器在不停地吐数据,那得有多少数字在那儿疯跑啊!简直像海里的沙子一样多。 3.2 实时性要求高 物联网设备的数据往往需要实时处理。比如,在一个智能工厂里,如果传感器没能及时把数据传给中央系统做分析,那可能就会出大事儿,比如生产线罢工或者隐藏的安全隐患突然冒出来。 3.3 设备多样性 物联网设备种类繁多,不同设备可能采用不同的通信协议。这就意味着我们需要一个统一的方式来处理这些异构的数据源。 3.4 网络条件不稳定 物联网设备通常部署在各种环境中,网络条件往往不稳定。这就意味着我们需要的方案得有点抗压能力,在网络不给力的时候还能稳稳地干活。 4. 如何用Spark解决这些问题 4.1 使用Spark Streaming Spark Streaming 是Spark的一个扩展模块,专门用于处理实时数据流。它支持多种数据源,包括Kafka、Flume、TCP sockets等。下面是一个使用Spark Streaming从Kafka接收数据的例子: scala // 创建SparkStreamingContext val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) // 创建Kafka流 val kafkaStream = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, Subscribe[String, String](topicsSet, kafkaParams) ) // 处理接收到的数据 kafkaStream.foreachRDD { rdd => val df = spark.read.json(rdd.map(_.value())) // 进一步处理数据... } // 开始处理流数据 ssc.start() ssc.awaitTermination() 4.2 利用DataFrame API简化数据处理 Spark的DataFrame API提供了一种结构化的方式来处理数据,使得我们可以更容易地编写复杂的查询。下面是一个使用DataFrame API处理数据的例子: scala // 假设我们已经有了一个DataFrame df import spark.implicits._ // 添加一个新的列 val enrichedDF = df.withColumn("timestamp", current_timestamp()) // 保存处理后的数据 enrichedDF.write.mode("append").json("hdfs://path/to/enriched_data") 4.3 弹性分布式数据集(RDD)的优势 Spark的核心概念之一就是RDD。RDD是一种不可变的、分区的数据集合,支持并行操作。这对于处理物联网设备产生的数据特别有用。下面是一个使用RDD的例子: scala // 创建一个简单的RDD val dataRDD = spark.sparkContext.parallelize(Seq(1, 2, 3, 4, 5)) // 对RDD进行映射操作 val mappedRDD = dataRDD.map(x => x 2) // 收集结果 val result = mappedRDD.collect() println(result.mkString(", ")) 4.4 容错机制 Spark的容错机制是其一大亮点。它通过RDD的血统信息(即RDD的操作历史)来重新计算丢失的数据。这就让Spark在处理像物联网设备这样的网络环境不稳定的情况时特别给力。 5. 结论 通过上述讨论,我们可以看到Spark确实是一个强大的工具,可以帮助我们有效地处理物联网设备产生的海量数据。虽说在实际操作中可能会碰到些难题,但只要我们好好设计和优化一下,Spark绝对能搞定这个活儿。希望这篇文章对你有所帮助,也欢迎你在实践中继续探索和分享你的经验!
2025-01-06 16:12:37
72
灵动之光
RabbitMQ
...essage Queuing Protocol)协议进行消息传递。在现代企业应用中,它常被用于解耦系统、异步处理任务和实现分布式通信。作为消息中间件,RabbitMQ可以保证信息的可靠传输,即使在网络环境不稳定或出现波动时,也能通过持久化消息、确认机制以及集群部署等策略来确保消息不丢失且高效送达。 Prometheus , Prometheus是一个流行的开源监控解决方案,适用于采集和存储时间序列数据,并提供灵活的查询语句和可视化展示功能。在本文的上下文中,Prometheus被用来实时抓取并分析RabbitMQ的各项性能指标,如消息收发速率、消息丢失率等,以便运维人员能够及时发现和解决问题,保障RabbitMQ服务的稳定运行。 Docker , Docker是一款容器化平台技术,它允许开发者打包应用及其依赖项到一个可移植的容器中,从而实现应用程序的一致性部署和运行。在调试网络波动对RabbitMQ性能的影响时,文章建议使用Docker搭建模拟网络波动的测试环境。通过创建包含网络波动模拟器的Docker镜像,用户可以在受控环境中重现网络问题,进而对RabbitMQ的性能表现进行深入的诊断和优化。
2023-10-10 09:49:37
99
青春印记-t
Impala
...域中数据表管理与查询优化的重要性。近日,Apache Impala社区发布了一项重大更新,对表的生命周期管理和跨数据库查询性能进行了显著提升。新版本不仅强化了错误提示机制,使得用户在遇到类似InvalidTableIdOrNameInDatabaseException这样的问题时能更快定位原因,还提供了更精细的权限控制和元数据管理功能。 此外,随着企业级数据仓库技术的发展,如何有效避免由于表的误删、移动或命名不规范导致的查询异常,已成为众多企业和数据工程师关注的重点。为此,业内专家建议采取一系列最佳实践,例如建立严格的表命名规范、定期进行数据资产审计以确保表结构完整性和一致性,以及利用Kerberos等安全认证方式防止未经授权的表操作。 同时,对于分布式系统中的数据查询优化,研究者们正在探索新的理论和技术手段。比如,通过改进查询计划生成算法,结合成本模型精确估算不同执行路径的成本,从而降低因表访问异常带来的性能损耗。而实时监控工具如Cloudera Manager和Impala的Profile API则为企业提供了可视化的查询诊断界面,便于快速识别并解决诸如InvalidTableIdOrNameInDatabaseException之类的运行时错误。 总之,在实际应用Impala或其他大数据处理工具时,理解并熟练应对各类查询异常是至关重要的,这要求我们不仅要掌握基础的数据表管理知识,更要紧跟技术发展趋势,不断提升数据治理与运维能力。
2023-02-28 22:48:36
539
海阔天空-t
Mahout
...情况对参数进行微调,优化那个算法。有时候,为了更上一层楼的推荐效果,咱可能还需要把用户的社交关系、时间因素等其他信息一并考虑进去,让推荐结果更加精准、接地气儿。在我们一路摸索的过程中,可别光依赖冷冰冰的算法分析,更得把咱们用户的感受和体验揣摩透彻,这样才能够实实在在打造出符合每个人个性化需求的推荐系统,让大家用起来觉得贴心又满意。 总的来说,利用Mahout实现用户相似度计算并不复杂,关键在于理解不同相似度计算方法背后的数学原理以及它们在实际业务中的适用性。实践中,我们要善于运用这些工具,同时保持开放思维,不断迭代和优化我们的推荐策略。
2023-02-13 08:05:07
88
百转千回
MyBatis
...探索相关的数据库访问优化技术和实践显得尤为重要。近期,随着微服务架构和云原生技术的发展,数据访问层性能优化的需求日益凸显。例如,在Spring Boot 2.5版本中,对JPA懒加载特性的支持更加完善,开发者可以参考这一最新进展来对比分析MyBatis与JPA在实现延迟加载方面的异同。 此外,对于“N+1问题”,一些ORM框架如Hibernate提供了BatchSize、FetchGraph等策略进行有效规避,这些解决方案同样适用于MyBatis用户借鉴。通过合理设置批处理大小或利用预先定义的抓取图(Fetch Plan),可以在保持延迟加载优势的同时,避免大量小查询带来的性能损失。 另外,数据库层面的优化也是解决数据访问性能的关键一环。例如,MySQL 8.0引入了新的JSON功能和窗口函数,使得在处理复杂关联查询时能更高效地获取所需数据,从而减轻应用程序层面的延迟加载压力。 综上所述,尽管MyBatis的延迟加载功能为开发者提供了便捷高效的手段,但在实际项目中,还需要结合最新的数据库技术动态以及具体的业务场景,灵活运用多种优化策略以达到最佳的数据访问效率。
2023-07-28 22:08:31
123
夜色朦胧_
转载文章
...数据处理、算法设计与优化等多个前沿领域。无论是对国家宏观决策还是个人微观权益保障,都具有深远意义。
2023-01-09 17:56:42
562
转载
HessianRPC
...teLimiter组件可以很好地帮助我们实现QPS的限制。下面是一个使用Guava RateLimiter配合HessianRPC进行限流的示例: java import com.caucho.hessian.client.HessianProxyFactory; import com.google.common.util.concurrent.RateLimiter; public class HessianServiceCaller { private final HessianProxyFactory factory = new HessianProxyFactory(); private final RateLimiter rateLimiter = RateLimiter.create(10); // 每秒最大10个请求 public void callService() { if (rateLimiter.tryAcquire()) { // 尝试获取令牌,成功则执行调用 SomeService service = (SomeService) factory.create(SomeService.class, "http://localhost:8080/someService"); service.someMethod(); // 调用远程方法 } else { System.out.println("调用过于频繁,请稍后再试"); // 获取令牌失败,提示用户限流 } } } 在这个示例中,我们创建了一个RateLimiter实例,设定每秒最多允许10次请求。在打算呼唤Hessian服务之前,咱们先来个“夺令牌大作战”,从RateLimiter那里试试能不能拿到通行证。如果幸运地拿到令牌了,那太棒了,咱们就继续下一步,执行服务调用。但如果不幸没拿到,那就说明现在请求的频率已经超过我们预先设定的安全值啦,这时候只好对这次请求说抱歉,暂时不能让它通过。 4. 进阶策略 结合服务熔断与降级 单纯依赖QPS限制还不够全面,通常还需要结合服务熔断和服务降级机制,例如采用Hystrix等工具来增强系统的韧性。在咱们实际做项目的时候,完全可以按照业务的具体需求,灵活设计些更高级、更复杂的限流方案。比如说,就像“滑动窗口限流”这种方式,就像是给流量装上一个可以灵活移动的挡板;又或者是采用“漏桶算法”,这就如同你拿个桶接水,不管水流多猛,都只能以桶能承受的速度慢慢流出。这样的策略,既实用又能精准控制流量,让我们的系统运行更加稳健。 5. 总结 在面对复杂多变的生产环境时,理解并合理运用HessianRPC的服务调用频率控制至关重要。使用Guava的RateLimiter或者其他的限流神器,我们就能轻松把控服务的每秒请求数(QPS),这样一来,就算流量洪水猛兽般袭来,也能保证咱的服务稳如泰山,不会被冲垮。同时呢,我们也要像鹰一样,始终保持对技术的锐利眼光,瞅准业务的特点和需求,灵活机动地挑选并运用那些最适合的限流策略。这样一来,咱们就能让整个分布式系统的稳定性和健壮性蹭蹭往上涨,就像给系统注入了满满的活力。
2023-12-08 21:23:59
522
追梦人
Python
...难题,像是性能瓶颈要优化啦,异常处理的棘手问题啦,这些都会让我特别来劲儿,忍不住深入地去琢磨Python这家伙的内在运行机制,就像在解剖一个精密的机械钟表一样,非得把它的里里外外都研究个透彻不可。 python 面对性能优化问题,我会尝试使用迭代器代替列表操作 def large_data_processing(data): for item in data: 进行高效的数据处理... pass 这段代码是为了说明,在处理大量数据时,合理利用Python的迭代器特性可以显著降低内存占用,提升程序运行效率。 总结这次实习经历,Python如同一位良师益友,陪伴我在实习路上不断试错、学习和成长。每一次手指在键盘上跳跃,每一次精心调试代码的过程,其实就像是在磨砺自己的知识宝剑,让它更加锋利和完善。这就是在日常点滴中,让咱的知识体系不断升级、日益精进的过程。未来这趟旅程还长着呢,但我打心底相信,有Python这位给力的小伙伴在手,甭管遇到啥样的挑战,我都敢拍胸脯保证,一定能够一往无前、无所畏惧地闯过去。
2023-09-07 13:41:24
323
晚秋落叶_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
!!
- 重复执行上一条命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"