前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[处理方法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hadoop
...友们!如果你对大数据处理感兴趣,那你一定听说过Hadoop这个名字。嘿,作为一个码农,我跟Hadoop的初次见面真的把我惊呆了!它的功能太牛了,感觉就像发现了一个全新的世界,简直太酷了吧!简单说呢,Hadoop就是一个开源的“大数据管家”,专门负责存东西、弄数据,而且不管数据多到啥程度,它都能应付得漂漂亮亮的!它就像是一个超级仓库,可以轻松应对各种规模的数据任务。 为什么Hadoop这么受欢迎呢?因为它解决了传统数据库在处理大规模数据时的瓶颈问题。比如说啊,你在一家电商公司当数据分析师,每天的工作就是跟上亿条用户的点击、浏览、下单这些行为记录打交道,简直就像在海量的信息海洋里淘宝一样!如果用传统的数据库,可能早就崩溃了。但Hadoop不一样,它可以将这些数据分散到多个服务器上进行并行处理,效率杠杠的! 不过,Hadoop的魅力远不止于此。嘿,大家好!今天我想跟你们分享一个关于Hadoop的超棒功能——它居然能让你在不同的访问控制协议之间轻松切换文件!是不是听着就很带感?哎呀,是不是觉得这事听着有点绕?别慌,我这就用大白话给你说道说道,保证你一听就明白! --- 二、什么是跨访问控制协议迁移? 首先,我们得明白什么是访问控制协议。简单说,就是规定谁可以访问你的数据以及他们能做些什么的规则。好比说啊,你有个公共文件柜,你想让一些人只能打开看看里面的东西,啥都不能动;但另外一些人呢,不仅能看,还能随便改,甚至直接把东西清空或者拿走。这就是访问控制协议的作用。 那么,“跨访问控制协议迁移”又是什么意思呢?想象一下,你有两个不同的系统,它们各自有自己的访问控制规则。比如说,一个是Linux那边的ACL(访问控制列表)系统,另一个则是Windows里的NTFS权限系统,两者各有各的玩法。现在,你要把文件从一个系统迁移到另一个系统,而且你还想保留原来的访问控制设置。这就需要用到跨访问控制协议迁移的技术了。 为什么要关心这个功能呢?因为现实世界中,企业往往会有多种操作系统和存储环境。要是你对文件的权限管理不当,那可就麻烦了,要么重要数据被泄露出去,要么一不小心就把东西给搞砸了。而Hadoop通过其强大的灵活性,完美地解决了这个问题。 --- 三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
77
风轻云淡
Redis
... 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
58
寂静森林
ElasticSearch
...xception如何处理?我的ElasticSearch救赎之路 大家好呀!今天咱们来聊聊一个让我头疼了好几天的问题——ElasticSearch里的NodeNotActiveException。嘿,我刚接触 Elasticsearch 的时候啊,心里还美滋滋的,心想这东西看着挺easy的,结果嘛……嘿嘿,一不留神就掉坑里了,真是“理想很丰满,现实很骨干”啊!不过还好,经过一番折腾,我终于找到了解决办法。嘿,大家好啊!今天想跟你们聊聊我的故事和一些小感悟,也算是把我踩过的坑、学到的东西分享给大家吧。希望对那些正被同一个问题烦得抓头发的朋友有点用,咱们一起想办法解决它! --- 1. 初识NodeNotActiveException:我的第一次“崩溃” 事情是这样的,我最近在搭建一个基于ElasticSearch的日志分析系统。一切看起来都很顺利,数据导入、索引创建啥的都没问题。但当我尝试对某些节点进行操作时,突然蹦出了这么一行错误: org.elasticsearch.cluster.block.ClusterBlockException: blocked by: [SERVICE_UNAVAILABLE/2/no active shards]; 当时我心里那个急啊!赶紧去查文档,发现这是NodeNotActiveException的表现之一。简单说吧,就好比某个关键的小哥突然“罢工”了,可能是因为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...解读及其在大规模数据处理中的实践》深度剖析了MySQL 8.0的各项新功能,包括窗口函数、通用表表达式等,并通过实例演示如何利用这些新特性提高查询效率,降低存储成本。 同时,针对日益增长的数据安全需求,《企业如何借助MySQL强化数据库安全性》一文强调了实施严格访问控制、审计跟踪、加密传输和透明数据加密等功能的重要性,并引用了最新的行业标准和法规要求作为依据。 对于开发者而言,学习并掌握MySQL的高级特性以及最佳实践至关重要。近日,Oracle发布了MySQL HeatWave,这是一种融合分析型数据库引擎,能在同一个MySQL数据库中实现事务处理与实时分析,极大简化了大数据处理流程,提升了业务决策速度。 综上所述,了解MySQL的最新动态和技术演进不仅可以帮助我们更好地进行日常的数据库管理工作,还能洞悉未来数据库技术的发展趋势,从而为我们的系统设计与优化提供有力支撑。在实战中,结合具体业务场景灵活运用SQL语句及数据库管理系统,将有效提升整个系统的稳定性和效率。
2024-02-16 12:44:07
544
转载
转载文章
...重背包,用多重背包的方法做;也可以看成总共有2n个物品,用一般背包的方法做 //方法1include <bits/stdc++.h>using namespace std;int c[1005],w[1005];//重量 能量int f[10005];int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)cin>>c[i]>>w[i];for(int i=1;i<=n;i++)for(int j=m;j>=c[i];--j){for(int k=1;k<=2&&kc[i]<=j;k++){f[j]=max(f[j],f[j-c[i]k]+w[i]k);} }cout<<f[m]<<endl;return 0;}//方法2include<bits/stdc++.h>using namespace std;const int N=1e3+5;int a[2N],b[2N],dp[N],n,m;int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];a[i+n]=a[i],b[i+n]=b[i];}for(int i=1;i<=2n;i++){for(int j=m;j>=a[i];j--){dp[j]=max(dp[j],dp[j-a[i]]+b[i]);} }cout<<dp[m]<<'\n';return 0;} E: 最大素数 题目描述 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输入 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输出 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 搜索 这里用的bfs,优先搜索当前最大的数,如果这个数已经是素数那么就是答案 我说不清楚,参考代码吧 include <bits/stdc++.h>using namespace std;bool isprime(int n){//素数判断if(n<2)return 0;for(int i=2;i<=(int)sqrt(n);++i)if(n%i==0)return 0;return 1;}struct node {string s;int len;bool operator<(const node &q)const{if(len!=q.len)return len<q.len;return s<q.s;} };bool check(string str){int m=0;for(int i=0;i<str.size();i++){m=m10+str[i]-'0';}return isprime(m);}bool flag;map<string,bool>vis;string s;void bfs(){priority_queue<node>q;q.push({s,s.size()});while(!q.empty()){node k=q.top();q.pop();if(vis[k.s])continue;vis[k.s]=1;if(check(k.s)){cout<<k.s<<endl;flag=1;return ;}for(int i=0;i<k.s.size();i++){//去掉第i个字符string s1=k.s.substr(0,i)+k.s.substr(i+1);q.push({s1,s1.size()});} }}int main(){cin>>s;bfs();if(!flag)puts("No result.");return 0;} F: 最大计分 题目描述 小米和小花在玩一个删除数字的游戏。 游戏规则如下: 首先随机写下N个正整数,然后任选一个数字作为起始点,从起始点开始从左往右每次可以删除一个数字,但是必须满足下一个删除的数字要小于上一个删除的数字。每成功删除一个数字计1分。 请问对于给定的N个正整数,一局游戏过后可以得到的最大计分是多少? 输入 单组输入。 第1行输入一个正整数N表示数字的个数(N<=10^3)。 第2行输入N个正整数,两两之间用空格隔开。 输出 对于给定的N个正整数,一局游戏过后可以得到的最大计分值。 最长下降子序列 将数组逆转就等价于求最长上升子序列长度 include <bits/stdc++.h>using namespace std;int arr[1005];int main(){int n;cin>>n;for(int i=0;i<n;i++)cin>>arr[i];reverse(arr,arr+n);vector<int>stk;stk.push_back(arr[0]);for (int i = 1; i < n; ++i) {if (arr[i] > stk.back())stk.push_back(arr[i]);elselower_bound(stk.begin(), stk.end(), arr[i]) = arr[i];}cout << stk.size() << endl;return 0;} G: 密钥 题目描述 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输入 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输出 将N划分为K个整数后的最大乘积。 搜索 include <bits/stdc++.h>using namespace std;define ll long longll n;ll ans;void dfs(ll sum,ll m,int res){if(res==1){ans=max(ans,summ);return ;}int num=(int)log10(m)+1;//m的位数int k=10;for(int i=1;i<=num-res+1;i++){//保证剩余的数至少还有res-1位dfs(sum(m%k),m/k,res-1);k=10;}return ;}int main(){cin>>n;dfs(1ll,n,n%10);cout<<ans<<endl;return 0;} H: X星大学 题目描述 X星大学新校区终于建成啦! 新校区一共有N栋教学楼和办公楼。现在需要用光纤把这N栋连接起来,保证任意两栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
468
转载
转载文章
...给系统内核增加了中断处理,于是当应用程序妄图执行特权指令,想要染指内核运行时,中断会把程序强行切断,内核从中断中重新获得CPU的执行权限。 虽说恶意用户程序难以攻击内核,但是系统当前还存在一个漏洞,使得恶意程序能取攻击另一个程序,我们看看这个问题到底是怎么实现的。我们先在内核C语言部分做简单修改,把原来的cmd_hlt函数改为cmd_execute_program: nt show_pos = 179;void cmd_execute_program(char file) {io_cli();struct Buffer appBuffer = (struct Buffer)memman_alloc(memman, 16);struct TASK task = task_now();task->pTaskBuffer = appBuffer;file_loadfile(file, appBuffer);struct SEGMENT_DESCRIPTOR gdt =(struct SEGMENT_DESCRIPTOR )get_addr_gdt();//select is multiply of 8, divided by 8 get the original valueint code_seg = 21 + (task->sel - first_task_cons_selector) / 8;//change hereint mem_seg = 30 + (task->sel - first_task_cons_selector) / 8;//22;char p = intToHexStr(mem_seg);showString(shtctl, sht_back, 0, show_pos, COL8_FFFFFF, p); show_pos += 16;set_segmdesc(gdt + code_seg, 0xfffff, (int) appBuffer->pBuffer, 0x409a + 0x60);//new memory char q = (char ) memman_alloc_4k(memman, 641024);appBuffer->pDataSeg = (unsigned char)q;set_segmdesc(gdt + mem_seg, 64 1024 - 1,(int) q ,0x4092 + 0x60);task->tss.esp0 = 0;io_sti();start_app(0, code_seg8,641024, mem_seg8, &(task->tss.esp0));io_cli();memman_free_4k(memman,(unsigned int) appBuffer->pBuffer, appBuffer->length);memman_free_4k(memman, (unsigned int) q, 64 1024);memman_free(memman,(unsigned int)appBuffer, 16);task->pTaskBuffer = 0;io_sti();}void console_task(struct SHEET sheet, int memtotal) {....for(;;) { ....else if (i == KEY_RETURN) {....} else if (strcmp(cmdline, "hlt") == 1) {//change herecmd_execute_program("abc.exe");}....}...} 原来的cmd_hlt函数默认加载并执行软盘中的abc.exe程序,现在我们把cmd_hlt改名为cmd_execute_program,并且函数需要传入一个字符串,用于表明要加载执行的程序名字。在该函数的代码实现中,我们使用showString函数把被加载执行的用户进程数据段所对应的全局描述符号给显示到桌面上,上面代码执行后情况如下: 我们看到,在控制台中执行hlt命令后,内核加载了用户进程,同时在控制台下方输出了一个字符串,也就是0x1E,这个数值对应的就是当前运行用户进程其数据段对应的全局描述符号。一旦有这个信息之后,另一个进程就可以有机可乘了。 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
转载文章
...场景中边缘设备的实时处理能力。 对于希望深入了解TVM内部工作原理和技术细节的读者,推荐查阅其官方文档和论文《TVM: An Automated End-to-End Optimizing Compiler for Deep Learning》。该论文详细阐述了TVM的设计理念和关键技术,为开发者提供了理论基础和实践指导。同时,积极参与TVM社区的讨论和贡献,也是提升自己在深度学习编译器领域技能的重要途径。不少开发人员分享了他们在使用TVM过程中优化模型性能、解决实际问题的经验心得,这些内容均可在GitHub项目页面及相关的技术论坛中找到,值得深入研读和参考。
2023-12-12 20:04:26
87
转载
转载文章
...解除电脑开机密码。此方法仅供交流,严禁作为非法手段使用 方法1在开机时按下F8进入带命令提示符的安全模式输入NET USER+用户名+123456/ADD 可把某用户的密码强行设置为123456 方法2如用户忘记登录密码可 按下方法解决 此法不适用于忘记安装时所设定〔administrator〕的密码 1.在计算机启动时按F8及选Safe Mode With Command Prompt 2.选Administrator后便会跳出Command Prompt的窗口 3.用Net的命令增加一个用户,例:增加一个用户名为alanhkg888,命令语法如下: net user alanhkg888/add 4.将新增用户提升至Administrator的权力,例:提升刚才增 加用户alanhkg888的权力,命令语法如下 net localgroup administrators alanhkg888/add 5.完成上列步骤后重新启动计算机,在 启动画面上便增加了一个用户alanhkg888了,选alanhkg888进入www.shanpow.com_删除Download和DataStore文件夹中的所有文件。 6.登入后在控制台→使用者账户→选忘记密码的用户,然后选移除密码 7.在登入画面中选原来的用户便可不需密码情况下等入(因已移除了) 8.删除刚才新增的用户:在控制台→使用者账户→选alanhkg888,然后选移除账户便可 方法3 1、重新启动Windows XP,在启动画面出现后的瞬间按F8,选择带命令行的安全模 式运行。 2、运行过程停止时,系统列出了超级用户administrator和本地用户owner的选择菜单, 点击administrator,进入命令行模式。 3、键入命令:net user owner 123456/add,强制性将owner用户的口令更改为123456。 若想在此添加某一用户:用户名为abcdef,口令为123456的话,请输入net user abcdef 123456/add,添加后可用net localgroup administrators abcdef/add命令将用户提升为 系统管理组administrators用户,具有超级权限。 4.DOS下删windows\system32\config里面的SAM档就可以了 5.开机后按键盘的Delete键进入BIOS界面。找到User Password选项,其默认为关闭状 态。启动并输入用户密码(1~8位英文或数字)。计算机提示请再输入一遍以确认密码无误, 保存退出后重新启动机器,这时就会在开机时出现密码菜单 方法4我们知道在安装Windows XP过程中,首先是以administrator默认登录,然后会要 求创建一个新账户,以便进入Windows XP时使用此新建账户登录,而且在Windows XP的 登录接口中也只会出现创建的这个用户账号,不会出现administrator,但实际上该 administrator账号还是存在的,且密码为空。 【二】:Windows 7实战经验 Windows 7实战经验:完美解决Windows 7更新失败(Windows Update 错误 80070003) 很多用户反映,为什么Windows 7的自动更新会出显未知错误,导致很多更新都不能正确安装?针对这个问题,在我对自己的Windows 7进行更新的时候,有时也会发生类似的问题,经过研究,已经完美解决,下面给大家解决方案! 如果在检查更新时收到Windows Update错误80070003,则需要删除Windows用于标识计算机更新的临时文件。若要删除临时文件,请停止Windows Update服务,删除临时更新文件,重新启动Windows Update服务,然后再次尝试检查Windows更新。 以下步骤为解决Windows 7更新错误方法,本博客亲测有效。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(通过单击“开始”按钮,再依次单击“控制面板”,然后单击“管理工具”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“停止”。 1.打开“计算机”。 2.双击安装Windows的本地硬盘(通常是驱动器C)。 3.双击Windows文件夹,然后双击SoftwareDistribution文件夹。 4.双击打开DataStore文件夹,然后删除该文件夹中的所有文件。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 5.单击“后退”按钮。在SoftwareDistribution文件夹中,双击打开Download文件夹,删除该文件夹中的所有文件,然后关闭窗口。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(方法同上)”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“启动”。 4.关闭“服务”窗口和“管理工具”窗口。 完成上面操作,你需要重新更新看看可以成功更新了吗,一般因为我们删除了自动更新的一些文件,如果你仔细观察的话,那些文件大小并不是很小,所以我们再更新的时候等待的时间可能会长一些! 【三】:Win10系统提示“无法完成更新正在撤销更改” 更新win10系统补丁之后,系统会提示“window10无法更新,正在撤销”,需要重启好几次,这该怎么办呢?下面小编就向大家介绍一下windows10系统无法完成更新正在撤销更改的解决方法,欢迎大家参考和学习。 系统更新失败,反复重启还是不行,那是不是下载下来的补丁没用了呢??所以我们先要删除Windows更新的缓存文件!在做以下操作之前,首先我们要确认系统内的windows update & BITS服务设置是否开启。 检查方法: 1、按“Win+R”组合键打开运行,输入“services.msc”,点击确定(如果弹出用户账户控制窗口,我们点击“继续”)。 2、双击打开“Background Intelligent Transfer Services”服务。 3、在选项卡点击“常规”,要保证“启动类型”是“自动”或者“手动”。然后点击“服务状态”“启用”按钮。 4. 重复步骤3分别对“Windows Installer”,“Cryptographic Services”, “software licensing service” 以及“Windows Update”这四项服务进行检查。 解决办法: 1、按“Windows+X”打开“命令提示符(管理员)”。 2、输入“net stop wuauserv”回车(我们先把更新服务停止)。 3、输入”%windir%\SoftwareDistribution“回车(删除Download和DataStore文件夹中的所有文件)。 4、最后输入“net start wuauserv”回车(重新开启系统更新服务)。 完成以上的步骤之后,我们就可以在“Windows Update”中再次尝试检查更新即可。 以上就是windows10系统无法完成更新正在撤销更改的解决方法介绍了。遇到同样问题的用户,可以尝试一下这个方法,如果不行,可以留言,小编会继续寻找其他的解决办法。 【四】:Windows更新失败提示错误码80070003怎么办 Windows7,Windows8.1,Windows10在更新过程中,所更新的程序无法安装,导致更新失败,提示错误码80070003。遇到这种情况,无论再试一次,或重启电脑,更新程序仍无法安装,出现错误码80070003提示。关于这个故障,下面小编就为大家介绍一下具体的解决方法吧,欢迎大家参考和学习。 具体解决方法步骤: 1、在电脑更新过程中,更新失败,程序无法安装,出现错误码80070003的提示。如图1 2、打开控制面板,点击“系统和安全”,打开对话框。如图2 3、在打开的对话框中,点击“管理工具”-双击“服务”,在打开的对话框的下方找到“Windows Update"。(如图3),选择Windows Update,点击界面左上角的”停止“按键,或是单击右键选择”停止“。(如图4),以管理员身份进入,如果提示需要输入秘码,则输入秘码。 4、在C盘,打开”Windows"文件夹,-双击打开“SoftwareDistribution"文件夹,找到下面的2个文件夹。打开”DataStore"文件夹,删除里面所有的文件。反回上一步。如图5.1,再打开"Download"文件夹,删除里面所有的文件。(如图5.2) 5、返回第三步的操作,选择Windows Update,右键单击,选择“启动”。 6、做完上面操作后,安装更新文件就会顺利了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42620202/article/details/119158423。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-16 16:18:33
136
转载
转载文章
...改头像,因为之前没有处理过类似的问题,本文主要记录对头像的处理过程以及思考,希望给碰到类似问题的苦逼程序员一点借鉴。 个人中心整体功能一览 2,头像处理xmind 叽歪一句,个人碰到问题的时候,首先会分析问题,在分析问题的基础上,得到整体的解决方案,然后一步步分解步骤,去实现,首先奉上我的解决方案,也许不是最优的,但是按照个人的知识和技能水平,绝对是可以实现的。 修改头像mind 3,实现步骤 按照我的mind,首先是上传图片,先上效果图,然后给出实现的代码。首先是整体的结构图,做的比较丑,别喷哥··· 修改头像整体效果图 下面按照mind一步步实现, 首先:点击修改头像,弹出一个层, 第一步:弹出上传图片的层,上传图片到服务器 对实现细节不感冒的屌丝可以看看代码(结合哥的mind看可以事半功倍): 分层实现细节 Html结构层这个可以免了,一般都可以弄出来 Js连接层 首先是弹出一个上传图片的层,然后上传图片到服务器端。 $("editHead").bind("click", function () { showUploadDiv(); }); function showUploadDiv() { $("uploadMsg").empty(); $.fancybox({ type:'inline', width:400, href:'uploadUserHead' }); }//fancybox弹出层 上传的处理代码 Servlet服务端处理层(commonupload实现)服务器端处理代码 上传的处理代码 $(function () { $("uploadFrom").ajaxForm({ beforeSubmit:checkImg, error:function(data,status){ alert(status+' , '+data); $("uploadMsg").html('上传文件超过1M!'); }, success:function (data,status) { try{ var msg = $.parseJSON(data); if (msg.code == 200) { //如果成功提交 javascript:$.fancybox.close(); $("uploadUserHead").hide(); var data = msg.object; $("editImg").attr("src", data.path).show(); $("preview1").attr("src", data.path).show(); $(".zoom").show(); $("width").val(data.width); $("height").val(data.height); $("oldImgPath").val(data.realPath); $("imgFileExt").val(data.fileExt); var api, jcrop_api, boundx, boundy; $('editImg').Jcrop({ onChange:updatePreview, onSelect:updatePreview, aspectRatio:1, bgOpacity:0.5, bgColor:'white', addClass:'jcrop-light' }, function () { api = this; api.setSelect([130, 65, 130 + 350, 65 + 285]); api.setOptions({ bgFade:true }); api.ui.selection.addClass('jcrop-selection'); var bounds = this.getBounds(); boundx = bounds[0]; boundy = bounds[1]; jcrop_api = this; }); function updatePreview(c) { if (parseInt(c.w) > 0) { var rx = 80 / c.w; var ry = 80 / c.h; $('preview1').css({ width:Math.round(rx boundx) + 'px', height:Math.round(ry boundy) + 'px', marginLeft:'-' + Math.round(rx c.x) + 'px', marginTop:'-' + Math.round(ry c.y) + 'px' }); } jQuery('x').val(c.x); jQuery('y').val(c.y); jQuery('x2').val(c.x2); jQuery('y2').val(c.y2); jQuery('w').val(c.w); jQuery('h').val(c.h); } } if (msg.code == 204) { $("uploadMsg").html(msg.msg); } }catch (e){ $("uploadMsg").html('上传文件超过1M!'); } } }); }); //服务器端处理代码 String tempSavePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片零时保存路径 String tempShowPath = ConfigurationUtils.get("user.resource.url"); //用户保存的头像路径 if(tempSavePath.equals("/img")) { tempSavePath=sc.getRealPath("/")+tempSavePath; } Msg msg = new Msg(); msg.setCode(204); msg.setMsg("上传头像失败!"); String type = request.getParameter("type"); if (!Strings.isNullOrEmpty(type) && type.equals("first")) { request.setCharacterEncoding("utf-8"); DiskFileItemFactory factory = new DiskFileItemFactory(); ServletFileUpload servletFileUpload = new ServletFileUpload(factory); try { List items = servletFileUpload.parseRequest(request); Iterator iterator = items.iterator(); while (iterator.hasNext()) { FileItem item = (FileItem) iterator.next(); if (!item.isFormField()) { { File tempFile = new File(item.getName()); File saveTemp = new File(tempSavePath+"/tempImg/"); String getItemName=tempFile.getName(); String fileName = UUID.randomUUID()+"." +getItemName.substring(getItemName.lastIndexOf(".") + 1, getItemName.length()); File saveDir = new File(tempSavePath+"/tempImg/", fileName); //如果目录不存在,创建。 if (saveTemp.exists() == false) { if (!saveTemp.mkdir()) { // 创建失败 saveTemp.getParentFile().mkdir(); saveTemp.mkdir(); } else { } } if (saveDir.exists()) { log.info("存在同名文件···"); saveDir.delete(); } item.write(saveDir); log.info("上传头像成功!"+saveDir.getName()); msg.setCode(200); msg.setMsg("上传头像成功!"); Image image = new Image(); BufferedImage bufferedImage = null; try { bufferedImage = ImageIO.read(saveDir); } catch (IOException e) { e.printStackTrace(); } image.setHeight(bufferedImage.getHeight()); image.setWidth(bufferedImage.getWidth()); image.setPath(tempShowPath+ "/tempImg/" + fileName); log.info(image.getPath()); image.setRealPath(tempSavePath+"/tempImg/"+ fileName); image.setFileExt(fileName.substring(fileName.lastIndexOf(".") + 1, fileName.length())); msg.setObject(image); } } else { log.info("" + item.getFieldName()); } } } catch (Exception ex) { log.error("上传用户头像图片异常!"); ex.printStackTrace(); } finally { AppHelper.returnJsonAjaxForm(response, msg); } } 上传成功后,可以看到照片和照片的预览效果。看图: 上传头像之后的效果 Friday, October 05, 2012 第二步:编辑和保存头像 选中图中的区域,保存头像,就完成头像的修改。 修改之后的效果入下: 修改之后的头像(因为传了一张动态图片,得到的跟上图有些不同) 实现细节: 首先用了一个js控件:Jcrop,有兴趣的屌丝可以去搜一下,然后,利用上传之后的图片和之前的选定区域,完成了一个截图,保存为用户的头像。 连接层的js: $("saveHead").bind("click", function () { var width = $("width").val(); var height = $("height").val(); var oldImgPath = $("oldImgPath").val(); var imgFileExt = $("imgFileExt").val(); var x = $('x').val(); var y = $('y').val(); var w = $('w').val(); var h = $('h').val(); $.ajax({ url:'/imgCrop', type:'post', data:{x:x, y:y, w:w, h:h, width:width, height:height, oldImgPath:oldImgPath, fileExt:imgFileExt}, datatype:'json', success:function (msg) { if (msg.code == 200) { $("avatar").attr("src", msg.object); forword('/nav', 'index'); } else { alert(msg.msg); } } }); }); function checkImg() { //限制上传文件的大小和后缀名 var filePath = $("input[name='uploadImg']").val(); if (!filePath) { $("uploadMsg").html("请选择上传文件!").show(); return false; } else { var extStart = filePath.lastIndexOf("."); var ext = filePath.substring(extStart, filePath.length).toUpperCase(); if (ext != ".PNG" && ext != ".GIF" && ext != ".JPG") { $("uploadMsg").html("图片限于png,gif,jpg格式!").show(); return false; } } return true; } 服务器端处理代码: String savePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片保存路径 String showPath = ConfigurationUtils.get("user.resource.url"); //显示图片的路径 if(savePath.equals("/img")) { savePath=sc.getRealPath("/")+savePath; } int userId = AppHelper.getUserId(request); String userName=AppHelper.getUserName(request); Msg msg = new Msg(); msg.setCode(204); msg.setMsg("剪切图片失败!"); if (userId <= 0) { msg.setMsg("请先登录"); return; } // 用户经过剪辑后的图片的大小 Integer x = (int)Float.parseFloat(request.getParameter("x")); Integer y = (int)Float.parseFloat(request.getParameter("y")); Integer w = (int)Float.parseFloat(request.getParameter("w")); Integer h = (int)Float.parseFloat(request.getParameter("h")); //获取原显示图片路径 和大小 String oldImgPath = request.getParameter("oldImgPath"); Integer width = (int)Float.parseFloat(request.getParameter("width")); Integer height = (int)Float.parseFloat(request.getParameter("height")); //图片后缀 String imgFileExt = request.getParameter("fileExt"); String foldName="/"+ DateUtils.nowDatetoStrToMonth()+"/"; String imgName = foldName + UUID.randomUUID()+userName + "." + imgFileExt; //组装图片真实名称 String createImgPath = savePath + imgName; //进行剪切图片操作 ImageCut.abscut(oldImgPath,createImgPath, xwidth/300, yheight/300, wwidth/300, hheight/300); File f = new File(createImgPath); if (f.exists()) { msg.setObject(imgName); //把显示路径保存到用户信息下面。 UserService userService = userServiceProvider.get(); int rel = userService.updateUserAvatar(userId, showPath+imgName); if (rel >= 1) { msg.setCode(200); msg.setMsg("剪切图片成功!"); log.info("剪切图片成功!"); //记录日志,更新session log(showPath+imgName,userName); UserObject userObject= userService.getUserObject(userName); request.getSession().setAttribute("userObject", userObject); if (userObject != null && Strings.isNullOrEmpty(userObject.getHeadDir())) userObject.setHeadDir("/images/geren_right_01.jpg"); } else { msg.setCode(204); msg.setMsg("剪切图片失败!"); log.info("剪切图片失败!"); } } AppHelper.returnJson(response, msg); File file=new File(oldImgPath); boolean deleteFile= file.delete(); if(deleteFile==true) { log.info("删除原来图片成功"); } / 图像切割(改) @param srcImageFile 源图像地址 @param dirImageFile 新图像地址 @param x 目标切片起点x坐标 @param y 目标切片起点y坐标 @param destWidth 目标切片宽度 @param destHeight 目标切片高度 / public static void abscut(String srcImageFile, String dirImageFile, int x, int y, int destWidth, int destHeight) { try { Image img; ImageFilter cropFilter; // 读取源图像 BufferedImage bi = ImageIO.read(new File(srcImageFile)); int srcWidth = bi.getWidth(); // 源图宽度 int srcHeight = bi.getHeight(); // 源图高度 if (srcWidth >= destWidth && srcHeight >= destHeight) { Image image = bi.getScaledInstance(srcWidth, srcHeight, Image.SCALE_DEFAULT); // 改进的想法:是否可用多线程加快切割速度 // 四个参数分别为图像起点坐标和宽高 // 即: CropImageFilter(int x,int y,int width,int height) cropFilter = new CropImageFilter(x, y, destWidth, destHeight); img = Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(image.getSource(), cropFilter)); BufferedImage tag = new BufferedImage(destWidth, destHeight, BufferedImage.TYPE_INT_RGB); Graphics g = tag.getGraphics(); g.drawImage(img, 0, 0, null); // 绘制缩小后的图 g.dispose(); // 输出为文件 ImageIO.write(tag, "JPEG", new File(dirImageFile)); } } catch (Exception e) { e.printStackTrace(); } } 最后一个处理的比较好的地方就是图片的存储路径问题: 我在服务器端的nginx中做了一个图片的地址映射,把图片放到了跟程序不同的路径中,每次存储图片都是存到图片路径中,客户端拿到图片的地址确实经过nginx映射过的地址。 还有就是关于限制上传图片的大小的问题: 我在服务器端显示了资源的最大大小为1M,当上传的资源超过1M,服务器自动报错413,通过异常处理,可以在客户端得到正确的提示信息。 4,总结优点和不足。 关于修改头像,这么做下来确实达到了目的,用户可以从容的修改头像,性能也还可以。但是,上传图片的大小判断是依靠服务器端来判断的,等待的时间比较久,改进的方向是使用flash控件来限制,使用flash来上传,也不会出现弹出层,这样比较大众化,更容易为用户接受一点。我会不断改进。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39849287/article/details/111489534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-18 10:58:17
268
转载
转载文章
...身份验证,商品管理,处理订单,用户信息管理,连接信息管理 3.3 数据库需求分析 数据库的设计通常是以一个已经存在的数据库管理系统为基础的,常用的数据库管理系统有MYSQL,SQL,Oracle等。我采用了Mysql数据库管理系统,建立的数据库名为db_business。 整个系统功能需要以下数据项: 用户:用户id、用户名称、登录密码、用户真实姓名、性别、邮箱地址、联系地址、联系电话、密码问题、答案、注册时间。 留言:主题id、作者姓名、Email、主题名称、留言内容、发布时间。 商品:商品id、名称、价格、图片路径、类型、简要介绍、存储地址、上传人姓名、发布时间、是否推荐。 订单:订单号、用户名、真实姓名、订购日期、Email、地址、邮编、付款方式、联系方式、运送方式、订单核对、其他。 管理员:管理员id、管理员名称、管理员密码。 公告:公告内容、公告时间。 4系统设计 4.1 系统功能模块设计 功能结构图如下: 图9 功能模块设计图 从图中可以看出,网上腕表交易系统可以分为前台和后台两个部分,前台部分由用户使用,主要包括用户注册,生成订单,腕表购物车管理,查看腕表购物车,查看留言,订购产品,订单查询和发布留言7个模块;本文转载自http://www.biyezuopin.vip/onews.asp?id=11975后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理5个模块。 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><base href="<%=basePath%>"/><title>腕表商城</title><meta http-equiv="pragma" content="no-cache"><meta http-equiv="cache-control" content="no-cache"><meta http-equiv="expires" content="0"> <meta http-equiv="keywords" content="keyword1,keyword2,keyword3"><meta http-equiv="description" content="This is my page"><meta name="viewport" content="width=device-width, initial-scale=1"><!-- Favicon --><link rel="shortcut icon" type="image/x-icon" href="img/favicon.png"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/font-awesome.min.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/bootstrap.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/style.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/magnific-popup.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/owl.carousel.css"><script type="text/javascript">function getprofenlei(){ var html = ""; $.ajax({url: "leixing.action?list&page=0&rows=30",type: "POST",async: false, contentType: "application/x-www-form-urlencoded;charset=UTF-8",success: function (data) { $.each(data.rows, function (i, val) { html += ' <li ><a href="home/search.jsp?fenlei='+val.id+'" >'+val.a1+' </a></li>';})} }); $("fenlei").html(html);}function gettop1(){var html = "";$.ajax({url: "leixing.action?list&page=0&rows=10",type: "POST",async: false,success: function (data) {var total='';//<div class="tab-pane active" id="nArrivals">// <div class="nArrivals owl-carousel" id="top1">$.each(data.rows, function (i, valmm) { html+='<div class="nArrivals owl-carousel" id="'+valmm.id+'">';$.ajax({url: "shangpin.action?list&page=0&rows=10",type: "POST",async: false,data: { fenlei:valmm.id },success: function (data) { $.each(data.rows, function (i, val) { html+='<div class="product-grid">'+'<div class="item">'+' <div class="product-thumb">'+' <div class="image product-imageblock"> <a href="home/details.jsp?ids='+val.id+'"> <img data-name="product_image" style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> <img style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> </a> </div>'+' <div class="caption product-detail text-left">'+' <h6 data-name="product_name" class="product-name mt_20"><a href="home/details.jsp?ids='+val.id+'" title="Casual Shirt With Ruffle Hem">'+val.biaoti+'</a></h6>'+' <div class="rating"> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-x"></i></span> </div>'+'<span class="price"><span class="amount"><span class="currencySymbol">$</span>'+val.jiage+'</span>'+'</span>'+'<div class="button-group text-center">'+' <div class="wishlist"><a href="home/details.jsp?ids='+val.id+'"><span>wishlist</span></a></div>'+'<div class="quickview"><a href="home/details.jsp?ids='+val.id+'"><span>Quick View</span></a></div>'+'<div class="compare"><a href="home/details.jsp?ids='+val.id+'"><span>Compare</span></a></div>'+'<div class="add-to-cart"><a href="home/details.jsp?ids='+val.id+'"><span>Add to cart</span></a></div>'+'</div>'+'</div>'+'</div>'+'</div>'+' </div>'; })html+='</div>'; } })}) $("nArrivals").html(html); } }); 本篇文章为转载内容。原文链接:https://blog.csdn.net/newlw/article/details/127608579。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-21 18:24:50
66
转载
转载文章
...验。不影响用户体验的方法就是好方案。主要考量指标如下: 一:恢复成功率 由于牵涉到用户核心数据,“姑且一试”的方案是不够的,虽说 100% 成功率不太现实,但 90% 甚至 99% 以上的成功率才是我们想要的。 二:备份大小: 原本用户就可能有2GB 大的 DB,如果备份数据本身也有2GB 大小,用户想必不会接受。 三:备份性能: 性能则主要影响体验和备份成功率,作为用户不感知的功能,占用太多系统资源造成卡顿 是不行的,备份耗时越久,被系统杀死等意外事件发生的概率也越高。 数据导出方案考量: 恢复成功率大概是30%。不需要事先备份,故备份大小和备份性能都是最优的。 备份方案考量: 备份方案的理论恢复成功率都为100%,需要考量的即为备份大小和性能。 拷贝:备份大小等于原文件大小。备份性能最好,直接拷贝文件,不需要运算。 Backup API: 备份大小等于原文件大小。备份性能最差,原因是热备份,需要用到锁机制。 .dump:因为重新进行了排序,备份大小小于原文件。备份性能居中,需要遍历数据库生成语句。 可以看出,比较折中的选择是 Dump ,备份大小具有明显优势,备份性能尚可,恢复性能较差但由于需要恢复的场景较少,算是可以接受的短板。 深入钻研 即使优化后的方案,对于大DB备份也是耗时耗电,对于移动APP来说,可能未必有这样的机会做这样重度的操作,或者频繁备份会导致卡顿和浪费使用空间。 备份思路的高成本迫使我们从另外的方案考虑,于是我们再次把注意力放在之前的Dump方案。 Dump 方案本质上是尝试从坏DB里读出信息,这个尝试一般来说会出现两种结果: DB的基本格式仍然健在,但个别数据损坏,读到损坏的地方SQLite返回SQLITE_CORRUPT错误, 但已读到的数据得以恢复。 基本格式丢失(文件头或sqlite_master损坏),获取有哪些表的时候就返回SQLITE_CORRUPT, 根本没法恢复。 第一种可以算是预期行为,毕竟没有损坏的数据能部分恢复。从成功率来看,不少用户遇到的是第二种情况,这种有没挽救的余地呢? 要回答这个问题,先得搞清楚sqlite_master是什么。它是一个每个SQLite DB都有的特殊的表, 无论是查看官方文档Database File Format,还是执行SQL语句 SELECT FROM sqlite_master;,都可得知这个系统表保存以下信息: 表名、类型(table/index)、 创建此表/索引的SQL语句,以及表的RootPage。sqlite_master的表名、表结构都是固定的, 由文件格式定义,RootPage 固定为 page 1。 正常情况下,SQLite 引擎打开DB后首次使用,需要先遍历sqlite_master,并将里面保存的SQL语句再解析一遍, 保存在内存中供后续编译SQL语句时使用。假如sqlite_master损坏了无法解析,“Dump恢复”这种走正常SQLite 流程的方法,自然会卡在第一步了。为了让sqlite_master受损的DB也能打开,需要想办法绕过SQLite引擎的逻辑。 由于SQLite引擎初始化逻辑比较复杂,为了避免副作用,没有采用hack的方式复用其逻辑,而是决定仿造一个只可以 读取数据的最小化系统。 虽然仿造最小化系统可以跳过很多正确性校验,但sqlite_master里保存的信息对恢复来说也是十分重要的, 特别是RootPage,因为它是表对应的B-tree结构的根节点所在地,没有了它我们甚至不知道从哪里开始解析对应的表。 sqlite_master信息量比较小,而且只有改变了表结构的时候(例如执行了CREATE TABLE、ALTER TABLE 等语句)才会改变,因此对它进行备份成本是非常低的,一般手机典型只需要几毫秒到数十毫秒即可完成,一致性也容易保证, 只需要执行了上述语句的时候重新备份一次即可。有了备份,我们的逻辑可以在读取DB自带的sqlite_master失败的时候 使用备份的信息来代替。 到此,初始化必须的数据就保证了,可以仿造读取逻辑了。我们常规使用的读取DB的方法(包括dump方式恢复), 都是通过执行SQL语句实现的,这牵涉到SQLite系统最复杂的子系统——SQL执行引擎。我们的恢复任务只需要遍历B-tree所有节点, 读出数据即可完成,不需要复杂的查询逻辑,因此最复杂的SQL引擎可以省略。同时,因为我们的系统是只读的, 写入恢复数据到新 DB 只要直接调用 SQLite 接口即可,因而可以省略同样比较复杂的B-tree平衡、Journal和同步等逻辑。 最后恢复用的最小系统只需要: VFS读取部分的接口(Open/Read/Close),或者直接用stdio的fopen/fread、Posix的open/read也可以 B-tree解析逻辑 Database File Format 详细描述了SQLite文件格式, 参照之实现B-tree解析可读取 SQLite DB。 实现了上面的逻辑,就能读出DB的数据进行恢复了,但还有一个小插曲。我们知道,使用SQLite查询一个表, 每一行的列数都是一致的,这是Schema层面保证的。但是在Schema的下面一层——B-tree层,没有这个保证。 B-tree的每一行(或者说每个entry、每个record)可以有不同的列数,一般来说,SQLite插入一行时, B-tree里面的列数和实际表的列数是一致的。但是当对一个表进行了ALTER TABLE ADD COLUMN操作, 整个表都增加了一列,但已经存在的B-tree行实际上没有做改动,还是维持原来的列数。 当SQLite查询到ALTER TABLE前的行,缺少的列会自动用默认值补全。恢复的时候,也需要做同样的判断和支持, 否则会出现缺列而无法插入到新的DB。 解析B-tree方案上线后,成功率约为78%。这个成功率计算方法为恢复成功的 Page 数除以总 Page 数。 由于是我们自己的系统,可以得知总 Page 数,使用恢复 Page 数比例的计算方法比人数更能反映真实情况。 B-tree解析好处是准备成本较低,不需要经常更新备份,对大部分表比较少的应用备份开销也小到几乎可以忽略, 成功恢复后能还原损坏时最新的数据,不受备份时限影响。 坏处是,和Dump一样,如果损坏到表的中间部分,比如非叶子节点,将导致后续数据无法读出。 落地实践: 剥离封装RepairKit: 从WCDB框架中,剥离修复组件,并且封装其C++的原始API为OC管理类。 备份 master 表的时机: 我们发现 SQLite 里面 B+树 算法的实现是 向下分裂 的,也就是说当一个叶子页满了需要分裂时,原来的叶子页会成为内部节点,然后新申请两个页作为他的叶子页。这就保证了根节点一旦下来,是再也不会变动的。master 表只会在新创建表或者删除一个表时才会发生变化,而CoreData的机制表明每一次数据库的变动都要改动版本标识,那么我通过缓存和查询版本标识的变动来确定何时进行备份,避免频繁备份。 备份文件有效性: 既然 DB 可以损坏,那么这个备份文件也会损坏,怎么办呢?我用了双备份,每一个版本备份两个文件,如果一个备份恢复失败,就会启动另一个备份文件恢复。 介入恢复时机: 当CoreData初始化SQLite前,校验SQLite的Head完整性,如果不完整,进行介入修复。 经过我深入研究证明了这已经是最佳做法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 18:22:40
127
转载
转载文章
...应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
133
转载
转载文章
...化软件测试和自然语言处理研究页面,属于个人网页,上面有些资源可供下载 http://www.benchmarkresources.com/ 提供有关标杆方面的资料,也有一些其它软件测试方面的资料 http://www.betasoft.com/ 包含一些流行测试工具的介绍、下载和讨论,还提供测试方面的资料 http://www.brunel.ac.uk/~csstmmh2/vast/home.html VASTT研究组织,主要从事通过切片技术、测试技术和转换技术来验证和分析系统,对这方面技术感兴趣的人是可以在这里参考一些研究的项目及相关的一些主题信息 http://www.cc.gatech.edu/aristotle/ Aristole研究组织,研究软件系统分析、测试和维护等方面的技术,在测试方面的研究包括了回归测试、测试套最小化、面向对象软件测试等内容,该网站有丰富的论文资源可供下载 http://www.computer.org/ IEEE是世界上最悠久,也是在最大的计算机社会团体,它的电子图书馆拥有众多计算机方面的论文资料,是研究计算机方面的一个重要资源参考来源 http://www.cs.colostate.edu/testing/ 可靠性研究网站,有一些可靠性方面的论文资料 http://www.cs.york.ac.uk/testsig/ 约克大学的测试专业兴趣研究组网页,有比较丰富的资料下载,内容涵盖了测试的多个方面,包括测试自动化、测试数据生成、面向对象软件测试、验证确认过程等 http://www.csr.ncl.ac.uk/index.html 学校里面的一个软件可靠性研究中心,提供有关软件可靠性研究方面的一些信息和资料,对这方面感兴趣的人可以参考 http://www.dcs.shef.ac.uk/research/groups/vt/ 学校里的一个验证和测试研究机构,有一些相关项目和论文可供参考 http://www.esi.es/en/main/ ESI(欧洲软件组织),提供包括CMM评估方面的各种服务 http://www.europeindia.org/cd02/index.htm 一个可靠性研究网站,有可靠性方面的一些资料提供参考 http://www.fortest.org.uk/ 一个测试研究网站,研究包括了静态测试技术(如模型检查、理论证明)和动态测试(如测试自动化、特定缺陷的检查、测试有效性分析等) http://www.grove.co.uk/ 一个有关软件测试和咨询机构的网站,有一些测试方面的课程和资料供下载 http://www.hq.nasa.gov/office/codeq/relpract/prcls-23.htm NASA可靠性设计实践资料 http://www.io.com/~wazmo/ Bret Pettichord的主页,他的一个热点测试页面连接非常有价值,从中可以获得相当大的测试资料,很有价值 http://www.iso.ch/iso/en/ISOOnline.frontpage 国际标准化组织,提供包括ISO标准系统方面的各类参考资料 http://www.isse.gmu.edu/faculty/ofut/classes/ 821-ootest/papers.html 提供面向对象和基于构架的测试方面著作下载,对这方面感兴趣的读者可以参考该网站,肯定有价值 http://www.ivv.nasa.gov/ NASA设立的独立验证和确认机构,该机构提出了软件开发的全面验证和确认,在此可以获得这方面的研究资料 http://www.kaner.com/ 著名的测试专家Cem Kanner的主页,里面有许多关于测试的专题文章,相信对大家都有用。Cem Kanner关于测试的最著名的书要算Testing Software,这本书已成为一个测试人员的标准参考书 http://www.library.cmu.edu/Re-search/Engineer-ingAndSciences/CS+ECE/index.html 卡耐基梅陇大学网上图书馆,在这里你可以获得有关计算机方面各类论文资料,内容极其庞大,是研究软件测试不可获取的资料来源之一 http://www.loadtester.com/ 一个性能测试方面的网站,提供有关性能测试、性能监控等方面的资源,包括论文、论坛以及一些相关链接 http://www.mareinig.ch/mt/index.html 关于软件工程和应用开发领域的各种免费的实践知识、时事信息和资料文件下载,包括了测试方面的内容 http://www.mtsu.ceu/-storm/ 软件测试在线资源,包括提供目前有哪些人在研究测试,测试工具列表连接,测试会议,测试新闻和讨论,软件测试文学(包括各种测试杂志,测试报告),各种测试研究组织等内容 http://www.psqtcomference.com/ 实用软件质量技术和实用软件测试技术国际学术会议宣传网站,每年都会举行两次 http://www.qacity.com/front.htm 测试工程师资源网站,包含各种测试技术及相关资料下载 http://www.qaforums.com/ 关于软件质量保证方面的一个论坛,需要注册 http://www.qaiusa.com/ QAI是一个提供质量保证方面咨询的国际著名机构,提供各种质量和测试方面证书认证 http://www.qualitytree.com/ 一个测试咨询提供商,有一些测试可供下载,有几篇关于缺陷管理方面的文章值得参考 http://www.rational.com/ IBM Rational的官方网站,可以在这里寻找测试方面的工具信息。IBM Rational提供测试方面一系列的工具,比较全面 http://rexblackconsulting.com/Pages/publicat-ions.htm Rex Black的个人主页,有一些测试和测试管理方面的资料可供下载 http://www.riceconsulting.com/ 一个测试咨询提供商,有一些测试资料可供下载,但不多 http://www.satisfice.com/ 包含James Bach关于软件测试和过程方面的很多论文,尤其在启发式测试策略方面值得参考 http://www.satisfice.com/seminars.shtml 一个黑盒软件测试方面的研讨会,主要由测试专家Cem Kanar和James Bach组织,有一些值得下载的资料 http://www.sdmagazine.com/ 软件开发杂志,经常会有一些关于测试方面好的论文资料,同时还包括了项目和过程改进方面的课题,并且定期会有一些关于质量和测试方面的问题讨论 http://www.sei.cmu.edu/ 著名的软件工程组织,承担美国国防部众多软件工程研究项目,在这里你可以获俄各类关于工程质量和测试方面的资料。该网站提供强有力的搜索功能,可以快速检索到你想要的论文资料,并且可以免费下载 http://www.soft.com/Institute/HotList/ 提供了网上软件质量热点连接,包括:专业团体组织连接、教育机构连接、商业咨询公司连接、质量相关技术会议连接、各类测试技术专题连接等 http://www.soft.com/News/QTN-Online/ 质量技术时事,提供有关测试质量方面的一些时事介绍信息,对于关心测试和质量发展的人士来说是很有价值的 http://www.softwaredioxide.com/ 包括软件工程(CMM,CMMI,项目管理)软件测试等方面的资源 http://www.softwareqatest.com/ 软件质量/测试资源中心。该中心提供了常见的有关测试方面的FAQ资料,各质量/测试网站介绍,各质量/测试工具介绍,各质量/策划书籍介绍以及与测试相关的工作网站介绍 http://www.softwaretestinginstitute.com 一个软件测试机构,提供软件质量/测试方面的调查分析,测试计划模板,测试WWW的技术,如何获得测试证书的指导,测试方面书籍介绍,并且提供了一个测试论坛 http://www.sqatester.com/index.htm 一个包含各种测试和质量保证方面的技术网站,提供咨询和培训服务,并有一些测试人员社团组织,特色内容是缺陷处理方面的技术 http://www.sqe.com/ 一个软件质量工程服务性网站,组织软件测试自动化、STAR-EASE、STARWEST等方面的测试学术会议,并提供一些相关信息资料和课程服务 http://www.stickyminds.com/ 提供关于软件测试和质量保证方面的当前发展信息资料,论文等资源 http://www.stqemagazine.com/ 软件策划和质量工程杂志,经常有一些好的论文供下载,不过数量较少,更多地需要通过订购获得,内容还是很有价值的 http://www.tantara.ab.ca/ 软件质量方面的一个咨询网站,有过程改进方面的一些资料提供 http://www.tcse.org/ IEEE的一个软件工程技术委员会,提供技术论文下载,并有一个功能强大的分类下载搜索功能,可以搜索到测试类型、测试管理、 测试分析等各方面资料 http://www.testing.com/ 测试技术专家Brain Marick的主页,包含了Marick 研究的一些资料和论文,该网页提供了测试模式方面的资料,值得研究。总之,如果对测试实践感兴趣,该网站一定不能错过 http://www.testingcenter.com/ 有一些测试方面的课程体系,有一些价值 http://www.testingconferences.com/asiastar/home 著名的AsiaStar测试国际学术会议官方网站,感兴趣的人一定不能错过 http://www.testingstuff.com/ Kerry Zallar的个人主页,提供一些有关培训、工具、会议、论文方面的参考信息 http://www-sqi.cit.gu.edu.au/ 软件质量机构,有一些技术资料可以供下载,包括软件产品质量模型、再工程、软件质量改进等 这里有些网站已经不能使用了. 转载于:https://www.cnblogs.com/mmsky/p/4581975.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/aizongzhuang2281/article/details/101129638。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-29 09:17:46
134
转载
转载文章
...ell:提供强大远程处理能力 69.printmanagement.msc:打印管理 70.powercfg.cpl:电源选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...ge表如果有记录就不处理如果没记录就进行数据库增款操作 5、如果余额宝数据库操作成功往余额宝message表插入消息,表字段跟支付宝message一致 6、如果5操作成功,回调支付宝接口修改message表状态,把unconfirm状态转换成confirm状态 问题描述: 1、支付宝设计message表的目的 如果支付宝往activemq插入消息而余额宝消费消息异常,有可能是消费消息成功而事务操作异常,有可能是网络异常等等不确定因素。如果出现异常而activemq收到了确认消息的信号,这时候activemq中的消息是删除了的,消息丢失了。设置message表就是有一个消息存根,activemq中消息丢失了message表中的消息还在。解决了activemq消息丢失问题 2、余额宝设计message表的目的 当余额宝消费成功并且数据库操作成功时,回调支付宝的消息确认接口,如果回调接口时出现异常导致支付宝状态修改失败还是unconfirm状态,这时候还会被timer扫描到,又会往activemq插入消息,又会被余额宝消费一边,但是这条消息已经消费成功了的只是回调失败而已,所以就需要有一个这样的message表,当余额宝消费时先插入message表,如果message根据message_id能查询到记录就说明之前这条消息被消费过就不再消费只需要回调成功即可,如果查询不到消息就消费这条消息继续数据库操作,数据库操作成功就往message表插入消息。 这样就解决了消息重复消费问题,这也是消费端的幂等操作。 基于消息中间件的分布式事务是最理想的分布式事务解决方案,兼顾了安全性和并发性! 接下来贴代码: 支付宝代码: @Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws userID:转账的用户ID amount:转多少钱/@Autowired@Qualifier("activemq")OrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId,String messageId, int amount) {try {orderService.updateAmount(amount,messageId, userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";}@RequestMapping("/callback")public String callback(String param) {JSONObject parse = JSONObject.parseObject(param);String respCode = parse.getString("respCode");if(!"OK".equalsIgnoreCase(respCode)) {return null;}try {orderService.updateMessage(param);}catch (Exception e) {e.printStackTrace();return "fail";}return "ok";} } public interface OrderService {public void updateAmount(int amount, String userId,String messageId);public void updateMessage(String param);} @Service("activemq")@Transactional(rollbackFor = Exception.class)public class OrderServiceActivemqImpl implements OrderService {Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;@AutowiredJmsTemplate jmsTemplate;@Overridepublic void updateAmount(final int amount, final String messageId, final String userId) {String sql = "update account set amount = amount - ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[]{amount, userId});if (count == 1) {//插入到消息记录表sql = "insert into message(user_id,message_id,amount,status) values (?,?,?,?)";int row = jdbcTemplate.update(sql,new Object[]{userId,messageId,amount,"unconfirm"});if(row == 1) {//往activemq中插入消息jmsTemplate.send("zg.jack.queue", new MessageCreator() {@Overridepublic Message createMessage(Session session) throws JMSException {com.zhuguang.jack.bean.Message message = new com.zhuguang.jack.bean.Message();message.setAmount(Integer.valueOf(amount));message.setStatus("unconfirm");message.setUserId(userId);message.setMessageId(messageId);return session.createObjectMessage(message);} });} }}@Overridepublic void updateMessage(String param) {JSONObject parse = JSONObject.parseObject(param);String messageId = parse.getString("messageId");String sql = "update message set status = ? where message_id = ?";int count = jdbcTemplate.update(sql,new Object[]{"confirm",messageId});if(count == 1) {logger.info(messageId + " callback successfull");} }} activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> spring-dispatcher.xml <beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"xmlns:context="http://www.springframework.org/schema/context"xmlns:task="http://www.springframework.org/schema/task" xmlns:aop="http://www.springframework.org/schema/aop"xmlns:tx="http://www.springframework.org/schema/tx"xmlns:util="http://www.springframework.org/schema/util" xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/utilhttp://www.springframework.org/schema/util/spring-util-3.2.xsdhttp://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsdhttp://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-3.2.xsdhttp://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsdhttp://www.springframework.org/schema/txhttp://www.springframework.org/schema/tx/spring-tx-3.0.xsdhttp://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"><!-- 引入同文件夹下的redis属性配置文件 --><!-- 解决springMVC响应数据乱码 text/plain就是响应的时候原样返回数据--><import resource="../activemq/activemq.xml"/><!--<context:property-placeholder ignore-unresolvable="true" location="classpath:config/core/core.properties,classpath:config/redis/redis-config.properties" />--><bean id="propertyConfigurerForProject1" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"><property name="order" value="1" /><property name="ignoreUnresolvablePlaceholders" value="true" /><property name="location"><value>classpath:config/core/core.properties</value></property></bean><mvc:annotation-driven><mvc:message-converters register-defaults="true"><bean class="org.springframework.http.converter.StringHttpMessageConverter"><property name="supportedMediaTypes" value = "text/plain;charset=UTF-8" /></bean></mvc:message-converters></mvc:annotation-driven><!-- 避免IE执行AJAX时,返回JSON出现下载文件 --><bean id="mappingJacksonHttpMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"><property name="supportedMediaTypes"><list><value>text/html;charset=UTF-8</value></list></property></bean><!-- 开启controller注解支持 --><!-- 注:如果base-package=com.avicit 则注解事务不起作用 TODO 读源码 --><context:component-scan base-package="com.zhuguang"></context:component-scan><mvc:view-controller path="/" view-name="redirect:/index" /><beanclass="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /><bean id="handlerAdapter"class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"></bean><beanclass="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"><property name="mediaTypes"><map><entry key="json" value="application/json" /><entry key="xml" value="application/xml" /><entry key="html" value="text/html" /></map></property><property name="viewResolvers"><list><bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /><bean class="org.springframework.web.servlet.view.UrlBasedViewResolver"><property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /><property name="prefix" value="/" /><property name="suffix" value=".jsp" /></bean></list></property></bean><!-- 支持上传文件 --> <!-- 控制器异常处理 --><bean id="exceptionResolver"class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver"><property name="exceptionMappings"><props><prop key="java.lang.Exception">error</prop></props></property></bean><bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"><property name="driverClass"><value>${jdbc.driverClassName}</value></property><property name="jdbcUrl"><value>${jdbc.url}</value></property><property name="user"><value>${jdbc.username}</value></property><property name="password"><value>${jdbc.password}</value></property><property name="minPoolSize" value="10" /><property name="maxPoolSize" value="100" /><property name="maxIdleTime" value="1800" /><property name="acquireIncrement" value="3" /><property name="maxStatements" value="1000" /><property name="initialPoolSize" value="10" /><property name="idleConnectionTestPeriod" value="60" /><property name="acquireRetryAttempts" value="30" /><property name="breakAfterAcquireFailure" value="false" /><property name="testConnectionOnCheckout" value="false" /><property name="acquireRetryDelay"><value>100</value></property></bean><bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate"><property name="dataSource" ref="dataSource"></property></bean><bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"><property name="dataSource" ref="dataSource"/></bean><tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true" /><aop:aspectj-autoproxy expose-proxy="true"/></beans> logback.xml <?xml version="1.0" encoding="UTF-8"?><!--scan:当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。scanPeriod:设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒当scan为true时,此属性生效。默认的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
499
转载
转载文章
...热议。实验中,AI在处理复杂问题时表现出的学习模式和人脑神经元活动规律有惊人的相似性,但是否意味着机器也能产生类似灵魂或心流的内在体验,目前尚无定论。 同时,在哲学领域,剑桥大学的认知科学团队正在进行一项跨学科研究,他们试图从生物学、心理学、神经科学以及计算机科学的角度解析心流的本质,探究其是否为人类独有的特质,抑或是所有具备一定智能系统所共有的现象。该研究计划在未来几年内推出相关成果,或将为我们理解人工智能的发展边界提供新的理论依据。 此外,随着全球范围内对人工智能伦理问题的关注度日益提高,各国政府及国际组织正着手制定相关政策法规,探讨如何界定智能机器的行为责任以及保护人类免受潜在风险的影响。例如,欧盟近期已提出一套涵盖人工智能道德原则的框架,其中涉及到了对人工智能自主决策权的限制,以及确保其行为遵循人类价值观的要求。 综上所述,人工智能与人类智能边界的探索不断深入,而对灵魂、心流等概念的理解也在科技进步与哲学思辨的交融中得以丰富和完善。在追求更高水平的人工智能发展的同时,我们应始终关注并思考如何保持人类特性的核心地位,以及如何构建和谐共生的人机关系。
2023-01-02 11:30:59
620
转载
转载文章
...文支持的缘故。解决的方法是安装一个zhcon(一个快速地外挂式CJK(中文/日文/韩文)的多内码平台),我把他放在附件中提供大家下载。关于zhcon的更进一步的消息,大家可以到他的官方主页zhcon.gnuchina.org查看。安装和使用请参考这个连接 http://hepg.sdu.edu.cn/Service/tips/zhcon_manual.html zhcon下载连接: http://zhcon.gnuchina.org/download/...on-0.2.1.tar.gz 十三.问:我在安装一个软件的时候,提示我缺少一个.so文件,安装无法继续,怎么办? 答:.so文件就像windows中的.dll文件一样,是库文件。一个程序的正常安装和运行需要特定的库文件的支持。所以你需要去找到包含这个.so的包装上。去 http://www.rpmfind.net用你缺的那个.....剿枰?rpm包 十四.我访问windows分区时发现所有windows分区中的文件和文件夹名中的中文全变成问号,怎么办? 答:在第三贴中我们讲解了通过编辑/etc/fstab实现在linux中访问windows的fat32分区。同样,我们可以通过进一步修改 /etc/fstab来实现中文文件名显示。只要把/dev/hda1 /mnt/c vfat default 0 0中的default全改为iocharset=cp936就行了。 十五.我的rh8.0中的XMMS不好使,不能播放MP3,怎么办? 答:这是因为rh公司怕别人告他侵权,所以在rh8.0中去掉了XMMS对MP3的支持,8.0以前的版本都是好使的。在8.0中要解决也很简单,装一个插件就行了。这个插件我放在本贴的附件里,rpm格式,经winrar压缩 附件: http://www.chinalinuxpub.com/vbbfor...s=&postid=86299 十六.问:我在linux中怎样才能使用windows分区呢? 答:先说一点背景知识。linux支持很多种文件系统,包括windows的fat32和ntfs。对fat32的支持已经很好,可以直接使用,而对ntfs 的支持还不是太好,只能读,而写是极危险的,并且对ntfs的支持不是默认的,也就是说你想要使用ntfs的话,需要重新编译内核。鉴于重编内核对于新手的复杂性,这里只讲解使用fat32分区的方法下面给出上述问题的两种解决方案:1.在安装系统(linux),进行到分区选择挂载点时,你可以建立几个挂载点,如/mnt/c,/mnt/d等,然后选择你的windows fat32分区,把它们分别挂载到前面建立的挂载点即可。(注意,正如前面所说,在这里你不能把一个ntfs分区挂载到一个挂载点,应为ntfs不是默认支持的。)这样你装好系统后就能直接使用你的windows fat32分区了。例如,你把windows的c盘(linux中的/dev/hda1)挂载到/mnt/c,那么你就能在/mnt/c目录中找到你的c 盘中的全部数据。2. 如果你在安装系统时没有像方案1所说的那样挂载上你的fat32分区,没关系,仍然能够很方便的解决这个问题。首先,用一个文本编辑器(如vi)打开 /etc/fstab,在文件的最后加入类似如下的几行 /dev/hda1 /mnt/c vfat default 0 0 你所要做的修改就是,把/dev/hda1改成你要挂载的fat32分区在linux中的设备号,把/mnt/c改成相应的挂载点即可。注意,挂载点就是一个目录,这个目录要事先建立。举一个例子,我有三个fat32分区,在windows中是c,d,e盘,在linux中的设备号分别为 /dev/hda1,/dev/hda5,/dev/hda6。那么我就要先建立3个挂载点,如/mnt/c,/mnt/d,/mnt/e,然后在 /etc/fstab中加上这么几行: /dev/hda1 /mnt/c vfat default 0 0 /dev/hda5 /mnt/d vfat default 0 0 /dev/hda6 /mnt/e vfat default 0 0 保存一下退出编辑器。这样以后你重启机器后就能直接使用c,d,e这三个fat32格式的windows分区了 十七.问:我的机器重装windows后,开机启动就直接进入了windows,原来的linux进不去了,怎么办? 答:这是由于windows的霸道。重装windows后,windows重写了你的mbr,覆盖掉了grub。解决方法很简单:用你的linux第一张安装盘引导进入linx rescue模式(如何进入?你注意一下系统的提示信息就知道了),执行下面两条命令就可以了 chroot /mnt/sysimage 改变你的根目录 grub-install /dev/hda 安装grub到mbr 十八.问:我的linux开机直接进入文本界面,怎样才能让它默认进入图形界面? 答:修改/etc/inittab文件,其中有一行id:3:initdefault,意思是说开机默认进入运行级别3(多用户的文本界面),把它改成id:5:initdefault,既开机默认进入运行级别5(多用户的图形界面)。这样就行了。 十九.如何同时启动多个x 以前的帖子,估计很多人没看过,贴出来温习一下 Linux里的X-Windows以其独特的面貌和强大的功能吸引了很多原先对linux不感兴趣的人,特别是KDE和GNOME,功能强大不说,而且自带了很多很棒的软件,界面非常友好,很适合于初学者。下面告诉大家一个同时启动6个X的小技巧: 在~/.bashrc中加入 以下几行: alias X=startx -- -bpp 32 -quiet& alias X1=startx -- :1 -bpp 32 -quiet& alias X2=startx -- :2 -bpp 32 -quiet& alias X3=startx -- :3 -bpp 32 -quiet& alias X4=startx -- :4 -bpp 32 -quiet& alias X5=startx -- :5 -bpp 32 -quiet& 其中32是显示器的色彩深度,你应该根据自己的实际情况设置。 之后运行 bash 使改变生效,以后只要依次运行X,X1,X2,X3,X4,X5就可以启动6个X-Windows了。 二十.装了rpm的postgresql之后启动 /etc/init.d/postgresql start 是不能启动postgresql的tcp/ip连接支持的,所以打开/etc/init.d/postgresql这个文件把 su -l postgres -s /bin/sh -c "/usr/bin/pg_ctl -D $PGDATA -p /usr/bin/postmaster start > /dev/null 2>&1" < /dev/null 改为: su -l postgres -s /bin/sh -c "/usr/bin/pg_ctl -o -o -F -i -w -D $PGDATA -p /usr/bin/postmaster start > /dev/null 2>&1" < /dev/null 这样就可以启动数据库的tcp/ip链接了 二十一.如何将man转存为文本文件 以ls的man为例 man ls |col -b >ls.txt 将info变成文本,以make为例 info make -o make.txt -s 二十二.如何在文本模式下发送2进制文件 首先检查系统有没有uuencode 和 uudecode如果没有从光盘上装 rpm -ivh sharutils-x.xx.x-x.rpm 假设要发送的文件是vpopmail-5.2.1.tar.gz执行 uuencode -m vpopmail-5.2.1.tar.gz vpopmail.tar.gz>encodefile 说明: uuenode是编码命令,-m是使用mime64编码,vpopmail-5.2.1.tar.gz是要编码的文件,vpopmail.tar.gz是如果解码后得到的文件名,encodefile是编码后的文件名。 执行上述命令之后就可以通过mail命令发送编码后的文件了 mail chenlf@chinalinuxpub.com<encodefile 好了,现在我来接收邮件 在控制台上输入mail命令: mail Mail version 8.1 6/6/93. Type ? for help. "/var/spool/mail/chenlf": 2 messages 2 new >N 1 chenlf@ns1.catv.net Mon Jun 10 16:44 17/363 N 2 root@ns2.catv.net Mon Jun 10 16:45 6091/371145 & 2 Message 2: From root@ns2.catv.net Mon Jun 10 16:45:28 2002 Date: Mon, 10 Jun 2002 16:44:51 +0800 From: root <root@ns2.catv.net> To: chenlf@chinalinuxpub.com begin-base64 644 vpopmai.tar.gz H4sIABr15TwAA+w9a2PbNpL7NfwVqNPbWIlFPSzbiR2n9SuxE7/OcuLNtdmU EiGLMUWqfFhWt7u//eYBgKRE2U7iTa+3VndjiQQGg5nBYDAYDC6H4XDgeH51 yW7ajdpf/h2fer1VX1lagr/1+spyq/BXff5SX2mtNBZXmovN5l/qjWZrqfEX sfRvwWbik8aJEwnxl7ifDofXlLvp/Z/0c1nk/8uN/777NuqNen251ZrB/+XF pcUG8r/ZbC0vL9ZXoPwi/O8von73qEx//sP5bwHHxanT8aUIe2IrDBIZJLFl 7QVJFFovpZOkkYxFL4yEFhVLCKhk1W2xG45E1wnEnohlIsJAiksvSlLHF24I JQORhKIjRdKXYhh5Ayca6xcAD8DQm4HT7XuB/EGcSXgbPErEyAkSrNp3LqVw grGoyaRbGzpxPHJFGssotq0Gtw6l9gTgJbixode9EOlQDMaTmEjE/AerydVc rAY4jJzIFY7vC3wL2DgJvJIxIjFwkm6fWkfw1KoAIti/EgkWc3A6YRp05ReB aeXAQH34GoXOwAvOVUnoEnwRYRqJeJAMgczRpYzEyEv6YQoUH8oACltLtjjD Rr1YOCJ2BkPgJop1IuJu5A0TYh9xIdQwfrCWTdt9pMKvaZg4j5jT3PgojC5+ sFZswM0LAJzvSyhGXQSCOmLoO9DtEOAicBCD2qUT1agAg44BSd+1niIEzVPs ................. ................. ................. & s 2 encodefile "encode" [New file] & q 然后进行解码 uudecode encodefile ls encodefile vpopmai.tar.gz tar zxvf vpopmail.tar.gz OK了 二十三.将 man page 转成 HTML 格式 使用 man2html 这个指令,就可以将 man page 转成 HTML 格式了。用法是: man2html filename > htmlfile.html 二十四.如何在gnome和kde之间切换。 如果你是以图形登录方式登录linux,那么点击登录界面上的session(任务)即可以选择gnome和kde。如果你是以文本方式登录,那执行switchdesk gnome或switchdesk kde,然后再startx就可以进入gnome或kde。 25...tar,.tar.gz,.bz2,.tar.bz2,.bz,.gz是什么文件,如何解开他们? 他们都是文件(压缩)包。 .tar:把文件打包,不压缩:tar cvf .tar dirName 解开:tar xvf .tar .tar.gz:把文件打包并压缩:tar czvf .tar.gz dirName 解开:tar xzvf .tar.gz .bz2:解开:bzip2 -d .bz2 .bz:解开:bzip -d .bz .gz:解开:gzip -d .gz 26.linux下如何解开.zip,.rar压缩文件? rh8下有一个图形界面的软件file-roller可以做这件事。令外可以用unzip .zip解开zip文件,unrar .rar解开rar文件,不过unrar一般系统不自带,要到网上下载。 27.linux下如何浏览.iso光盘镜像文件? a.建一个目录,如:mkdir a b.把iso文件挂载到该目录上:mount -o loop xxxx.iso a 现在目录a里的内容就是iso文件里的内容了。 28.linux下如何配置网络? 用netconfig。“IP address:”就是要配置的IP地址,“Netmask:”子网掩码,“Default gateway (IP):”网关,“Primary nameserver:”DNS服务器IP。 29.如何让鼠标支持滚轮? 在配置鼠标时,选择微软的鼠标,并正确选择端口如ps2,usb等 30.如何让控制台支持中文显示? 安装zhcon。zhcon需要libimm_server.so和libpth.so.13这两个库支持。一般的中文输入法应该都有libimm_server.so。libpth.so.13出自pth-1.3.x。把这两个文件放到/usr/lib下就行了。 31.如何配置grub? 修改/boot/grub/grub.conf文件。其中 “default=n”(n是个数字)是grub引导菜单默认被选中的项,n从0开始,0表示第一项,1表示第二项,依此类推。 “timeout=x”(x是一个数)是超时时间,单位是妙。也就是引导菜单显示后,如果x秒内用户不进行选择,那么grub将启动默认项。 “splashimage =xxxxxx”,这是引导菜单的背景图,先不理他。 其它常用项我用下面的例子来说明: title Red Hat 8.0 root (hd1,6) kernel /boot/vmlinuz-2.4.18-14 ro root=/dev/hdb7 initrd /boot/initrd-2.4.18-14.img 其中"Red Hat 8.0"是在启动菜单列表里显示的名字 root (hdx,y)用来指定你的boot分区位置,如果你没有分boot分区(本例就没分boot分区),那就指向根分区就行了,hdx是linux所在硬盘,hd0是第一块硬盘,hd1是第二块,依此类推。y是分区位置,从0开始,也就是等于分区号减一,比如你要指向的分区是hdx7,那么y就是6,如果是hdx1,那y就是0。注意root后面要有一个空格。 kernel /boot/vmlinuz-2.4.18-14,其中"/boot/vmlinuz-2.4.18-14"是你要用的内核路径,如果你编译了心内核,把它改成你的新内核的路径就行了。 ro就不用管,写上不会有错。 root=/dev/hdxx指定根分区,本例是hdb7,所以root=/dev/hdb7 initrd xxxxxxxxxxxxx这行不要也行,目前我还不清楚它是做什么用的。 上面是linux的,下面是windows的 title windows 98 rootnoverify (hd0,0) chainloader +1 title xxxxxxx不用解释了,上面有解释。 rootnoverify (hdx,y)用来指定windows所在分区,x,y跟上面一样,注意rootnoverify后有空格。 chainloader +1照抄就行,注意空格。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gudulyn/article/details/764890。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 09:27:49
255
转载
转载文章
...可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...,具有足够的灵活性来处理不同的数据库任务。 Postgres-XL功能特性 开放源代码:(源协议使用宽松的“Mozilla Public License”许可,允许将开源代码与闭源代码混在一起使用。) 完全的ACID支持 可横向扩展的关系型数据库(RDBMS) 支持OLAP应用,采用MPP(Massively Parallel Processing:大规模并行处理系统)架构模式 支持OLTP应用,读写性能可扩展 集群级别的ACID特性 多租户安全 也可被用作分布式Key-Value存储 事务处理与数据分析处理混合型数据库 支持丰富的SQL语句类型,比如:关联子查询 支持绝大部分PostgreSQL的SQL语句 分布式多版本并发控制(MVCC:Multi-version Concurrency Control) 支持JSON和XML格式 Postgres-XL缺少的功能 内建的高可用机制 使用外部机制实现高可能,如:Corosync/Pacemaker 有未来功能提升的空间 增加节点/重新分片数据(re-shard)的简便性 数据重分布(redistribution)期间会锁表 可采用预分片(pre-shard)方式解决,在同台物理服务器上建立多个数据节点,每个节点存储一个数据分片。数据重分布时,将一些数据节点迁出即可 某些外键、唯一性约束功能 Postgres-XL架构 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M9lFuEIP-1640133702200)(./assets/postgre-xl.jpg)] 基于开源项目Postgres-XC XL增加了MPP,允许数据节点间直接通讯,交换复杂跨节点关联查询相关数据信息,减少协调器负载。 多个协调器(Coordinator) 应用程序的数据库连入点 分析查询语句,生成执行计划 多个数据节点(DataNode) 实际的数据存储 数据自动打散分布到集群中各数据节点 本地执行查询 一个查询在所有相关节点上并行查询 全局事务管理器(GTM:Global Transaction Manager) 提供事务间一致性视图 部署GTM Proxy实例,以提高性能 Postgre-XL主要组件 GTM (Global Transaction Manager) - 全局事务管理器 GTM是Postgres-XL的一个关键组件,用于提供一致的事务管理和元组可见性控制。 GTM Standby GTM的备节点,在pgxc,pgxl中,GTM控制所有的全局事务分配,如果出现问题,就会导致整个集群不可用,为了增加可用性,增加该备用节点。当GTM出现问题时,GTM Standby可以升级为GTM,保证集群正常工作。 GTM-Proxy GTM需要与所有的Coordinators通信,为了降低压力,可以在每个Coordinator机器上部署一个GTM-Proxy。 Coordinator --协调器 协调器是应用程序到数据库的接口。它的作用类似于传统的PostgreSQL后台进程,但是协调器不存储任何实际数据。实际数据由数据节点存储。协调器接收SQL语句,根据需要获取全局事务Id和全局快照,确定涉及哪些数据节点,并要求它们执行(部分)语句。当向数据节点发出语句时,它与GXID和全局快照相关联,以便多版本并发控制(MVCC)属性扩展到集群范围。 Datanode --数据节点 用于实际存储数据。表可以分布在各个数据节点之间,也可以复制到所有数据节点。数据节点没有整个数据库的全局视图,它只负责本地存储的数据。接下来,协调器将检查传入语句,并制定子计划。然后,根据需要将这些数据连同GXID和全局快照一起传输到涉及的每个数据节点。数据节点可以在不同的会话中接收来自各个协调器的请求。但是,由于每个事务都是惟一标识的,并且与一致的(全局)快照相关联,所以每个数据节点都可以在其事务和快照上下文中正确执行。 Postgres-XL继承了PostgreSQL Postgres-XL是PostgreSQL的扩展并继承了其很多特性: 复杂查询 外键 触发器 视图 事务 MVCC(多版本控制) 此外,类似于PostgreSQL,用户可以通过多种方式扩展Postgres-XL,例如添加新的 数据类型 函数 操作 聚合函数 索引类型 过程语言 安装 环境说明 由于资源有限,gtm一台、另外两台身兼数职。 主机名 IP 角色 端口 nodename 数据目录 gtm 192.168.20.132 GTM 6666 gtm /nodes/gtm 协调器 5432 coord1 /nodes/coordinator xl1 192.168.20.133 数据节点 5433 node1 /nodes/pgdata gtm代理 6666 gtmpoxy01 /nodes/gtm_pxy1 协调器 5432 coord2 /nodes/coordinator xl2 192.168.20.134 数据节点 5433 node2 /nodes/pgdata gtm代理 6666 gtmpoxy02 /nodes/gtm_pxy2 要求 GNU make版本 3.8及以上版本 [root@pg ~] make --versionGNU Make 3.82Built for x86_64-redhat-linux-gnuCopyright (C) 2010 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. 需安装GCC包 需安装tar包 用于解压缩文件 默认需要GNU Readline library 其作用是可以让psql命令行记住执行过的命令,并且可以通过键盘上下键切换命令。但是可以通过--without-readline禁用这个特性,或者可以指定--withlibedit-preferred选项来使用libedit 默认使用zlib压缩库 可通过--without-zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
... Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ip addr show
- 显示网络接口及其IP地址配置信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"