前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[实践案例 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...识基础,积极参与科研实践,提高论文发表与竞赛获奖的含金量。此外,合理定位自身并积极拓宽信息获取渠道,了解心仪高校与导师的研究方向及团队氛围,同样至关重要。 综上所述,保研不仅是对过往学业成果的检验,更是对未来学术生涯的前瞻布局。广大有志于深造的学子需紧跟政策导向,全面提升自我,才能在这场无声的竞争中脱颖而出,成功走向理想的学术殿堂。
2023-05-02 23:03:36
121
转载
转载文章
...自动化领域的最新应用案例和发展趋势。 近期,国际自动化巨头如西门子、罗克韦尔自动化等公司持续深化与OPC UA标准的合作,将其融入到自家的工业通讯解决方案中。例如,西门子在其TIA博途(TIA Portal)V17版本中集成了对OPC UA更全面的支持,允许用户更加便捷地配置OPC UA服务器,并确保数据安全、实时且高效地在不同层级的自动化系统间传输。 同时,随着物联网(IoT)和工业互联网的发展,OPC UA作为跨平台、高安全性的通讯标准,在云计算、边缘计算以及各类工业场景中的应用日益广泛。诸如微软Azure IoT Edge等云服务已实现对OPC UA的原生支持,使得工厂设备能够无缝对接云端,实现远程监控与智能决策。 此外,德国联邦经济事务和能源部正积极推动“工业4.0组件”的标准化进程,其中OPC UA扮演着核心角色,为实现生产设备间互操作性提供关键支撑。最新的OPC UA规范也在不断迭代更新,以满足未来工厂智能化、网络化的需求,如适应时间敏感网络(TSN)、增强信息安全机制等。 综上所述,深入研究OPC UA的实际应用场景及其在国内外工业领域内的政策导向和技术革新,对于理解和掌握现代工业通信技术的发展具有重要指导意义。紧跟行业动态,了解OPC UA如何赋能制造业数字化转型,将有助于我们更好地应对未来挑战并抓住机遇。
2023-05-10 18:43:00
270
转载
转载文章
...优化展开了深入研究与实践。 例如,Linux 5.11版本引入了eBPF(Extended Berkeley Packet Filter)的重大改进,使得XDP(eXpress Data Path)能够更高效地处理网络数据包,进一步缩短数据路径,减少系统开销。同时,eBPF也被广泛应用于追踪分析、流量控制等高级功能,为解决大规模并发问题提供了全新的思路。 此外,硬件技术也在不断跟进以适应高并发需求。Intel推出的第三代至强可扩展处理器中包含了对DPDK(Data Plane Development Kit)的深度优化支持,通过集成高性能网卡与CPU间的智能加速引擎,有效提升了数据包处理效率,降低了延迟。 而在软件层面,Google开源的gVisor项目提供了一种轻量级的用户态沙箱容器运行时环境,它能显著降低上下文切换带来的开销,对于解决大规模并发连接挑战具有积极意义。 综上所述,面对日益增长的并发连接挑战,无论是操作系统内核的底层优化,还是硬件技术的革新升级,以及创新的软件解决方案,都在合力推动着现代数据中心向更高并发、更低延迟的目标迈进。对于技术人员来说,紧跟这些发展趋势并将其应用到实际工作中,将有助于构建更加稳定、高效的大型分布式系统。
2023-04-11 18:25:52
261
转载
转载文章
...的探索者,也是落地的实践者,更是未来的推动者。特别是安超OS云操作系统的推出,背后正是华云凭借较强的技术驾驭能力,以及对中国企业用户痛点的捕捉,使得华云能够走出一条差异化的创新成长之路,也真正重新定义了“中国云”未来的发展壮大之路。 申耀的科技观察,由科技与汽车跨界媒体人申斯基(微信号:shenyao)创办,16年媒体工作经验,拥有中美两地16万公里自驾经验,专注产业互联网、企业数字化、渠道生态以及汽车科技内容的观察和思考。 本篇文章为转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-16 21:41:38
303
转载
转载文章
...渲染技术的最新进展和实践,以下是一些值得深入阅读的延伸内容: 近期,随着硬件性能的提升,实时渲染领域出现了许多创新。例如,DirectX 12 Ultimate引入了可变速率着色(Variable Rate Shading, VRS)技术,它允许GPU根据不同场景区域的重要性分配不同的着色率,从而提高渲染效率并优化性能表现。这项技术对游戏开发者来说具有重要意义,因为它能够在不牺牲画质的前提下实现更流畅的游戏体验。 同时,光线追踪作为近年来图形学领域的重大突破,已被纳入DirectX API中,并在NVIDIA RTX系列显卡上得到广泛应用。通过模拟真实世界的光线行为,光线追踪能够生成更为逼真细腻的光影效果,极大地提升了三维场景的真实感。 此外,针对三维建模与动画制作软件,Blender项目持续进行功能更新,支持多种坐标系统并整合了基于物理的渲染引擎Cycles。用户不仅可以在其中创建复杂的三维模型,还能利用内置的高级着色器进行法线贴图、置换贴图等复杂纹理处理,以及实现PBR材质以满足更高标准的视觉需求。 在理论研究方面,学者们正在深入探讨四元数在图形旋转、插值运算等方面的优化算法,力图挖掘其在实时渲染、虚拟现实和增强现实环境中的潜在价值。一些前沿研究甚至将四元数应用于机器学习与人工智能驱动的动画系统中,以实现更加自然、连贯的动作捕捉与运动预测。 综上所述,无论是实时渲染技术的发展、硬件特性的革新,还是三维设计工具的进步,都在不断推动三维坐标系与几何学在计算机图形学中的实际应用向着更高效、更真实的方向发展。关注这些领域的最新动态和技术成果,无疑将有助于您更好地掌握三维图形编程的未来趋势及其实现方法。
2023-10-24 12:49:42
272
转载
转载文章
转载文章
... 用户权限管理与安全实践:针对Linux系统安全问题,近年来有许多关于如何强化用户权限管理的研究报告和技术文章发表。例如,SELinux策略的深入解读,以及如何结合最小权限原则进行服务账户设置,避免因权限过高导致的安全风险,这些内容都是嵌入式系统安全运维的重要参考。
2023-11-23 17:18:30
80
转载
转载文章
...搜索替换等方面的实战案例。例如,一篇名为“利用正则表达式优化用户输入验证策略”的文章详尽探讨了如何结合现代浏览器特性,如约束验证API,配合正则表达式进行高效的数据校验。 此外,对于正则表达式的性能优化也是值得关注的话题。有研究指出,在处理大量数据时,某些复杂的正则可能导致性能瓶颈。阅读相关的性能分析报告和技术分享,可以帮助开发者掌握编写高性能正则表达式的技巧,并避免潜在的性能陷阱。 最后,关于UTC时间戳在跨时区开发中的重要性,可参考有关国际协作项目中如何妥善处理时间问题的文章,了解如何借助JavaScript Date对象正确转换和处理不同时区的时间信息,从而确保在全球范围内应用程序的正常运行。尤其在当前全球化的互联网环境下,理解和掌握这一技能愈发关键。
2023-01-24 13:01:25
530
转载
转载文章
...而与时俱进地了解最新实践和技术趋势,将有助于我们更高效、安全地运用C++进行软件开发,解决实际工程中的复杂问题。
2024-01-29 12:38:23
545
转载
转载文章
...元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
338
转载
转载文章
...数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《IM群聊消息的已读回执功能该怎么实现?》 《IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《一个低成本确保IM消息时序的方法探讨》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《IM里“附近的人”功能实现原理是什么?如何高效率地实现它?》 《IM开发基础知识补课(七):主流移动端账号登录方式的原理及设计思路》 《IM开发基础知识补课(八):史上最通俗,彻底搞懂字符乱码问题的本质》(本文) 4、正文概述 字符集和编码无疑是IT菜鸟甚至是各种大神的头痛问题。当遇到纷繁复杂的字符集,各种火星文和乱码时,问题的定位往往变得非常困难。 本文内容就将会从原理方面对字符集和编码做个简单的科普介绍,同时也会介绍一些通用的乱码故障定位的方法以方便读者以后能够更从容的定位相关问题。 在正式介绍之前,先做个小申明:如果你希望非常精确的理解各个名词的解释,那么可以详细阅读这篇《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 本文是博主通过自己理解消化后并转化成易懂浅显的表述后的介绍,会尽量以简单明了的文字来从要源讲解字符集、字符编码的概念,以及在遭遇乱码时的一些常用诊断技巧,希望能助你对于“乱码”问题有更深地理解。 5、什么是字符集 在介绍字符集之前,我们先了解下为什么要有字符集。 我们在计算机屏幕上看到的是实体化的文字,而在计算机存储介质中存放的实际是二进制的比特流。那么在这两者之间的转换规则就需要一个统一的标准,否则把我们的U盘插到老板的电脑上,文档就乱码了;小伙伴QQ上传过来的文件,在我们本地打开又乱码了。 于是为了实现转换标准,各种字符集标准就出现了。 简单的说:字符集就规定了某个文字对应的二进制数字存放方式(编码)和某串二进制数值代表了哪个文字(解码)的转换关系。 那么为什么会有那么多字符集标准呢? 这个问题实际非常容易回答。问问自己为什么我们的插头拿到英国就不能用了呢?为什么显示器同时有DVI、VGA、HDMI、DP这么多接口呢?很多规范和标准在最初制定时并不会意识到这将会是以后全球普适的准则,或者处于组织本身利益就想从本质上区别于现有标准。于是,就产生了那么多具有相同效果但又不相互兼容的标准了。 说了那么多我们来看一个实际例子,下面就是“屌”这个字在各种编码下的十六进制和二进制编码结果,怎么样有没有一种很屌的感觉? 6、什么是字符编码 字符集只是一个规则集合的名字,对应到真实生活中,字符集就是对某种语言的称呼。例如:英语,汉语,日语。 对于一个字符集来说要正确编码转码一个字符需要三个关键元素: 1)字库表(character repertoire):是一个相当于所有可读或者可显示字符的数据库,字库表决定了整个字符集能够展现表示的所有字符的范围; 2)编码字符集(coded character set):即用一个编码值code point来表示一个字符在字库中的位置; 3)字符编码(character encoding form):将编码字符集和实际存储数值之间的转换关系。 一般来说都会直接将code point的值作为编码后的值直接存储。例如在ASCII中“A”在表中排第65位,而编码后A的数值是 0100 0001 也即十进制的65的二进制转换结果。 看到这里,可能很多读者都会有和我当初一样的疑问:字库表和编码字符集看来是必不可少的,那既然字库表中的每一个字符都有一个自己的序号,直接把序号作为存储内容就好了。为什么还要多此一举通过字符编码把序号转换成另外一种存储格式呢? 其实原因也比较容易理解:统一字库表的目的是为了能够涵盖世界上所有的字符,但实际使用过程中会发现真正用的上的字符相对整个字库表来说比例非常低。例如中文地区的程序几乎不会需要日语字符,而一些英语国家甚至简单的ASCII字库表就能满足基本需求。而如果把每个字符都用字库表中的序号来存储的话,每个字符就需要3个字节(这里以Unicode字库为例),这样对于原本用仅占一个字符的ASCII编码的英语地区国家显然是一个额外成本(存储体积是原来的三倍)。算的直接一些,同样一块硬盘,用ASCII可以存1500篇文章,而用3字节Unicode序号存储只能存500篇。于是就出现了UTF-8这样的变长编码。在UTF-8编码中原本只需要一个字节的ASCII字符,仍然只占一个字节。而像中文及日语这样的复杂字符就需要2个到3个字节来存储。 关于字符编码知识的详细讲解请见:《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 7、UTF-8和Unicode的关系 看完上面两个概念解释,那么解释UTF-8和Unicode的关系就比较简单了。 Unicode就是上文中提到的编码字符集,而UTF-8就是字符编码,即Unicode规则字库的一种实现形式。 随着互联网的发展,对同一字库集的要求越来越迫切,Unicode标准也就自然而然的出现。它几乎涵盖了各个国家语言可能出现的符号和文字,并将为他们编号。详见:Unicode百科介绍。 Unicode的编号从 0000 开始一直到10FFFF 共分为17个Plane,每个Plane中有65536个字符。而UTF-8则只实现了第一个Plane,可见UTF-8虽然是一个当今接受度最广的字符集编码,但是它并没有涵盖整个Unicode的字库,这也造成了它在某些场景下对于特殊字符的处理困难(下文会有提到)。 8、UTF-8编码简介 为了更好的理解后面的实际应用,我们这里简单的介绍下UTF-8的编码实现方法。即UTF-8的物理存储和Unicode序号的转换关系。 UTF-8编码为变长编码,最小编码单位(code unit)为一个字节。一个字节的前1-3个bit为描述性部分,后面为实际序号部分: 1)如果一个字节的第一位为0,那么代表当前字符为单字节字符,占用一个字节的空间。0之后的所有部分(7个bit)代表在Unicode中的序号; 2)如果一个字节以110开头,那么代表当前字符为双字节字符,占用2个字节的空间。110之后的所有部分(5个bit)加上后一个字节的除10外的部分(6个bit)代表在Unicode中的序号。且第二个字节以10开头; 3)如果一个字节以1110开头,那么代表当前字符为三字节字符,占用3个字节的空间。110之后的所有部分(5个bit)加上后两个字节的除10外的部分(12个bit)代表在Unicode中的序号。且第二、第三个字节以10开头; 4)如果一个字节以10开头,那么代表当前字节为多字节字符的第二个字节。10之后的所有部分(6个bit)和之前的部分一同组成在Unicode中的序号。 具体每个字节的特征可见下表,其中“x”代表序号部分,把各个字节中的所有x部分拼接在一起就组成了在Unicode字库中的序号。如下图所示。 我们分别看三个从一个字节到三个字节的UTF-8编码例子: 细心的读者不难从以上的简单介绍中得出以下规律: 1)3个字节的UTF-8十六进制编码一定是以E开头的; 2)2个字节的UTF-8十六进制编码一定是以C或D开头的; 3)1个字节的UTF-8十六进制编码一定是以比8小的数字开头的。 9、为什么会出现乱码 乱码也就是英文常说的mojibake(由日语的文字化け音译)。 简单的说乱码的出现是因为:编码和解码时用了不同或者不兼容的字符集。 对应到真实生活中:就好比是一个英国人为了表示祝福在纸上写了bless(编码过程)。而一个法国人拿到了这张纸,由于在法语中bless表示受伤的意思,所以认为他想表达的是受伤(解码过程)。这个就是一个现实生活中的乱码情况。 在计算机科学中一样:一个用UTF-8编码后的字符,用GBK去解码。由于两个字符集的字库表不一样,同一个汉字在两个字符表的位置也不同,最终就会出现乱码。 我们来看一个例子,假设我们用UTF-8编码存储“很屌”两个字,会有如下转换: 于是我们得到了E5BE88E5B18C这么一串数值,而显示时我们用GBK解码进行展示,通过查表我们获得以下信息: 解码后我们就得到了“寰堝睂”这么一个错误的结果,更要命的是连字符个数都变了。 10、如何识别乱码的本来想要表达的文字 要从乱码字符中反解出原来的正确文字需要对各个字符集编码规则有较为深刻的掌握。但是原理很简单,这里用以MySQL数据库中的数据操纵中最常见的UTF-8被错误用GBK展示时的乱码为例,来说明具体反解和识别过程。 10.1 第1步:编码 假设我们在页面上看到“寰堝睂”这样的乱码,而又得知我们的浏览器当前使用GBK编码。那么第一步我们就能先通过GBK把乱码编码成二进制表达式。 当然查表编码效率很低,我们也可以用以下SQL语句直接通过MySQL客户端来做编码工作: mysql [localhost] {msandbox} > selecthex(convert('寰堝睂'using gbk)); +-------------------------------------+ | hex(convert('寰堝睂'using gbk)) | +-------------------------------------+ | E5BE88E5B18C | +-------------------------------------+ 1 row inset(0.01 sec) 10.2 第2步:识别 现在我们得到了解码后的二进制字符串E5BE88E5B18C。然后我们将它按字节拆开。 然后套用之前UTF-8编码介绍章节中总结出的规律,就不难发现这6个字节的数据符合UTF-8编码规则。如果整个数据流都符合这个规则的话,我们就能大胆假设乱码之前的编码字符集是UTF-8。 10.3 第3步:解码 然后我们就能拿着 E5BE88E5B18C 用UTF-8解码,查看乱码前的文字了。 当然我们可以不查表直接通过SQL获得结果: mysql [localhost] {msandbox} ((none)) > selectconvert(0xE5BE88E5B18C using utf8); +------------------------------------+ | convert(0xE5BE88E5B18C using utf8) | +------------------------------------+ | 很屌 | +------------------------------------+ 1 row inset(0.00 sec) 11、常见的IM乱码问题处理之MySQL中的Emoji字符 所谓Emoji就是一种在Unicode位于 \u1F601-\u1F64F 区段的字符。这个显然超过了目前常用的UTF-8字符集的编码范围 \u0000-\uFFFF。Emoji表情随着IOS的普及和微信的支持越来越常见。 下面就是几个常见的Emoji(IM聊天软件中经常会被用到): 那么Emoji字符表情会对我们平时的开发运维带来什么影响呢? 最常见的问题就在于将他存入MySQL数据库的时候。一般来说MySQL数据库的默认字符集都会配置成UTF-8(三字节),而utf8mb4在5.5以后才被支持,也很少会有DBA主动将系统默认字符集改成utf8mb4。 那么问题就来了,当我们把一个需要4字节UTF-8编码才能表示的字符存入数据库的时候就会报错:ERROR 1366: Incorrect string value: '\xF0\x9D\x8C\x86' for column 。 如果认真阅读了上面的解释,那么这个报错也就不难看懂了:我们试图将一串Bytes插入到一列中,而这串Bytes的第一个字节是 \xF0 意味着这是一个四字节的UTF-8编码。但是当MySQL表和列字符集配置为UTF-8的时候是无法存储这样的字符的,所以报了错。 那么遇到这种情况我们如何解决呢? 有两种方式: 1)升级MySQL到5.6或更高版本,并且将表字符集切换至utf8mb4; 2)在把内容存入到数据库之前做一次过滤,将Emoji字符替换成一段特殊的文字编码,然后再存入数据库中。之后从数据库获取或者前端展示时再将这段特殊文字编码转换成Emoji显示。 第二种方法我们假设用 --1F601-- 来替代4字节的Emoji,那么具体实现python代码可以参见Stackoverflow上的回答。 12、参考文献 [1] 如何配置Python默认字符集 [2] 字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8 [3] Unicode中文编码表 [4] Emoji Unicode Table [5] Every Developer Should Know About The Encoding 附录:更多IM开发方面的文章 [1] IM开发综合文章: 《新手入门一篇就够:从零开发移动端IM》 《移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”》 《移动端IM开发者必读(二):史上最全移动弱网络优化方法总结》 《从客户端的角度来谈谈移动端IM的消息可靠性和送达机制》 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《小白必读:闲话HTTP短连接中的Session和Token》 《IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理》 《移动端IM开发需要面对的技术问题》 《开发IM是自己设计协议用字节流好还是字符流好?》 《请问有人知道语音留言聊天的主流实现方式吗?》 《一个低成本确保IM消息时序的方法探讨》 《完全自已开发的IM该如何设计“失败重试”机制?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《微信对网络影响的技术试验及分析(论文全文)》 《即时通讯系统的原理、技术和应用(技术论文)》 《开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》 《全面掌握移动端主流图片格式的特点、性能、调优等》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》 《融云技术分享:解密融云IM产品的聊天消息ID生成策略》 《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》 《拿起键盘就是干:跟我一起徒手开发一套分布式IM系统》 >> 更多同类文章 …… [2] 有关IM架构设计的文章: 《浅谈IM系统的架构设计》 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》 《一套原创分布式即时通讯(IM)系统理论架构方案》 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》 《蘑菇街即时通讯/IM服务器开发之架构选择》 《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《17年的实践:腾讯海量产品的技术方法论》 《移动端IM中大规模群消息的推送如何保证效率、实时性?》 《现代IM系统中聊天消息的同步和存储方案探讨》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《WhatsApp技术实践分享:32人工程团队创造的技术神话》 《微信朋友圈千亿访问量背后的技术挑战和实践总结》 《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》 《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《以微博类应用场景为例,总结海量社交系统的架构设计步骤》 《快速理解高性能HTTP服务端的负载均衡技术原理》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》 《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》 《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》 《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》 《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》 《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》 《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》 《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》 《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》 《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》 《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》 《社交软件红包技术解密(八):全面解密微博红包技术方案》 《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》 《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》 《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》 《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》 《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》 《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》 《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》 >> 更多同类文章 …… (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 本篇文章为转载内容。原文链接:https://blog.csdn.net/hellojackjiang2011/article/details/103586305。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-04-29 12:29:21
523
转载
转载文章
...这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
323
转载
转载文章
...面。通过研究这些真实案例,可以深入了解jieba等分词工具在解决实际问题时所发挥的关键作用。 4. 学术研究与发展趋势:查阅最新的自然语言处理学术论文,可以发现对于中文分词的研究正逐渐从规则驱动转向数据驱动,并尝试结合多种上下文信息进行更精细化的词语切分。同时,跨语言模型的出现也为中文分词带来了新的挑战与机遇,比如探讨如何利用多语言模型对未登录词或新词进行有效识别和处理。 综上所述,关于jieba中文分词组件的延伸阅读,可以从深度学习技术在分词任务上的前沿发展、同类开源工具比较、具体行业应用案例以及学术研究趋势等多个维度展开,以全面把握这一领域的现状与未来发展方向。
2023-12-02 10:38:37
501
转载
转载文章
...。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
226
转载
转载文章
...CTF比赛则为学习和实践提供了宝贵的平台。 此外,随着技术的发展,新的漏洞和攻击手法不断涌现,如PHP get_headers()函数的零字节截断漏洞利用,提示我们关注软件更新与补丁管理的重要性。同时,对于数据库系统内部机制的理解也至关重要,比如MySQL中的pipes_as_concat模式下字符串拼接符“||”的特殊作用,它警示开发者在构建查询时需考虑潜在的安全风险,并合理配置数据库参数以增强安全性。 总的来说,无论是针对传统SQL注入手法的深入探究,还是紧跟CVE公告及时发现并修复新出现的安全漏洞,CTF比赛所涵盖的各种实战演练都是广大网络安全从业者及爱好者丰富知识库、提高实战技能的有效途径。同时,这也提醒我们应时刻保持警惕,密切关注业界动态,不断提升自身的安全防护能力,确保在网络空间的攻防对抗中立于不败之地。
2023-11-13 21:30:33
304
转载
转载文章
...应用卡顿优化的研究与实践是一个持续发展的领域,开发者需要密切关注最新技术动态,紧跟Android系统的演进步伐,同时深入理解并掌握底层原理,才能更好地应对层出不穷的新挑战,确保应用程序始终提供流畅而愉悦的用户体验。
2023-03-26 08:05:57
215
转载
转载文章
...间通信已成为一种最佳实践。 在实际应用中,.NET Core 3.0引入了源生成器(Source Generators),这一特性使得开发者能够更高效地处理事件和委托,进一步提升代码质量和可维护性。通过自定义源生成器,可以动态创建委托实例并自动绑定相关事件,从而减少手动编写重复代码的工作量。 此外,委托还在并发和多线程编程场景下发挥关键作用,如Task类和async/await关键字背后就依赖于委托来实现异步方法的调用和状态管理。微软在.NET生态系统中提倡采用异步编程模型,利用C的事件和委托机制,能够简化异步操作的处理流程,提高程序性能和响应速度。 对于设计模式层面的理解,委托与观察者模式(Observer Pattern)紧密相连,它允许对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。结合最新的.NET技术趋势,诸如Reactive Extensions (Rx.NET)等库更是将这种模式发扬光大,借助LINQ风格的查询操作符和事件流处理,让委托在实时数据流处理领域展现出了强大的功能。 总之,深入掌握C中的委托和事件不仅有助于日常开发工作的效率提升,更能紧跟现代软件工程的发展潮流,充分利用最新的技术和框架优势,构建出高性能、高可维护性的应用程序。而不断跟进官方文档、社区讨论和技术博客,则是深化此类主题理解和实践运用的有效途径。
2023-10-05 16:02:19
81
转载
转载文章
...实际生产环境中的最佳实践,并结合自身业务需求,合理选择和使用这些强大的控制器来提升集群管理水平和应用服务质量。同时,针对特定应用场景,学习和掌握如何通过Job、CronJob等其他控制器实现任务调度、定时任务等功能,以充分发挥Kubernetes在自动化运维方面的优势。
2023-09-29 09:08:28
423
转载
转载文章
...、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
98
转载
转载文章
...与检索策略方面的最佳实践。文中指出,在线教育平台应充分利用Elasticsearch等高效索引工具,结合Logstash的数据收集能力,实时同步并处理大量课程媒资信息,以确保用户能够快速、准确地获取所需的学习资料。 此外,为了保障视频流媒体服务的质量与稳定性,许多教育平台正积极采用更先进的HTTP Live Streaming(HLS)协议,并通过m3u8地址格式进行视频片段分发。例如,某知名在线教育企业近期升级其视频播放系统,实现了基于用户网络环境动态调整视频码率的功能,极大提升了用户的观看体验。 同时,在架构设计层面,使用Nginx作为反向代理服务器已成为业界标准配置,它不仅能够解决跨域调用问题,还能通过对请求的负载均衡分配,提高系统的稳定性和响应速度。正如《高性能Nginx服务器详解》一书中所述,合理配置Nginx对于构建高性能、高可用的在线教育服务平台至关重要。 综上所述,不论是紧跟技术潮流,采用高效的检索技术和流媒体解决方案,还是从架构设计角度优化服务性能,都是现代在线教育平台保持竞争力的关键所在。未来,在线教育领域的技术创新将更加注重个性化、智能化和互动化,为用户提供更加优质、便捷的学习体验。
2023-12-16 12:41:01
74
转载
转载文章
...网络安全领域的发展与实践显得尤为重要。近日,国际知名网络安全公司发布了一份年度报告,揭示了2023年第一季度全球Web应用攻击趋势。报告显示,XSS和SQL注入攻击仍占据高发态势,其中新型反射型XSS利用社交工程学手法进行钓鱼攻击的情况有所增加。此外,随着Flash技术逐渐被淘汰,基于HTML5和JavaScript的新一代跨站脚本攻击手段正被恶意攻击者广泛利用。 同时,针对CSRF漏洞的防御研究也在不断深化,各大云服务商如AWS、阿里云等相继推出更为精细的防护策略,通过强化身份验证机制、实施严格的请求来源检查以及优化token管理,有效降低了CSRF攻击的风险。而在防止持久型XSS方面,一些前沿的Web框架已开始采用自动转义和上下文相关的编码策略,显著提升了对数据库存储数据的安全处理能力。 值得注意的是,为了应对愈发复杂的Web安全挑战,各国政府和行业组织正积极推动相关法律法规的制定和完善,例如欧盟GDPR法规要求企业加强用户数据保护,包括防范SQL注入、XSS等可能导致数据泄露的安全威胁。与此同时,开发者社区也在积极响应,提倡“安全左移”理念,将安全性融入开发周期的每个阶段,从源头上降低Web安全风险。 综上所述,在实际操作中,广大开发者和安全从业者不仅需要掌握文章所述的基础知识,更应密切关注行业动态和最新研究成果,以提升Web应用程序的安全性,并确保用户的隐私信息得到有效保护。
2023-01-03 14:51:12
494
转载
转载文章
...代等内容,将有助于在实践中应对各种复杂情况,构建出高效稳定的应用程序。
2023-07-21 16:19:45
329
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar --exclude=PATTERN -cvf archive.tar .
- 创建tar归档时排除匹配模式的文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"