前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[UpdateLog管理策略 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hive
...因其强大的数据存储、管理和分析能力而广受青睐。然而,在实际操作的时候,我们偶尔会碰到Hive SQL语法这家伙给我们找点小麻烦,它一闹腾,可能就把我们数据分析的进度给绊住了。这篇文会手把手带着大家,用一些鲜活的实例和通俗易懂的讲解,让大家能更好地理解和搞定在使用Hive查询时可能会遇到的各种SQL语法难题。 2. 常见的Hive SQL语法错误类型 2.1 表达式或关键字拼写错误 我们在编写Hive SQL时,有时可能因一时疏忽造成关键字或函数名拼写错误,导致查询失败。例如: sql -- 错误示例 SELECT emplyee_name FROM employees; -- 'emplyee_name'应为'employee_name' -- 正确示例 SELECT employee_name FROM employees; 2.2 结构性错误 Hive SQL的语句结构有严格的规定,如不遵循则会出现错误。比如分组、排序、JOIN等操作的位置和顺序都有讲究。下面是一个GROUP BY语句放置位置不当的例子: sql -- 错误示例 SELECT COUNT() total, department FROM employees WHERE salary > 50000 GROUP BY department; -- 正确示例 SELECT department, COUNT() as total FROM employees WHERE salary > 50000 GROUP BY department; 2.3 数据类型不匹配 在Hive中,进行运算或者比较操作时,如果涉及的数据类型不一致,也会引发错误。如下所示: sql -- 错误示例 SELECT name, salary days AS total_salary FROM employees; -- 若days字段是字符串类型,则会导致类型不匹配错误 -- 解决方案(假设days应为整数) CAST(days AS INT) AS days_casted, salary days_casted AS total_salary FROM employees; 3. 探究与思考 如何避免和调试SQL语法错误? - 养成良好的编程习惯:细心检查关键字、函数名及字段名的拼写,确保符合Hive SQL的标准规范。 - 理解SQL语法规则:深入学习Hive SQL的语法规则,尤其关注那些容易混淆的操作符、关键字和语句结构。 - 善用IDE提示与验证:利用诸如Hue、Hive CLI或IntelliJ IDEA等集成开发环境,它们通常具备自动补全和语法高亮功能,能在很大程度上减少人为错误。 - 实时反馈与调试:当SQL执行失败时,Hive会返回详细的错误信息,这些信息是我们定位问题的关键线索。学会阅读并理解这些错误信息,有助于快速找到问题所在并进行修复。 - 测试与验证:对于复杂的查询语句,先尝试在小规模数据集上运行并验证结果,逐步完善后再应用到大规模数据中。 4. 总结 在Hive查询过程中遭遇SQL语法错误,虽让人头疼,但只要我们深入了解Hive SQL的工作原理,掌握常见的错误类型,并通过实践不断提升自己的排查能力,就能从容应对这些问题。记住了啊,每一个搞砸的时候,其实都是个难得的学习机会,它能让我们更接地气地领悟到Hive这家伙究竟有多强大,还有它那一套严谨得不行的规则体系。只有经历过“跌倒”,才能更好地“奔跑”在大数据的广阔天地之中!
2023-06-02 21:22:10
608
心灵驿站
MemCache
...数据:深入探讨与应对策略 0 1. 引言 Memcached,这个在Web开发领域久负盛名的分布式内存对象缓存系统,以其快速、简洁的设计赢得了广大开发者的心。然而,在我们尽情享受这波性能飙升带来的快感时,可别忘了有个隐藏的小危机:一旦Memcached服务突然闹脾气挂掉了,那所有的缓存数据就像肥皂泡一样,“砰”一下就消失得无影无踪了。这无疑是对应用连续性和稳定性的一大挑战。本文就以此为主题,通过实例代码和深入探讨,揭示这一问题并提供应对方案。 0 2. Memcached缓存机制及风险揭示 Memcached的工作原理是将用户临时存储在内存中的数据(如数据库查询结果)以键值对的形式暂存,当后续请求再次需要相同数据时,直接从内存中获取,避免了昂贵的磁盘IO操作,从而显著提高了响应速度。不过,因为内存这家伙的特性,一旦这服务闹罢工或者重启了,它肚子里暂存的数据就无法长久保存下来,这样一来,所有的缓存数据可就全都没啦。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 存储数据到Memcached data = mc.get('key') 从Memcached获取数据 上述Python代码展示了如何使用Memcached进行简单的数据存取,但在服务崩溃后,'key'对应的'value'将会丢失。 0 3. 面对Memcached崩溃时的数据丢失困境 面对这样的问题,首先我们需要理解的是,这不是Memcached设计上的缺陷,而是基于其内存缓存定位的选择。那么,作为开发者,我们应当如何应对呢? 03.1 理解并接受 首先,我们要理解并接受这种可能存在的数据丢失情况,并在架构设计阶段充分考虑其影响,确保即使缓存失效,系统仍能正常运作。 03.2 数据重建策略 其次,建立有效的数据重建策略至关重要。比如,假如我们发现从Memcached这小子那里获取数据时扑了个空,别担心,咱可以灵活应对,重新去数据库这个靠谱的仓库里翻出所需的数据,然后再把这些数据塞回给Memcached,让它满血复活。 python try: data = mc.get('key') except memcache.Error: 当Memcached访问异常时,从数据库重构建缓存数据 db_data = fetch_from_database('key') mc.set('key', db_data) data = db_data 03.3 使用备份和集群 另外,Memcached支持多服务器集群配置,通过在多台服务器上分散存储缓存数据,即使某一台服务器崩溃,其他服务器仍然能够提供部分缓存服务,降低整体数据丢失的影响。 03.4 数据持久化探索 虽然Memcached本身不支持数据持久化,但社区有一些变通的解决方案,如memcachedb、twemproxy等中间件,它们在一定程度上实现了缓存数据的持久化,不过这会牺牲一部分性能且增加系统复杂性,因此在选择时需权衡利弊。 0 4. 结论与思考 尽管Memcached服务崩溃会导致所有缓存数据丢失,但这并不妨碍它在提升系统性能方面发挥关键作用。作为开发者,咱们得充分意识到这个问题的重要性,并且动手去解决它。咱可以想想怎么设计出更合理的架构,重建一下数据策略,再比如利用集群技术和持久化方案这些手段,就能妥妥地应对这个问题了。每一个技术工具都有它自己的“用武之地”和“短板”,关键在于我们如何去洞察并巧妙运用,让它们在实际场景中最大程度地发光发热,发挥出最大的价值。就像一把锤子,不是所有问题都是钉子,但只要找准地方,就能敲出实实在在的效果。每一次遇到挑战,都是一次深度理解技术和优化系统的契机,让我们共同在实践中成长。
2023-09-25 18:48:16
60
青山绿水
转载文章
...列实用工具集合,用于管理和调试音频硬件设备。在本文场景中,为了正确配置和测试树莓派的麦克风输入,需要通过sudo apt-get install alsa-utils命令安装这些工具,以便解决可能出现的音频输入问题。 PulseAudio , PulseAudio是一个开源的声音服务器,它提供了跨多个应用程序的高级音频路由和混音功能,使得在Linux环境下管理音频变得更加灵活和高效。在本文中,当测试录音时遇到错误时,用户需安装PulseAudio以完善树莓派的音频输入配置,确保麦克风能够正常工作,为Snowboy的唤醒词识别提供稳定的声音输入源。
2023-03-05 08:57:02
123
转载
Scala
JQuery
...ash函数以简化状态管理的深度分析文章,引发了开发者们对于如何在新框架体系内引入成熟工具库进行功能扩展的思考。 此外,Vue.js官方也积极倡导生态共建,鼓励开发者创造更多适用于Vue环境的jQuery插件或将其改造为Vue组件,以便更好地服务于Vue用户群体。一些开发者分享了他们在实际项目中将jQuery UI等经典插件成功融入Vue项目的经验,并强调了此类融合对于优化代码结构和提高开发效率的重要性。 综上所述,在追求技术革新与框架升级的同时,我们应持续关注如何有效整合既有资源,实现跨时代工具间的协同工作。这不仅有利于项目的平稳过渡和维护,更能体现出开发者与时俱进、灵活运用技术解决问题的能力。未来,随着前端技术的不断演进,jQuery等老牌库与现代框架的交融将为我们提供更多有趣且实用的开发范例和解决方案。
2023-12-07 08:45:29
350
烟雨江南-t
Gradle
...儿,它那牛哄哄的依赖管理功能,就像个超级管家,保证我们在打包的时候,一个不落、准确无误地把所有需要的小弟——依赖包,都招呼齐全了。这篇东西,咱们会手把手,用超级详细的实例代码和接地气的探讨方式,一步步带你玩转Gradle项目中的依赖管理和打包技巧,包你学得明明白白、稳稳妥妥。 1. 初始化Gradle项目 首先,我们需要创建一个新的Gradle项目。这里我们采用的是初始化一个简单的Java项目为例: bash mkdir my_project cd my_project gradle init --type java-application 这将在当前目录下生成一个基本的Gradle Java应用项目结构,其中build.gradle文件就是我们用来配置项目依赖的地方。 2. 添加依赖到build.gradle文件 2.1 添加本地库依赖 如果你有一个本地的JAR包需要添加为依赖,可以如下操作: groovy dependencies { implementation files('libs/my-local-library.jar') } 上述代码意味着Gradle在编译和打包时会自动将'libs/my-local-library.jar'包含进你的项目中。 2.2 添加远程仓库依赖 通常情况下,我们会从Maven Central或JCenter等远程仓库获取依赖。例如,要引入Apache Commons Lang库,我们可以这样做: groovy repositories { mavenCentral() // 或者 jcenter() } dependencies { implementation 'org.apache.commons:commons-lang3:3.9' } 在这里,Gradle会在mavenCentral仓库查找指定groupId(org.apache.commons)、artifactId(commons-lang3)和version(3.9)的依赖,并将其包含在最终的打包结果中。 3. 理解依赖范围 Gradle中的依赖具有不同的范围,如implementation、api、runtime等,它们会影响依赖包在不同构建阶段是否被包含以及如何传递给其他模块。例如: groovy dependencies { implementation 'com.google.guava:guava:29.0-jre' // 只对本模块编译和运行有效 api 'junit:junit:4.13' // 不仅对本模块有效,还会暴露给依赖此模块的其他模块 runtime 'mysql:mysql-connector-java:8.0.25' // 只在运行时提供,编译阶段不需 } 4. 执行打包并验证依赖 完成依赖配置后,我们可以通过执行gradle build命令来编译并打包项目。Gradle会根据你在build.gradle中声明的依赖进行解析和下载,最后将依赖与你的源码一起打包至输出的.jar或.war文件中。 为了验证依赖是否已成功包含,你可以解压生成的.jar文件(或者查看.war文件中的WEB-INF/lib目录),检查相关的依赖库是否存在。 结语 Gradle的依赖管理机制使得我们在打包项目时能轻松应对各种复杂场景下的依赖问题。掌握这项技能,可不只是提升开发效率那么简单,更能像给项目构建上了一层双保险,让其稳如磐石,始终如一。在整个捣鼓配置和打包的过程中,如果你能时刻把握住Gradle构建逻辑的脉络,一边思考一边调整优化,你就会发现Gradle这家伙在应对个性化需求时,展现出了超乎想象的灵活性和强大的力量,就像一个无所不能的变形金刚。所以,让我们带着探索和实践的热情,深入挖掘Gradle更多的可能性吧!
2024-01-15 18:26:00
435
雪落无痕_
Kibana
...空白:深度解析与优化策略 1. 引言 在大数据时代,Elasticsearch 作为一款强大的实时分布式搜索分析引擎备受瞩目,而Kibana则是其可视化界面的重要组成部分。在实际操作中,咱们可能会遇到这么个情况:打开Kibana的Discover页面加载数据时,那速度慢得简直能让人急出白头发,更糟的是,有时候它还可能调皮地给你来个大空白,真叫人摸不着头脑。这种问题不仅影响数据分析效率,也给用户带来困扰。本文将带您一同探寻这个问题的背后原因,并通过实例和解决方案来解决这一痛点。 2. Kibana Discover页面的基本工作原理 Kibana Discover页面主要用于交互式地探索Elasticsearch中的索引数据。当你点开Discover页面,选好一个索引后,Kibana就像个贴心的小助手,会悄悄地向Elasticsearch发出查询请求,然后把那些符合你条件的数据给挖出来,以一种可视化的方式展示给你看,就像变魔术一样。如果这个过程耗时较长或者返回为空,通常涉及到以下几个可能因素: - 查询语句过于复杂或宽泛 - Elasticsearch集群性能瓶颈 - 网络延迟或带宽限制 - Kibana自身的配置问题 3. 深入排查原因(举例说明) 示例1:查询语句分析 json GET /my_index/_search { "query": { "match_all": {} }, "size": 5000 } 上述代码是一个简单的match_all查询,试图从my_index中获取5000条记录。如果您的索引数据量巨大,这样的查询将会消耗大量资源,导致Discover页面加载缓慢。此时,可以尝试优化查询条件,比如添加时间范围过滤、字段筛选等。 示例2:检查Elasticsearch性能指标 借助Elasticsearch的监控API,我们可以获取节点、索引及查询的性能指标: bash curl -X GET 'localhost:9200/_nodes/stats/indices,query_cache?human&pretty' 通过观察查询缓存命中率、分片分配状态以及CPU、内存使用情况,可以帮助我们判断是否因ES集群性能瓶颈导致Discover加载慢。 4. 解决策略与实践 策略1:优化查询条件与DSL 确保在Discover页面使用的查询语句高效且有针对性。例如,使用range查询限定时间范围,使用term或match精确匹配特定字段,或利用bool查询进行复杂的组合条件过滤。 策略2:调整Elasticsearch集群配置 - 增加硬件资源,如提升CPU核数、增加内存大小。 - 调整索引设置,如合理设置分片数量和副本数量,优化refresh interval以平衡写入性能与实时性需求。 - 启用并适当调整查询缓存大小。 策略3:优化Kibana配置 在Kibana.yml配置文件中,可以对discover页面的默认查询参数进行调整,如设置默认时间范围、最大返回文档数等,以降低一次性加载数据量。 5. 结论与探讨 解决Kibana Discover页面加载数据慢或空白的问题,需要结合实际情况,从查询语句优化、Elasticsearch集群调优以及Kibana自身配置多方面着手。在实际操作的过程中,我们得像个福尔摩斯那样,一探究竟,把问题的根源挖个底朝天。然后,咱们得冷静分析,理性思考,不断尝试各种可能的优化方案,这样才能够让咱们的数据分析之路走得更加顺风顺水,畅通无阻。记住,每一次的成功优化都是对我们技术理解与应用能力的一次锤炼和提升!
2023-08-21 15:24:10
298
醉卧沙场
Datax
...tax采用了数据分区策略,即将大数据分成若干小数据集分别处理,这样可以有效避免单个存储系统的压力,提高并行处理能力,从而提升整体数据处理速度。在文章示例中,一个包含1亿条记录的大数据集被分割成1000个小数据集进行处理,即为数据分区的具体应用。
2023-07-29 13:11:36
476
初心未变-t
Redis
... (1)调整内存分配策略 Redis默认使用jemalloc作为内存分配器,对于不同的工作负载,可以适当调整jemalloc的相关参数以优化内存碎片和分配效率。例如,可以通过修改redis.conf文件中的maxmemory-policy来设置内存淘汰策略,如选择LRU(最近最少使用)策略: bash maxmemory-policy volatile-lru (2)限制客户端连接数 过多的并发连接可能会导致Redis资源消耗过大,降低响应速度。因此,我们需要合理设置最大客户端连接数: bash maxclients 10000 请根据实际情况调整此数值。 2. 使用Pipeline和Multi-exec批量操作 Redis Pipeline功能允许客户端一次性发送多个命令并在服务器端一次性执行,从而减少网络往返延迟,显著提升性能。以下是一个Python示例: python import redis r = redis.Redis(host='localhost', port=6379, db=0) pipe = r.pipeline() for i in range(1000): pipe.set(f'key_{i}', 'value') pipe.execute() 另外,Redis的Multi-exec命令用于事务处理,也能实现批量操作,确保原子性的同时提高效率。 3. 数据结构与编码优化 Redis支持多种数据结构,选用合适的数据结构能极大提高查询效率。比如说,如果我们经常要做一些关于集合的操作,像是找出两个集合的交集啊、并集什么的,那这时候,我们就该琢磨着别再用那个简单的键值对(Key-Value)了,而是考虑选用Set或者Sorted Set,它们在这方面更管用。 python 使用Sorted Set进行范围查询 r.zadd('sorted_set', {'user1': 100, 'user2': 200, 'user3': 300}) r.zrangebyscore('sorted_set', 150, 350) 同时,Redis提供了多种数据编码方式,比如哈希表的ziplist编码能有效压缩存储空间,提高读写速度,可通过修改hash-max-ziplist-entries和hash-max-ziplist-value进行配置。 4. 精细化监控与问题排查 定期对Redis服务器进行性能监控和日志分析至关重要。Redis自带的INFO命令能提供丰富的运行时信息,包括内存使用情况、命中率、命令统计等,结合外部工具如RedisInsight、Grafana等进行可视化展示,以便及时发现潜在性能瓶颈。 当遇到性能问题时,我们要像侦探一样去思考和探索:是由于内存不足导致频繁淘汰数据?还是因为某个命令执行过于耗时?亦或是客户端并发过高引发的问题?通过针对性的优化措施,逐步改善Redis服务器的响应时间和性能表现。 总结来说,优化Redis服务器的关键在于深入了解其内部机制,合理配置参数,巧妙利用其特性,以及持续关注和调整系统状态。让我们一起携手,打造更为迅捷、稳定的Redis服务环境吧!
2023-11-29 11:08:17
236
初心未变
Element-UI
...(Vue的state管理库)的无缝集成,使得开发者在使用Element-UI构建应用时,能更好地管理和维护应用状态。 5. 社区贡献与反馈:Element-UI社区积极响应Vue 3.x版本的发布,快速跟进更新路线图,通过GitHub等平台收集开发者反馈,不断迭代优化组件,满足不同场景的需求。 面对Vue 3.x版本的发布,Element-UI不仅展现了其适应新技术的能力,更体现了其作为专业UI组件库对开发者需求的深度理解与响应。随着Vue 3.x版本在实际项目中的广泛应用,Element-UI的应用趋势也将进一步凸显,成为构建现代Web应用不可或缺的工具之一。未来,Element-UI将继续致力于提供高性能、易用且美观的UI解决方案,推动前端技术的发展与创新。
2024-10-08 16:19:00
48
百转千回
转载文章
...下的编译流程,并有效管理静态库与共享库的生成与链接(参考“Mastering CMake for Effective Project Configuration and Build System”)。 针对预处理和头文件管理,LLVM的Header Include Optimization (HIO) 技术提供了一种新的解决方案,它能够在编译时智能地分析和包含必要的头文件,从而提高编译速度和减少冗余(查阅“LLVM’s Header Include Optimization: Smarter Inclusion of Headers”)。 同时,对于希望深入了解底层机制的开发者,可以阅读《深入理解计算机系统》一书,书中详细介绍了从源码到可执行程序的完整过程,涵盖了预处理、编译、汇编和链接等各阶段原理,有助于读者更好地运用GCC编译选项和相关技术。 总之,在掌握GCC基本用法的基础上,结合最新的编译器技术和构建工具发展动态,以及深入研究编译原理,都能帮助开发者更高效地构建高质量的C语言项目。
2023-06-29 13:05:13
52
转载
转载文章
...的设计理念与高效执行策略为解决多线程同步问题提供了新思路。 综上所述,在线程同步领域,无论是最新的技术发展还是深入的理论研究,都在为我们提供更强大且易用的工具,帮助开发者应对日益复杂的并发场景挑战,实现更加稳定、高效的应用程序。
2023-10-03 17:34:08
136
转载
Element-UI
...但只要我们采取正确的策略,就完全可以解决这个问题。我们得把前端和后端的技术两手抓,联手优化咱们的代码和服务,这样一来,就能让用户享受到更上一层楼的体验。同时呢,咱们也得时刻保持对问题的敏锐洞察力和满满的好奇心,这样才能够不断发现那些藏起来的问题,解决它们,从而让我们的技术噌噌噌地进步!
2023-09-23 17:23:49
489
春暖花开-t
NodeJS
...eb开发中的异步处理策略和技术动态是至关重要的。近年来,随着JavaScript语言和相关生态的快速发展,诸如async/await语法糖、Promise对象以及最近的Top-level await等特性逐渐成为处理异步逻辑的标准工具。 例如,在2022年发布的Node.js 16版本中,对Top-level await的支持使得开发者可以直接在模块顶层等待异步操作完成,大大简化了异步代码的编写和阅读难度,降低了潜在的同步上下文误用风险。此外,Node.js通过Libuv库实现的事件循环机制,结合Kubernetes等容器编排技术,使得构建高并发、高性能的服务端应用更为得心应手。 同时,社区也在积极研究并实践如Rust语言与Node.js的结合使用,利用Rust的多线程和无数据竞争特性来解决CPU密集型任务,而Node.js继续专注于其擅长的I/O领域,两者协同工作,可望进一步提升服务端性能。 因此,建议读者关注最新JavaScript标准进展、Node.js官方更新日志以及相关社区的技术分享文章,以紧跟异步编程的最佳实践和发展趋势,为构建更高效、健壮的网络应用提供技术支持。
2023-03-20 14:09:08
121
雪域高原-t
Java
...存储等环节的最新安全策略与规范,并特别强调了签名算法的安全性更新,旨在提升开发者对于接口调用签名生成与验证的严谨性。 此外,为了帮助开发者更好地理解和应用签名机制,微信官方社区不断推出实战教程和案例分享,比如“如何避免微信JS-SDK签名错误的五大常见场景”、“基于Spring Boot实现微信公众号JS-SDK签名自动化”的技术文章,这些资源都极具时效性和针对性,能有效指导开发者在实际项目中规避签名问题,确保业务流程的顺利进行。 同时,结合业界最佳实践,许多开发者开始采用更为严格的身份验证方案如OAuth 2.0或JWT(JSON Web Tokens)来增强其微信应用的数据安全性,这不仅可以解决签名错误的问题,还提升了整体应用架构的安全层级。因此,在深入理解微信JS-SDK签名机制的基础上,与时俱进地学习和掌握更多先进的安全认证方法,也是现代开发者应当关注的重要课题。
2023-09-10 15:26:34
315
人生如戏_
Apache Lucene
...动态调整搜索结果排序策略,这种融合用户反馈的实时学习机制是对传统基于TF-IDF相似度算法的重要补充和完善。 综上所述,深入理解并有效运用自定义相似度算法是提升搜索引擎性能的关键环节,而随着人工智能技术的发展以及对用户体验需求的不断深化,我们有必要持续关注并学习借鉴这些新的理论成果和技术趋势,以确保在使用Apache Lucene构建搜索引擎时能够紧跟时代步伐,为用户提供更高质量的搜索服务。
2023-05-29 21:39:32
518
寂静森林
JQuery
...播放器高级功能开发的策略与技巧,值得对此感兴趣的读者进一步研读学习。 综上所述,在紧跟技术潮流的同时,深入理解和掌握滑动条这一基础而又关键的UI元素,无疑将助力开发者打造出更加高效、易用且富有吸引力的网页应用。
2023-01-20 22:28:12
352
山涧溪流-t
RabbitMQ
...,探讨并发访问的设计策略和潜在问题。 二、发布者/订阅者模式简介 1.1 发布者(Producer)与订阅者(Consumer)的角色 - 发布者:负责创建和发送消息到队列,通常是一个服务或者应用,如订单创建系统。 - 订阅者:从队列中接收并处理消息,可能是订单处理服务、库存更新服务等。 2.2 并发访问的挑战 - 在高并发环境下,多个发布者同时向同一个队列发送消息可能导致消息堆积,影响性能。 - 订阅者也需要处理多个消息同时到达的情况,保证处理的线程安全。 三、消息确认与并发控制 1.3 使用publisher confirms 为了确保消息的可靠传递,我们可以启用publisher confirms机制。当消息被交换机确认接收后,消费者才会真正消费该消息。Spring RabbitMQ配置示例: java @Configuration public class RabbitConfig { @Value("${rabbitmq.host}") private String host; @Value("${rabbitmq.port}") private int port; @Bean public ConnectionFactory connectionFactory() { CachingConnectionFactory factory = new CachingConnectionFactory(); factory.setHost(host); factory.setPort(port); factory.setUsername("your_username"); factory.setPassword("your_password"); factory.setPublisherConfirmations(true); // 开启publisher confirms return factory; } } 四、并发处理与消息分发 1.4 哨兵模式与任务分发 - 哨兵模式:一个特殊的消费者用于监控队列,处理来自其他消费者的错误响应(nacks),避免消息丢失。 - 任务分发:使用fanout交换机可以一次将消息广播给所有订阅者,但要确保处理并发的负载均衡和消息顺序。 java @Autowired private TaskConsumer taskConsumer; // 发布者方法 public void sendMessage(String message) { channel.basicPublish("task_queue", "", null, message.getBytes()); } 五、事务与消息重试 1.5 事务与幂等性 - 如果订阅者处理消息的业务操作支持事务,可以利用事务回滚来处理nack后的消息重试。 - 幂等性保证即使消息多次被处理,结果保持一致。 六、结论与最佳实践 2.6 总结与注意事项 - 监控和日志:密切关注队列的消费速率、延迟和确认率,确保系统稳定。 - 负载均衡:通过轮询、随机选择或者其他策略,分摊消费者之间的消息处理压力。 - 异步处理:对于耗时操作,考虑异步处理以避免阻塞队列。 在实际项目中,理解并应用这些技巧将有助于我们构建健壮、高效的发布者/订阅者架构,有效应对并发访问带来的挑战。记住了啊,每一个设计决定,其实都是为了让你用起来更顺手、系统扩展性更强。这就是RabbitMQ最吸引人的地方啦,就像是给机器装上灵活的弹簧和无限延伸的轨道,让信息传输变得轻松自如。
2024-03-03 10:52:21
89
醉卧沙场-t
转载文章
...实体所有权或直接进行管理。在本文中,阿里云开发者社区涵盖了云计算这一技术领域,为开发者提供了相关领域的学习资料、交流平台及实战经验分享。 大数据 , 大数据是指由数量巨大、种类繁多、处理速度快且价值密度低的数据集合所构成的一种新型信息化资产。在阿里云开发者社区中,大数据是其覆盖的重要技术领域之一,社区内包含海量的大数据处理技术教程、案例分析和行业解决方案,帮助开发者掌握从数据采集、存储、分析到应用的全套技能。 云原生 , 云原生是一种构建和运行应用程序的方法,它充分利用云计算的优势来实现快速创新、高可扩展性和容错性。在云原生架构下,应用程序设计、开发、部署和运维紧密围绕云环境的特点进行优化,通常包括容器化、微服务、持续交付/部署(CI/CD)、以及服务网格等关键技术实践。阿里云开发者社区探讨云原生技术并提供相关的学习资源与实践指导,助力开发者适应现代云环境下的应用开发与管理需求。 物联网(IoT) , 物联网是指全球范围内各种物理设备、车辆、家居和其他物品通过嵌入式电子设备、传感器、软件及网络连接起来,形成一个可以收集和交换数据的智能网络。阿里云开发者社区也关注物联网技术的发展与应用,为开发者提供物联网相关的软硬件知识、开发工具和技术支持,推动物联网生态的建设与创新。 开发者藏经阁 , 在阿里云开发者社区中,“开发者藏经阁”是一个特色板块,旨在聚合各类高质量的技术文章、教程、文档和视频资源,内容涵盖多种前沿技术和产品实践,为开发者提供一站式的学习和成长路径,帮助他们提升技术水平,解决实际问题。
2023-01-31 19:12:04
256
转载
MyBatis
...QL、分页查询、事务管理等。在数据加密这一块儿,Mybatis-plus虽然没提供现成的支持功能,但是咱可以脑洞大开,借助它自带的TypeHandler这个小工具,自定义一个TypeHandler就能轻松实现加密需求啦。 三、实现原理 接下来我们来看看如何实现多个字段的加密。其实,这个问题的关键点就在于怎么在TypeHandler里头一块儿处理多个字段的加密问题,就像咱们平时做饭时,怎样一次性炒好几样菜一样。这就需要我们在自定义TypeHandler时,通过封装一系列的逻辑来实现。 四、具体步骤 下面我们将一步步地演示如何实现这个功能。 1. 创建TypeHandler 首先,我们需要创建一个新的TypeHandler,用来处理我们的加密操作。这里我们假设我们要对两个字段(field1和field2)进行加密,代码如下: java @MappedJdbcTypes(JdbcType.VARCHAR) @MappedTypes(String.class) public class EncryptTypeHandler extends BaseTypeHandler { private String key = "your secret key"; @Override public void setNonNullParameter(PreparedStatement ps, int i, String parameter, JdbcType jdbcType) throws SQLException { ps.setString(i, encrypt(parameter)); } @Override public String getNullableResult(ResultSet rs, String columnName) throws SQLException { return decrypt(rs.getString(columnName)); } private String encrypt(String str) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, keySpec); byte[] encryptedBytes = cipher.doFinal(str.getBytes()); return Base64.getEncoder().encodeToString(encryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } private String decrypt(String encryptedStr) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, keySpec); byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(encryptedStr)); return new String(decryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } } 在这个TypeHandler中,我们实现了setNonNullParameter和getNullableResult方法,分别用于设置和获取字段的值。在这些方法中,我们都调用了encrypt和decrypt方法来进行加密和解密操作。 2. 配置TypeHandler 接下来,我们需要在Mybatis的配置文件中配置这个TypeHandler。举个例子,实际上我们得在那个标签区域里头,给它添个新成员。具体操作就像这样:给这个新元素设定好它对应处理的Java类型和数据库类型,就像是给它分配了特定的任务一样。代码如下: xml 这样,我们就成功地配置了这个TypeHandler。 3. 使用TypeHandler 最后,我们可以在Mybatis的映射文件中使用这个TypeHandler来处理我们的加密字段。例如,如果我们有一个User实体类,其中有两个字段(field1和field2),我们就可以在映射文件中这样配置: xml SELECT FROM users; UPDATE users SET field1 = {field1}, field2 = {field2} WHERE id = {id}; 这样,当我们在查询或更新用户的时候,就会自动调用我们刚才配置的TypeHandler来进行加密操作。 五、总结 总的来说,通过利用Mybatis的TypeHandler功能,我们可以很方便地实现多个字段的加密。虽然这个过程可能稍微有点绕,不过只要我们把这背后的原理摸透了,就能像变戏法一样,在各种场景中轻松应对,游刃有余。 六、后续工作 未来,我们可以考虑进一步优化这个TypeHandler,让它能够支持更多的加密算法和加密模式。另外,咱们还可以琢磨一下把这个功能塞进其他的平台或者工具里头,让更多的小伙伴都能享受到它的便利之处。 这就是我对于Mybatis-plus多字段如何加密不同密码的一些理解和实践,希望能够对你有所帮助。如果你有任何问题或者建议,欢迎随时给我留言。
2023-07-21 08:07:55
148
飞鸟与鱼_t
ReactJS
...新审视代码结构和优化策略,以充分利用新的特性,提升应用性能。 企业应用的升级路径 对于依赖React的企业来说,React 18的发布标志着一个重要的升级时机。企业需要评估当前应用的架构,确定哪些部分可以受益于并发模式,以及如何平滑过渡到新版本。这包括对现有代码进行重构、更新依赖项,以及进行性能测试,以确保应用在升级后能够保持稳定运行。 整个Web开发领域的趋势 React 18的发布不仅对React社区产生影响,也对整个Web开发领域产生积极的推动作用。并发模式的引入预示着Web应用开发向更加响应式和高效的方向发展。同时,这也激发了其他前端框架和库在性能优化上的创新,促进了整个行业的技术进步。 总之,React 18的发布不仅是一次技术更新,更是对未来Web应用发展趋势的前瞻。对于开发者、企业和整个Web开发社区而言,这都是一个值得期待和关注的重要时刻。随着React 18的深入应用,我们有望见证更多创新的Web应用和服务的诞生,为用户提供更加流畅、高效和个性化的体验。
2024-09-10 15:47:38
26
幽谷听泉
Linux
...规模集群环境下,密钥管理和分发成为新的挑战。为此,开源社区涌现出如HashiCorp Vault、Ansible等工具,它们能够帮助管理员更好地管理和控制SSH密钥生命周期,确保私钥的安全存储和使用。 此外,针对云环境下的SSH访问控制,各大云服务商也推出了相应的服务,例如AWS的IAM Roles for EC2 instances可让实例通过角色自动获取临时SSH密钥,从而避免在实例上持久化密钥带来的安全隐患。 同时,Jenkins社区不断优化其SSH插件功能,以适应更复杂的应用场景,如支持多种私钥类型(包括OpenSSH、PuTTY等),增强对SSH跳板机的支持等。因此,运维工程师不仅需要掌握基础的SSH配置与调试技巧,还需关注行业动态及新技术应用,以便在日常工作中不断提升运维效率与安全性。
2023-11-22 09:47:35
184
星辰大海_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pstree -p $$
- 以树状结构展示当前shell进程及其子进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"