前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[ __FUNCTION__ 在异常处理中...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kibana
...h检索的数据量,对于处理大规模数据时显著提升Discover页面的响应速度。此外,官方文档提供了详尽的调优指南和最佳实践,建议用户结合实际场景进行深入学习和应用。 值得一提的是,在实际运维过程中,除了软件层面的优化,硬件配置和网络环境同样对Elasticsearch集群性能有直接影响。例如,采用SSD存储而非HDD可以有效缩短I/O延迟,而部署在低延迟、高带宽的网络环境下,则能够降低网络传输对查询响应时间的影响。 综上所述,持续关注技术发展动态并结合实际情况采取多维度优化策略,是确保Kibana Discover页面高效加载数据、提升大数据分析体验的重要手段。而对于企业级用户而言,借助专业服务团队进行深度调优与架构设计,将更好地应对复杂业务场景下的性能挑战。
2023-08-21 15:24:10
299
醉卧沙场
转载文章
...基于AI的语音识别和处理技术关注度持续提升。例如,Mozilla最近推出了开源语音识别引擎DeepSpeech,它利用深度学习技术提供高精度的实时语音转文本服务,可以与Snowboy结合使用,为树莓派构建更全面的语音交互系统。 此外,针对物联网设备的嵌入式语音助手解决方案也在不断发展。Raspberry Pi Foundation联手Mozilla及多家合作伙伴共同推进Project Things,旨在通过开源平台打造智能家居控制中心,其中就包括了对语音控制的支持。将Snowboy与这类项目结合,可使树莓派成为家庭自动化的核心枢纽。 深入技术层面,Google发布了适用于边缘计算场景的TensorFlow Lite,使得在资源有限的设备如树莓派上运行复杂的机器学习模型成为可能。开发者可以尝试将Snowboy与TensorFlow Lite相结合,实现低功耗、高效的本地语音唤醒及命令识别功能,进一步丰富树莓派在语音交互领域的应用场景。 同时,在隐私保护方面,随着GDPR等法规的实施,越来越多用户关注数据安全问题。自建基于树莓派的语音助手能够有效减少云端数据传输,确保敏感信息不被第三方获取。在此背景下,研究如何优化本地语音识别系统的性能并降低误报率,对于推广和普及此类技术具有重要意义。 综上所述,随着人工智能和物联网技术的不断进步,以及用户对隐私保护意识的增强,树莓派与Snowboy等工具相结合构建的本地化语音交互方案将拥有广阔的应用前景和发展潜力。读者可以通过持续关注相关领域的最新研究成果和技术动态,推动这一技术在实践中的不断创新和突破。
2023-03-05 08:57:02
124
转载
Scala
...型编程语言,在大数据处理(如Apache Spark)以及分布式系统开发中占据着重要地位。然而,在实际动手开发的时候,为Scala编程选个趁手的IDE环境,同时把那些随之而来的问题妥妥搞定,这可是每个Scala开发者无论如何都逃不掉的一道坎儿。本文咱们要钻得深一点,好好聊聊如何挑选、捯饬那个Scala IDE环境,还有可能会碰到哪些小插曲。我还会手把手带你,通过实实在在的代码实例,让你在IDE里舒舒服服、开开心心地写出Scala程序来。 2. Scala IDE的选择 2.1 IntelliJ IDEA with Scala插件 IntelliJ IDEA无疑是Java和Scala开发者首选的集成开发环境之一。嘿,你知道吗?这货的智能补全和重构功能贼强大,而且对Scala的支持深入骨髓,这让咱Scala开发者在构建和开发项目时简直如虎添翼,效率嗖嗖地往上涨! scala // 在IntelliJ IDEA中创建一个简单的Scala对象 object HelloWorld { def main(args: Array[String]): Unit = { println("Hello, World!") } } 2.2 Scala IDE (基于Eclipse) Scala IDE则是专为Scala设计的一款开源IDE,它基于Eclipse平台,针对Scala语言进行了大量的优化。虽然现在大伙儿更多地在用IntelliJ IDEA,但在某些特定场合或者对某些人来说,它仍然是个相当不错的选择。 2.3 其他选项 诸如VS Code、Atom等轻量级编辑器配合 Metals 或 Bloop 等LSP服务器,也可以提供优秀的Scala开发体验。根据个人喜好和项目需求,灵活选择适合自己的IDE环境至关重要。 3. Scala IDE环境配置及常见问题 3.1 Scala SDK安装与配置 在IDE中,首先需要正确安装和配置Scala SDK。例如,在IntelliJ IDEA中,可以通过File > Project Structure > Project Settings > Project来添加Scala SDK。 3.2 构建工具配置(SBT或Maven) Scala项目通常会依赖SBT或Maven作为构建工具。确保在IDE中正确配置这些工具,以便顺利编译和运行项目。 sbt // 在SBT构建文件(build.sbt)中的示例配置 name := "MyScalaProject" version := "0.1.0" scalaVersion := "2.13.8" 3.3 常见问题及解决方案 - 代码提示不全:检查Scala插件版本是否最新,或者尝试重新索引项目。 - 编译错误:确认Scala SDK版本与项目要求是否匹配,以及构建工具配置是否正确。 - 运行报错:查看控制台输出的错误信息,通常能从中找到解决问题的关键线索。 4. 探讨与思考 在Scala开发过程中,IDE环境的重要性不言而喻。它不仅影响到日常编码效率,更直接影响到对复杂Scala特性的理解和掌握。作为一个Scala程序员,咱得积极拥抱并熟练掌握各种IDE工具,就像是找到自己的趁手兵器一样。这需要咱们不断尝试、实践,有时候可能还需要捣鼓一阵子,但最终目的是找到那个能让自己编程效率倍增,用起来最顺手的IDE神器。同时呢,也要懂得巧用咱们社区的丰富资源。当你碰到IDE环境那些头疼的问题时,得多翻翻官方文档、积极加入论坛里的讨论大军,甚至直接向社区里的大神们求救都是可以的。这样往往能让你更快地摸到问题的答案,解决问题更高效。 总的来说,选择并配置好IDE环境,就如同给你的Scala编程之旅铺平了道路,让你可以更加专注于代码逻辑和算法实现,享受编程带来的乐趣和成就感。希望这篇文章能够帮助你更好地理解和应对Scala开发过程中的IDE环境问题,助你在Scala世界里游刃有余!
2023-01-16 16:02:36
104
晚秋落叶
DorisDB
...B作为一个重要的数据处理工具,自然也遇到不少挑战。然而,随着数据量的增加,网络带宽的限制也逐渐显现出来。如果你之前试过在人多的时候搞很多查询,可能会发现网速慢得像蜗牛,连着好几回都卡壳,根本没法顺利搞定。这不仅影响了用户体验,还增加了运维成本。因此,优化DorisDB的网络带宽使用变得尤为重要。 2. 了解DorisDB的工作原理 在深入讨论优化方法之前,我们先来了解一下DorisDB的工作原理。DorisDB可是一个超快的分布式SQL数据库,它把数据分散存放在不同的节点上,这样不仅能平衡各个节点的工作量,还能保证数据的安全性和稳定性。当你让DorisDB干活时,它会把大任务拆成几个小任务,然后把这些小任务分给不同的小伙伴同时去做。这些子任务完成后,结果会被汇总并返回给客户端。因此,网络带宽成为了连接各个节点的关键因素。 3. 常见的网络带宽问题及解决方案 3.1 数据压缩 数据压缩是减少网络传输量的有效手段。DorisDB支持多种压缩算法,如LZ4和ZSTD。我们可以根据实际情况选择合适的压缩算法。例如,在配置文件中启用LZ4压缩: sql ALTER SYSTEM SET enable_compression = 'lz4'; 这样可以显著减少数据在网络中的传输量,从而减轻网络带宽的压力。 3.2 调整并行度 并行度是指同时执行的任务数量。如果并行度过高,会导致网络带宽竞争激烈,进而影响整体性能。相反,如果并行度过低,则会降低查询效率。我们可以通过调整parallel_fragment_exec_instance_num参数来控制并行度。例如,将其设置为2: sql ALTER SYSTEM SET parallel_fragment_exec_instance_num = 2; 这可以根据实际情况进行调整,以达到最佳的网络带宽利用效果。 3.3 使用索引 索引可以显著提高查询效率,减少需要传输的数据量。想象一下,我们有个用户信息表叫users,里面有个age栏。咱们经常得根据年龄段来捞人,就是找特定年纪的用户。为了提高查询效率,我们可以创建一个针对age列的索引: sql CREATE INDEX idx_users_age ON users (age); 这样,在执行查询时,DorisDB可以直接通过索引来定位需要的数据,而无需扫描整个表,从而减少了网络传输的数据量。 3.4 使用分区表 分区表可以将大数据集分成多个较小的部分,从而提高查询效率。想象一下,我们有个表格叫sales,里面记录了所有的销售情况,还有一个日期栏叫date。每次我们需要查某个时间段内的销售记录时,就得用上这个表格了。为了提高查询效率,我们可以创建一个基于date列的分区表: sql CREATE TABLE sales ( id INT, date DATE, amount DECIMAL(10, 2) ) PARTITION BY RANGE (date) ( PARTITION p2023 VALUES LESS THAN ('2024-01-01'), PARTITION p2024 VALUES LESS THAN ('2025-01-01') ); 这样,在执行查询时,DorisDB只需要扫描相关的分区,而无需扫描整个表,从而减少了网络传输的数据量。 4. 实践经验分享 在实际工作中,我发现以下几点可以帮助我们更好地优化DorisDB的网络带宽使用: - 监控网络流量:定期检查网络流量情况,找出瓶颈所在。可以使用工具如iftop或nethogs来监控网络流量。 - 分析查询日志:通过分析查询日志,找出频繁执行且消耗资源较多的查询,对其进行优化。 - 合理规划集群:合理规划集群的规模和节点分布,避免因节点过多而导致网络带宽竞争激烈。 - 持续学习和实践:DorisDB的技术不断更新迭代,我们需要持续学习新的技术和最佳实践,不断优化我们的系统。 5. 结语 优化DorisDB的网络带宽使用是一项系统工程,需要我们从多方面入手,综合考虑各种因素。用上面说的那些招儿,咱们能让系统跑得飞快又稳当,让用户用起来更爽!希望这篇文章能对你有所帮助,让我们一起努力,让数据流动得更顺畅!
2025-01-14 16:16:03
87
红尘漫步
转载文章
...记录员工上下班时间、异常考勤提醒等,还能够结合大数据分析提供出勤统计报表、劳动力效能分析等增值服务。 例如,阿里云的人力资源管理系统就集成了先进的面部识别技术,将考勤机与云端数据同步,实现了无接触式的高效打卡体验,并且支持远程办公场景下的虚拟签到。此外,该系统还能与其他业务模块深度集成,为企业决策者提供全面的人力资源视图,助力优化企业运营策略。 深入探讨考勤系统的安全性问题也不容忽视,随着数据隐私保护法规日益严格,如何确保考勤数据的安全存储与传输成为业界焦点。一些厂商开始采用区块链技术,确保考勤信息不可篡改,保障员工隐私权益。 总的来说,随着信息技术的日新月异,考勤系统的开发与应用正不断突破边界,从单一的硬件接入转变为云服务+AI赋能的整体解决方案,为企业提供了更强大、安全且便捷的考勤管理方式。在实际项目开发过程中,理解并掌握类似JACOB这样的中间件工具,对于整合不同平台资源,实现多元化的企业级应用具有重要意义。
2023-03-31 22:17:40
216
转载
Gradle
...译、测试、运行时)的作用域和传递性。例如,implementation范围的依赖只对当前模块的编译和运行有效,不会暴露给依赖此模块的其他模块;而api范围的依赖不仅对本模块有效,还会被传递给依赖此模块的其他模块;runtime范围的依赖则只在运行时提供,编译阶段不需要。这些依赖范围的概念对于合理组织和优化项目结构,以及避免依赖冲突具有重要作用。
2024-01-15 18:26:00
435
雪落无痕_
Nginx
...派给后端的服务器们去处理。 4. Nginx的高级功能 定制化与扩展性 Nginx不仅仅是一个基本的反向代理服务器,它还提供了许多高级功能,可以满足各种复杂的需求。比如说,你可以用Nginx来搞缓存,这样就能少给后端服务器添麻烦,减轻它的负担啦。以下是一个简单的缓存配置示例: nginx location /images/ { proxy_cache my_cache; proxy_cache_valid 200 1h; proxy_pass http://backend; } 在这个配置中,我们定义了一个名为my_cache的缓存区,并设置了对200状态码的响应缓存时间为1小时。这样一来,对于那些静态资源比如图片,Nginx会先看看缓存里有没有。如果有,就直接把缓存里的东西给用户,根本不需要去后台问东问西的。 5. 总结与展望 Nginx带给我的启示 通过这段时间的学习和实践,我对Nginx有了更深入的理解。这不仅仅是个能扛事儿的Web服务器和反向代理,还是应对高并发访问的超级神器呢!在未来的项目中,我相信Nginx还会继续陪伴着我,帮助我们应对各种挑战。希望这篇分享能对你有所帮助,如果你有任何问题或想法,欢迎随时交流! --- 希望这篇文章能够帮助你更好地理解和使用Nginx。如果你有任何疑问或想要了解更多细节,请随时提问!
2025-01-17 15:34:14
71
风轻云淡
Mongo
...这不仅大大加快了数据处理的速度,也让开发过程变得更加顺滑愉快,体验感直线飙升。 例如,下面是一个基本的查询示例,用于从名为"users"的集合中查找所有年龄大于20岁的文档: javascript db.users.find({ age: { $gt: 20 } }) 这段代码简单明了,就如同在说:“嗨,MongoDB,请给我找出所有年龄大于20岁的用户。” 2. 基本查询操作 2.1 等值查询 最基本的查询形式是对特定字段进行等值匹配,如下所示: javascript db.collection.find({ field: value }) 比如要找到所有用户名为"John Doe"的用户: javascript db.users.find({ username: "John Doe" }) 2.2 条件查询 MongoDB支持丰富的条件查询,如$gt, $lt, $gte, $lte分别表示大于、小于、大于等于、小于等于: javascript db.users.find({ age: { $gte: 18, $lte: 30 } }) // 找出年龄在18至30之间的用户 2.3 多字段查询 我们可以同时对多个字段设置查询条件: javascript db.users.find({ age: { $gt: 18 }, country: "USA" }) // 查找年龄超过18岁且来自美国的用户 3. 投影与排序 3.1 投影 使用projection参数,我们可以指定返回结果中包含哪些字段: javascript db.users.find({}, { username: 1, age: 1, _id: 0 }) // 只返回username和age字段,不返回_id 在这里,“1”表示包含该字段,“0”则表示排除。 3.2 排序 sort()方法可以帮助我们对查询结果进行排序: javascript db.users.find().sort({ age: -1, username: 1 }) // 按照年龄降序,若年龄相同,则按用户名升序排序 “-1”代表降序,“1”代表升序。 4. 聚合查询 MongoDB的聚合框架(Aggregation Framework)提供了更强大的数据处理能力。以下是一个简单的聚合查询示例,统计每个国家的用户总数: javascript db.users.aggregate([ { $group: { _id: "$country", totalUsers: { $sum: 1 } } }, { $sort: { totalUsers: -1 } } ]) 这个查询首先按照国家分组,然后计算每组的用户数量,并最后按照用户数由多到少排序。 5. 总结与思考 MongoDB查询语言的强大之处在于它的灵活性和表达力,这使得我们在处理复杂数据场景时游刃有余。不过呢,想要真正玩转这玩意儿,就得不断动手实践、勇闯探索之路。每次尝试都像是和数据的一次掏心窝子的深度交流,而每一次查询成功的喜悦,都是对业务理解力和数据洞察能力的一次实实在在的成长和跃升。所以,让我们一起深入挖掘MongoDB查询语言的无限可能,赋予我们的应用程序更强的数据处理能力和更快的响应速度吧!
2023-12-07 14:16:15
142
昨夜星辰昨夜风
Material UI
...erial UI 在处理用户交互时使用了一种称为 "debounce" 的策略。 2.1 debounce 策略 简单来说,"debounce" 是一种防止函数过度调用的技术。当一个事情老是发生个不停,如果我们每次都巴巴地跑去执行对应的函数,那这函数就会被疯狂call起来,这样一来,系统资源就像流水一样哗哗流走,消耗得可厉害了。用上 debounce 这个神器,我们就能让函数变得乖巧起来,在一段时间内,它只执行一次,就一次,这样一来,咱们就能轻轻松松解决函数被频繁调用到“疯狂”的问题啦! 在 Material UI 中,当我们切换 Switch 开关组件的状态时,这个操作会被转换成一个函数,并且这个函数会被添加到一个队列中。然后,Material UI 就会对这个队列中的所有函数进行批量处理。换句话说,它会先耐心地等一小会儿,这个“一会儿”通常是指300毫秒。然后,它再一股脑儿把队列里堆积的所有函数都执行完毕,就像我们一口气把所有任务都解决掉那样。这就解释了为啥我们在拨动 Switch 开关时,会感觉到那么一丢丢延迟的现象。 3. 如何解决 了解了问题的原因之后,我们就能够找到相应的解决方案了。总的来说,有以下几种方法可以用来解决 Switch 开关组件的状态更新延迟问题: 3.1 不使用 debounce 如果我们的应用程序不需要过于复杂的响应逻辑,或者我们对性能的要求不高,那么我们可以选择不使用 debounce。这样一来,每当用户拨动 Switch 开关组件换个状态时,咱们就能立马触发相应的函数响应,这样一来,延迟什么的就彻底说拜拜啦! jsx import { Switch } from '@material-ui/core'; const MyComponent = () => { const [isOn, setIsOn] = React.useState(false); const handleToggle = (event) => { setIsOn(!isOn); }; return ( ); }; 在这个例子中,每当用户切换 Switch 开关组件的状态时,handleToggle 函数就会立即被触发,并且 isOn 的值也会立即被更新。 3.2 调整 debounce 时间 如果我们确实需要使用 debounce,但是又不想让它造成太大的延迟,那么我们可以调整 debounce 的时间。在使用Material UI时,我们可以拽一个叫unstable DebounceInput的宝贝进来,它会带个debounce函数作为礼物。然后,咱们可以根据实际需要,像调校咖啡机那样灵活调整这个函数的参数,让它恰到好处地工作。 jsx import { Switch } from '@material-ui/core'; import unstable_DebounceInput from '@material-ui/unstyled/DebounceInput'; const MyComponent = () => { const [isOn, setIsOn] = React.useState(false); const handleToggle = (event) => { setIsOn(!isOn); }; return ( value={isOn} onValueChange={(value) => setIsOn(value)} msDelay={50} > ); }; 在这个例子中,我们将 debounce 的时间设置为了 50 毫秒,这意味着每次用户切换 Switch 开关组件的状态时,对应的函数只会被延迟 50 毫秒就被执行。 3.3 使用其他库 最后,如果我们无法接受 Material UI 提供的 debounce 处理方案,那么我们可以考虑使用其他的库来替代。比如,我们可以动手用 mobx-state-tree 这个神器来搭建一个超级给力的状态管理器,然后在这个状态管理器里头,给 Switch 开关组件量身定制它的状态变化规律。 总结起来,虽然 Material UI 中 Switch 开关组件的状态更新存在一定的延迟,但是只要我们掌握了相应的解决方案,就完全可以在不影响用户体验的情况下满足各种需求。
2023-06-06 10:37:53
314
落叶归根-t
Redis
...越的响应速度和高效的处理能力使其在缓存、会话存储、队列服务等领域广受欢迎。然而,在实际应用中,如何进一步优化Redis服务器的响应时间和性能表现呢?本文将从四个方面进行深入探讨,并通过实例代码帮助大家更好地理解和实践。 1. 合理配置Redis服务器参数 (1)调整内存分配策略 Redis默认使用jemalloc作为内存分配器,对于不同的工作负载,可以适当调整jemalloc的相关参数以优化内存碎片和分配效率。例如,可以通过修改redis.conf文件中的maxmemory-policy来设置内存淘汰策略,如选择LRU(最近最少使用)策略: bash maxmemory-policy volatile-lru (2)限制客户端连接数 过多的并发连接可能会导致Redis资源消耗过大,降低响应速度。因此,我们需要合理设置最大客户端连接数: bash maxclients 10000 请根据实际情况调整此数值。 2. 使用Pipeline和Multi-exec批量操作 Redis Pipeline功能允许客户端一次性发送多个命令并在服务器端一次性执行,从而减少网络往返延迟,显著提升性能。以下是一个Python示例: python import redis r = redis.Redis(host='localhost', port=6379, db=0) pipe = r.pipeline() for i in range(1000): pipe.set(f'key_{i}', 'value') pipe.execute() 另外,Redis的Multi-exec命令用于事务处理,也能实现批量操作,确保原子性的同时提高效率。 3. 数据结构与编码优化 Redis支持多种数据结构,选用合适的数据结构能极大提高查询效率。比如说,如果我们经常要做一些关于集合的操作,像是找出两个集合的交集啊、并集什么的,那这时候,我们就该琢磨着别再用那个简单的键值对(Key-Value)了,而是考虑选用Set或者Sorted Set,它们在这方面更管用。 python 使用Sorted Set进行范围查询 r.zadd('sorted_set', {'user1': 100, 'user2': 200, 'user3': 300}) r.zrangebyscore('sorted_set', 150, 350) 同时,Redis提供了多种数据编码方式,比如哈希表的ziplist编码能有效压缩存储空间,提高读写速度,可通过修改hash-max-ziplist-entries和hash-max-ziplist-value进行配置。 4. 精细化监控与问题排查 定期对Redis服务器进行性能监控和日志分析至关重要。Redis自带的INFO命令能提供丰富的运行时信息,包括内存使用情况、命中率、命令统计等,结合外部工具如RedisInsight、Grafana等进行可视化展示,以便及时发现潜在性能瓶颈。 当遇到性能问题时,我们要像侦探一样去思考和探索:是由于内存不足导致频繁淘汰数据?还是因为某个命令执行过于耗时?亦或是客户端并发过高引发的问题?通过针对性的优化措施,逐步改善Redis服务器的响应时间和性能表现。 总结来说,优化Redis服务器的关键在于深入了解其内部机制,合理配置参数,巧妙利用其特性,以及持续关注和调整系统状态。让我们一起携手,打造更为迅捷、稳定的Redis服务环境吧!
2023-11-29 11:08:17
237
初心未变
.net
...,还包括安全性、事务处理、可靠会话、多线程并发控制等诸多高级特性。比如,我们可以为服务操作添加安全性验证: csharp [OperationContract] [PrincipalPermission(SecurityAction.Demand, Role = "Admin")] string SecureGetData(int value); 这段代码表明只有角色为"Admin"的用户才能访问SecureGetData方法,体现了WCF的安全性优势。 总的来说,WCF在.NET中为我们提供了便捷而强大的Web服务开发工具,无论是初级开发者还是资深工程师,都需要对其有足够的理解和熟练应用。在实践中不断探索和尝试,相信你会越来越感受到WCF的魅力所在!
2023-07-18 11:00:57
457
红尘漫步
SeaTunnel
... SeaTunnel处理Parquet/CSV文件格式解析错误的深度探索与实战 1. 引言 在数据集成和ETL的世界里,SeaTunnel(原名Waterdrop)作为一款强大的实时、批处理开源大数据工具,深受开发者喜爱。嘿,你知道吗?当你在捣鼓Parquet或者CSV这些不同格式的文件时,有时候真的会冒出一些让人措手不及的解析小插曲来呢!本文将深入探讨这类问题的成因,并通过丰富的代码实例演示如何在SeaTunnel中妥善解决这些问题。 2. Parquet/CSV文件解析常见问题及其原因 2.1 数据类型不匹配 Parquet和CSV两种格式对于数据类型的定义和处理方式有所不同。比如,你可能会遇到这么个情况,在CSV文件里,某个字段可能被不小心认作是文本串了,但是当你瞅到Parquet文件的时候,嘿,这个同样的字段却是个整数类型。这种类型不匹配可能导致解析错误。 python 假设在CSV文件中有如下数据 id,name "1", "John" 而在Parquet文件结构中,id字段是int类型 (id:int, name:string) 2.2 文件格式规范不一致 Parquet和CSV对空值、日期时间格式等有着各自的约定。如CSV中可能用“null”、“N/A”表示空值,而Parquet则以二进制标记。若未正确配置解析规则,就会出现错误。 3. 利用SeaTunnel解决文件格式解析错误 3.1 配置数据源与转换规则 在SeaTunnel中,我们可以精细地配置数据源和转换规则以适应各种场景。下面是一个示例,展示如何在读取CSV数据时指定字段类型: yaml source: type: csv path: 'path/to/csv' schema: - name: id type: integer - name: name type: string transform: - type: convert fields: - name: id type: int 对于Parquet文件,SeaTunnel会自动根据Parquet文件的元数据信息解析字段类型,无需额外配置。 3.2 自定义转换逻辑处理特殊格式 当遇到非标准格式的数据时,我们可以使用自定义转换插件来处理。例如,处理CSV中特殊的空值表示: yaml transform: - type: script lang: python script: | if record['name'] == 'N/A': record['name'] = None 4. 深度思考与讨论 处理Parquet和CSV文件解析错误的过程其实也是理解并尊重每种数据格式特性的过程。SeaTunnel以其灵活且强大的数据处理能力,帮助我们在面对这些挑战时游刃有余。但是同时呢,我们也要时刻保持清醒的头脑,像侦探一样敏锐地洞察可能出现的问题。针对这些问题,咱们得接地气儿,结合实际业务的具体需求,灵活定制出解决问题的方案来。 5. 结语 总之,SeaTunnel在应对Parquet/CSV文件格式解析错误上,凭借其强大的数据源适配能力和丰富的转换插件库,为我们提供了切实可行的解决方案。经过实战演练和持续打磨,我们能够更溜地玩转各种数据格式,确保数据整合和ETL过程一路绿灯,畅通无阻。所以,下次你再遇到类似的问题时,不妨试试看借助SeaTunnel这个好帮手,让数据处理这件事儿变得轻轻松松,更加贴近咱们日常的使用习惯,更有人情味儿。
2023-08-08 09:26:13
77
心灵驿站
Nacos
... 服务网格是一个专门处理服务间通信的基础设施层,通常由一系列轻量级网络代理组成,这些代理与应用部署在一起但对应用透明。Istio作为文中提及的服务网格解决方案,它可以利用Nacos作为配置源,实现在复杂的微服务体系中动态管理和推送配置,提高服务治理能力及整体架构灵活性。 Nacos服务器 , Nacos服务器是阿里巴巴开源的一款集成了配置管理、服务发现和动态DNS服务的产品,它是微服务架构中的核心组件之一。在本文场景下,用户需要确保Nacos服务器稳定运行并成功连接数据库,以便于存储和获取微服务所需的配置信息。 动态配置中心 , 动态配置中心是指一种可以实时更新、按需获取的集中式配置管理系统,如Nacos。在该系统中,应用无需重启即可从中心获取最新的配置信息,并能根据不同的环境、版本等因素动态调整配置策略。这对于提升微服务架构下的开发效率和运维水平具有重要意义。
2023-09-10 17:16:06
56
繁华落尽_t
DorisDB
一、引言 在大数据处理领域,分布式系统无疑是最为常见的解决方案之一。而其中的DorisDB更是以其高效的数据处理能力赢得了广泛的关注。不过,在实际操作的时候,我们经常会遇到这么个头疼的问题:分布式节点之间的数据老是出现对不上号的情况。 二、什么是分布式节点间数据不一致? 当我们有一个大型的分布式系统时,每个节点可能都有自己的数据副本。这些数据备份可能会由于网络卡顿、硬件出问题,或者其他一些乱七八糟的原因,造成它们和其它节点上的数据对不上号的情况。这种现象就是我们所说的分布式节点间数据不一致。 三、分布式节点间数据不一致的影响 分布式节点间数据不一致会给我们的业务带来很大的困扰。比如,假设我们在搞一个分布式的交易操作,可突然之间,在某个环节上出现了数据对不上号的情况,那这笔交易就没法顺利完成啦。而且,要是数据对不上号,那咱们就很可能算不出准确的结果,这样一来,咱的决策也会跟着遭殃,受到影响。 四、如何解决分布式节点间数据不一致? 针对这个问题,我们可以采取以下几种方法来解决: 1. 数据复制 我们可以将数据在多个节点上进行复制,这样即使其中一个节点出现故障,我们也能够从其他节点获取到最新的数据。不过呢,这种方法有个小问题,那就是需要超级多的存储空间,而且得确保每一个节点都像跳舞一样步调一致,始终保持同步状态。 2. 分布式锁 通过在所有节点上加锁,可以防止同一时间有两个节点同时修改同一条数据。但是,这种方法需要考虑锁的竞争问题,而且可能会导致系统的性能下降。 3. 乐观并发控制 在这种方法中,我们假设大多数的操作都不会冲突,因此我们可以在操作开始时不需要获取锁,而在操作完成后才检查是否发生了冲突。这个方法的好处就是贼简单、贼快,不过呢,遇到人多手杂、并发量贼高的时候,就可能冒出一大堆“冲突”来,就像大家伙儿一窝蜂挤地铁,难免会有磕磕碰碰的情况。 五、以DorisDB为例 接下来,我们将以DorisDB为例,来看看它是如何解决这个问题的。DorisDB采用了一种叫做ACID的模式来保证数据的一致性。具体来说,它实现了以下四个特性: - 原子性(Atomicity):一次操作要么全部执行,要么全部不执行。 - 一致性(Consistency):在任何时刻,数据库的状态都是合法的。 - 隔离性(Isolation):在同一时刻,不同的事务之间不能相互干扰。 - 持久性(Durability):一旦一个事务被提交,它的结果就会永久保存下来。 有了这些特性,DorisDB就能够保证分布式节点间的数据一致性了。 六、结论 总的来说,分布式节点间的数据不一致是一个非常严重的问题,我们需要找到合适的方法来解决它。而对于具体的解决方案,我们需要根据实际情况来进行选择。最后呢,咱们还要持续地给现有的解决方案“动手术”,精益求精,让整个系统的性能更上一层楼,稳定性也杠杠的。
2023-12-11 10:35:22
482
夜色朦胧-t
Apache Atlas
...as的服务,作为数据处理节点; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在混合部署中创建一个项目的代码示例: javascript // 创建中央控制节点 GET http://localhost:21000/api/v2/projects // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建数据处理节点 POST http://localhost:21000/api/v2/nodes { "hostName": "data-node-1", "port": 21001, "role": "DATA_NODE" } // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 五、微服务部署模式 微服务部署模式是近年来越来越流行的一种部署方式,可以让企业更加灵活地应对业务的变化和需求的增长。 1. 部署步骤 将Apache Atlas分解为多个微服务,例如:项目管理、数据目录、元数据存储等; 使用Docker进行容器化部署; 使用Kubernetes进行服务编排和管理; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在微服务部署中创建一个项目的代码示例: javascript // 安装并启动项目管理微服务 docker run -d --name atlas-project-management my-atlas-project-management-image // 安装并启动数据目录微服务 docker run -d --name atlas-data-directory my-atlas-data-directory-image // 安装并启动元数据存储微服务 docker run -d --name atlas-metadata-storage my-atlas-metadata-storage-image // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 总结 Apache Atlas有多种部署模式供用户选择,用户可以根据自己的需求和技术条件来选择最合适的部署方式。甭管您选择哪种部署方式,Apache Atlas都能像个小助手一样,帮助企业老铁们把数据资产打理得井井有条,妥妥地保护好这些宝贝资源。
2023-07-31 15:33:19
457
月下独酌-t
转载文章
...使得开发者能更容易地处理并发数据流,并确保线程安全。同时,为了解决复杂的并发问题,如死锁和竞态条件,Google研发出了一种名为"Swiss Table"的数据结构,它在内部使用了高效的无锁算法,大大提升了多线程环境下的性能表现。 此外,Linux内核社区也在持续优化pthread库以适应更广泛的多线程应用场景。例如,对futexes(快速用户空间互斥体)进行改进,通过减少系统调用次数来提高同步效率;以及对pthread_cond_t条件变量的增强,使其支持超时唤醒等高级特性。 深入到理论层面,计算机科学家们正积极探索新型的线程同步模型,比如基于CSP(Communicating Sequential Processes)理论的Go语言所采用的goroutine和channel机制,其简洁的设计理念与高效执行策略为解决多线程同步问题提供了新思路。 综上所述,在线程同步领域,无论是最新的技术发展还是深入的理论研究,都在为我们提供更强大且易用的工具,帮助开发者应对日益复杂的并发场景挑战,实现更加稳定、高效的应用程序。
2023-10-03 17:34:08
138
转载
Scala
... Spark等大数据处理框架就大量采用了Scala,并巧妙地运用了运算符重载来简化数据集操作。通过自定义类的数据集合并操作,重载++运算符以实现数据集的连接,这极大地提升了代码的可读性和简洁性。 然而,运算符重载并非无懈可击。在团队协作和大型项目中,过度或不合理的运算符重载可能导致代码可维护性降低,阅读难度增加。因此,软件工程社区内持续强调,在利用这一特性时应遵循一定的编码规范和设计原则,如《Effective Scala》中提到的“避免滥用运算符重载”原则,确保团队成员都能快速理解并适应代码逻辑。 此外,对于函数式编程爱好者而言,可以进一步研究Haskell等语言中对运算符重载更为丰富和灵活的实现方式,这些深入研究将有助于我们更好地理解和运用Scala中的运算符重载,使其既能提升代码表现力,又能兼顾可读性和维护性。
2023-04-15 13:42:55
137
繁华落尽
Element-UI
...著提升页面渲染及数据处理效率,尤其对于处理大量计算或网络请求的任务场景,可以明显改善用户界面的流畅性和响应速度,进一步优化类似滑块拖动这样的实时交互体验。 综上所述,无论是前端组件的精细化优化,还是后端服务的高效化建设,都是为了确保用户能在现代Web应用中获得更佳的使用感受。只有紧跟技术发展潮流,持续挖掘和解决问题,才能使我们的应用程序始终保持竞争力和优质的用户体验。
2023-09-23 17:23:49
490
春暖花开-t
Greenplum
... 引言 在大数据处理与分析的广阔天地里,Greenplum数据库以其出色的并行处理能力和强大的分布式架构赢得了广泛的关注。Greenplum这个家伙,可不简单!它可是个依托于PostgreSQL开源数据库这块宝地,精心打造出来的大规模并行处理(MPP)数据库系统。人家的拿手好戏就是麻溜儿地处理和存储那海量的数据,效率高到没话说!今天,让我们一同踏上这段旅程,探索如何在Greenplum中插入数据的奥秘。 1. Greenplum基础知识回顾 首先,我们简要回顾一下Greenplum的基础知识。Greenplum数据库运用了一种叫做分区表的设计巧思,这就像是把一个大桌子分成多个小格子,我们可以把海量数据分门别类地放在这些“小格子”(也就是不同的节点)上进行处理。这样一来,就像大家分工合作一样,各自负责一块儿,使得读取和写入数据的效率嗖嗖地往上飙,那效果真是杠杠滴!插入数据时,我们需要明确目标表的分布策略以及分区规则。 2. 插入单行数据 在Greenplum中,插入单行数据的操作和PostgreSQL非常相似。下面是一个简单的示例: sql -- 假设我们有一个名为user_info的表,其结构如下: CREATE TABLE user_info ( id INT, name VARCHAR(50), email VARCHAR(100) ) DISTRIBUTED BY (id); -- 现在,我们要向这个表中插入一行数据: INSERT INTO user_info VALUES (1, 'John Doe', 'john.doe@example.com'); 在这个例子中,我们创建了一个名为user_info的表,并通过DISTRIBUTED BY子句指定了分布键为id,这意味着数据会根据id字段的值均匀分布到各个段(Segment)上。然后,使用INSERT INTO语句插入了一条用户信息。 3. 插入多行数据 同时插入多行数据也很直观,只需在VALUES列表中包含多组值即可: sql INSERT INTO user_info VALUES (2, 'Jane Smith', 'jane.smith@example.com'), (3, 'Alice Johnson', 'alice.johnson@example.com'), (4, 'Bob Williams', 'bob.williams@example.com'); 4. 插入大量数据 - 数据加载工具gpfdist 当需要批量导入大量数据时,直接使用SQL INSERT语句可能效率低下。此时,Greenplum提供了一个高性能的数据加载工具——gpfdist。它能够同时在好几个任务里头,麻溜地从文件里读取数据,然后嗖嗖地就把这些数据塞进Greenplum数据库里,效率贼高! 以下是一个使用gpfdist加载数据的例子: 首先,在服务器上启动gpfdist服务(假设数据文件位于 /data/user_data.csv): bash $ gpfdist -d /data/ -p 8081 -l /tmp/gpfdist.log & 然后在Greenplum中创建一个外部表指向该文件: sql CREATE EXTERNAL TABLE user_external ( id INT, name VARCHAR(50), email VARCHAR(100) ) LOCATION ('gpfdist://localhost:8081/user_data.csv') FORMAT 'CSV'; 最后,将外部表中的数据插入到实际表中: sql INSERT INTO user_info SELECT FROM user_external; 以上操作完成后,我们不仅成功实现了数据的批量导入,还充分利用了Greenplum的并行处理能力,显著提升了数据加载的速度。 结语 理解并掌握如何在Greenplum中插入数据是运用这一强大工具的关键一步。甭管你是要插个一条数据,还是整批数据一股脑儿地往里塞,Greenplum都能在处理各种复杂场景时,展现出那叫一个灵活又高效的身手,真够溜的!希望这次探讨能帮助你在今后的数据处理工作中更自如地驾驭Greenplum,让数据的价值得到充分释放。下次当你面对浩瀚的数据海洋时,不妨试试在Greenplum中挥洒你的“数据魔法”,你会发现,数据的插入也能如此轻松、快捷且富有成就感!
2023-08-02 14:35:56
546
秋水共长天一色
RocketMQ
...原本应该按照特定顺序处理的消息,却因为网络或者其他原因被打乱了顺序。 RocketMQ如何解决消息乱序? RocketMQ是阿里巴巴开源的一款高性能、高可靠的分布式消息中间件。它提供了一种解决方案,可以有效地避免消息乱序的问题。 使用Orderly模式 RocketMQ提供了一个名为Orderly的模式,这个模式可以保证消息的有序传递。在这个模式下,消息会被发送到同一个消费者队列中的所有消费者。这样一来,咱们就能保证每一位消费者都稳稳当当地收到相同的信息,彻底解决了消息错乱的烦恼。 java // 创建Producer实例 RocketMQClient rocketMQClient = new RocketMQClient("localhost", 9876, "defaultGroup"); rocketMQClient.start(); try { // 创建MessageProducer实例 MessageProducer producer = rocketMQClient.createProducer(new TopicConfig("testTopic")); try { // 发送消息 String body = "Hello World"; SendResult sendResult = producer.send(new SendRequestBuilder().topic("testTopic").messageBody(body).build()); System.out.println(sendResult); } finally { producer.shutdown(); } } finally { rocketMQClient.shutdown(); } 使用Orderly广播模式 Orderly模式只适用于一对一的通信场景。如果需要广播消息给多个人,那么我们可以使用Orderly广播模式。在这种情况里,消息会先溜达到一个临时搭建的“中转站”——也就是队列里歇歇脚,然后这个队列就会像大喇叭一样,把消息一股脑地广播给所有对它感兴趣的“听众们”,也就是订阅了这个队列的消费者们。由于每个人都会收到相同的消息,所以也可以避免消息乱序的问题。 java // 创建Producer实例 RocketMQClient rocketMQClient = new RocketMQClient("localhost", 9876, "defaultGroup"); rocketMQClient.start(); try { // 创建MessageProducer实例 MessageProducer producer = rocketMQClient.createProducer(new TopicConfig("testTopic")); try { // 发送消息 String body = "Hello World"; SendResult sendResult = producer.send(new SendRequestBuilder().topic("testTopic").messageBody(body).build()); System.out.println(sendResult); } finally { producer.shutdown(); } } finally { rocketMQClient.shutdown(); } 使用Durable订阅 在某些情况下,我们可能需要保证消息不会丢失。这时,我们就可以使用Durable订阅。在Durable订阅下,消息会被持久化存储,并且在消费者重新连接时,会被重新发送。这样一来,就算遇到网络抽风或者服务器重启的情况,消息也不会莫名其妙地消失,这样一来,咱们就不用担心信息错乱的问题啦! java // 创建Consumer实例 RocketMQClient rocketMQClient = new RocketMQClient("localhost", 9876, "defaultGroup"); rocketMQClient.start(); try { // 创建MessageConsumer实例 MessageConsumer consumer = rocketMQClient.createConsumer( new ConsumerConfigBuilder() .subscribeMode(SubscribeMode.DURABLE) .build(), new DefaultMQPushConsumerGroup("defaultGroup") ); try { // 消费消息 while (true) { ConsumeMessageContext context = consumer.consumeMessageDirectly(); if (context.hasData()) { System.out.println(context.getMsgId() + ": " + context.getBodyString()); } } } finally { consumer.shutdown(); } } finally { rocketMQClient.shutdown(); } 结语 总的来说,RocketMQ提供了多种方式来解决消息乱序的问题。我们可以根据自己的需求选择最适合的方式。甭管是Orderly模式,还是Orderly广播模式,甚至Durable订阅这招儿,都能妥妥地帮咱们确保消息传递有序不乱,一个萝卜一个坑。当然啦,在我们使用这些功能的时候,也得留心一些小细节。就像是,消息别被重复“吃掉”啦,还有消息要妥妥地存好,不会莫名其妙消失这些事情哈。只有充分理解和掌握这些知识,才能更好地利用RocketMQ。
2023-01-14 14:16:20
108
冬日暖阳-t
Spark
...就因为它那超凡的数据处理效率和无比强大的机器学习工具箱,引得大家伙儿都对它投来关注的目光。不过,在实际操作的时候,我们经常会遇到这样的情形:需要把各种来源的数据,比如SQL数据库里的数据,搬运到Spark这个平台里头,好让我们能够对这些数据进行更深入的加工和解读。这篇文章将带你了解如何将数据从SQL数据库导入到Spark中。 首先,我们需要了解一下什么是Spark。Spark是一款超级厉害的大数据处理工具,它快得飞起,又能应对各种复杂的任务场景。无论是批处理大批量的数据,还是进行实时的交互查询,甚至流式数据处理和复杂的图计算,它都能轻松搞定,可以说是大数据界的多面手。它通过内存计算的方式,大大提高了数据处理的速度。 那么,如何将数据从SQL数据库导入到Spark中呢?我们可以分为以下几个步骤: 一、创建Spark会话 在Spark中,我们通常会使用SparkSession来与Spark进行交互。首先,我们需要创建一个SparkSession实例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName('MyApp').getOrCreate() 二、读取SQL数据库中的数据 在Spark中,我们可以使用read.jdbc()函数来读取SQL数据库中的数据。这个函数需要提供一些参数,包括数据库URL、表名、用户名、密码等: python df = spark.read.format("jdbc").options( url="jdbc:mysql://localhost:3306/mydatabase", driver="com.mysql.jdbc.Driver", dbtable="mytable", user="root", password="password" ).load() 以上代码会读取名为"mydatabase"的MySQL数据库中的"mytable"表,并将其转换为DataFrame对象。 三、查看读取的数据 我们可以使用show()函数来查看读取的数据: python df.show() 四、对数据进行处理 读取并加载数据后,我们就可以对其进行处理了。例如,我们可以使用select()函数来选择特定的列: python df = df.select("column1", "column2") 我们也可以使用filter()函数来过滤数据: python df = df.filter(df.column1 > 10) 五、将处理后的数据保存到文件或数据库中 最后,我们可以使用write()函数将处理后的数据保存到文件或数据库中。例如,我们可以将数据保存到CSV文件中: python df.write.csv("output.csv") 或者将数据保存回原来的数据库: python df.write.jdbc(url="jdbc:mysql://localhost:3306/mydatabase", table="mytable", mode="overwrite") 以上就是将数据从SQL数据库导入到Spark中的全部流程。敲黑板,划重点啦!要知道,不同的数据库类型就像是不同口味的咖啡,它们可能需要各自的“咖啡伴侣”——也就是JDBC驱动程序。所以当你打算用read.jdbc()这个小工具去读取数据时,千万记得先检查一下,对应的驱动程序是否已经乖乖地安装好啦~ 总结一下,Spark提供了简单易用的API,让我们能够方便地将数据从各种数据源导入到Spark中进行处理和分析。无论是进行大规模数据处理还是复杂的数据挖掘任务,Spark都能提供强大的支持。希望这篇文章能对你有所帮助,让你更好地掌握Spark。
2023-12-24 19:04:25
162
风轻云淡-t
Go Iris
...oroutine)去处理同一块数据,却又没给它们立规矩、做好同步的话,那可就乱套了。这些小家伙可能会争先恐后地修改数据,这就叫“数据竞争”。这样一来,程序的行为就会变得神神秘秘、难以预料,像是在跟我们玩捉迷藏一样。 go var sharedData int // 假设这是需要在多个goroutine间共享的数据 func main() { for i := 0; i < 10; i++ { go func() { sharedData++ // 这里可能会出现竞态条件,导致结果不准确 }() } time.Sleep(time.Second) // 等待所有goroutine执行完毕 fmt.Println(sharedData) // 输出的结果可能并不是预期的10 } 2. Go Iris中的数据共享策略 在Go Iris框架中,我们同样会面临多goroutine间的共享数据问题,比如在处理HTTP请求时,我们需要确保全局或上下文级别的变量在并发环境下正确更新。为了搞定这个问题,我们可以灵活运用Go语言自带的标准库里的sync小工具,再搭配上Iris框架的独特功能特性,双管齐下,轻松解决。 2.1 使用sync.Mutex进行互斥锁保护 go import ( "fmt" "sync" ) var sharedData int var mutex sync.Mutex // 创建一个互斥锁 func handleRequest(ctx iris.Context) { mutex.Lock() defer mutex.Unlock() sharedData++ fmt.Fprintf(ctx, "Current shared data: %d", sharedData) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这个例子中,我们引入了sync.Mutex来保护对sharedData的访问。每次只有一个goroutine能获取到锁并修改数据,从而避免了竞态条件的发生。 2.2 利用Iris的Context进行数据传递 另一种在Go Iris中安全共享数据的方式是利用其内置的Context对象。你知道吗,每次发送一个HTTP请求时,就像开启一个新的宝藏盒子——我们叫它“Context”。这个盒子里呢,你可以存放这次请求相关的所有小秘密。重点是,这些小秘密只对发起这次请求的那个家伙可见,其他同时在跑的请求啊,都甭想偷瞄一眼,保证互不影响,安全又独立。 go func handleRequest(ctx iris.Context) { ctx.Values().Set("requestCount", ctx.Values().GetIntDefault("requestCount", 0)+1) fmt.Fprintf(ctx, "This is request number: %d", ctx.Values().GetInt("requestCount")) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这段代码中,我们通过Context的Values方法在一个请求生命周期内共享和累加计数器,无需担心与其他请求冲突。 3. 结论与思考 在Go Iris框架中解决多goroutine间共享数据的问题,既可以通过标准库提供的互斥锁进行同步控制,也可以利用Iris Context本身的特性进行数据隔离。在实际项目中,应根据业务场景选择合适的解决方案,同时时刻牢记并发编程中的“共享即意味着同步”原则,以确保程序的正确性和健壮性。这不仅对Go Iris生效,更是我们在捣鼓Go语言,甚至任何能玩转并发编程的语言时,都得好好领悟并灵活运用的重要招数。
2023-11-28 22:49:41
541
笑傲江湖
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
groups user
- 显示指定用户的所属组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"