前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据库版本兼容性问题及解决方案 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...统缓存以及不常用应用数据的智能清理策略。用户可以在设置菜单中开启自动清理功能,以实现更精细化的空间管理。 此外,随着远程办公需求的增长,Windows系统的远程桌面服务(Remote Desktop Services)也得到了显著增强。近期发布的Windows Server版本中,微软对其进行了性能提升和安全性加固,并支持更多设备类型无缝接入,使得远程办公更为便捷安全。 而在视频剪辑软件方面,Adobe Premiere Rush等专业级工具已逐渐推出云端协作功能,让创作者能够在不同设备间同步项目进度,实现高效协同创作。同时,WPS Office也在不断升级迭代,除了提供拼写检查选项的自定义外,还增加了AI辅助写作、在线模板等功能,为用户提供更加智能化的文档处理体验。 总之,在信息技术日新月异的今天,紧跟操作系统及各类软件的最新发展,结合文章所提及的基本操作方法,将有助于我们更好地利用科技工具提高工作效率,解决日常使用中的问题,同时也预示着未来数字生活将更加个性化和智能化。
2023-03-01 13:02:11
117
转载
Redis
Redis的数据结构使用技巧:解锁内存世界的奥秘 引言 Redis,这个由Antirez创造的内存数据结构存储系统,自诞生以来便以其高效、灵活的特点成为了开发者们不可或缺的工具。Redis,这可是个全能选手!它不仅能当个高效数据库和缓存系统,还能像个小邮差一样,把消息从这边送到那边。它的厉害之处,全靠支持各种各样的数据结构,就像是个万能工具箱,啥都能搞定!在这篇文章中,我们将深入探讨Redis的几个核心数据结构:字符串、哈希表、列表以及集合,并通过实际代码示例展示它们的使用技巧。 1. 字符串(Strings) Redis的字符串类型是所有数据结构的基础,适用于存储键值对、短文本、数字等数据。使用字符串进行操作时,我们可以利用其简洁的API来增强应用程序的性能。 代码示例: bash 设置一个字符串 redis-cli set mykey "Hello, Redis!" 获取字符串内容 redis-cli get mykey 思考过程: 在实际应用中,字符串经常用于存储配置信息或者简单键值对。通过设置和获取操作,我们可以轻松地管理这些数据。 2. 哈希表(Hashes) 哈希表是一种将键映射到值的结构,非常适合用于存储关联数据,如用户信息、产品详情等。Redis的哈希表允许我们以键-值对的形式存储数据,并且可以通过键访问特定的值。 代码示例: bash 创建一个哈希表并添加键值对 redis-cli hset user:1 name "Alice" age "25" 获取哈希表中的值 redis-cli hget user:1 name redis-cli hget user:1 age 删除哈希表中的键值对 redis-cli hdel user:1 age 思考过程: 哈希表的灵活性使得我们在构建复杂对象时能够更方便地组织和访问数据。比如说,在咱们的用户认证系统里头,要是你想知道某个用户的年纪或者别的啥信息,直接输入用户名,嗖的一下就全搞定了。就像是在跟老朋友聊天,一说出口,他最近的动态、年龄这些事儿,咱心里门儿清。 3. 列表(Lists) 列表是一种双端链表,可以插入和删除元素,适合用于实现队列、栈或者保存事件历史记录。列表的特性使其在处理序列化数据或消息队列时非常有用。 代码示例: bash 向列表尾部添加元素 redis-cli rpush messages "Hello" redis-cli rpush messages "World" 从列表头部弹出元素 redis-cli lpop messages 查看列表中的元素 redis-cli lrange messages 0 -1 移除列表中的指定元素 redis-cli lrem messages "World" 1 思考过程: 列表的动态性质使得它们成为处理实时数据流的理想选择。比如说,在咱们常用的聊天软件里头,新来的消息就像新鲜出炉的面包一样,被放到了面包篮的最底下,而那些老掉牙的消息就给挤到一边去了,这样做的目的就是为了保证咱们聊天界面能一直保持最新鲜、最实时的状态。就像是在超市里,你每次买完东西,最前面的架子上总是最新的商品,那些旧货就被推到后面去一样。 4. 集合(Sets) 集合是无序、不重复的元素集合,适合用于存储唯一项或进行元素计数。Redis的集合操作既高效又安全,是实现去重、投票系统或用户兴趣聚合的理想选择。 代码示例: bash 向集合添加元素 redis-cli sadd users alice bob charlie 检查元素是否在集合中 redis-cli sismember users alice 移除集合中的元素 redis-cli srem users bob 计算集合的大小 redis-cli scard users 思考过程: 集合的唯一性保证了数据的纯净度,同时其高效的操作速度使其成为处理大量用户交互数据的首选。在投票系统中,用户的选择会被自动去重,确保了统计的准确性。 结语 Redis提供的这些数据结构,无论是单独使用还是结合使用,都能极大地提升应用的性能和灵活性。通过上述代码示例和思考过程的展示,我们可以看到,Redis不仅仅是一个简单的键值存储系统,而是内存世界中的一把万能钥匙,帮助我们解决各种复杂问题。哎呀,不管你是想捣鼓个能秒回消息的聊天软件,还是想要打造个能精准推荐的神器,亦或是设计一套复杂到让人头大的分布式计算平台,Redis这货简直就是你的秘密武器啊!它就像个全能的魔法师,能搞定各种棘手的问题,让你在编程的路上顺风顺水,轻松应对各种挑战。在未来的开发旅程中,掌握这些数据结构的使用技巧,将使你能够更加游刃有余地应对各种挑战。
2024-08-20 16:11:43
102
百转千回
Golang
...现”的含义、影响及其解决之道,通过实际代码示例来帮助开发者更好地理解和应对这一问题。 理解“未实现” 在 Golang 中,“未实现”(ErrNotImplemented)通常出现在尝试调用一个尚未定义或不被支持的方法、函数或操作时。哎呀,这事儿可有点复杂了。可能是当初做设计的时候,有个什么关键的决定没做好,或者是功能排了个先后顺序,也可能是后来出了新版本,结果就变成了这样。总之,这里面的原因挺多的,得细细琢磨琢磨才行。例如,尝试在一个接口中未实现的方法: go type MyInterface interface { DoSomething() } func main() { var myObject MyInterface myObject.DoSomething() // 这里会触发 ErrNotImplemented 错误,因为 DoSomething 方法没有被实现 } 实际场景中的应用 在实际开发中,遇到“未实现”的情况并不罕见。想象一下,你正在搭建一个超级酷的系统,这个系统能通过API(一种让不同程序沟通的语言)来和其他各种第三方服务对话。就像是在和一群性格迥异的朋友聊天,有的朋友喜欢分享照片,有的则热衷于音乐推荐。在这个过程中,你需要了解每个朋友的喜好,知道什么时候该问他们问题,什么时候该听他们说话,这样才能让整个交流流畅自然。所以,当开发者在构建这种系统的时候,他们就得学会如何与这些“朋友”打交道,确保信息的顺利传递。想象一下,你有个工具箱里放着一把超级多功能的瑞士军刀,但你只需要个简单的螺丝刀。如果你硬是用那把大刀去拧螺丝,肯定搞不定,还可能把螺丝刀弄坏。同理,如果一个API提供了复杂查询的功能,但你的项目只需要简单地拿数据,直接去用那些复杂查询方法,就可能会遇到“未实现”的问题,就像你拿着个高级的多功能工具去做一件只需要基本工具就能搞定的事一样。所以,选择合适的工具很重要! 如何解决“未实现” 1. 明确需求与功能优先级 在开始编码之前,确保对项目的整体需求有清晰的理解,并优先实现那些对业务至关重要的功能。对于非核心需求,可以考虑在未来版本中添加或作为可选特性。 2. 使用空实现或占位符 在设计接口或类时,为未实现的方法提供一个空实现或占位符,这样可以避免运行时的“未实现”错误,同时为未来的实现提供清晰的接口定义。 3. 错误处理与日志记录 在调用可能引发“未实现”错误的代码块前,添加适当的错误检查和日志记录。这不仅有助于调试,也能在问题发生时为用户提供有意义的反馈。 4. 模块化与解耦 通过将功能拆分为独立的模块或服务,可以降低不同部分之间的依赖关系,从而更容易地处理“未实现”的情况。当某个模块的实现发生变化时,其他模块受到的影响也会减少。 5. 持续集成与自动化测试 通过自动化测试,可以在早期阶段捕获“未实现”的错误,确保代码的稳定性和一致性。同时,持续集成流程可以帮助团队及时发现并修复这类问题。 结语 面对“未实现”的挑战,重要的是保持灵活性和前瞻性。哎呀,搞定这个问题得靠点心思呢!首先,你得搞清楚问题的根本原因,这就像解谜一样,得一步步来。然后,安排功能实现的顺序就挺像编排一场精彩的节目,得有头有尾,不能乱套。最后,别忘了设置有效的错误处理策略,就像是给你的项目上了一份保险,万一出啥状况也能从容应对。这样一来,整个过程就能流畅多了,避免了很多不必要的麻烦。在不断学习和实践中,开发者能够更好地适应变化,提升软件质量和用户体验。嘿,听好了!每次碰到那些没搞定的事情,那可是个大好机会,能让你学东西,还能把事情做得更好呢!就像是在玩游戏,遇到难关了,你就得想办法突破,对吧?这不就是升级打怪嘛!所以,别灰心,每一步小小的失败都是通往更牛逼、更灵活的软件系统的必经之路!
2024-07-26 15:58:24
422
素颜如水
Go Gin
...挺机灵的!它能帮咱们解决一个大难题——就是那些疯了似的并发请求,就像一群蚂蚁围攻面包,瞬间就把服务器给淹没了。这样不仅能让我们的服务器喘口气,不至于被这些请求给累趴下,还能给那些没权没份的家伙们上上锁,别让他们乱用咱们的API,搞得咱们这边乱七八糟的。这招儿,既保护了服务器,又守住了规矩,真是一举两得啊! gin-contrib/ratelimit 提供了一种简单且灵活的方式来配置和应用速率限制规则。它支持多种存储后端,包括内存、Redis 和数据库等,以适应不同的应用场景需求。 三、安装与初始化 首先,确保你的 Go 环境已经配置好,并且安装了 gin-contrib/ratelimit 库。可以通过以下命令进行安装: bash go get github.com/gin-contrib/ratelimit 接下来,在你的 Gin 应用中引入并初始化 ratelimit 包: go import ( "github.com/gin-contrib/ratelimit" "github.com/gin-gonic/gin" ) func main() { r := gin.Default() // 配置限流器 limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, // 允许每分钟最多5次请求 Duration: time.Minute, }) // 将限流器应用于路由 r.Use(limiter) // 定义路由 r.GET("/api", func(c gin.Context) { c.JSON(200, gin.H{"message": "Hello, World!"}) }) r.Run(":8080") } 四、高级功能与自定义 除了基本的速率限制配置外,gin-contrib/ratelimit 还提供了丰富的高级功能,允许开发者根据具体需求进行定制化设置。 - 基于 IP 地址的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByIP, }) - 基于 HTTP 请求头的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByHeader("X-User-ID"), }) - 基于用户会话的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitBySessionID, }) 这些高级功能允许你更精细地控制哪些请求会被限制,从而提供更精确的访问控制策略。 五、实践案例 基于 IP 地址的限流 假设我们需要限制某个特定 IP 地址的访问频率: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 10, // 每小时最多10次请求 Duration: time.Hour, PermitsBy: ratelimit.PermitByIP, }) // 在路由上应用限流器 r.Use(limiter) 六、性能考量与优化 在实际部署时,考虑到速率限制的性能影响,合理配置限流参数至关重要。哎呀,你得注意了,设定安全防护的时候,这事儿得拿捏好度才行。要是设得太严,就像在门口挂了个大锁,那些坏人进不来,可合法的访客也被挡在外头了,这就有点儿不地道了。反过来,如果设置的门槛太松,那可就相当于给小偷开了个后门,让各种风险有机可乘。所以啊,找那个平衡点,既不让真正的朋友感到不便,又能守住自家的安全,才是王道!因此,建议结合业务场景和流量预测进行参数调整。 同时,选择合适的存储后端也是性能优化的关键。哎呀,你知道的,在处理那些超级多人同时在线的情况时,咱们用 Redis 来当存储小能手,那效果简直不要太好!它就像个神奇的魔法箱,能飞快地帮我们处理各种数据,让系统运行得又顺溜又高效,简直是高并发环境里的大救星呢! 七、结论 通过集成 gin-contrib/ratelimit,我们不仅能够有效地管理 API 访问频率,还能够在保障系统稳定运行的同时,为用户提供更好的服务体验。嘿,兄弟!业务这玩意儿,那可是风云变幻,快如闪电。就像你开车,路况不一,得随时调整方向,对吧?API安全性和可用性这事儿,就跟你的车一样重要。所以,咱们得像老司机一样,灵活应对各种情况,时不时地调整和优化限流策略。这样,不管是高峰还是低谷,都能稳稳地掌控全局,让你的业务顺畅无阻,安全又高效。别忘了,这可是保护咱们业务不受攻击,保证用户体验的关键!希望本文能够帮助你更好地理解和应用 gin-contrib/ratelimit,在构建强大、安全的 API 时提供有力的支持。
2024-08-24 16:02:03
110
山涧溪流
Etcd
...揍能力MAX,就得把数据分散到好几个地方去。这就牵扯到一个超级重要的家伙——Etcd的多实例部署策略了。你得懂它,掌握它,才能确保数据安全,系统稳定。别小瞧了这事儿,这可是咱们系统能不能扛得住大风大浪的关键呢!所以,咱得花点心思,深入研究一下,把Etcd的部署手法摸透,让我们的系统稳如泰山,风雨无阻! 二、Etcd的多实例部署基础 在Etcd中实现数据的多实例部署,首先需要明确的是,Etcd的设计初衷是为了提供一种高效、可靠的键值存储服务,其核心特性包括一致性、原子性和分区容忍性。哎呀,你这问题一出,我仿佛听到了一群程序员在会议室里热烈讨论的声音。在那种多台电脑一起干活的场景下,我们得保证大家的工作进度都是一样的,就像大家在同一个团队里,每个人的工作进度都得跟上,不能有人落后。这可不是件容易的事儿,得在我们规划怎么布置这些电脑的时候,就想好怎么让数据能快速准确地共享,怎么能让它们在工作时分担压力,就像大家一起扛大包,没人觉得累。还有,万一有个别电脑突然罢工了,我们得有备选方案,确保工作不停摆,就像家里停电了,还得有蜡烛或者发电机来应急。这样,我们的数据才安全,工作才高效,团队协作也才能顺畅无阻。 三、实现步骤 1. 数据分片与副本创建 在多实例部署中,我们将数据按照一定的规则进行分片(如按数据大小、数据类型、访问频率等),然后在不同的Etcd实例上创建副本。这一步骤的关键在于如何合理分配数据,以达到负载均衡的效果。例如,可以使用哈希算法对键进行计算,得到一个索引,然后将该键值对放置在相应的Etcd实例上。 示例代码: go import "github.com/coreos/etcd/clientv3" // 假设我们有5个Etcd实例,每个实例可以处理的数据范围是[1, 5) // 我们需要创建一个键值对,并将其放置在对应的Etcd实例上。 // 这里我们使用哈希函数来决定键应该放置在哪一个实例上。 func placeKeyInEtcd(key string, value string) error { hash := fnv.New32a() _, err := hash.Write([]byte(key)) if err != nil { return err } hashVal := hash.Sum32() // 根据哈希值计算出应该放置在哪个Etcd实例上。 // 这里我们简化处理,实际上可能需要更复杂的逻辑来保证负载均衡。 instanceIndex := hashVal % 5 // 创建Etcd客户端连接。 client, err := clientv3.New(clientv3.Config{ Endpoints: []string{"localhost:2379"}, DialTimeout: 5 time.Second, }) if err != nil { return err } // 将键值对放置在指定的Etcd实例上。 resp, err := client.Put(context.Background(), fmt.Sprintf("key%d", instanceIndex), value) if err != nil { return err } if !resp.Succeeded { return errors.New("failed to put key in Etcd") } return nil } 2. 数据同步与一致性 数据在不同实例上的复制需要通过Etcd的Raft协议来保证一致性。哎呀,你知道吗?Etcd这个家伙可是个厉害角色,它自带复制和同步的超级技能,能让数据在多个地方跑来跑去,保证信息的安全。不过啊,要是你把它放在人多手杂的地方,比如在高峰时段用它处理事务,那就有可能出现数据丢了或者大家手里的信息对不上号的情况。就像是一群小朋友分糖果,如果动作太快,没准就会有人拿到重复的或者根本没拿到呢!所以,得小心使用,别让它在关键时刻掉链子。兄弟,别忘了,咱们得定期给数据做做检查点,就像给车加油一样,不加油咋行?然后,还得时不时地来个快照备份,就像是给宝贝存个小金库,万一哪天遇到啥意外,比如硬盘突然罢工了,咱也能迅速把数据捞回来,不至于手忙脚乱,对吧?这样子,数据安全就稳如泰山了! 3. 负载均衡与故障转移 通过设置合理的副本数量,可以实现负载均衡。当某个实例出现故障时,Etcd能够自动将请求路由到其他实例,保证服务的连续性。这需要在应用程序层面实现智能的负载均衡策略,如轮询、权重分配等。 四、总结与思考 在Etcd中实现数据的多实例部署是一项复杂但关键的任务,它不仅考验了开发者对Etcd内部机制的理解,还涉及到了分布式系统中常见的问题,如一致性、容错性和性能优化。通过合理的设计和实现,我们可以构建出既高效又可靠的分布式系统。哎呀,未来的日子里,技术这东西就像那小兔子一样,嗖嗖地往前跑。Etcd这个家伙,功能啊性能啊,就跟吃了长生不老药似的,一个劲儿地往上窜。这下好了,咱们这些码农兄弟,干活儿的时候能省不少力气,还能开动脑筋想出更多好玩儿的新点子!简直不要太爽啊!
2024-09-23 16:16:19
187
时光倒流
转载文章
...搬上1楼,现在有两种方案,第一种是 每次搬10箱,搬1000次,第二种是 每次搬1000箱,搬10次。所以这里看出来就是有区别的了,这个我们就要看什么成本高,比如一次搬10箱 成本为X,每增加一箱会增加小x的成本,但是上一次楼的成本是Y,那么两种方案会得到如下成本公式。 第一种:成本=X+1000Y 第二种:成本=X+990x+10Y 最后通过计算是能选出来个成本最低的方案来执行的。 回到工作分解结构上来的。比如3个功能要分解,每个功能有3部分,1.接收数据,2.处理数据,3.写入数据库,当然三个功能是不同的内容,只是大体结构相同。我目前见得最多的是这样分,直接按3个功能分成3个任务,一种是一个功能的一部分分成一个任务,也就是分下来有6个任务。 这里我有点微微的吐嘲一下分成6个任务的坏处。我们先说一下好处。 1.3个人每个人拿3个小任务,任务显得小,对他们压力小一些。 2.每个人处理自己的3个任务类似,可能处理整速度快,而且分配时按善长哪一块分配哪一块的方式,较为合理。 下面说一下坏处,我认为还是弊大于利,下面列一些坏处(因为目前公司就是很多这样分配的任务) 1.3部分功能,3个文档,如果分给3个人来做,那么每个人都要求很精确的理解文档的意思,然后找出自己要做的部分来处理。 2.3个人看3个文档,假设每个文档由一个设计人员设计,那么这3个设计人员都要与3个开发人员产生沟通(所以沟通成本约为第一种方安的3倍,可能小于3倍) 3.开发人员在这种做多个相似(我们假设相似,其实这些问题因该由一个好的架构设计来处理)的编码情况下容易厌倦,产生复制修改代码的情况。 4.还有一部分成本前面3点都没有说到,也是沟通的成本,也就是一个功能里面的三个部分的衔接问题,也就是每个功能模块多了2个开发人员的沟通,也就是多出6个单位沟通成本。 先就说这么几点吧。但是我觉得已经很致命了,公司经常出现重复的沟通,就是上面所说的一个设计人员要同多个开发说明一件事情,而且不是在一起说,是开发在参与到开发过程中时,反馈回去,然后只有同这个开发沟通,可能与每个开发沟通的内容有一部分不是重复的,但是他们的设计内容都是一个模块当中的。而且公司经常出来开发与开发的衔接部分的沟通,有分歧时也会叫设计人员参与进来。所以这样分配的最大的成本就是沟通上面的成本,或者是变更方面的成本最大,比如一个功能模块有要变动,那么可能要通知3个开发人员。要是第一种方案可能就通知一个开发人员就行了。这里也不是说其他的人员不通知,我这里的意思是通知的力度是不一样的,如果是一个责任矩阵(Responsibility Matrix)来看的话,可能这种一点的方案会3个开发人员A,一个组长R,其它人员I。如果是上面一种方案那么可能是1个开发人员A,一个组长R,其它人员I.这里我也就是想说明他们的力度是不一样的。当然成本肯定也不一样。 插入:(我打算在以后的文章中加入插入系列,主要用于解释一些我认为比较有趣,或者有用,或者对我对大家来说可能陌生,但是有印像,本人也是通过查询总结出来的一些东西,多数为一些名词解释) 插入: 责任矩阵 责任矩阵是以表格形式表示完成工作分解结构中工作细目的个人责任方法。这是在项目管理中一个十分重要的工具,因为他强调每一项工作细目由谁负责,并表明每个人的角色在整个项目中的地位。制定责任色(RACI)(R=Responsible,A=Accountable,C=Consulted,I=Informed)。 插入后面继续说,刚才已经吐槽了一下一种方案的坏处,所以我认为对于分解还是逃不过模块,一个人做不下来的大模块,分解成小模块,每个模块主要就是IPO,输入什么,做什么事,出输什么,模块接口要设计好,这样一个一个的装配上就是一个大的系统,而不是把一个模块的类似部分或者说一个独立的功能模块再来分开。最小的模块我们就是函数,或者现在面向对象可以说类,但是细化下来的思想面向过程还是有用处的。这里我就强调一点,现代的设计中多用接口这个东西吧,你慢慢会发现他有很大的用处的。 总结:从昨天下午开始写这个,今天才完成中间有断开,所以可能思路不太清析,但是主要说的一点就是工作分解结构里面的一小部分内容,说了说两种分解方式的优劣。建议大家以接口设计,功能模块,类等去处理分解任务。 转载于:https://www.cnblogs.com/gw2010/p/3781447.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34253126/article/details/94304775。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 21:22:45
112
转载
转载文章
... Java 的维护和版本升级。 其实,Java 还是一个平台。Java 平台由 Java 虚拟机(Java Virtual Machine,JVM)和 Java 应用编程接口(Application Programming Interface,API)构成。Java 应用编程接口为此提供了一个独立于操作系统的标准接口,可分为基本部分和扩展部分。在硬件或操作系统平台上安装一个 Java 平台之后,Java 应用程序就可运行。 Java 平台已经嵌入了几乎所有的操作系统。这样 Java 程序只编译一次,就可以在各种系统中运行。Java 应用编程接口已经从 1.1x 版本发展到 1.2 版本。 Java语言的特点 Java 语言的风格很像 C 语言和 C++ 语言,是一种纯粹的面向对象语言,它继承了 C++ 语言面向对象的技术核心,但是拋弃了 C++ 的一些缺点,比如说容易引起错误的指针以及多继承等,同时也增加了垃圾回收机制,释放掉不被使用的内存空间,解决了管理内存空间的烦恼。 Java 语言是一种分布式的面向对象语言,具有面向对象、平台无关性、简单性、解释执行、多线程、安全性等很多特点,下面针对这些特点进行逐一介绍。 1. 面向对象 Java 是一种面向对象的语言,它对对象中的类、对象、继承、封装、多态、接口、包等均有很好的支持。为了简单起见,Java 只支持类之间的单继承,但是可以使用接口来实现多继承。使用 Java 语言开发程序,需要采用面向对象的思想设计程序和编写代码。 2. 平台无关性 平台无关性的具体表现在于,Java 是“一次编写,到处运行(Write Once,Run any Where)”的语言,因此采用 Java 语言编写的程序具有很好的可移植性,而保证这一点的正是 Java 的虚拟机机制。在引入虚拟机之后,Java 语言在不同的平台上运行不需要重新编译。 Java 语言使用 Java 虚拟机机制屏蔽了具体平台的相关信息,使得 Java 语言编译的程序只需生成虚拟机上的目标代码,就可以在多种平台上不加修改地运行。 3. 简单性 Java 语言的语法与 C 语言和 C++ 语言很相近,使得很多程序员学起来很容易。对 Java 来说,它舍弃了很多 C++ 中难以理解的特性,如操作符的重载和多继承等,而且 Java 语言不使用指针,加入了垃圾回收机制,解决了程序员需要管理内存的问题,使编程变得更加简单。 4. 解释执行 Java 程序在 Java 平台运行时会被编译成字节码文件,然后可以在有 Java 环境的操作系统上运行。在运行文件时,Java 的解释器对这些字节码进行解释执行,执行过程中需要加入的类在连接阶段被载入到运行环境中。 5. 多线程 Java 语言是多线程的,这也是 Java 语言的一大特性,它必须由 Thread 类和它的子类来创建。Java 支持多个线程同时执行,并提供多线程之间的同步机制。任何一个线程都有自己的 run() 方法,要执行的方法就写在 run() 方法体内。 6. 分布式 Java 语言支持 Internet 应用的开发,在 Java 的基本应用编程接口中就有一个网络应用编程接口,它提供了网络应用编程的类库,包括 URL、URLConnection、Socket 等。Java 的 RIM 机制也是开发分布式应用的重要手段。 7. 健壮性 Java 的强类型机制、异常处理、垃圾回收机制等都是 Java 健壮性的重要保证。对指针的丢弃是 Java 的一大进步。另外,Java 的异常机制也是健壮性的一大体现。 8. 高性能 Java 的高性能主要是相对其他高级脚本语言来说的,随着 JIT(Just in Time)的发展,Java 的运行速度也越来越高。 9. 安全性 Java 通常被用在网络环境中,为此,Java 提供了一个安全机制以防止恶意代码的攻击。除了 Java 语言具有许多的安全特性以外,Java 还对通过网络下载的类增加一个安全防范机制,分配不同的名字空间以防替代本地的同名类,并包含安全管理机制。 Java 语言的众多特性使其在众多的编程语言中占有较大的市场份额,Java 语言对对象的支持和强大的 API 使得编程工作变得更加容易和快捷,大大降低了程序的开发成本。Java 的“一次编写,到处执行”正是它吸引众多商家和编程人员的一大优势。 扩展知识: 按应用范围,Java 可分为 3 个体系,即 Java SE、Java EE 和 Java ME。下面简单介绍这 3 个体系。 1. Java SE Java SE(Java Platform Standard Edition,Java 平台标准版)以前称为 J2SE,它允许开发和部署在桌面、服务器、嵌入式环境和实时环境中使用的 Java 应用程序。Java SE 包含了支持 Java Web 服务开发的类,并为 Java EE 提供基础,如 Java 语言基础、JDBC 操作、I/O 操作、网络通信以及多线程等技术。图 1 所示为 Java SE 的体系结构。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_73892801/article/details/129181633。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-25 09:18:50
85
转载
SpringBoot
...你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
86
寂静森林
Kibana
...ibana中如何设置数据保留策略? 1. 前言 为什么我们需要数据保留策略? 嗨朋友们!今天咱们聊聊一个非常实用的话题——在Kibana中如何设置数据保留策略。先问问大家,你们有没有遇到过这样的情况?存储空间告急,系统提示“磁盘已满”;或者不小心存了太多无用的数据,导致查询速度慢得像乌龟爬……这些问题是不是让你头疼?别担心,Kibana可以帮助我们轻松管理数据,而数据保留策略就是其中的重要一环。 其实,数据保留策略的核心思想很简单:只保留必要的数据,删除那些不再需要的垃圾信息。这不仅能够节省宝贵的存储资源,还能提高系统的运行效率。所以,今天咱们就来深入探讨一下,如何在Kibana中搞定这个事儿! --- 2. 数据保留策略是什么?为什么要用它? 2.1 什么是数据保留策略? 简单来说,数据保留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
20
风轻云淡
Logstash
...csearch:实时数据处理的黄金搭档 嘿,朋友们!今天我要带大家走进一个非常有趣的技术领域——Logstash与Elasticsearch的结合。这俩在大数据处理界可是响当当的角色,特别是在实时索引优化这块,简直绝了!想象一下,你正面对着一大堆日志数据,每天都得迅速搞定它们的分析和查找,这时候,Logstash加上Elasticsearch简直就是你的超级英雄搭档,简直不要太好用! 1.1 什么是Logstash? Logstash 是一个开源的数据收集引擎,它能够从多个来源采集数据,然后进行转换,最后输出到各种存储系统中。它的设计初衷就是用来处理日志和事件数据的,但其实它的能力远不止于此。这家伙挺能来事儿的,不仅能搞定各种输入插件——比如文件啊、网页数据啊、数据库啥的,还能用过滤插件整点儿花样,比如说正则表达式匹配或者修改字段之类的。最后,它还支持不少输出插件,比如往Elasticsearch或者Kafka里面扔数据,简直不要太方便!这种灵活性使得Logstash成为了处理复杂数据流的理想选择。 1.2 Elasticsearch:实时搜索与分析的利器 Elasticsearch 是一个基于Lucene构建的开源分布式搜索引擎,它提供了强大的全文搜索功能,同时也支持结构化搜索、数值搜索以及地理空间搜索等多种搜索类型。此外,Elasticsearch还拥有出色的实时分析能力,这得益于其独特的倒排索引机制。当你将数据导入Elasticsearch后,它会自动对数据进行索引,从而大大提高了查询速度。 2. 实时索引优化 让数据飞起来 现在我们已经了解了Logstash和Elasticsearch各自的特点,接下来就让我们看看如何通过它们来实现高效的实时索引优化吧! 2.1 数据采集与预处理 首先,我们需要利用Logstash从各种数据源采集数据。好嘞,咱们换个说法:比如说,我们要从服务器的日志里挖出点儿有用的东西,就像找宝藏一样,目标就是那些访问时间、用户ID和请求的网址这些信息。我们可以用Filebeat这个工具来读取日志文件,然后再用Grok这个插件来解析这些数据,让信息变得更清晰易懂。下面是一个具体的配置示例: yaml input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } } 这段配置告诉Logstash,从/var/log/nginx/access.log这个路径下的日志文件开始读取,并使用Grok插件中的COMBINEDAPACHELOG模式来解析每一行日志内容。这样子一来,原始的文本信息就被拆成了一个个有组织的小块儿,给接下来的处理铺平了道路,简直不要太方便! 2.2 高效索引策略 一旦数据被Logstash处理完毕,下一步就是将其导入Elasticsearch。为了确保索引操作尽可能高效,我们可以采取一些策略: - 批量处理:减少网络往返次数,提高吞吐量。 - 动态映射:允许Elasticsearch根据文档内容自动创建字段类型,简化索引管理。 - 分片与副本:合理设置分片数量和副本数量,平衡查询性能与集群稳定性。 下面是一个简单的Logstash输出配置示例,演示了如何将处理后的数据批量发送给Elasticsearch: yaml output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" document_type => "_doc" user => "elastic" password => "changeme" manage_template => false template => "/path/to/template.json" template_name => "nginx-access" template_overwrite => true flush_size => 5000 idle_flush_time => 1 } } 在这段配置中,我们设置了批量大小为5000条记录,以及空闲时间阈值为1秒,这意味着当达到这两个条件之一时,Logstash就会将缓冲区内的数据一次性发送至Elasticsearch。此外,我还指定了自定义的索引模板,以便更好地控制字段映射规则。 3. 实战案例 打造高性能日志分析平台 好了,理论讲得差不多了,接下来让我们通过一个实际的例子来看看这一切是如何运作的吧! 假设你是一家电商网站的运维工程师,最近你们网站频繁出现访问异常的问题,客户投诉不断。为了找出问题根源,你需要对Nginx服务器的日志进行深入分析。幸运的是,你们已经部署了Logstash和Elasticsearch作为日志处理系统。 3.1 日志采集与预处理 首先,我们需要确保Logstash能够正确地从Nginx服务器上采集到所有相关的日志信息。根据上面说的设置,我们可以搞一个Logstash配置文件,用来从特定的日志文件里扒拉出重要的信息。嘿,为了让大家看日志的时候能更轻松明了,我们可以加点小技巧,比如说统计每个用户逛网站的频率,或者找出那些怪怪的访问模式啥的。这样一来,信息就一目了然啦! 3.2 索引优化与查询分析 接下来,我们将这些处理后的数据发送给Elasticsearch进行索引存储。有了合适的索引设置,就算同时来一大堆请求,我们的查询也能嗖嗖地快,不会拖泥带水的。比如说,在上面那个输出配置的例子里面,我们调高了批量处理的门槛,同时把空闲时间设得比较短,这样就能大大加快数据写入的速度啦! 一旦数据被成功索引,我们就可以利用Elasticsearch的强大查询功能来进行深度分析了。比如说,你可以写个DSL查询,找出最近一周内访问量最大的10个页面;或者,你还可以通过用户ID捞出某个用户的操作记录,看看能不能从中发现问题。 4. 结语 拥抱变化,不断探索 通过以上介绍,相信大家已经对如何使用Logstash与Elasticsearch实现高效的实时索引优化有了一个全面的认识。当然啦,技术这东西总是日新月异的,所以我们得保持一颗好奇的心,不停地学新技术,这样才能更好地迎接未来的各种挑战嘛! 希望这篇文章能对你有所帮助,如果你有任何疑问或建议,欢迎随时留言交流。让我们一起加油,共同成长!
2024-12-17 15:55:35
42
追梦人
转载文章
... 与之前的 LTS 版本有很大的不同。它旨在给你一个更完善的体验,而不仅仅是关注旧电脑。请关于 Lubuntu 20.04 的内容。https://linux.cn/article-12242-1.html作者:Dimitrios Savvopoulos译者:qfzy1233 Lubuntu 20.04 点评:第一个基于 LXQt 的长期支持版 我在 Lubuntu 20.04 发行前几天就已经开始使用它了。我通常使用 Arch 阵营中 Manjaro 和 Cinnamon 桌面,所以使用 Lubuntu 对我来说是一个愉快的改变。 以下是我在使用 Lubuntu 20.04.时的一些感受和注记。 再见 LXDE,你好 LXQt! 长期以来,Lubuntu 都依靠 LXDE 来提供轻量级的 Linux 体验。但现在,它使用的是 LXQt 桌面环境。 LXDE 是基于 GTK(GNOME 所使用的库),更具体地说是基于 2020 年的 GTK+ 2。由于对 GTK+ 3 不满意,LXDE 开发人员 Hong Jen Yee 决定将整个桌面移植到 Qt(KDE 所使用的库)。LXDE 的 Qt 移植版本和 Razor-qt 项目合并形成 LXQt。所以现在,LXDE 和 LXQt 作为单独的项目而共存。 既然 LXDE 开发者本身专注于 LXQt,那么 Lubuntu 坚持使用三年多前上一次稳定发布版的桌面环境 LXDE 是没有意义的。 因此,Lubuntu 18.04 是使用 LXDE 的最后一个版本。幸运的是,这是一个长期支持版本。Lubuntu 团队将提供支持直到 2021 年。 不仅适于老机器 随着在 2020 年“老机器”的定义发生了变化,Lubuntu 18.04 成为了最后一个 32 位版本。现在,即使是一台 10 年前的老机器也至少有 2G 的内存和一个双核 64 位处理器。 因此,Lubuntu 团队将不再设置最低的系统需求,也不再主要关注旧硬件。尽管 LXQt 仍然是一个轻量级的、经典而不失精致的、功能丰富的桌面环境。 在 Lubuntu 20.04 LTS 发布之前,Lubuntu 的第一个 LXQt 发行版是 18.10,开发人员经历了三个标准发行版来完善 LXQt 桌面,这是一个很好的开发策略。 不用常规的 Ubiquity,Lubuntu 20.04 使用的是 Calamares 安装程序 在新版本中使用了全新的 Calamares 安装程序,取代了其它 Ubuntu 官方版本使用的 Ubiquity 安装程序。 整个安装过程在大约能在 10 分钟内完成,比之前 Lubuntu 的版本稍微快一些。 由于镜像文件附带了预先安装的基本应用程序,所以你可以很快就可以完成系统的完全配置。 不要直接从 Lubuntu 18.04 升级到 Lubuntu 20.04 通常,你可以将 Ubuntu 从一个 LTS 版本升级到另一个 LTS 版本。但是 Lubuntu 团队建议不要从 Lubuntu 18.04 升级到 20.04。他们建议重新安装,这才是正确的。 Lubuntu 18.04 使用 LXDE 桌面,20.04 使用 LXQt。由于桌面环境的巨大变化,从 18.04 升级到 20.04 将导致系统崩溃。 更多的 KDE 和 Qt 应用程序 下面是在这个新版本中默认提供的一些应用程序,正如我们所看到的,并非所有应用程序都是轻量级的,而且大多数应用程序都是基于 Qt 的。 甚至使用的软件中心也是 KDE 的 Discover,而不是 Ubuntu 的 GNOME 软件中心。 ◈ Ark – 归档文件管理器◈ Bluedevil – 蓝牙连接管理◈ Discover 软件中心 – 包管理系统◈ FeatherPad – 文本编辑器◈ FireFox – 浏览器◈ K3b – CD/DVD 刻录器◈ Kcalc – 计算器◈ KDE 分区管理器 – 分区管理工具◈ LibreOffice – 办公套件(Qt 界面版本)◈ LXimage-Qt – 图片查看器及截图制作◈ Muon – 包管理器◈ Noblenote – 笔记工具◈ PCManFM-Qt – 文件管理器◈ Qlipper – 剪贴板管理工具◈ qPDFview – PDF 阅读器◈ PulseAudio – 音频控制器◈ Qtransmission – BT 下载工具(Qt 界面版本)◈ Quassel – IRC 客户端◈ ScreenGrab – 截屏制作工具◈ Skanlite – 扫描工具◈ 启动盘创建工具 – USB 启动盘制作工具◈ Trojita – 邮件客户端◈ VLC – 媒体播放器◈ MPV 视频播放器 测试 Lubuntu 20.04 LTS LXQt 版 Lubuntu 的启动时间不到一分钟,虽然是从 SSD 启动的。 LXQt 目前需要的内存比基于 Gtk+ 2 的 LXDE 稍微多一点,但是另一种 Gtk+ 3 工具包也需要更多的内存。 在重新启动之后,系统以非常低的内存占用情况运行,大约只有 340 MB(按照现代标准),比 LXDE 多 100 MB。 LXQt 不仅适用于硬件较旧的用户,也适用于那些希望在新机器上获得简约经典体验的用户。 桌面布局看起来类似于 KDE 的 Plasma 桌面,你觉得呢? 在左下角有一个应用程序菜单,一个用于显示固定和活动的应用程序的任务栏,右下角有一个系统托盘。 Lubuntu 的 LXQt 版本可以很容易的定制,所有的东西都在菜单的首选项下,大部分的关键项目都在 LXQt “设置”中。 值得一提的是,LXQt 在默认情况下使用流行的 Openbox 窗口管理器。 与前三个发行版一样,20.04 LTS 附带了一个默认的黑暗主题 Lubuntu Arc,但是如果不适合你的口味,可以快速更换,也很方便。 就日常使用而言,事实证明,Lubuntu 20.04 向我证明,其实每一个 Ubuntu 的分支版本都完全没有问题。 结论 Lubuntu 团队已经成功地过渡到一个现代的、依然轻量级的、极简的桌面环境。LXDE 看起来被遗弃了,迁移到一个活跃的项目也是一件好事。 我希望 Lubuntu 20.04 能够让你和我一样热爱,如果是这样,请在下面的评论中告诉我。请继续关注! via: https://itsfoss.com/lubuntu-20-04-review/ 作者:Dimitrios Savvopoulos 选题:lujun9972 译者:qfzy1233 校对:wxy 本文由 LCTT 原创编译,Linux中国 荣誉推出 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39539807/article/details/111619265。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-17 18:52:15
321
转载
转载文章
...时精密控制提供了新的解决方案。 同时,在硬件接口标准化方面,国际电工委员会(IEC)正积极推动包括PWM输出和模拟量输入输出在内的通信协议统一化,以促进不同制造商设备间的无缝集成,降低系统开发难度和成本。 综上所述,无论是从控制器核心技术的演进,还是激光振镜控制系统智能化的发展趋势,以及行业标准的规范化推进,都显示出了工业自动化领域的勃勃生机与广阔前景。对于技术人员而言,紧跟这些前沿动态,掌握更高效、精确的运动控制技术,无疑将极大地推动自身业务水平的提升与创新。
2023-12-04 17:33:09
340
转载
NodeJS
...的,塌不下来! 那么问题来了:如果我想在我的Node.js项目里用上Docker,该怎么操作呢?别急,咱们一步一步来。 --- 2. 为什么选择Docker? 首先,让我们聊聊为什么要用Docker。简单来说,Docker解决了两个核心痛点: - 环境一致性:想象一下,你在本地调试好的Node.js程序,在服务器上跑却报错。哎呀,这可能是你的服务器上装的软件版本不一样,或者是系统设置没调成一个样儿,所以才出问题啦!Docker可厉害了,它把整个运行环境——比如Node.js、各种依赖库,还有配置文件啥的——全都打包成一个“镜像”,就像是给你的应用做一个完整的备份。这样,无论你什么时候部署,都像是复制了一份一模一样的东西,绝不会出岔子! - 高效部署:传统的部署方式可能是手动上传文件到服务器再启动服务,不仅费时还容易出错。而Docker只需要推送镜像,然后在目标机器上拉取并运行即可,省去了很多麻烦。 当然,这些优点的背后离不开Docker的核心概念——镜像、容器和仓库。简单来说啊,镜像就像是做菜的菜谱,容器就是按照这个菜谱写出来的菜,仓库呢,就是放这些菜谱的地方,想做菜的时候随时拿出来用就行啦!听起来是不是有点抽象?没关系,接下来我们会一步步实践! --- 3. 准备工作 搭建Node.js项目 既然要学怎么用Docker部署Node.js应用,那我们得先有个项目吧?这里我假设你已经会用npm初始化一个Node.js项目了。如果没有的话,可以按照以下步骤操作: bash mkdir my-node-app cd my-node-app npm init -y 这会在当前目录下生成一个package.json文件,用于管理项目的依赖。接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
45
海阔天空
Tornado
...比如 API 密钥、数据库密码啥的)的服务。对开发者而言,安全这事得放首位,要是还用那种硬编码或者直接把密钥啥的写进配置文件的老办法,那简直就是在玩火自焚啊!Google Cloud Secret Manager 提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
44
追梦人
转载文章
...于如何使用这些工具的问题,请访问sysinternals论坛从其他用户和我们的团队获取解答和帮助. 该工具包括: AccessChk 这个工具为您显示指定至档案、登录机码或 Windows 服务的使用者或群组之存取。 AccessEnum 这个简单又具有超高安全性的工具,会让您知道拥有对您系统目录、档案及登录机码的存取之对象和方式。用它来寻找您权限下的安全性漏洞。 AdRestore 取消删除 Server 2003 Active Directory 物件。 BgInfo 这个可完全设定的程式,会自动产生包括含有 IP 位址、电脑名称,和网路介面卡等等重要资讯的桌面背景。 BlueScreen 这个萤幕保护程式不只将「蓝色萤幕」(Blue Screens) 模仿得维妙维肖,也能模仿重新开机 (需使用 CHKDSK 完成),而且在 Windows NT 4、Windows 2000、Windows XP、Server 2003 和 Windows 9x 中皆能执行。 CacheSet CacheSet 是一种能让您使用 NT 提供的功能来控制 Cache Manager 的工作组大小。除了和 NT 所有版本相容之外,还提供原始程式码。 检视系统时钟的解析度,同时也是计时器解析度的最大值。 Contig 希望能够快速地将常用的档案进行磁碟重组吗?使用 Contig 最佳化个别档案,或是建立新的连续档案。 Ctrl2cap 这是一种核心模式驱动程式,展示键盘输入筛选只在键盘类别驱动程式之上,目的是为了将大写锁定按键转换至控制按键。这个层级的筛选允许在 NT 「发现」按键之前,先进行转换和隐藏按键。包括完整的来源。此外,Ctrl2cap 还会显示如何使用 NtDisplayString() 将讯息列印至初始化的蓝色萤幕。 DebugView Sysinternals 的另一个首开先例:这个程式会拦截分别由 DbgPrint 利用装置驱动程式,和 OutputDebugString 利用 Win32 程式所做的呼叫。它能够在您的本机上或跨往际往路,在不需要作用中的侦错工具情况下,检视和录制侦错工作阶段输出。 DiskExt 显示磁碟区磁碟对应。 Diskmon 这个公用程式会撷取全部的硬碟活动,或是提供系统匣中的软体磁碟活动指示器的功能。 DiskView 图形化磁区公用程式。 Du 依目录检视磁碟使用状况。 EFSDump 检视加密档案的资讯。 Filemon 这个监控工具让您即时检视所有档案系统的活动。 Handle 这个易於操纵的命令列公用程式能够显示档案开启的种类和使用的处理程序等更多资讯。 Hex2dec 十六进位数字和十进位数字相互转换。 Junction 建立 Win2K NTFS 符号连结。 LDMDump 倾印逻辑磁碟管理员的磁碟上之资料库内容,其中描述 Windows 2000 动态磁碟分割。 ListDLLs 列出所有目前载入的 DLL,包括载入位置和他们的版本编号。2.0 版列印载入模组的完整路径名称。 LiveKd 使用 Microsoft 核心侦错工具检视即时系统。 LoadOrder 检视在您 WinNT/2K 系统上载入装置的顺序。 LogonSessions 列出系统上的作用中登入工作阶段。 MoveFile 允许您对下一次开机进行移动和删除命令的排程。 NTFSInfo 使用 NTFSInfo 检视详细的 NTFS 磁碟区资讯,包括主档案表格 (MFT) 和 MFT 区的大小和位置,还有 NTFS 中继资料档案的大小。 PageDefrag 将您的分页档和登录 Hive 进行磁碟重组。 PendMoves 列举档案重新命名的清单,删除下次开机将会执行的命令。 Portmon 使用这个进阶的监视工具进行监视序列和平行连接埠活动。它不仅掌握所有标准的序列和平行 IOCTL,甚至会显示传送和接收的资料部份。Version 3.x 具有强大的新 UI 增强功能和进阶的筛选功能。 Process Monitor 即时监控档案系统、登录、程序、执行绪和 DLL 活动。 procexp 任务管理器,这个管理器比windows自带的管理器要强大方便的很多,建议替换自带的任务管理器(本人一直用这个管理器,很不错)。此工具也有汉化版,fans可以自己搜索下载 ProcFeatures 这个小应用程式会描述「实体位址扩充」的处理器和 Windows 支援,而没「没有执行」缓冲区溢位保护。 PsExec 以有限的使用者权限执行处理程序。 PsFile 检视远端开启档案有哪些。 PsGetSid 显示电脑或使用者的 SID。 PsInfo 取得有关系统的资讯。 PsKill 终止本机或远端处理程序。 PsList 显示处理程序和执行绪的相关资讯。 PsLoggedOn 显示使用者登录至一个系统。 PsLogList 倾印事件记录档的记录。 PsPasswd 变更帐户密码。 PsService 检视及控制服务。 PsShutdown 关机及选择重新启动电脑。 PsSuspend 暂停及继续处理程序。 PsTools PsTools 产品系列包括命令列公用程式,其功能有列出在本机或远端电脑上执行的处理程序、远端执行的处理程序、重新开机的电脑和倾印事件记录等等。 RegDelNull 扫描并删除登录机码,这些登录机码包括了标准登录编辑工具无法删除的内嵌式 Null 字元。 RegHide 建立名为 "HKEY_LOCAL_MACHINE\Software\Sysinternals\Can't touch me!\0" 并使用原生 API 的金钥,而且会在此金钥内建立一个值。 Regjump 跳至您在 Regedit 中指定的登录路径。 Regmon 这个监视工具让您即时看到全部的登录活动。 RootkitRevealer 扫描您系统上 Rootkit 为基础的恶意程式码。 SDelete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
103
转载
.net
依赖注入问题:DI容器配置错误 1. 起因 为什么我们要依赖注入? 大家好呀!作为一个开发者,你有没有遇到过这种情况?某个项目一开始运行得挺顺利,但随着功能越来越多,代码变得越来越乱,调试起来简直是噩梦。比如说啊,在一个类里面直接写死了另一个类的对象创建逻辑,这就跟在菜谱上直接固定了所有食材的品牌一样,一旦你想换点新鲜的或者调整一下,就得满世界翻找那些用到这个菜谱的地方,挨个改过来。更惨的是,改完还得一项项地重新验证,生怕哪里漏掉了,搞得自己头都大了。 这就是没有依赖注入(Dependency Injection, DI)的问题。依赖注入嘛,简单说就是把对象的创建和管理工作“外包”给一个外部的“容器”,这样就能让代码之间的关系变得松散一些,彼此不那么死板地绑在一起,开发起来也更灵活方便。这样做简直太棒了!代码变得超级清晰,就像一条干净整洁的小路,谁走都明白;维护起来也轻松多了,像是收拾一个不大的房间,根本不用费劲找东西;而且还能轻松做单元测试,就像给每个小零件单独体检一样简单! 但是,依赖注入也不是万能的。如果我们配置不对,那就会出大问题。今天我们就来聊聊这个话题——DI容器配置错误。 --- 2. 配置错误 从一个小例子说起 先来看一个简单的例子: csharp public interface IService { void DoWork(); } public class Service : IService { public void DoWork() { Console.WriteLine("Doing work..."); } } 假设我们有一个Service类实现了IService接口,现在我们需要在程序中使用这个服务。按照传统的做法,可能会直接在类内部实例化: csharp public class Worker { private readonly IService _service = new Service(); public void Execute() { _service.DoWork(); } } 这种方式看起来没什么问题,但实际上隐藏着巨大的隐患。比如,如果你需要替换Service为其他实现(比如MockService),你就得修改Worker类的代码。这违背了开闭原则。 于是,我们引入了依赖注入框架,比如Microsoft的Microsoft.Extensions.DependencyInjection。让我们看看如何正确配置。 --- 3. 正确配置 DI容器的正确姿势 首先,你需要注册服务。比如,在Program.cs文件中: csharp using Microsoft.Extensions.DependencyInjection; var services = new ServiceCollection(); services.AddTransient(); var serviceProvider = services.BuildServiceProvider(); 这里的关键点在于Transient这个词。它表示每次请求时都会生成一个新的实例。对了,还有别的选择呢,比如说 Scoped——在一个作用域里大家用同一个实例,挺节省资源的;再比如 Singleton——在整个应用跑着的时候大家都用一个“独苗”实例,从头到尾都不换。选择合适的生命周期很重要,否则可能会导致意想不到的行为。 接下来,我们可以通过依赖注入获取实例: csharp public class Worker { private readonly IService _service; public Worker(IService service) { _service = service; } public void Execute() { _service.DoWork(); } } 在这个例子中,Worker类不再负责创建IService的实例,而是由DI容器提供。这种解耦的方式让代码更加灵活。 --- 4. 配置错误 常见的坑 然而,现实总是比理想复杂得多。以下是一些常见的DI配置错误,以及它们可能带来的后果。 4.1 注册类型时搞错了 有时候我们会不小心把类型注册错了。比如: csharp services.AddTransient(); // 想注册MockService,却写成了Service 结果就是,无论你在代码中怎么尝试,拿到的永远是Service而不是MockService。其实这个坑挺容易被忽略的,毕竟编译器又不报错,一切都看起来风平浪静,直到程序跑起来的时候,问题才突然冒出来,啪叽一下给你整一个大 surprise! 我的建议是,尽量使用常量或者枚举来定义服务名称,这样可以减少拼写错误的风险: csharp public static class ServiceNames { public const string MockService = "MockService"; public const string RealService = "RealService"; } services.AddTransient(ServiceNames.MockService, typeof(MockService)); 4.2 生命周期设置不当 另一个常见的问题是生命周期设置错误。比如说,你要是想弄个单例服务,结果不小心把它设成了 Transient,那每次调用的时候都会新生成一个实例。这就好比你本来想让一个人负责一件事,结果每次都换个人来干,不仅效率低得让人崩溃,搞不好还会出大乱子呢! csharp // 错误示范 services.AddTransient(); // 正确示范 services.AddSingleton(); 记住,单例模式适用于那些无状态或者状态不重要的场景。嘿,想象一下,你正在用一个数据库连接池这种“有状态”的服务,要是把它搞成单例模式,那可就热闹了——多个线程或者任务同时去抢着用它,结果就是互相踩脚、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
45
夜色朦胧
转载文章
...特别慢,该如何排查和解决? 项目内存或者CPU占用率过高如何排查? ConcurrentHashmap原理 数据库分库分表 MQ相关,为什么kafka这么快,什么是零拷贝? 小算法题 http和https协议区别,具体原理 四面(Leader) 手画自己项目的架构图,并且针对架构和中间件提问 印象最深的一本技术书籍是什么? 五面(HR) 没什么过多的问题,主要就是聊了一下自己今后的职业规划,告知了薪资组成体系等等。 插播一条福利!!!最近整理了一套1000道面试题的文档(详细内容见文首推荐文章),以及大厂面试真题,和最近看的几本书。 需要刷题和跳槽的朋友,这些可以免费赠送给大家,帮忙转发文章,宣传一下,后台私信【面试】免费领取! 小天:好像问了两次看书的情况诶?现在面试还问这个? 程序员H:是啊,幸亏之前为了弄懂JVM还看了两本书,不然真不知道说啥了! 小天:看来,我也要找几本书去看了,感情没看过两本书都不敢跳槽了! 程序员H:对了,还有简历,告诉你一个捷径 简历尽量写好一些,项目经验突出: 1、自己的知识广度和深度 2、自身的优势 3、项目的复杂性和难度以及指标 4、自己对于项目做的贡献或者优化 程序员H:唉~这还不能走可怎么办呀!你说,我把主管打一顿,是不是马上就可以走了? 小天:... 查看全文 http://www.taodudu.cc/news/show-3387369.html 相关文章: 阿里菜鸟面经 Java后端开发 社招三年 已拿offer 阿里 菜鸟网络(一面) 2021年阿里菜鸟网络春招实习岗面试分享,简历+面试+面经全套资料! 阿里菜鸟国际Java研发面经(三面+总结):JVM+架构+MySQL+Redis等 2021年3月29日 阿里菜鸟实习面试(一面)(含部分总结) mongodb 子文档排序_猫鼬101:基础知识,子文档和人口简介 特征工程 计算方法Gauss-Jordan消去法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
69
转载
转载文章
...深入理解了MySQL数据库的基础操作与SQL分类后,我们可以进一步关注数据库技术的最新进展和实际应用案例。近期,随着数字化转型加速,MySQL 8.0版本凭借其增强的安全性、更高的性能以及对JSON文档支持的改进,得到了广泛应用。例如,在云服务领域,AWS RDS已全面支持MySQL 8.0,用户可以更加便捷地构建高性能、高可用的应用程序。 此外,对于数据库管理及优化方面,一篇来自InfoQ的技术文章《MySQL 8.0新特性解读及其在大规模数据处理中的实践》深度剖析了MySQL 8.0的各项新功能,包括窗口函数、通用表表达式等,并通过实例演示如何利用这些新特性提高查询效率,降低存储成本。 同时,针对日益增长的数据安全需求,《企业如何借助MySQL强化数据库安全性》一文强调了实施严格访问控制、审计跟踪、加密传输和透明数据加密等功能的重要性,并引用了最新的行业标准和法规要求作为依据。 对于开发者而言,学习并掌握MySQL的高级特性以及最佳实践至关重要。近日,Oracle发布了MySQL HeatWave,这是一种融合分析型数据库引擎,能在同一个MySQL数据库中实现事务处理与实时分析,极大简化了大数据处理流程,提升了业务决策速度。 综上所述,了解MySQL的最新动态和技术演进不仅可以帮助我们更好地进行日常的数据库管理工作,还能洞悉未来数据库技术的发展趋势,从而为我们的系统设计与优化提供有力支撑。在实战中,结合具体业务场景灵活运用SQL语句及数据库管理系统,将有效提升整个系统的稳定性和效率。
2024-02-16 12:44:07
545
转载
转载文章
...测的研究后,您可能对数据分析、线性回归模型及其在金融领域的应用有了更深入的理解。为了进一步扩展您的知识视野和紧跟行业动态,以下是一些相关的延伸阅读建议: 1. 最新研究进展:近期,国际知名期刊《Journal of Financial Services Research》上发表了一篇题为《Credit Card Spending Prediction Using Machine Learning Techniques: A Comparative Study》的文章,作者详细比较了线性回归与多种机器学习算法(如随机森林、梯度提升机)在信用卡消费预测上的表现,并探讨了特征选择对预测精度的影响。 2. 行业实践案例:今年年初,某大型商业银行在其年度报告中分享了运用大数据与人工智能技术优化信用卡业务的实践经验,其中重点介绍了如何通过构建多元线性回归模型及正则化方法处理信贷风险评估和客户消费潜力预测问题,这一实例为业界提供了宝贵借鉴。 3. 监管政策影响:随着数据隐私保护法规(例如欧盟GDPR、中国个人信息保护法)的出台和完善,金融机构在利用用户数据进行信用消费预测时面临更多挑战。《经济学人》杂志的一篇文章对此进行了深度解读,探讨了在严格遵守法规的前提下,如何合法合规地挖掘数据价值以提高预测准确性。 4. 数据科学工具更新:Python生态中的Pandas、Statsmodels等库不断迭代升级,为数据分析工作者提供了更为强大的功能支持。最近,Scikit-learn发布了新版更新,强化了其在回归模型诊断、正则化模型训练等方面的性能,值得广大数据科学家关注并应用于实际项目中。 综上所述,了解前沿学术研究成果、掌握行业最佳实践、关注法律法规变化以及跟踪数据科学工具更新,都将有助于深化您在信用卡消费预测领域的专业素养,并为解决实际业务问题提供有力支持。
2023-11-23 15:52:56
107
转载
Kafka
...的特点,成为了企业级数据流处理的首选方案。然而,这也带来了新的挑战。例如,国内某大型电商企业在双十一促销活动中,由于订单峰值激增,其基于Kafka构建的实时交易系统一度面临消息堆积的问题。经过紧急排查,发现主要是由于分区数量不足导致的负载不均。为此,该企业迅速调整了分区策略,并优化了消息生产和消费逻辑,最终顺利应对了高峰流量。 与此同时,国外科技巨头也对Kafka进行了持续改进。近日,Confluent公司宣布推出Kafka 3.6版本,该版本引入了多项新特性,包括增强型事务API、更高效的压缩算法以及对多租户环境的支持。这些更新旨在帮助企业更好地满足复杂业务场景的需求,同时也反映了Kafka社区对于技术创新的不懈追求。 此外,关于Kafka与ZooKeeper的关系,业界普遍关注其未来的演进方向。尽管Confluent正在推动KRaft(Kafka Raft-based Controller)项目,试图完全摆脱ZooKeeper的依赖,但在短期内,ZooKeeper仍将在许多传统部署环境中占据主导地位。因此,对于正在使用Kafka的企业而言,如何平衡现有基础设施与新技术之间的过渡,成为了一个值得深思的问题。 从长远来看,Kafka的成功离不开开源社区的支持。正如Apache软件基金会所倡导的理念,“开放、协作、共享”始终是推动技术创新的核心动力。在未来,随着更多企业和开发者加入到Kafka生态中,我们有理由相信,这一技术将继续保持旺盛的生命力,并在更多领域发挥重要作用。
2025-04-05 15:38:52
96
彩虹之上
转载文章
...算法进展:随着JDK版本的不断更新,Oracle和OpenJDK社区对垃圾收集器进行了持续优化。例如,最新的ZGC和Shenandoah GC采用了更为先进的内存管理技术,如颜色指针、读屏障等,以实现更低延迟的并发标记清理过程。关注这些前沿GC算法的研究与发展,可以更全面地了解现代JVM如何高效处理大规模堆内存引用关系。 2. G1垃圾收集器与RSet深入解读:G1作为当前HotSpot JVM推荐的默认垃圾收集器,其内部机制中除了卡表外,Remembered Set(RSet)也是关键组件。详细了解RSet如何辅助卡表追踪跨区域引用,以及分区并发压缩等特性,将有助于读者掌握G1高效回收内存的具体实现原理。 3. 实际生产环境案例分析:通过阅读一些大型互联网企业或开源社区分享的实战经验文章,了解他们在使用CMS、G1等垃圾收集器时如何针对特定业务场景调整卡表相关参数,解决实际遇到的性能瓶颈问题。比如,如何根据应用特点选择合适的卡表大小、调整扫描频率以平衡GC开销与应用响应时间。 4. 学术研究论文:查阅近年来关于垃圾收集器优化的学术论文,比如《A Study of the G1 Garbage Collector》、《The Z Garbage Collector》等,可深入了解卡表设计背后的理论依据,以及研究人员为提升GC效率所做的各种尝试和改进。 5. 官方文档及源码阅读:直接研读Oracle官方发布的Java SE HotSpot VM Garbage Collection Tuning Guide,以及JDK源码中的CardTableBarrierSet等相关类实现,可以更直观地把握卡表的具体工作流程和技术细节。同时,关注JDK开发团队的博客、邮件列表讨论等,获取第一手的更新信息和未来发展方向。
2023-12-16 20:37:50
247
转载
转载文章
...考(续) 在哪里提交问题:https://github.com/docker-library/mysql/issues 支持的架构:(更多信息)amd64 发布的镜像工件详情:repo-info repo 的 repos/mysql/ 目录(历史)(镜像元数据、传输大小等) 镜像更新:official-images repo 的 library/mysql 标签 官方图像 repo 的库/mysql 文件(历史) 此描述的来源:docs repo 的 mysql/ 目录(历史) 2.4. 如何使用镜像 2.4.1. 启动一个mysql服务器实例 启动 MySQL 实例很简单: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 其中 some-mysql 是您要分配给容器的名称, my-secret-pw 是要为 MySQL root 用户设置的密码,而 tag 是指定您想要的 MySQL 版本的标签。 有关相关标签,请参见上面的列表。 以下是示例(通常要设置时区),注意-v 这里是挂载磁盘,请提前创建目录/var/mysql/data,/var/lib/mysql是容器里的原持久化目录: docker run --name mysql202201 -e MYSQL_ROOT_PASSWORD=123456 -e TZ=Asia/Shanghai -v /var/mysql/data:/var/lib/mysql -d mysql:5.7 2.4.2. 从 MySQL 命令行客户端连接到 MySQL 以下命令启动另一个 mysql 容器实例并针对您的原始 mysql 容器运行 mysql 命令行客户端,允许您针对您的数据库实例执行 SQL 语句: $ docker run -it --network some-network --rm mysql mysql -hsome-mysql -uexample-user -p 其中 some-mysql 是原始 mysql 容器的名称(连接到 some-network Docker 网络)。 此镜像也可以用作非 Docker 或远程实例的客户端: $ docker run -it --rm mysql mysql -hsome.mysql.host -usome-mysql-user -p 有关 MySQL 命令行客户端的更多信息,请参阅 MySQL 文档。 2.4.3. 容器外访问和查看 MySQL 日志 docker exec 命令允许您在 Docker 容器内运行命令。 以下命令行将为您提供 mysql 容器内的 bash shell: $ docker exec -it some-mysql bash 第一次启动一个MySQL容器后,需要对账户进行授权,否则无法远程访问,请先使用上面的命令进入容器内,然后使用以下命令连接到mysql服务: mysql -uroot -p 输入密码回车,进入mysql命令界面mysql> 接着授权root远程访问权限: mysql> GRANT ALL PRIVILEGES ON . TO 'root'@'%' IDENTIFIED BY '123456'; 然后就可以远程用MySQL客户端连接到MySQL容器了。 日志可通过 Docker 的容器日志获得: $ docker logs some-mysql 2.4.4. 使用自定义 MySQL 配置文件 MySQL 的默认配置可以在 /etc/mysql/my.cnf 中找到,其中可能包含额外的目录,例如 /etc/mysql/conf.d 或 /etc/mysql/mysql.conf.d。 请检查 mysql 映像本身中的相关文件和目录以获取更多详细信息。 如果 /my/custom/config-file.cnf 是你的自定义配置文件的路径和名称,你可以这样启动你的 mysql 容器(注意这个命令只使用了自定义配置文件的目录路径): $ docker run --name some-mysql -v /my/custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 这将启动一个新容器 some-mysql,其中 MySQL 实例使用来自 /etc/mysql/my.cnf 和 /etc/mysql/conf.d/config-file.cnf 的组合启动设置,后者的设置优先 . 没有 cnf 文件的配置 许多配置选项可以作为标志传递给 mysqld。 这将使您可以灵活地自定义容器,而无需 cnf 文件。 例如,如果要将所有表的默认编码和排序规则更改为使用 UTF-8 (utf8mb4),只需运行以下命令: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci 如果您想查看可用选项的完整列表,只需运行: $ docker run -it --rm mysql:tag --verbose --help 2.4.5. 环境变量 启动 mysql 镜像时,可以通过在 docker run 命令行中传递一个或多个环境变量来调整 MySQL 实例的配置。 请注意,如果您使用已包含数据库的数据目录启动容器,则以下任何变量都不会产生任何影响:任何预先存在的数据库在容器启动时将始终保持不变。 另请参阅 https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html 以获取 MySQL 的环境变量的文档(尤其是 MYSQL_HOST 等变量,已知与此镜像一起使用时会导致问题)。 MYSQL_ROOT_PASSWORD 此变量是必需的,并指定将为 MySQL root 超级用户帐户设置的密码。 在上面的示例中,它被设置为 my-secret-pw。 MYSQL_DATABASE 此变量是可选的,允许您指定要在映像启动时创建的数据库的名称。 如果提供了用户/密码(见下文),则该用户将被授予对此数据库的超级用户访问权限(对应于 GRANT ALL)。 MYSQL_USER、MYSQL_PASSWORD 这些变量是可选的,用于创建新用户和设置该用户的密码。 该用户将被授予对 MYSQL_DATABASE 变量指定的数据库的超级用户权限(见上文)。 要创建用户,这两个变量都是必需的。 请注意,不需要使用此机制来创建超级用户超级用户,默认情况下会使用 MYSQL_ROOT_PASSWORD 变量指定的密码创建该用户。 MYSQL_ALLOW_EMPTY_PASSWORD 这是一个可选变量。 设置为非空值,例如 yes,以允许使用 root 用户的空白密码启动容器。 注意:除非您真的知道自己在做什么,否则不建议将此变量设置为 yes,因为这将使您的 MySQL 实例完全不受保护,从而允许任何人获得完全的超级用户访问权限。 MYSQL_RANDOM_ROOT_PASSWORD 这是一个可选变量。 设置为非空值,如 yes,为 root 用户生成随机初始密码(使用 pwgen)。 生成的根密码将打印到标准输出(生成的根密码:…)。 MYSQL_ONETIME_PASSWORD 一旦初始化完成,将 root(不是 MYSQL_USER 中指定的用户!)用户设置为过期,强制在第一次登录时更改密码。 任何非空值都将激活此设置。 注意:此功能仅在 MySQL 5.6+ 上受支持。 在 MySQL 5.5 上使用此选项将在初始化期间引发适当的错误。 MYSQL_INITDB_SKIP_TZINFO 默认情况下,入口点脚本会自动加载 CONVERT_TZ() 函数所需的时区数据。 如果不需要,任何非空值都会禁用时区加载。 2.4.6. Docker Secrets 作为通过环境变量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
102
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netcat -l -p port_number
- 启动监听特定端口的简单服务器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"