前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[根据业务需求配置RocketMQ消费者策...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
PostgreSQL
...《实战分享:基于实际业务场景优化PostgreSQL索引策略》提供了丰富的实操经验和案例分析。该文通过剖析不同业务模型下的查询模式和数据增长情况,深入讲解了如何动态调整和优化索引配置,以适应不断变化的工作负载。 同时,PostgreSQL官方博客在今年初发布了一篇关于索引改进的重要更新——“PostgreSQL 14中的并行索引构建与Bloom过滤器优化”。文中详述了新版本中对索引创建速度的大幅提升以及Bloom过滤器在提升查询效率上的应用,这对于大型数据集的索引管理具有重要指导意义。 此外,数据库专家Marshall Kirk McKusick在其著作《设计与实现:PostgreSQL》中,对数据库索引原理进行了深度解读,并结合PostgreSQL内核源码分析,为读者揭示了索引背后的复杂性和高效性的源泉。此书可以帮助读者从底层原理出发,更全面地理解并掌握PostgreSQL索引优化的精髓。 另外,InfoQ上的一篇专题报道《PostgreSQL性能调优:索引、查询优化及硬件选择》也值得一看。报道汇总了多位行业专家的观点和建议,涵盖了索引策略设计、SQL查询优化技巧,以及根据特定业务需求合理选择硬件配置等多方面内容,为读者带来全方位的PostgreSQL性能调优指南。 综上所述,无论您是寻求最新技术动态,还是想要深入了解PostgreSQL索引优化的理论基础与实战技巧,以上推荐的阅读资源都将为您提供丰富且实用的知识补充,助力您在数据库性能优化道路上取得更大突破。
2024-03-14 11:15:25
495
初心未变-t
.net
...务架构中的部署与调优策略也值得探究。例如,如何根据服务间依赖关系合理安排中间件执行顺序以减少网络延迟、提升系统响应速度,是现代分布式系统架构设计的重要课题。 此外,结合具体业务场景,诸如API Gateway模式中如何利用ASP.NET Core中间件实现认证授权、限流熔断、日志追踪等功能,也是实战开发中的热点话题。因此,建议读者持续关注官方文档更新和技术博客,如Microsoft Docs和.NET Conf社区,了解并掌握更多关于ASP.NET Core中间件的实际应用案例和高级配置技巧,从而更好地应对复杂多变的业务需求,提升应用程序的整体性能和可靠性。
2023-04-27 23:22:13
471
月下独酌
Nacos
...深入理解了Nacos配置中心中“Nacos error, dataId: gatewayserver-dev-${server.env}.yaml”问题的原因及解决方案后,我们不妨将视线转向微服务架构下配置管理的最新动态和实践策略。近期,阿里巴巴集团在其2021云栖大会上分享了Nacos 2.0版本的重要更新与未来规划,新版本着重优化了数据持久化、集群稳定性以及API易用性等方面,进一步提升了配置管理效率和系统的高可用性。 此外,随着云原生技术的快速发展,Istio等服务网格解决方案对配置管理提出了新的挑战与需求。实际上,Nacos不仅可以作为独立的配置中心使用,还可与Istio等组件集成,实现更精细的服务治理与配置管理。例如,通过适配Nacos作为Istio的数据源,可以实现在服务网格环境中动态地管理和推送配置,为微服务架构提供了更为灵活高效的解决方案。 与此同时,业界对于配置中心的安全性和一致性也愈发重视,如何确保敏感信息的安全存储和传输,以及在分布式环境下的配置一致性,是当前研究和实践的热点。Nacos也在持续探索和完善这方面的功能,以满足企业级应用对于安全和一致性的严苛要求。 综上所述,在实际运用Nacos或其他配置中心的过程中,关注其最新的发展动态和技术趋势,结合具体业务场景进行深度定制和优化,无疑能够助力企业在微服务架构的道路上行稳致远。
2023-09-10 17:16:06
55
繁华落尽_t
Apache Atlas
...as的安装包; 修改配置文件(如:conf/atlas-env.sh); 启动所有服务(如:bin/start-all.sh); 浏览器访问http://localhost:21000进行初始化设置。 以下是使用Apache Atlas创建一个项目的基本代码示例: javascript // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 三、集群部署模式 集群部署模式适合中大型企业或团队使用,可以提高系统的可用性和性能。 1. 部署步骤 在多台机器上安装并启动Apache Atlas的所有服务; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在集群中创建一个项目的代码示例: php-template // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 四、混合部署模式 混合部署模式结合了单机和集群的优势,既可以提供较高的性能,又可以保证数据的安全性和可靠性。 1. 部署步骤 在单台机器上安装并启动Apache Atlas的服务,作为中央控制节点; 在多台机器上安装并启动Apache Atlas的服务,作为数据处理节点; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在混合部署中创建一个项目的代码示例: javascript // 创建中央控制节点 GET http://localhost:21000/api/v2/projects // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建数据处理节点 POST http://localhost:21000/api/v2/nodes { "hostName": "data-node-1", "port": 21001, "role": "DATA_NODE" } // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 五、微服务部署模式 微服务部署模式是近年来越来越流行的一种部署方式,可以让企业更加灵活地应对业务的变化和需求的增长。 1. 部署步骤 将Apache Atlas分解为多个微服务,例如:项目管理、数据目录、元数据存储等; 使用Docker进行容器化部署; 使用Kubernetes进行服务编排和管理; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在微服务部署中创建一个项目的代码示例: javascript // 安装并启动项目管理微服务 docker run -d --name atlas-project-management my-atlas-project-management-image // 安装并启动数据目录微服务 docker run -d --name atlas-data-directory my-atlas-data-directory-image // 安装并启动元数据存储微服务 docker run -d --name atlas-metadata-storage my-atlas-metadata-storage-image // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 总结 Apache Atlas有多种部署模式供用户选择,用户可以根据自己的需求和技术条件来选择最合适的部署方式。甭管您选择哪种部署方式,Apache Atlas都能像个小助手一样,帮助企业老铁们把数据资产打理得井井有条,妥妥地保护好这些宝贝资源。
2023-07-31 15:33:19
456
月下独酌-t
Greenplum
...),它能在不影响正常业务的情况下,高效地对分布式集群中的数据进行完整性校验,及时发现潜在的数据不一致问题。这一特性结合先进的多线程并行计算能力,大大提升了大规模数据环境下的完整性检查效率。 此外,为了更好地应对未来可能出现的各种复杂场景,建议数据库管理员持续关注官方发布的安全更新和最佳实践指南,例如PostgreSQL Global Development Group发布的《确保Greenplum数据库安全性和完整性的最佳实践》白皮书,其中详细阐述了如何通过合理配置、实时审计及加密技术来进一步加固Greenplum数据库的安全防护体系。 同时,对于企业内部,应强化数据库运维人员的技术培训,提升其在面对突发情况时的应急处理能力和风险防范意识,以确保即使在遇到数据文件完整性检查失败等问题时,也能快速有效地定位原因并采取相应措施,最大程度保障企业核心数据资产的安全与完整。
2023-12-13 10:06:36
529
风中飘零-t
SpringBoot
...中,有时候会遇到一些需求,需要在业务逻辑执行之前或者之后做一些额外的操作。这时候我们可以使用拦截器(Interceptor)来进行处理。在 Spring MVC 这个大家伙里,拦截器可是个大忙人,它身影广泛地出现在各个角落。比如说吧,当我们要对用户权限进行验证时,或者要对系统性能进行实时监控时,都离不开这位“幕后英雄”——拦截器的鼎力相助。本文将详细介绍 SpringBoot 如何实现自定义的拦截器。 二、自定义拦截器的原理 首先我们需要了解一下什么是拦截器。在Spring MVC这个大家伙里,拦截器就像是个扮演关键角色的小家伙,它其实就是一个实实在在的类,不过这个类得乖乖实现HandlerInterceptor接口,这样才能上岗工作。当我们发送一个 HTTP 请求给 Spring MVC 处理时,拦截器会对这个请求进行拦截,并根据我们的业务逻辑决定是否继续执行下一个拦截器或者 Controller。 三、自定义拦截器的实现步骤 接下来我们将一步步介绍如何在 SpringBoot 中实现自定义的拦截器。 1. 创建自定义拦截器实现 HandlerInterceptor 接口 java public class MyInterceptor implements HandlerInterceptor { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { // 这里可以根据需要进行预处理操作 return true; } @Override public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception { // 这里可以在处理完成后进行后处理操作 } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { // 这里可以在处理完成且没有异常发生的情况下进行后续操作 } } 2. 需要一个配置类实现 WebMvcConfigurer 接口,并添加@Configuration注解 java @Configuration public class WebConfig implements WebMvcConfigurer { @Override public void addInterceptors(InterceptorRegistry registry) { registry.addInterceptor(new MyInterceptor()); } } 3. 在配置类中重写 addInterceptors 方法,将自定义拦截器添加到拦截器链中 java @Override public void addInterceptors(InterceptorRegistry registry) { registry.addInterceptor(new MyInterceptor()) .addPathPatterns("/"); // 添加拦截器路径匹配规则 } 四、自定义拦截器的应用场景 下面我们来看几个常见的应用场景。 1. 权限验证 java public class AuthInterceptor implements HandlerInterceptor { private List allowedRoles = Arrays.asList("admin", "manager"); @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { String username = (String) SecurityContextHolder.getContext().getAuthentication().getName(); if (!allowedRoles.contains(username)) { response.sendError(HttpServletResponse.SC_FORBIDDEN); return false; } return true; } } 在这个例子中,我们在 preHandle 方法中获取了当前用户的用户名,然后检查他是否有权访问这个资源。如果没有,则返回 403 Forbidden 错误。 2. 记录请求日志 java public class LogInterceptor implements HandlerInterceptor { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { long start = System.currentTimeMillis(); System.out.println("开始处理请求:" + request.getRequestURL() + ",参数:" + request.getParameterMap()); return true; } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { long end = System.currentTimeMillis(); System.out.println("结束处理请求:" + request.getRequestURL() + ",耗时:" + (end - start)); } } 在这个例子中,我们在 preHandle 和 afterCompletion 方法中分别记录了请求开始时间和结束时间,并打印了相关的信息。 3. 判断用户是否登录 java public class LoginInterceptor implements HandlerInterceptor { private User user; public LoginInterceptor(User user) { this.user = user; } @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { if (user != null) { return true; } else { response.sendRedirect("/login"); return false; } } } 在这个例子中,我们在 preHandle 方法中判断用户是否已经登录,如果没有,则跳转到登录页面。 总结 以上就是如何在 SpringBoot 中实现自定义的拦截器。拦截器是一个非常强大的功能,可以帮助我们解决很多复杂的问题。但是伙计们,你们得留意了,过度依赖拦截器这玩意儿,可能会让代码变得乱七八糟、一团乱麻,维护起来简直能让你头疼欲裂。所以呐,咱们一定要悠着点用,合理利用这个小工具才是正解。希望这篇文章对你有所帮助!
2023-02-28 11:49:38
153
星河万里-t
Nacos
...语言、开发工具和部署策略来构建和维护各个服务,从而提高了系统的可扩展性、可测试性和可维护性。 名词 , 配置管理。 解释 , 配置管理是软件工程中的一个重要概念,它涉及对软件系统配置的控制、记录、报告和管理。在微服务架构下,配置管理变得更加重要,因为每个服务可能有自己的配置需求。Nacos提供了一种集中式的方式来进行配置管理,支持配置的动态更新、版本控制和生命周期管理,帮助开发者更好地管理微服务环境中的各种配置。 名词 , 智能配置推送。 解释 , 智能配置推送是Nacos新版本中引入的一项功能,它可以根据业务需求和系统状态,智能地分析并推送配置变更。这种自动化的过程可以显著减少人工干预的需求,提高配置更新的效率,同时降低错误发生的概率。在微服务环境中,智能配置推送能够确保各个服务快速、准确地接收和应用最新的配置信息,保持系统的稳定运行。
2024-10-04 15:43:16
51
月下独酌
SeaTunnel
如何配置SeaTunnel与Kafka进行高效的数据摄入和输出? 在大数据领域,实时数据处理已经成为关键环节,而Apache Kafka作为一款高吞吐量、分布式的消息系统,自然成为海量实时数据传输的首选。同时呢,SeaTunnel(之前叫Waterdrop),是个超级厉害的开源数据集成工具,它的最大特点就是灵活好用。就像个万能胶一样,能够和Kafka无缝衔接,轻松实现数据的快速“吃进”和“吐出”,效率贼高!本文将带领你一步步探索如何配置SeaTunnel与Kafka进行协作,通过实际代码示例详细解析这一过程。 1. SeaTunnel与Kafka简介 1.1 SeaTunnel SeaTunnel是一个强大且高度可扩展的数据集成工具,它支持从各类数据源抽取数据并转换后加载到目标存储中。它的核心设计理念超级接地气,讲究的就是轻量、插件化和易于扩展这三个点。这样一来,用户就能像拼乐高一样,根据自家业务的需求,随心所欲地定制出最适合自己的数据处理流程啦! 1.2 Kafka Apache Kafka作为一种分布式的流处理平台,具有高吞吐、低延迟和持久化的特性,常用于构建实时数据管道和流应用。 2. 配置SeaTunnel连接Kafka 2.1 准备工作 确保已安装并启动了Kafka服务,并创建了相关的Topic以供数据读取或写入。 2.2 创建Kafka Source & Sink插件 在SeaTunnel中,我们分别使用kafkaSource和kafkaSink插件来实现对Kafka的数据摄入和输出。 yaml 在SeaTunnel配置文件中定义Kafka Source source: type: kafkaSource topic: input_topic bootstrapServers: localhost:9092 consumerSettings: groupId: seawtunnel_consumer_group 定义Kafka Sink sink: type: kafkaSink topic: output_topic bootstrapServers: localhost:9092 producerSettings: acks: all 以上代码段展示了如何配置SeaTunnel从名为input_topic的Kafka主题中消费数据,以及如何将处理后的数据写入到output_topic。 2.3 数据处理逻辑配置 SeaTunnel的强大之处在于其数据处理能力,可以在数据从Kafka摄入后,执行一系列转换操作,如过滤、映射、聚合等: yaml transform: - type: filter condition: "columnA > 10" - type: map fieldMappings: - source: columnB target: newColumn 这段代码示例演示了如何在摄入数据过程中,根据条件过滤数据行,并进行字段映射。 3. 运行SeaTunnel任务 完成配置后,你可以运行SeaTunnel任务,开始从Kafka摄入数据并进行处理,然后将结果输出回Kafka或其他目标存储。 shell sh bin/start-waterdrop.sh --config /path/to/your/config.yaml 4. 思考与探讨 在整个配置和运行的过程中,你会发现SeaTunnel对于Kafka的支持非常友好且高效。它不仅简化了与Kafka的对接过程,还赋予了我们极大的灵活性去设计和调整数据处理流程。此外,SeaTunnel的插件化设计就像一个超级百变积木,让我们能够灵活应对未来可能出现的各种各样的数据源和目标存储需求的变化,轻轻松松,毫不费力。 总结来说,通过SeaTunnel与Kafka的结合,我们能高效地处理实时数据流,满足复杂场景下的数据摄入、处理和输出需求,这无疑为大数据领域的开发者们提供了一种极具价值的解决方案。在这个日新月异、充满无限可能的大数据世界,这种组合就像是两位实力超群的好搭档,他们手牵手,帮我们在浩瀚的数据海洋里畅游得轻松自在,尽情地挖掘那些深藏不露的价值宝藏。
2023-07-13 13:57:20
166
星河万里
Apache Solr
...。可能是因为: - 业务活动高峰:比如双十一这种大促销活动,可能会导致大量数据涌入。 - 数据清洗错误:如果数据清洗逻辑有误,可能会导致重复数据的产生。 - 系统配置问题:比如内存或磁盘空间不足,导致数据无法正常处理。 为了更好地理解问题,我们可以从日志入手。Solr的日志文件里通常会记下一些重要的东西,比如说数据入库的时间和频率之类的信息。通过查看这些日志,我们能更准确地定位问题所在。 3. 检查和优化存储空间 接下来,我们来看看具体的操作步骤。 3.1 检查当前存储空间 首先,我们需要检查当前的存储空间情况。可以使用以下命令来查看: bash df -h 这个命令会显示所有分区的使用情况。要是哪个分区眼看就要爆满,那咱们就得琢磨着怎么给它减减压了。 3.2 优化索引配置 如果存储空间不足,我们可以考虑调整索引的配置。比如,减少每个文档的大小,或者增加分片的数量。下面是一个简单的配置示例: xml TieredMergePolicy 10 5 在这个配置中,mergeFactor 控制了合并操作的频率,而 maxMergedSegmentMB 则控制了最大合并段的大小。你可以根据实际情况调整这些参数。 3.3 压缩和删除旧数据 另外一种方法是定期压缩和删除旧的数据。Solr提供了多种压缩策略,比如 forceMergeDeletesPct 和 expungeDeletes。下面是一个示例代码: java // Java 示例代码 SolrClient solr = new HttpSolrClient.Builder("http://localhost:8983/solr/mycollection").build(); solr.commit(new CommitCmd(true, true)); solr.close(); 这段代码会强制合并并删除标记为删除的文档。当然,你也可以设置定时任务来自动执行这些操作。 4. 监控和预警机制 最后,建立一套完善的监控和预警机制也是非常重要的。我们可以使用Prometheus、Grafana等工具来实时监控Solr的状态,并设置报警规则。这样一来,如果存储空间快不够了,系统就会自动发个警报,提醒管理员赶紧采取行动。 5. 总结 好了,今天的分享就到这里。希望这些方法能够帮助大家解决Solr存储空间不足的问题。记住,及时监控和优化是非常重要的。如果你还有其他问题,欢迎随时留言讨论! 总之,面对数据暴增的问题,我们需要冷静分析,合理规划,才能确保系统的稳定运行。希望这篇分享对你有所帮助,让我们一起努力,让Solr成为更强大的搜索工具吧!
2025-01-31 16:22:58
79
红尘漫步
Spark
...") // 如果实际需求大于4G,则可能出现问题 val sc = new SparkContext(conf) 2.2 心跳丢失 另一种可能是Executor与ResourceManager之间的心跳信号中断,导致ResourceManager误判Executor已经失效并将其杀掉。这可能与网络状况、系统负载等因素有关。 2.3 其他因素 此外,还有诸如垃圾回收(GC)频繁,长时间阻塞等其他情况,都可能导致Executor表现异常,进而被YARN ResourceManager提前结束。 3. 影响与后果 当Executor被提前杀死时,不仅会影响正在进行的任务,造成任务失败或重启,还会降低整个作业的执行效率。比如,如果你老是让任务重试,这就相当于在延迟上添砖加瓦。再者,要是Executor频繁地启动、关闭,这无疑就是在额外开销上雪上加霜啊。 4. 应对策略 4.1 合理配置资源 根据实际业务需求,合理设置Executor的内存、CPU核心数等参数,避免资源过载: scala conf.set("spark.executor.memory", "8g") // 根据实际情况调整 conf.set("spark.executor.cores", "4") // 同理 4.2 监控与调优 通过监控工具密切关注Executor的运行状态,包括内存使用情况、GC频率等,及时进行调优。例如,可以通过调节spark.memory.fraction和spark.memory.storageFraction来优化内存管理策略。 4.3 网络与稳定性优化 确保集群网络稳定,避免因为网络抖动导致的心跳丢失问题。对于那些需要长时间跑的任务,咱们可以琢磨琢磨采用更为结实牢靠的消息处理机制,这样一来,就能有效避免因为心跳问题引发的误操作,让任务运行更稳当、更皮实。 5. 总结与思考 面对Spark Executor在YARN上被提前杀死的问题,我们需要从源头入手,深入理解问题背后的原理,结合实际应用场景细致调整资源配置,并辅以严谨的监控与调优手段。这样不仅能一举摆脱当前的困境,还能让Spark应用在复杂环境下的表现更上一层楼,既稳如磐石又快如闪电。在整个探索和解决问题的过程中,我们的人类智慧和技术实践得到了充分融合,这也正是技术的魅力所在!
2023-07-08 15:42:34
190
断桥残雪
Kubernetes
...资源配额的管理与优化策略,并通过实例代码演示如何进行具体配置。 1. Kubernetes资源配额基础概念 ①什么是资源配额? 在Kubernetes的世界里,每个Pod都有其资源需求,包括CPU、内存、磁盘空间等。资源配额这个东西,其实就是在Namespace这个层级上给资源设个“上限提醒”,就好比你管理不同的房间(Namespace),每个房间能用多少水电额度,都由你来定。这样一来,在大家共享一个大环境(多租户环境)的时候,既可以保证每个人都能公平合理地使用资源,又能确保整个系统的稳定性和可靠性,不会因为某个房间过度消耗资源而导致其他房间“断水断电”。 ②为什么需要资源配额? - 防止资源饥饿:确保关键服务不会因其他应用过度消耗资源而受到影响。 - 资源利用率优化:合理分配资源,防止资源浪费,提升集群整体效率。 - 成本控制:在云环境或付费集群中,有效控制资源成本。 2. 设置资源配额 ①定义Namespace级别的资源配额 下面是一个简单的YAML配置文件示例,用于为名为my-namespace的Namespace设置CPU和内存的配额: yaml apiVersion: v1 kind: ResourceQuota metadata: name: quota spec: hard: limits.cpu: "2" limits.memory: 2Gi requests.cpu: "1" requests.memory: 1Gi 上述配置意味着该Namespace最多可以同时使用2核CPU和2GB内存,且所有Pod的请求值不能超过1核CPU和1GB内存。 ②持久卷(PersistentVolume)资源配额 除了计算资源外,Kubernetes还可以为持久卷设置配额: yaml apiVersion: v1 kind: ResourceQuota metadata: name: storage-quota spec: hard: requests.storage: 10Gi 上述配置指定了该Namespace允许申请的最大存储容量为10GB。 3. 监控和优化资源配额 ①查看资源配额使用情况 可以使用kubectl describe resourcequota命令来查看某个Namespace下的资源配额及使用情况: bash kubectl describe resourcequota quota -n my-namespace ②资源配额优化策略 - 根据实际业务需求调整配额,定期审查并更新资源限制以适应变化。 - 使用Horizontal Pod Autoscaler (HPA)自动根据负载动态调整Pod数量和资源请求,实现更精细的资源管理和优化。 4. 深入思考与探讨 资源配额管理并非一次性配置后就可高枕无忧,而是需要结合实际情况持续观察、分析与优化。比如,在一个热火朝天的开发环境里,可能经常会遇到需要灵活调配各个团队或者不同项目之间的资源额度;而在咱们的关键生产环节,那就得瞪大眼睛紧盯着资源使用情况,及时发现并避免出现资源紧张的瓶颈问题。 此外,合理的资源配额管理不仅能保障服务稳定运行,也能培养良好的资源利用习惯,推动团队更加关注服务性能优化和成本控制。这就像是我们在日常生活中,精打细算、巧妙安排,既要确保日子过得美滋滋的,又能把钱袋子捂得紧紧的,让每一分钱都像一把锋利的小刀,切在最需要的地方。 总之,掌握Kubernetes资源配额的管理与优化技巧,对于构建健壮、高效的容器化微服务架构至关重要。经过实实在在地动手实践,加上不断摸爬滚打的探索,我们就能更溜地掌握这个强大的工具,让它变成我们业务发展路上不可或缺的好帮手。
2023-12-27 11:05:05
132
岁月静好
Tornado
...用户对于实时交互体验需求的增长,WebSocket的安全性和可靠性问题引起了业界的广泛关注。例如,在2021年,Mozilla基金会发布了一份关于WebSocket安全最佳实践的报告,其中强调了正确处理WebSocket连接关闭事件以防止潜在的安全漏洞和资源泄露问题。 与此同时,Tornado社区也持续优化和完善WebSocket功能。在今年早些时候的一个版本更新中,Tornado增强了WebSocketHandler的错误处理机制,允许开发者更细致地捕捉和区分不同类型的关闭原因,从而实现更精细化的服务恢复与用户通知策略。 深入探讨WebSocket连接管理的艺术,不仅限于理解Tornado库的API用法,还需要结合具体应用场景设计合理的业务逻辑。比如,根据WebSocket关闭码判断是否需要重新建立连接,或者针对特定关闭原因调整系统资源分配策略等。因此,对于希望在实时通信领域精进技术的开发者而言,除了掌握Tornado WebSocket的基本操作,进一步了解WebSocket协议规范及相关的最佳实践案例同样具有重要意义。
2023-05-15 16:23:22
109
青山绿水
Datax
...(OOM)问题的解决策略与实践不仅局限于对现有代码逻辑的优化和系统参数的调整。近年来,随着技术的发展,一些新的解决方案和技术趋势也逐渐显现。 首先,在硬件层面,新型服务器和数据中心开始配备更大的内存容量和更先进的内存管理机制,如非易失性内存(NVM)等新技术的应用,可以显著提高内存效率并降低OOM发生的可能性。同时,分布式计算架构如Apache Spark等通过内存管理和数据分区技术,有效避免单一节点内存资源耗尽的问题。 其次,在软件开发工具方面,现代IDE和编译器集成了更为智能的内存分析工具,例如Eclipse Memory Analyzer、JProfiler等,它们能够实时监测并可视化展示内存使用情况,帮助开发者精确定位内存泄漏及不合理分配等问题。 此外,云服务商如阿里云、AWS等针对大数据处理场景提供了动态伸缩的内存资源配置服务,根据任务需求自动调整实例规格,既能保证任务执行效率又能有效控制成本,从资源管理层面预防OOM的发生。 值得注意的是,对于DataX这类开源数据同步工具,社区也在不断进行性能优化与功能扩展,以应对更大规模数据迁移时可能出现的各种内存瓶颈。因此,关注相关项目进展与最佳实践分享,结合自身业务特点进行技术创新与应用,也是解决OOM问题的重要途径。
2023-09-04 19:00:43
664
素颜如水-t
MemCache
...也面临新的挑战与优化需求。 近期,一些开源社区和科技巨头正积极研发新一代缓存解决方案,如Redis Labs推出的RediSearch模块,不仅提供了丰富的数据结构支持,还引入了全文搜索功能,为开发者提供了更多元化的缓存及存储选项。同时,AWS Elasticache等云服务商也在持续更新其托管Memcached服务的功能特性,以满足大规模、高并发场景下的应用需求。 另一方面,对于Memcached本身的使用和调试技巧,业界专家建议结合更为现代化的工具进行。例如,telnet虽然经典且易于上手,但其安全性较低且功能有限,越来越多的开发者开始采用专门针对Memcached设计的图形化或命令行工具(如mc),这些工具在提供安全连接的同时,也增强了命令补全、结果格式化等便利功能,极大提升了开发效率和调试体验。 此外,对于大型系统的缓存策略设计与实施,需要开发者深入理解业务逻辑,并结合Memcached或其他缓存系统的特性进行定制化开发。实践中,往往还需要关注一致性问题、缓存穿透与雪崩等问题,通过合理配置、分片策略以及引入缓存预热、失效策略等手段来保证系统的稳定性和响应速度。 总之,在瞬息万变的技术浪潮中,对Memcached以及其他缓存技术的理解和应用不能固步自封,应时刻关注前沿动态,灵活选择并运用各类工具和服务,才能在提升系统性能的道路上走得更远。
2023-12-19 09:26:57
122
笑傲江湖-t
RabbitMQ
...;够灵活,能适应各种需求场景;而且超级好上手,易用性简直是一流。所以啊,开发者们都对它爱不释手,情有独钟!这篇文章,咱们要大聊特聊RabbitMQ里的一个超级实用的亮点——TTL(Time To Live),并且我还会手把手地带你通过实例,把这个功能掰开揉碎了给你看明白喽! 二、TTL的定义 在RabbitMQ中,TTL指的是消息或者队列的最大存活时间。单位是毫秒。当消息或者队列待在系统里的时间超过我们设定的那个TTL期限,嘿,你就知道啦,它们就会被自动悄悄地清理掉。这种机制就像是咱们家里的自动垃圾分类回收器,能够及时把过期、无用的数据“垃圾”给清理掉,这样一来,就不用担心数据太多把存储空间塞得满满当当,造成“内存不够”的尴尬局面啦。 三、如何设置TTL 在RabbitMQ中,我们可以通过两种方式来设置TTL:一种是在发布消息的时候,为消息属性头中添加属性;另一种是通过API设置消息的TTL属性。下面我们来看一下具体的实现步骤。 1. 在发布消息的时候,为消息属性头中添加属性 php-template 定义消息属性头 props = pika.BasicProperties(content_type='text/plain', delivery_mode=2, headers={'type': 'myapp'}, app_id='myapp', priority=9, timestamp=datetime.utcnow(), expiration=str(ttl / 1000)), 发布消息 channel.basic_publish(exchange='', routing_key='my_queue', body=message, properties=props) 在这个例子中,我们首先定义了一个BasicProperties对象,并设置了它的头部属性。然后,我们在发布消息的时候,将这个对象传递给了basic_publish方法。这样,我们就可以在消息发布的同时,设置消息的TTL属性了。 2. 通过API设置消息的TTL属性 python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 定义消息内容 message = "Hello World!" 设置消息的TTL属性 properties = pika.BasicProperties(expires=ttl) 发送消息 channel.basic_publish(exchange='', routing_key='my_queue', body=message, properties=properties) connection.close() 在这个例子中,我们首先建立了与RabbitMQ服务器的连接,并获取了一个频道。然后,我们定义了一条消息的内容,并设置了它的TTL属性。最后,我们将这条消息发送到了指定的队列。 四、TTL的作用 TTL是一个非常重要的功能,它可以帮助我们解决许多问题。下面是一些常见的应用场景: 1. 清理过期的数据 当我们有大量的数据需要存储的时候,如果没有合理的数据清理策略,数据量会越来越大,最终可能导致存储空间不足。通过调整TTL这个小家伙,我们就能像定时扫除过期杂物一样,定期清理掉那些无效的数据,确保咱们的数据始终保持新鲜有效,而且安全无虞。 2. 控制消息的生命周期 有时候,我们需要控制消息的生命周期,确保消息在特定的时间内被消费或者被删除。通过设置TTL,我们可以精确地控制消息的生命周期,满足各种需求。 3. 避免消息丢失 在某些情况下,由于网络故障或者其他原因,消息可能无法成功发送。这会儿,假如我们没给消息设定TTL(存活时间),那这条消息就会长期赖在队列里头,直到超时了才会被系统自动清理掉。这种情况会导致消息丢失,影响系统的正常运行。通过设置TTL,我们可以有效地防止这种情况的发生。 五、总结 总的来说,TTL是RabbitMQ的一个重要特性,它可以帮助我们更好地管理和维护消息中间件。了解并熟练掌握TTL的玩法,咱们就能在使用RabbitMQ时更加得心应手,这样一来,工作效率自然蹭蹭往上涨。
2023-12-09 11:05:57
94
林中小径-t
Kylin
...adoop自带的那些配置和管理工具来搞定。这活儿虽然重要,但跟Kylin的具体功能模块没有直接的交集,它们各司其职呢。 不过,我可以帮助你理解如何在Hadoop环境中调整HDFS的数据块大小,尽管这不是Kylin本身的功能操作,但对使用Kylin进行大数据处理时可能遇到的存储优化场景具有实际意义。以下是一个模拟的对话式、探讨性的教程: 在Hadoop中调整HDFS数据块大小 1. 理解HDFS数据块 首先,让我们来聊聊HDFS(Hadoop Distributed File System)的数据块概念。在HDFS中,文件会被分割成固定大小的数据块并在集群节点上分布存储。这个数据块大小的设定,其实就像是控制水流的阀门,直接关系到我们读写数据的速度和存储空间的使用率。所以,在某些特定的情况下,咱们可能得动手把这个“阀门”调一调,让它更符合我们的需求。 2. 为何要调整数据块大小 假设你在使用Kylin构建Cube时,发现由于数据块大小设置不当,导致了数据读取性能下降或者存储空间浪费。比如,想象一下你有一堆超大的数据记录,但是用来装这些记录的数据块却很小,这就像是把一大堆东西硬塞进一个个小抽屉里,结果每个抽屉只能装一点点东西,这样一来,为了找到你需要的那个记录,你就得频繁地开开关关许多抽屉,增加了不少麻烦;反过来,如果数据块被设置得特别大,就像准备了一个超级大的储物箱来放文件,但某个文件其实只占了储物箱的一角,那剩下的大部分空间就白白浪费了,多可惜啊! 3. 调整数据块大小的步骤 调整HDFS数据块大小并非在Kylin内完成,而是通过修改Hadoop的配置文件hdfs-site.xml来实现的。下面是一个示例: xml dfs.blocksize 128MB 上述代码中,我们将HDFS的数据块大小设置为128MB。请注意,这个改动需要重启Hadoop服务才能生效。 4. 思考与权衡 当然,决定是否调整数据块大小以及调整为多少,都需要根据你的具体业务需求和数据特性来进行深入思考和权衡。比如,在Kylin Cube构建的时候,会遇到海量数据的读写操作,这时候,如果咱们适当调大数据块的大小,就像把勺子换成大碗盛汤一样,可能会让整体处理速度嗖嗖提升。不过呢,这个大碗也不能太大了,为啥呢?想象一下,一旦单个任务“撂挑子”了,我们得恢复的数据量就相当于要重新盛一大盆的汤,那工作量可就海了去了。 总的来说,虽然Kylin自身并不支持直接调整硬盘分区大小,但在其运行的Hadoop环境中,合理地配置HDFS的数据块大小对于优化Kylin的性能表现至关重要。这就意味着,咱们要在实际操作中不断尝试、琢磨和灵活调整,力求找出最贴合当前工作任务的数据块大小设置,让工作跑得更顺畅。
2023-01-23 12:06:06
187
冬日暖阳
Apache Pig
...大数据处理领域中资源配置与优化的最新动态和实践策略。 近期,Apache Hadoop 3.3.0版本发布,其中对YARN资源管理器进行了多项重要改进和优化,包括增强队列管理和资源调度策略的灵活性。例如,新增的动态资源池特性允许管理员在运行时创建、修改或删除队列,以更好地应对不断变化的工作负载需求。此外,该版本还改进了跨队列资源共享机制,使得集群资源能够更高效地在多个队列间进行分配和调整。 与此同时,业界对于大数据作业性能优化的研究也在持续深入。有专家建议,在使用Pig等工具处理大规模数据时,除了合理配置队列资源外,还需结合业务特点和数据特征,精细调节MapReduce任务的并发度、容器大小以及数据压缩策略等参数,从而实现更高的资源利用率和作业执行效率。 另外,随着Kubernetes在大数据领域的广泛应用,一些企业开始探索将Pig作业部署在Kubernetes集群上,并借助其强大的容器化资源管理和调度能力,解决传统Hadoop YARN环境下的资源分配难题,为大数据处理带来更为灵活高效的解决方案。 综上所述,了解并掌握最新的大数据处理平台功能更新及业内最佳实践,将有助于我们在解决类似Apache Pig作业无法正确获取YARN队列资源这类问题时,拥有更为全面和先进的应对策略。
2023-06-29 10:55:56
473
半夏微凉
Go-Spring
...PI路由规则和重定向策略,不仅支持基于HTTP的请求重定向,还能够处理TCP、gRPC等不同协议的流量控制。 另外,近期Google发布的一篇关于API最佳实践的技术博客中,深入探讨了API路由设计的复杂性,并强调了合理使用重定向机制对提高用户体验及系统健壮性的关键作用。文中引用了多个实际项目案例,分析了如何根据业务需求和安全考虑来实施有效的API端点路由重定向策略。 此外,对于Go语言开发者而言,持续跟进Go-Spring框架的更新动态也是必要的。最近,开源社区正积极推动Spring Boot生态在Go语言中的落地与发展,包括对API路由模块的优化升级,提供更灵活高效的重定向配置选项,以满足更多元化的应用场景。 综上所述,API端点路由重定向是现代软件开发中不可或缺的一部分,无论是在具体的编程实践中,还是在前沿的云原生架构设计中,都有其深远的应用价值和广阔的发展前景。广大开发者应密切关注相关领域的最新研究进展和技术动向,以便更好地将这些理论知识应用于实际项目中。
2023-09-23 09:54:15
550
半夏微凉-t
Golang
...lang在Web应用配置问题上的实践与探讨 1. 引言 Golang,这个由Google开发的高效、简洁且强大的编程语言,在构建高性能Web应用程序时展现了其独特的魅力。然而,在实际编程做项目的过程中,如何妥善处理Web应用的各种配置难题,比如路由咋整、静态文件目录又该怎么管好,这可是每个Go语言开发者都得正面硬刚、必须搞定的重要关卡。本文将深入探讨这些问题,并通过实例代码来阐述解决方案。 2. 路由配置 用Golang打造灵活的URL路由系统 在Golang中,我们通常会使用第三方库如Gin或Echo来实现复杂的路由配置。以Gin为例,它提供了直观且强大的中间件和路由功能: go package main import "github.com/gin-gonic/gin" func main() { r := gin.Default() // 定义一个简单的GET路由 r.GET("/", func(c gin.Context) { c.JSON(200, gin.H{ "message": "Hello, welcome to the home page!", }) }) // 定义带参数的路由 r.GET("/users/:username", func(c gin.Context) { username := c.Param("username") c.String(200, "Hello, %s!", username) }) // 启动服务 r.Run(":8080") } 上述代码展示了如何在Golang中使用Gin框架配置基础的路由规则,包括静态路径("/")和动态路径("/users/:username")。嘿,你知道吗?在这个地方,“:username”其实就是一个神奇的路由参数小能手,它可以在实际的请求过程中,把相应的那部分内容给抓过来,变成一个我们随时可以使用的变量值!就像是个灵活的小助手,在浩瀚的网络请求中为你精准定位并提取关键信息。 3. 静态文件目录 托管静态资源 在Web应用中,静态文件(如HTML、CSS、JavaScript、图片等)的托管也是重要的一环。Gin也提供了方便的方法来设置静态文件目录: go // 添加静态文件目录 r.Static("/static", "./public") // 现在,所有指向 "/static" 的请求都会被映射到 "./public" 目录下的文件 这段代码中,我们设置了"/static"为静态资源的访问路径前缀,而实际的静态文件则存储在项目根目录下的"public"目录中。 4. 深入思考与探讨 处理路由配置和静态文件目录的问题,不仅关乎技术实现,更体现了我们在设计Web架构时的灵活性和预见性。比如说,如果把路由设计得恰到好处,就仿佛给咱们的API铺上了一条宽敞明亮的大道,让咱能轻松梳理、便捷维护。再者,把静态文件资料收拾得井井有条,就像给应用装上了火箭助推器,嗖一下提升运行速度,还能帮服务器大大减压,让它喘口气儿。 当我们在编写Golang Web应用时,务必保持对细节的关注,充分理解并熟练运用各种工具库,这样才能在满足功能需求的同时,打造出既优雅又高效的程序。同时呢,咱们也得不断尝鲜、积极探索新的解决方案。毕竟,技术这家伙可是一直在突飞猛进,指不定啥时候就冒出来个更优秀的法子,让我们的配置策略更加优化、更上一层楼。 总结来说,Golang以其强大而又易用的特性,为我们搭建Web应用提供了一条顺畅的道路。要是咱们能把路由配置得恰到好处,再把静态资源打理得井井有条,那咱们的应用就能更上一层楼,无论多复杂、多变化的业务场景,都能应对自如,让应用表现得更加出色。让我们在实践中不断学习、不断进步,享受Golang带来的开发乐趣吧!
2023-01-10 18:53:06
507
繁华落尽
Apache Lucene
...的持续增长和实时搜索需求的提升,全文搜索引擎的性能优化已经成为当前大数据时代的重要课题。近期,Elasticsearch(基于Apache Lucene构建的分布式搜索引擎)发布了新版本,其中对索引模块进行了深度优化,引入了更先进的分片管理策略以及智能缓存机制,极大地提升了大规模数据环境下的索引效率。 同时,一项由斯坦福大学计算机科学系主导的研究项目也揭示了硬件设备升级对全文搜索引擎性能影响的关键性。研究通过对比实验发现,在采用最新一代NVMe SSD硬盘与大容量内存配置的服务器上运行Lucene,其索引速度可显著提升30%以上,充分印证了本文中提及的硬件升级策略的有效性。 此外,针对企业级应用场景,业界专家建议结合云计算技术实现弹性扩展和负载均衡,进一步优化分布式索引结构,并倡导深入理解Lucene底层算法逻辑,合理调整参数设置以适应不同业务场景的需求。例如,Google近期公开的一项专利技术就展示了如何动态调整mergeFactor等关键参数,以实现在海量数据环境下保持高效稳定的索引性能。 总之,面对不断涌现的新技术和实际挑战,Apache Lucene及衍生产品的索引优化是一个持续演进的过程,需要开发者、研究者和实践者们共同努力,紧跟行业前沿,才能确保全文搜索引擎在各类复杂应用场景下都能发挥出卓越的效能。
2023-04-24 13:06:44
593
星河万里-t
Spark
...超出Executor配置的最大内存时,就会出现OOM问题。 3. Executor内存溢出实例分析 例1 - Shuffle数据过大导致OOM scala val rdd = sc.textFile("huge_dataset.txt") val shuffledRdd = rdd.mapPartitions(_.map(line => (line.hashCode % 10, line))) .repartition(10) .groupByKey() 在这个例子中,我们在对大文件进行shuffle操作后,由于分区过多或者数据倾斜,可能会导致某个Executor的Storage Memory不足,从而引发OOM。 例2 - 用户自定义函数内创建大量临时对象 scala val rdd = sc.parallelize(1 to 1000000) val result = rdd.map { i => // 创建大量临时对象 val temp = List.fill(100000)(i.toString 100) // ... 进行其他计算 i 2 } 这段代码中,我们在map算子内部创建了大量的临时对象,如果这样的操作频繁且数据量巨大,Execution Memory很快就会耗尽,从而触发OOM。 4. 解决与优化策略 针对上述情况,我们可以从以下几个方面入手,避免或缓解Executor内存溢出的问题: - 合理配置内存分配:根据任务特性调整spark.executor.memory、spark.shuffle.memoryFraction等相关参数,确保各内存区域大小适中。 bash spark-submit --executor-memory 8g --conf "spark.shuffle.memoryFraction=0.3" - 减少shuffle数据量:尽量避免不必要的shuffle,或者通过repartition或coalesce合理调整分区数量,减轻单个Executor的压力。 - 优化数据结构和算法:尽量减少在用户代码中创建的大对象数量,如例2所示,可以考虑更高效的数据结构或算法来替代。 - 监控与调优:借助Spark UI等工具实时监控Executor内存使用情况,根据实际情况动态调整资源配置。 5. 结语 理解并掌握Spark Executor内存管理机制,以及面对OOM问题时的应对策略,是每个Spark开发者必备的能力。只有这样,我们才能真正地把这台强大的大数据处理引擎玩得溜起来,让它在我们的业务实战中火力全开,释放出最大的价值。记住了啊,每次跟OOM这个家伙过招,其实都是我们在Spark世界里探索和进步的一次大冒险,更是我们锻炼自己、提升数据处理本领的一次实战演练。
2023-07-26 16:22:30
115
灵动之光
Kibana
...arch索引滚动更新策略设置不当,导致Kibana无法获取最新的数据。 - Kibana自身配置中的时间筛选条件或仪表板刷新间隔设置不正确。 - 网络延迟或系统资源瓶颈,影响数据传输和处理速度。 3. 示例与排查步骤 示例1:检查Elasticsearch滚动索引配置 假设你的日志数据是通过Logstash写入Elasticsearch并配置了基于时间的滚动索引策略,而Kibana关联的索引模式未能动态更新至最新索引。 yaml Logstash输出到Elasticsearch的配置段落 output { elasticsearch { hosts => ["localhost:9200"] index => "logstash-%{+YYYY.MM.dd}" 其他相关配置... } } 在Kibana中,你需要确保索引模式包含了滚动创建的所有索引,例如logstash-。 示例2:调整Kibana仪表板刷新频率 Kibana仪表板默认的自动刷新间隔为5分钟,若需要实时更新,可以在仪表板编辑界面调整刷新频率。 markdown 在Kibana仪表板编辑模式下 1. 找到右上角的“自动刷新”图标(通常是一个循环箭头) 2. 点击该图标并选择你期望的刷新频率,比如“每秒” 示例3:检查网络与系统资源状况 如果你已经确认上述配置无误,但依然存在实时更新失效的问题,可以尝试监控网络流量以及Elasticsearch和Kibana所在服务器的系统资源(如CPU、内存和磁盘I/O)。过高的负载可能导致数据处理和传输延迟。 4. 解决策略与实践 面对这个问题,我们需要根据实际情况采取相应的措施。如果问题是出在配置上,那就好比是你的Elasticsearch滚动索引策略或者Kibana刷新频率设置有点小打小闹了,这时候咱们就得把这些参数调整一下,调到最合适的节奏。要是遇到性能瓶颈这块硬骨头,那就得从根儿上找解决方案了,比如优化咱系统的资源配置,让它们更合理地分工协作;再不然,就得考虑给咱的硬件设备升个级,换个更强力的装备,或者琢磨琢磨采用那些更高效、更溜的数据处理策略,让数据跑起来跟飞一样。 5. 总结与思考 在实际运维工作中,我们会遇到各种各样的技术难题,如同Kibana仪表板刷新频率异常一样,它们考验着我们的耐心与智慧。只有你真正钻进去,把系统的工作原理摸得门儿清,像侦探一样抽丝剥茧找出问题的根儿,再结合实际业务需求,拿出些接地气、能解决问题的方案来,才能算是把这些强大的工具玩转起来,让它们乖乖为你服务。每一次我们成功解决一个问题,就像是对知识和技术的一次磨砺和淬炼,同时也像是在大数据的世界里打怪升级,这就是推动我们在这一领域不断向前、持续进步的原动力。 以上仅为一种可能的问题解析与解决方案,实践中还可能存在其他复杂因素。因此,我们要始终保持敏锐的洞察力和求知欲,不断探寻未知,以应对更多的挑战。
2023-10-10 23:10:35
277
梦幻星空
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
history | grep keyword
- 搜索包含关键词的历史命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"