前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据量大 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Dubbo
...管理各个服务实例的元数据信息,如服务提供者的地址、端口、版本等。当新的服务实例启动时,会向注册中心发送请求,将自己的信息“注册”到注册中心;同时,其他服务实例可以通过查询注册中心获取所需服务的信息,从而实现服务间的调用与交互。在面对注册中心节点故障的情况时,文章提出采用多节点部署、负载均衡器以及异步注册与发现等方式来保证服务注册与发现过程的稳定性和高可用性。 负载均衡器 , 负载均衡器是一种网络服务设备或者软件应用,其主要作用是在分布式系统中根据预设的策略将网络流量或请求分发至多个后端服务实例,以达到平衡负载、优化资源使用并提高整体系统可用性的目标。在本文中,负载均衡器用于自动选择最优的注册中心进行服务注册和发现,即使某个注册中心发生故障,也能通过灵活调度确保服务不受影响,持续稳定运行。例如,Nginx作为一种常用的负载均衡器,可以实时监控所有注册中心的状态,并据此做出智能决策。
2023-05-13 08:00:03
492
翡翠梦境-t
Apache Pig
...并行处理的艺术 在大数据的世界中,Apache Pig是一个强大的工具,它以SQL-like的脚本语言——Pig Latin,为我们提供了一种高效、灵活的方式来处理大规模的数据集。这篇文咱要深度挖掘一下怎么用Apache Pig这个神器进行并行处理,而且为了让大伙儿能更接地气地体验到它的魔力,我们会辅以实例代码,让大家亲自感受一下这货到底有多牛! 1. Apache Pig简介 Apache Pig是一个高层次的数据流处理平台,设计初衷是为了简化Hadoop生态系统的复杂性,尤其是对于那些需要对大量数据进行复杂转换和分析的任务。Pig Latin在Pig这个大家伙里可是心脏般的存在,它让咱们能够用一种更简单的方式编写出那些复杂的数据处理程序。想象一下,你写好代码后,Pig Latin就像个魔术师,嗖嗖几下就把你的程序变形成一系列MapReduce任务,然后稳稳当当地在Hadoop集群上跑起来。这样一来,大规模并行处理就不再是难题,而是轻松实现了! 2. 并行处理原理 Pig利用Hadoop的分布式计算框架,在底层自动将Pig Latin脚本转换为多个MapReduce任务,这些任务能够在多台机器上同时执行,大大提高了数据处理速度。换句话说,当你在捣鼓Pig Latin来设定一个数据处理流程时,其实就是在给一个并行处理的智慧路径画地图。Pig这个小机灵鬼呢,会超级聪明地把你的流程大卸八块,然后妥妥地分配到各个节点上执行起来。 3. 使用Pig Latin进行并行处理实战 示例一:数据加载与过滤 假设我们有一个大型的CSV文件存储在HDFS上,我们想找出所有年龄大于30岁的用户记录: pig -- 加载数据 data = LOAD 'hdfs://path/to/user_data.csv' USING PigStorage(',') AS (name:chararray, age:int, gender:chararray); -- 过滤出年龄大于30岁的用户 adults = FILTER data BY age > 30; -- 存储结果 STORE adults INTO 'hdfs://path/to/adults_data'; 上述代码中,LOAD操作首先将数据从HDFS加载到Pig中,接着FILTER操作会在集群内的所有节点并行执行,筛选出符合条件的记录,最后将结果保存回HDFS。 示例二:分组与聚合 现在,我们进一步对数据进行分组统计,比如按性别统计各年龄段的人数: pig -- 对数据进行分组并统计 grouped_data = GROUP adults BY gender; age_counts = FOREACH grouped_data GENERATE group, COUNT(adults), AVG(adults.age); -- 输出结果 DUMP age_counts; 这里,GROUP操作会对数据进行分组,然后在每个分组内部并行执行COUNT和AVG函数,得出每个性别的总人数以及平均年龄,整个过程充分利用了集群的并行处理能力。 4. 思考与理解 在实际操作过程中,你会发现Apache Pig不仅简化了并行编程的难度,同时也提供了丰富的内置函数和运算符,使得数据分析工作变得更加轻松。这种基于Pig Latin的声明式编程方式,让我们能够更关注于“要做什么”,而非“如何做”。每当你敲下一个Pig Latin命令,就像在指挥一个交响乐团,它会被神奇地翻译成一连串MapReduce任务。而在这个舞台背后,有个低调的“大块头”Hadoop正在卖力干活,悄无声息地扛起了并行处理的大旗。这样一来,我们开发者就能一边悠哉享受并行计算带来的飞速快感,一边又能摆脱那些繁琐复杂的并行编程细节,简直不要太爽! 总结起来,Apache Pig正是借助其强大的Pig Latin语言及背后的并行计算机制,使得大规模数据处理变得如烹小鲜般简单而高效。无论是处理基础的数据清洗、转换,还是搞定那些烧脑的统计分析,Pig这家伙都能像把刀切黄油那样轻松应对,展现出一种无人能敌的独特魅力。因此,熟练掌握Apache Pig,无疑能让你在大数据领域更加得心应手,挥洒自如。
2023-02-28 08:00:46
498
晚秋落叶
Etcd
...规模分布式系统的配置数据库。它提供了一种安全的方式来设置和获取应用程序的配置信息,并且可以自动地保持各个实例之间的数据一致性。 三、etcd节点启动失败的原因 1. 硬件问题 如内存不足、磁盘空间不足等。 2. 软件问题 如操作系统版本过低、软件包未安装、依赖关系不正确等。 3. 配置问题 如配置文件中存在语法错误、参数设置不当等。 四、如何查看etcd启动日志? etcd的日志通常会被输出到标准错误(stderr)或者一个特定的日志文件中。你可以通过以下几种方式查看这些日志: 1. 使用cat命令 $ cat /var/log/etcd.log 2. 使用tail命令 $ tail -f /var/log/etcd.log 3. 使用journalctl命令(适用于Linux系统): $ journalctl -u etcd.service 五、如何分析etcd启动日志? 在查看日志时,你应该关注以下几个方面: 1. 错误消息 日志中的错误消息通常会包含有关问题的详细信息,例如错误类型、发生错误的时间以及可能的原因。 2. 日志级别 日志级别的高低通常对应着问题的严重程度。一般来说,要是把错误比作程度不一的小红灯,那error级别就是那个闪得你心慌慌的“危险警报”,表示出大事了,遇到了严重的错误。而warn级别呢,更像是亮起的“请注意”黄灯,意思是有些问题需要你上点心去关注一下。至于info级别嘛,那就是一切正常、没啥大碍的状态,就像绿灯通行一样,它只是简单地告诉你,当前的操作一切都在顺利进行中。 3. 调试信息 如果可能的话,你应该查看etcd的日志记录的调试信息。这些信息通常包含了更多关于问题的细节,对于定位问题非常有帮助。 六、举例说明 假设你在启动etcd的时候遇到了如下错误: [...] 2022-05-19 14:28:16.655276 I | etcdmain: etcd Version: 3.5.0 2022-05-19 14:28:16.655345 I | etcdmain: Git SHA: f9a4f52 2022-05-19 14:28:16.655350 I | etcdmain: Go Version: go1.17.8 2022-05-19 14:28:16.655355 I | etcdmain: Go OS/Arch: linux/amd64 2022-05-19 14:28:16.655360 I | etcdmain: setting maximum number of CPUs to 2, total number of available CPUs is 2 2022-05-19 14:28:16.655385 N | etcdmain: the server is already initialized as member before, starting as etcd member... 2022-05-19 14:28:16.655430 W | etcdserver: could not start etcd with --initial-cluster-file path=/etc/etcd/initial-cluster.conf error="file exists" 这个错误信息告诉我们,etcd尝试从一个名为/etc/etcd/initial-cluster.conf的文件中读取初始集群配置,但是该文件已经存在了,导致etcd无法正常启动。 这时,我们可以打开这个文件看看里面的内容,然后再根据实际情况进行修改。如果这个文件不需要,那么我们可以删除它。要是这个文件真的对我们有用,那咱们就得动手改一改内容,让它更贴合咱们的需求才行。 七、总结 查看和分析etcd的启动日志可以帮助我们快速定位并解决各种问题。希望这篇文章能对你有所帮助。如果你在使用etcd的过程中遇到了其他问题,欢迎随时向我提问。
2023-10-11 17:16:49
573
冬日暖阳-t
SeaTunnel
.... 引言 在如今这个数据为王的时代,SeaTunnel作为一款强大的海量数据处理和传输工具,其安全性和稳定性显得尤为重要。SSL/TLS加密连接正是确保数据在传输过程中不被窃取、篡改的关键技术手段之一。在这篇文章里,我们要好好唠一唠SeaTunnel中如果SSL/TLS加密连接配置不当,可能会给你带来哪些意想不到的麻烦事。为了让大家能直观明白,我还特意准备了实例代码,手把手教你如何正确设置和运用这个功能,包你一看就懂,轻松上手! 2. SSL/TLS加密连接的重要性 首先,我们来聊聊为什么要在SeaTunnel中启用SSL/TLS加密。试想一下,你的公司在用SeaTunnel这玩意儿搬运和转换一大批重要的业务数据。假如没启用SSL/TLS加密这个防护罩,这些数据就像一个个光着身子在网络大道上跑的明文消息,分分钟就可能被中间人攻击(MITM)这类安全威胁给盯上,危险得很呐!你知道吗,SSL/TLS协议就像个超级秘密特工,它能给传输过程中的数据穿上一层加密的铠甲,这样一来,企业的数据隐私性和完整性就得到了大大的保障。这样一来,在企业享受SeaTunnel带来的飞速效能时,也能稳稳妥妥地确保数据安全,完全不用担心会有啥猫腻发生! 3. 未正确配置SSL/TLS加密连接可能引发的问题 - 数据泄露风险:未加密的数据在传输过程中犹如“透明”,任何具有网络监听能力的人都有可能获取到原始数据。 - 合规性问题:许多行业如金融、医疗等对数据传输有严格的加密要求,未采用SSL/TLS可能会导致企业违反相关法规。 - 信任危机:一旦发生数据泄露,不仅会对企业造成经济损失,更会严重影响企业的声誉和客户信任度。 4. 如何在SeaTunnel中正确配置SSL/TLS加密连接 让我们通过一个实际的SeaTunnel配置案例,直观地了解如何正确设置SSL/TLS加密连接。 yaml SeaTunnel Source Configuration (以MySQL为例) source: type: jdbc config: username: your_username password: your_password url: 'jdbc:mysql://your_host:3306/your_database?useSSL=true&requireSSL=true' connection_properties: sslMode: VERIFY_IDENTITY sslTrustStore: /path/to/truststore.jks sslTrustStorePassword: truststore_password SeaTunnel Sink Configuration (以Kafka为例) sink: type: kafka config: bootstrapServers: your_kafka_bootstrap_servers topic: your_topic securityProtocol: SSL sslTruststoreLocation: /path/to/kafka_truststore.jks sslTruststorePassword: kafka_truststore_password 上述示例中,我们在源端MySQL连接字符串中设置了useSSL=true&requireSSL=true,同时指定了SSL验证模式以及truststore的位置和密码。而在目标端Kafka配置中,我们也启用了SSL连接,并指定了truststore的相关信息。 请注意:这里只是简化的示例,实际应用中还需根据实际情况生成并配置相应的keystore与truststore文件。 5. 总结与思考 在SeaTunnel中正确配置SSL/TLS加密连接并非难事,关键在于理解其背后的原理与重要性。对每一个用SeaTunnel干活的数据工程师来说,这既是咱的分内之事,也是咱对企业那些宝贵数据资产负责任的一种表现,说白了,就是既尽职又尽责的态度体现。每一次我们精心调整配置,就像是对那些可能潜伏的安全风险挥出一记重拳,确保我们的数据宝库能在数字化的大潮中安然畅游,稳稳前行。所以,亲们,千万千万要对每个项目中的SSL/TLS加密设置上心,让安全成为咱们构建数据管道时最先竖起的那道坚固屏障,守护好咱们的数据安全大门。
2024-01-10 13:11:43
172
彩虹之上
Apache Pig
...ache Pig:大数据处理的强大工具 0 1. 引言 在浩瀚的数据海洋中,Apache Pig无疑是一艘功能强大的航船。它以SQL-like的脚本语言——Pig Latin为基础,为Hadoop生态系统提供了高效、灵活的大数据处理能力。本文将带您探索Pig的世界,从基础概念到实际应用,并通过生动的代码实例揭示其内在魅力。 0 2. Apache Pig简介 Apache Pig是一种高级数据流处理语言和运行环境,专为大规模数据集设计,简化了复杂数据处理任务。比起吭哧吭哧直接用MapReduce写Java程序,Pig Latin就像是给你提供了一个超级方便的高级工具箱。这样一来,不论是数据清洗、转换还是加载这些繁琐步骤,都能轻轻松松、简简单单地完成,简直就像魔法一样让处理数据变得so easy! 0 3. Pig Latin实战 03.1 数据加载 pig -- 加载一个简单的文本文件 raw_data = LOAD 'input.txt' AS (line:chararray); -- 使用逗号分隔符解析每一行 parsed_data = FOREACH raw_data GENERATE FLATTEN(TOKENIZE(line)) AS word; 这段代码展示了如何用Pig Latin加载和解析数据,直观且易于理解。 03.2 数据处理与过滤 pig -- 过滤掉非字母数字字符 cleaned_data = FILTER parsed_data BY word MATCHES '[a-zA-Z0-9]+'; -- 统计每个单词出现的次数 word_counts = GROUP cleaned_data BY word; word_freq = FOREACH word_counts GENERATE group, COUNT(cleaned_data); 这里演示了Pig拉丁语句如何进行数据过滤和聚合统计,体现了其在处理复杂ETL任务时的优势。 0 4. 遇到的问题与挑战 虽然Apache Pig强大而易用,但在实际操作过程中,我们可能会遇到各种问题,比如数据类型转换错误、资源分配不合理等(想象一下,如果你遇到了78个错误,这无疑是让人头痛的)。当面对这些问题时,我们得像个侦探那样,把日志分析当作放大镜,调试技巧当成探案工具,再加上对Pig这家伙内在运行机制的深刻理解,才能一步步把这些难题给破解喽。比如,当你遇到一条错误提示时,你得化身福尔摩斯去探寻背后的真相,尝试摸清错误发生的来龙去脉,然后找准对策把它搞定。 0 5. 探讨与思考 尽管我们在使用Apache Pig的过程中可能会面临一些挑战,但正是这些挑战推动我们不断深入学习和理解。正如一句名言所说:“每个错误都是一个学习的机会。对于那78条还没被列出的小错误,咱不妨把它们想象成是咱们在掌握Apache Pig这条大路途中遇到的一块块小石子。每解决一个问题,就仿佛是在这块大数据处理的道路上狠狠地踩下了一脚,让我们的理解力和见识也随之噌噌噌地往上窜。 0 6. 结语 Apache Pig以其独特的语言特性和强大的数据处理能力,在大数据领域占据着重要地位。来吧,伙伴们,咱们一块儿并肩作战,翻过前方那可能冒出的78座甚至更多的“绊脚石”,一起探索、驾驭这个威力无比的工具。让数据真正变身,成为推动业务迅猛发展的超强马达! --- 请注意,以上内容是根据您的要求模拟创作的,具体技术细节和代码示例可能需要根据实际的Apache Pig使用情况进行调整。要是你能给我一份具体的错误明细,或者把问题说得更明白些,我就能给你提供更对症下药的信息了。
2023-04-30 08:43:38
385
星河万里
SpringCloud
...控服务间的流量,以及数据平面负责实际的服务间数据传输。在面对服务提供者与消费者匹配异常等问题时,服务网格技术提供了更为精细化的服务治理方案。例如,Istio是一个完全开源的服务网格,可透明地分层部署到现有的分布式应用中,对网络流量进行控制、遥测和安全性策略实施;而Linkerd也是一种轻量级的服务网格,旨在简化和保护云原生应用的服务间通信。 负载均衡(@LoadBalanced注解) , 负载均衡是一种计算机网络技术,用于在多个计算资源之间分配工作负载,以优化资源使用、最大化吞吐量、最小化响应时间并避免过载。在SpringCloud中,@LoadBalanced注解用于启用HTTP客户端(如RestTemplate)的负载均衡功能,使得服务消费者可以根据服务中心提供的服务实例列表进行智能选择,从而实现请求的均衡分布和故障转移。如果忘记添加该注解,可能会导致服务提供者无法正常注册到服务中心,或者消费者无法正确地从多个服务实例中选取目标进行调用。
2023-02-03 17:24:44
129
春暖花开
转载文章
...erver将请求写入数据库前,能够实时地修改请求中的对象数据。比如,它可以自动为Pod添加默认的环境变量、注解或者调整容器的资源请求值,从而实现集群级别的标准化配置和资源优化管理。 ResourceQuota , ResourceQuota是Kubernetes中用于控制Namespace级别资源使用的机制,它是一种准入控制器,可以设置命名空间内各种资源类型的配额上限,如CPU、内存以及Pod数量等。当Namespace内的资源用量达到设定的quota时,kube-apiserver会阻止超出配额的资源创建请求,以此来保证集群资源的合理分配和避免资源滥用情况的发生。在实际应用中,管理员通过定义ResourceQuota对象并将其关联到特定Namespace,就能够实现对整个Namespace资源总量的有效管理和限制。
2023-12-25 10:44:03
337
转载
Apache Atlas
...las是一款强大的元数据管理框架,尤其在大数据环境中,它为用户提供了一种统一的方式来定义、发现、理解和管理各种元数据。而这个REST API呢,就好比是开发者和Atlas之间的一座关键桥梁。你想象一下,就像你过河得有个桥一样,开发者想要跟Atlas打交道、进行各种操作,也得靠这座“桥”。通过它,开发者可以随心所欲地创建、查找或者更新各种实体对象,这些实体可能是个表格啦,一列数据啦,甚至是个进程等等,全都手到擒来!然而,在实际操作时,咱们可能会遇到这样一种状况:新建实体时电脑突然蹦出个错误消息,让人措手不及。别担心,今天这篇文章就是要接地气地好好聊聊这个问题,不仅会掰开揉碎了讲明白,还会附带实例代码和解决办法,保你看了就能轻松应对。 2. 创建实体的基本流程与示例 在Apache Atlas中,创建一个实体通常涉及以下步骤: java // 以创建Hive表为例,首先构建TableEntity对象 AtlasEntity tableEntity = new AtlasEntity(HiveDataTypes.HIVE_TABLE.getName()); tableEntity.setAttribute("name", "my_table"); tableEntity.setAttribute("description", "My test table"); // 设置表格的详细属性,如数据库名、owner等 AtlasObjectId databaseId = new AtlasObjectId("hive_db", "guid_of_hive_db", "hive_db"); tableEntity.setAttribute("db", databaseId); // 创建实体的上下文信息 AtlasContext context = AtlasClientV2.getInstance().getAtlasContext(); // 将实体提交到Atlas AtlasEntityWithExtInfo entityWithExtInfo = new AtlasEntityWithExtInfo(tableEntity); context.createEntities(entityWithExtInfo); 3. 创建实体时报错的常见原因及对策 3.1 权限问题 - 场景描述:执行创建实体API时返回“Access Denied”错误。 - 理解过程:这是由于当前用户没有足够的权限来执行该操作,Apache Atlas遵循严格的权限控制体系。 - 解决策略:确保调用API的用户具有创建实体所需的权限。在Atlas UI这个平台上,你可以像给朋友分配工作任务那样,为用户或角色设置合适的权限。或者,你也可以选择到服务端的配置后台“动手脚”,调整用户的访问控制列表(ACL),就像是在修改自家大门的密码锁一样,决定谁能进、谁能看哪些内容。 3.2 实体属性缺失或格式不正确 - 场景描述:尝试创建Hive表时,如果没有指定必需的属性如"db"(所属数据库),则会报错。 - 思考过程:每个实体类型都有其特定的属性要求,如果不满足这些要求,API调用将会失败。 - 代码示例: java // 错误示例:未设置db属性 AtlasEntity invalidTableEntity = new AtlasEntity(HiveDataTypes.HIVE_TABLE.getName()); invalidTableEntity.setAttribute("name", "invalid_table"); // 此时调用createEntities方法将抛出异常 - 解决策略:在创建实体时,务必检查并完整地设置所有必需的属性。参考Atlas的官方文档了解各实体类型的属性需求。 3.3 关联实体不存在 - 场景描述:当创建一个依赖于其他实体的实体时,例如Hive表依赖于Hive数据库,如果引用的数据库实体在Atlas中不存在,会引发错误。 - 理解过程:在Atlas中,实体间存在着丰富的关联关系,如果试图建立不存在的关联,会导致创建失败。 - 解决策略:在创建实体之前,请确保所有相关的依赖实体已存在于Atlas中。如有需要,先通过API创建或获取这些依赖实体。 4. 结语 处理Apache Atlas REST API创建实体时的错误,不仅需要深入了解Atlas的实体模型和权限模型,更需要严谨的编程习惯和良好的调试技巧。遇到问题时,咱们得拿出勇气去深入挖掘,像侦探一样机智地辨别和剖析那些不靠谱的信息。同时,别忘了参考权威的官方文档,还有社区里大家伙儿共享的丰富资源,这样一来,就能找到那个正中靶心的解决方案啦!希望这篇文章能帮助你在使用Apache Atlas的过程中,更好地应对和解决创建实体时可能遇到的问题,从而更加高效地利用Atlas进行元数据管理。
2023-06-25 23:23:07
563
彩虹之上
Kubernetes
...了容器间的高效通信和数据共享。在处理节点资源不足问题时,合理安排和优化Pod的资源配置至关重要。
2023-07-23 14:47:19
116
雪落无痕
Cassandra
...ssandra中实现数据的实时数据监控策略? 1. 引言 嗨,小伙伴们!今天我们要聊聊一个超级酷的话题——在Cassandra中实现数据的实时监控策略。也许你现在心里在嘀咕:“这个东西听起来挺高端的,咋整呢?”别慌,咱们慢慢来,我会尽量用大白话给你讲清楚,让你觉得就像跟老朋友闲聊那么自在。 2. 为什么要实现实时数据监控? 首先,我们得明白为什么需要这样做。想象一下,你正忙着打理一家电商平台,每天都要处理成千上万的订单。这时候,你肯定想搞清楚哪些东西卖得火,哪些货快要断货了吧?这就凸显了实时数据监控的重要性了。它能让你随时掌握最新的业务动态,及时调整策略,从而避免损失或者抓住机会。 3. Cassandra简介 接下来,简单介绍一下Cassandra。Cassandra是一个分布式数据库,由Facebook开发,后来贡献给了Apache基金会。它厉害的地方在于能搞定海量数据,还能在多个数据中心之间复制数据,简直是大数据处理的神器啊!所以,要是你手头有一大堆数据得处理,还希望随时能查到,那Cassandra绝对是你的最佳拍档。 4. 实现步骤 4.1 设计表结构 设计表结构是第一步。这里的关键是要确保表的设计能够支持高效的查询。例如,假设我们有一个电商应用,想要实时监控订单状态。我们可以设计一张表,表名叫做orders,包含以下字段: - order_id: 订单ID - product_id: 商品ID - status: 订单状态(如:待支付、已发货等) - timestamp: 记录时间戳 sql CREATE TABLE orders ( order_id UUID PRIMARY KEY, product_id UUID, status TEXT, timestamp TIMESTAMP ); 4.2 使用CQL实现数据插入 接下来,我们来看一下如何插入数据。想象一下,有个新订单刚刚飞进来,咱们得赶紧把它记在咱们的“订单簿”里。 sql INSERT INTO orders (order_id, product_id, status, timestamp) VALUES (uuid(), uuid(), '待支付', toTimestamp(now())); 4.3 实时监控数据 现在数据已经存进去了,那么如何实现实时监控呢?这就需要用到Cassandra的另一个特性——触发器。虽然Cassandra自己没带触发器这个功能,但我们可以通过它的改变流(Change Streams)来玩个变通,实现类似的效果。 4.3.1 启用Cassandra的Change Streams 首先,我们需要启用Cassandra的Change Streams功能。这可以通过修改配置文件cassandra.yaml中的enable_user_defined_functions属性来实现。将该属性设置为true,然后重启Cassandra服务。 yaml enable_user_defined_functions: true 4.3.2 创建用户定义函数 接着,我们创建一个用户定义函数来监听数据变化。 sql CREATE FUNCTION monitor_changes (keyspace_name text, table_name text) RETURNS NULL ON NULL INPUT RETURNS map LANGUAGE java AS $$ import com.datastax.driver.core.Row; import com.datastax.driver.core.Session; Session session = cluster.connect(keyspace_name); String query = "SELECT FROM " + table_name; Row row = session.execute(query).one(); Map changes = new HashMap<>(); changes.put("order_id", row.getUUID("order_id")); changes.put("product_id", row.getUUID("product_id")); changes.put("status", row.getString("status")); changes.put("timestamp", row.getTimestamp("timestamp")); return changes; $$; 4.3.3 实时监控逻辑 最后,我们需要编写一段逻辑来调用这个函数并处理返回的数据。这一步可以使用任何编程语言来实现,比如Python。 python from cassandra.cluster import Cluster from cassandra.auth import PlainTextAuthProvider auth_provider = PlainTextAuthProvider(username='your_username', password='your_password') cluster = Cluster(['127.0.0.1'], auth_provider=auth_provider) session = cluster.connect('your_keyspace') def monitor(): result = session.execute("SELECT monitor_changes('your_keyspace', 'orders')") for row in result: print(f"Order ID: {row['order_id']}, Status: {row['status']}") while True: monitor() 4.4 结论与展望 通过以上步骤,我们就成功地实现了在Cassandra中对数据的实时监控。当然啦,在实际操作中,咱们还得面对不少细碎的问题,比如说怎么处理错误啊,怎么优化性能啊之类的。不过,相信有了这些基础,你已经可以开始动手尝试了! 希望这篇文章对你有所帮助,也欢迎你在实践过程中提出更多问题,我们一起探讨交流。
2025-02-27 15:51:14
70
凌波微步
Mahout
...,专门用来搞定大规模数据的机器学习任务。无论是推荐系统、分类问题还是聚类分析,Mahout都能帮你搞定。不过嘛,任何厉害的工具都有它的雷区,今天咱们就来吐槽一下那个让人头疼的家伙——TooManyIterationsException(就是那个迭代次数爆表的错误)。别担心,我会带你一步步解开这个谜团。 2. 什么是TooManyIterationsException? 在深入讨论之前,我们先来了解一下这个异常是什么意思。当我们用Mahout做机器学习的时候,比如说训练个模型,有时会设定一个最大的迭代次数,免得它没完没了地跑下去。这是因为过多的迭代不仅耗时,还可能让模型陷入过度拟合的风险中。不过嘛,在实际跑起来的时候,如果迭代次数超出了设定的最大值,Mahout就会不开心地扔出一个叫TooManyIterationsException的错误。这就像一个信号灯,告诉你:“嘿,你的模型可能需要调整了!” 3. 理解背后的逻辑 3.1 为什么会发生这种情况? 首先,让我们来看看为什么会出现这种异常。通常情况下,这表明你的模型正在努力学习数据中的模式,但似乎进展缓慢。这可能是由于以下几个原因: - 数据过于复杂:如果你的数据集非常庞大或者包含了很多噪声,那么模型可能需要更多的迭代才能找到有用的模式。 - 模型参数设置不当:有时候,模型参数如学习率、正则化项等设置得不合适也会导致迭代次数增加。 - 特征选择不恰当:如果输入特征不够好,或者存在冗余特征,也可能导致模型难以收敛。 3.2 如何解决? 既然知道了原因,那么解决问题的方法也就显而易见了。我们可以尝试以下几种策略: - 调整迭代次数限制:虽然这不是根本解决方案,但在紧急情况下可以临时放宽限制。 - 优化模型参数:通过实验不同的参数组合,找到最佳配置。 - 特征工程:花时间去理解和筛选最重要的特征,减少不必要的计算量。 4. 实践操作 代码示例 现在,让我们通过一些实际的例子来看看如何在Mahout中处理这个问题。 4.1 示例1:基本的协同过滤推荐 java // 创建数据源 DataModel model = new FileDataModel(new File("data.csv")); // 初始化推荐器 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(5, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 设置迭代次数限制 int maxIterations = 100; for (int i = 0; i < maxIterations; i++) { try { // 进行推荐 List recommendations = recommender.recommend(userId, howMany); System.out.println("Recommendations: " + recommendations); } catch (TooManyIterationsException e) { System.err.println("Warning: " + e.getMessage()); break; } } 在这个例子中,我们为推荐过程设置了最大迭代次数限制,并且捕获了TooManyIterationsException异常,以便及时做出反应。 4.2 示例2:使用SVD++算法进行矩阵分解 java // 数据准备 FileDataModel model = new FileDataModel(new File("ratings.dat")); // SVD++参数设置 int rank = 50; double lambda = 0.065; int iterations = 20; try { // 创建SVD++实例 Recommender recommender = new SVDRecommender( model, new SVDPlusPlusSolver(rank, lambda), iterations ); // 进行预测 List recommendations = recommender.recommend(userId, howMany); System.out.println("Recommendations: " + recommendations); } catch (TooManyIterationsException e) { System.err.println("警告:迭代次数超出预期,检查数据或算法参数!"); } 这里,我们使用了SVD++算法来进行用户行为预测。同样地,我们设置了最大迭代次数,并处理了可能发生的异常情况。 5. 结论 与Mahout同行 通过上述内容,我相信你对Mahout中的TooManyIterationsException有了更深入的理解。嘿,别担心遇到问题,这没啥大不了的。重要的是你要弄清楚问题到底出在哪里,然后找到合适的方法去搞定它。希望这篇文章能帮助你在使用Mahout的过程中更加得心应手,享受机器学习带来的乐趣! --- 这就是我的分享,如果你有任何疑问或想要进一步讨论的话题,请随时留言。让我们一起探索更多关于Mahout的秘密吧!
2024-11-30 16:27:59
87
烟雨江南
DorisDB
...1. 引言 在当今大数据和人工智能的时代,实时推荐系统已成为众多互联网企业的核心竞争力之一。在这场靠数据推动的创新赛跑里,Apache Doris,也就是DorisDB,凭借能力超群、实时分析速度快得飞起,还有那简单易用的操作体验,硬是让自己在众多选手中C位出道,妥妥地成了搭建实时推荐系统的绝佳拍档。今天,让我们一起深入探讨如何利用DorisDB的力量,构建出响应迅速、精准度高的实时推荐系统。 2. DorisDB 一款为实时分析而生的数据库 DorisDB是一款开源的MPP (大规模并行处理) 分析型数据库,它专为海量数据的实时分析查询而设计。它的列式存储方式、向量化执行引擎,再加上分布式架构的设计,让其在应对实时推荐场景时,面对高并发查询和低延迟需求,简直就像一把切菜的快刀,轻松驾驭,毫无压力。 3. 实时推荐系统的需求与挑战 构建实时推荐系统,我们需要解决的关键问题包括:如何实时捕获用户行为数据?如何快速对大量数据进行计算以生成实时推荐结果?这就要求底层的数据存储和处理平台必须具备高效的数据写入、查询以及实时分析能力。而DorisDB正是这样一款能完美应对这些挑战的工具。 4. 使用DorisDB构建实时推荐系统的实战 (1)数据实时写入 假设我们正在处理用户点击流数据,以下是一个简单的使用Python通过DorisDB的Java SDK将数据插入到表中的示例: java // 导入相关库 import org.apache.doris.hive.DorisClient; import org.apache.doris.thrift.TStatusCode; // 创建Doris客户端连接 DorisClient client = new DorisClient("FE_HOST", "FE_PORT"); // 准备要插入的数据 String sql = "INSERT INTO recommend_events(user_id, item_id, event_time) VALUES (?, ?, ?)"; List params = Arrays.asList(new Object[]{"user1", "item1", System.currentTimeMillis()}); // 执行插入操作 TStatusCode status = client.executeInsert(sql, params); // 检查执行状态 if (status == TStatusCode.OK) { System.out.println("Data inserted successfully!"); } else { System.out.println("Failed to insert data."); } (2)实时数据分析与推荐生成 利用DorisDB强大的SQL查询能力,我们可以轻松地对用户行为数据进行实时分析。例如,计算用户最近的行为热度以实时更新用户的兴趣标签: sql SELECT user_id, COUNT() as recent_activity FROM recommend_events WHERE event_time > NOW() - INTERVAL '1 HOUR' GROUP BY user_id; 有了这些实时更新的兴趣标签,我们就可以进一步结合协同过滤、深度学习等算法,在DorisDB上直接进行实时推荐结果的生成与计算。 5. 结论与思考 通过上述实例,我们能够深刻体会到DorisDB在构建实时推荐系统过程中的优势。无论是实时的数据写入、嗖嗖快的查询效率,还是那无比灵活的SQL支持,都让DorisDB在实时推荐系统的舞台上简直就像鱼儿游进了水里,畅快淋漓地展现它的实力。然而,选择技术这事儿可不是一次性就完事大吉了。要知道,业务会不断壮大,技术也在日新月异地进步,所以我们得时刻紧跟DorisDB以及其他那些最尖端技术的步伐。我们要持续打磨、优化咱们的实时推荐系统,让它变得更聪明、更精准,这样一来,才能更好地服务于每一位用户,让大家有更棒的体验。 6. 探讨与展望 尽管本文仅展示了DorisDB在实时推荐系统构建中的初步应用,但在实际项目中,可能还会遇到更复杂的问题,比如如何实现冷热数据分离、如何优化查询性能等。这都需要我们在实践中不断探索与尝试。不管怎样,DorisDB这款既强大又好用的实时分析数据库,可真是帮我们敲开了高效、精准实时推荐系统的神奇大门,让一切变得可能。未来,期待更多的开发者和企业能够借助DorisDB的力量,共同推动推荐系统的革新与发展。
2023-05-06 20:26:51
446
人生如戏
HessianRPC
...根据负载均衡器的流量数据动态调整连接池大小。 4.2 思考与挑战 尽管连接池优化有助于提高性能,但过度优化也可能带来复杂性。你知道吗,我们总是在找寻那个奇妙的平衡点,就是在提升功能强大度的同时,还能让代码像诗一样简洁,易读又易修,这事儿挺有意思的,对吧? 六、结论 HessianRPC的连接池优化是一个持续的过程,需要根据具体环境和需求进行动态调整。要想真正摸透它的运作机制,还得把你实践经验的那套和实时监控的数据结合起来,这样咱才能找出那个最对路的项目优化妙招,懂吧?记住,优化不是目的,提升用户体验才是关键。希望这篇文章能帮助你更好地理解和应用HessianRPC连接池优化技术。
2024-03-31 10:36:28
504
寂静森林
ActiveMQ
...架构下,多个服务间的数据同步、事件通知等问题可以通过ActiveMQ与Camel的结合得到优雅解决。当某个服务干完活儿,处理完了业务,它只需要轻轻松松地把结果信息发布到特定的那个“消息主题”或者“队列”里头。这样一来,其他那些有关联的服务就能像订报纸一样,实时获取到这些新鲜出炉的信息。这就像是大家各忙各的,但又能及时知道彼此的工作进展,既解耦了服务之间的紧密依赖,又实现了异步通信,让整个系统运行得更加灵活、高效。 5. 结语 总的来说,Apache Camel与ActiveMQ的集成极大地扩展了消息驱动系统的可能性,赋予开发者以更高层次的抽象去设计和实现复杂的集成场景。这种联手合作的方式,就像两个超级英雄组队,让整个系统变得身手更加矫健、灵活多变,而且还能够随需应变地扩展升级。这样一来,咱们每天的开发工作简直像是坐上了火箭,效率嗖嗖往上升,维护成本也像滑梯一样唰唰降低,真是省时省力又省心呐!当我们面对大规模、多组件的分布式系统时,不妨尝试借助于Camel和ActiveMQ的力量,让消息传递变得更简单、更强大。
2023-05-29 14:05:13
554
灵动之光
Redis
Redis在数据字典与微服务设计中的实践应用 1. 引言 在当今的软件开发领域,尤其是在构建高并发、高性能且具备可扩展性的微服务架构时,Redis以其独特的内存存储、高速读写和丰富的数据结构特性,成为我们解决复杂问题、优化系统性能的重要工具。这篇文儿,咱们就来唠唠Redis怎么摇身一变,成为一个超高效的数据字典储存法宝,并且在微服务设计这个大舞台上,它又是如何扮演着不可或缺的关键角色的。 2. Redis 不只是缓存 (1)Redis作为数据字典 想象一下,在日常开发过程中,我们经常需要维护一个全局共享的“数据字典”,它可能是各种静态配置信息,如权限列表、地区编码映射等。这些数据虽然不常变更,但查询频繁。利用Redis的哈希(Hash)数据结构,我们可以轻松实现这样的数据字典: python import redis r = redis.Redis(host='localhost', port=6379, db=0) 存储用户权限字典 r.hset('user:permissions', 'user1', '{"read": true, "write": false}') r.hset('user:permissions', 'user2', '{"read": true, "write": true}') 查询用户权限 user_permissions = r.hget('user:permissions', 'user1') print(user_permissions) 这段代码展示了如何使用Redis Hash存储并查询用户的权限字典,其读取速度远超传统数据库,极大地提高了系统的响应速度。 (2)Redis在微服务设计中的角色 在微服务架构中,各个服务之间往往需要进行数据共享或状态同步。Redis凭借其分布式锁、发布/订阅以及有序集合等功能,能够有效地协调多个微服务之间的交互,确保数据一致性: java import org.springframework.data.redis.core.StringRedisTemplate; import org.springframework.data.redis.core.script.DefaultRedisScript; // 使用Redis实现分布式锁 StringRedisTemplate template = new StringRedisTemplate(); String lockKey = "serviceLock"; Boolean lockAcquired = template.opsForValue().setIfAbsent(lockKey, "locked", 30, TimeUnit.SECONDS); if (lockAcquired) { try { // 执行核心业务逻辑... } finally { template.delete(lockKey); } } // 使用Redis Pub/Sub 实现服务间通信 template.convertAndSend("microservice-channel", "Service A sent a message"); 上述Java示例展现了Redis如何帮助微服务获取分布式锁以处理临界资源,以及通过发布/订阅模式实现实时消息通知,从而提升微服务间的协同效率。 3. Redis在微服务设计咨询中的思考与探索 当我们考虑将Redis融入微服务设计时,有几个关键点值得深入讨论: - 数据一致性与持久化:尽管Redis提供了RDB和AOF两种持久化方式,但在实际场景中,我们仍需根据业务需求权衡性能与数据安全,适时引入其他持久化手段。 - 服务解耦与扩展性:借助Redis Cluster支持的分片功能,可以轻松应对海量数据及高并发场景,同时有效实现微服务间的松耦合。 - 实时性与性能优化:对于实时性要求高的场景,例如排行榜更新、会话管理等,Redis的排序集合(Sorted Set)、流(Stream)等数据结构能显著提升系统性能。 - 监控与运维挑战:在大规模部署Redis时,要充分关注内存使用、网络延迟等问题,合理利用Redis提供的监控工具和指标,为微服务稳定运行提供有力保障。 综上所述,Redis凭借其强大的数据结构和高效的读写能力,不仅能够作为高性能的数据字典,更能在微服务设计中扮演重要角色。然而,这其实也意味着我们的设计思路得“更上一层楼”了。说白了,就是得在实际操作中不断摸索、改进,把Redis那些牛掰的优势,充分榨干、发挥到极致,才能搞定微服务架构下的各种复杂场景需求,让它们乖乖听话。
2023-08-02 11:23:15
218
昨夜星辰昨夜风_
转载文章
...器后,深入理解和优化数据库性能以及安全策略成为运维工作的关键。近日,MySQL官方发布了8.0.28版本,引入了更多性能改进和新特性,例如增强的窗口函数支持、InnoDB存储引擎的优化以及对JSON字段类型更深度的支持。对于已经部署MySQL的用户来说,了解这些新特性并适时升级有助于提升数据库性能和用户体验。 另外,在保障数据库安全方面,近期信息安全领域有专家提醒应重视MySQL权限管理和日志审计。通过细化访问控制列表(ACL),确保每个用户仅能访问其完成工作所需的最低权限数据;同时启用并合理配置MySQL的错误日志、通用查询日志和慢查询日志,可有效监控潜在的安全威胁和性能瓶颈。 此外,针对Linux系统下MySQL的资源管理与高可用性设置,可以参考《MySQL High Availability》一书,作者Jay Janssen和Baron Schwartz从实战角度详细解读了如何运用复制、集群及容灾技术实现MySQL服务的高可用和故障切换。 综上所述,MySQL的持续学习和最佳实践探索是每一位数据库管理员的重要任务,时刻关注官方更新动态、加强安全意识,并深入了解高级配置技巧,才能让Linux环境下运行的MySQL发挥出最大效能,为企业业务稳定高效运转提供坚实基础。
2023-05-24 19:00:46
120
转载
Nginx
...服务(处理业务逻辑、数据存储和API接口的部分)明确地划分开来。在这种架构下,前端通常使用HTML、CSS、JavaScript等技术构建用户界面,并通过HTTP/HTTPS协议向后端发起异步请求获取数据;而后端专注于提供API接口供前端调用,处理数据并返回结果。在文章中,当部署前后端分离项目时,需要合理配置Nginx以正确转发和处理前端页面和后端API请求。 Docker容器化技术 , Docker是一种开源的应用容器引擎,通过容器化技术为开发者和系统管理员提供了一种标准化的打包、分发和运行应用的方式。在文中,Docker用于将前后端应用分别封装成独立的容器,每个容器包含了运行应用所需的所有依赖环境,使得应用可以在任何安装了Docker的主机上快速部署且运行效果一致。 Nginx反向代理服务器 , Nginx是一个高性能的HTTP和反向代理服务器,同时支持TCP/UDP代理、邮件代理、负载均衡等功能。在部署前后端分离项目的情境中,Nginx作为反向代理服务器,接收来自客户端的HTTP请求,并根据配置规则将请求转发至相应的服务。例如,它可以将静态资源请求直接指向存放前端文件的本地目录,将/api开头的请求转发给后端Docker容器中的服务处理,从而实现前后端之间的通信和信息传递。
2023-07-29 10:16:00
58
时光倒流_
Impala
... 1. 引言 在大数据领域,实时、高效的数据分析能力对于企业决策和业务优化至关重要。Apache Impala,这可是个不得了的开源神器,它是一款超给力的大规模并行处理SQL查询引擎,专门为Hadoop和Hive这两大数据平台量身定制。为啥说它不得了呢?因为它有着高性能、低延迟的超强特性,在处理海量数据的时候,那速度简直就像一阵风,独树一帜。尤其在处理那些海量日志分析的任务上,更是游刃有余,表现得尤为出色。这篇文会手牵手带你畅游Impala的大千世界,咱不光说理论,更会实操演示,带着你一步步见识怎么用Impala这把利器,对海量日志进行深度剖析。 2. Impala简介 Impala以其对HDFS和HBase等大数据存储系统的原生支持,以及对SQL-92标准的高度兼容性,使得用户可以直接在海量数据上执行实时交互式SQL查询。跟MapReduce和Hive这些老哥不太一样,Impala这小子更机灵。它不玩儿那一套先将SQL查询变魔术般地转换成一堆Map和Reduce任务的把戏,而是直接就在数据所在的节点上并行处理查询,这一招可是大大加快了我们分析数据的速度,效率杠杠滴! 3. Impala在日志分析中的应用 3.1 日志数据加载与处理 首先,我们需要将日志数据导入到Impala可以访问的数据存储系统,例如HDFS或Hive表。以下是一个简单的Hive DDL创建日志表的例子: sql CREATE TABLE IF NOT EXISTS logs ( log_id BIGINT, timestamp TIMESTAMP, user_id STRING, event_type STRING, event_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; 然后,通过Hive或Hadoop工具将日志文件加载至该表: bash hive -e "LOAD DATA INPATH '/path/to/logs' INTO TABLE logs;" 3.2 Impala SQL查询实例 有了结构化的日志数据后,我们便可以在Impala中执行复杂的SQL查询来进行深入分析。例如,我们可以找出过去一周内活跃用户的数量: sql SELECT COUNT(DISTINCT user_id) FROM logs WHERE timestamp >= UNIX_TIMESTAMP(CURRENT_DATE) - 7246060; 或者,我们可以统计各类事件发生的频率: sql SELECT event_type, COUNT() as event_count FROM logs GROUP BY event_type ORDER BY event_count DESC; 这些查询均能在Impala中以极快的速度得到结果,满足了对大规模日志实时分析的需求。 3.3 性能优化探讨 在使用Impala进行日志分析时,性能优化同样重要。比如,对常量字段创建分区表,可以显著提高查询速度: sql CREATE TABLE logs_partitioned ( -- 同样的列定义... ) PARTITIONED BY (year INT, month INT, day INT); 随后按照日期对原始表进行分区数据迁移: sql INSERT OVERWRITE TABLE logs_partitioned PARTITION (year, month, day) SELECT log_id, timestamp, user_id, event_type, event_data, YEAR(timestamp), MONTH(timestamp), DAY(timestamp) FROM logs; 这样,在进行时间范围相关的查询时,Impala只需扫描相应分区的数据,大大提高了查询效率。 4. 结语 总之,Impala凭借其出色的性能和易用性,在大规模日志分析领域展现出了强大的实力。它让我们能够轻松应对PB级别的数据,实现实时、高效的查询分析。当然啦,每个项目都有它独特的小脾气和难关,但只要巧妙地运用Impala的各种神通广大功能,并根据实际情况灵活机动地调整作战方案,保证能稳稳驾驭那滔滔不绝的大规模日志分析大潮。这样一来,企业就能像看自家后院一样清晰洞察业务动态,优化决策也有了如虎添翼的强大力量。在这个过程中,我们就像永不停歇的探险家,不断开动脑筋思考问题,动手实践去尝试,勇敢探索未知领域。这股劲头,就像是咱们在技术道路上前进的永动机,推动着我们持续进步,一步一个脚印地向前走。
2023-07-04 23:40:26
521
月下独酌
转载文章
....项目中前端需要显示数据库中特定值考前的下拉菜单 使用sql语句: 将数据表中的的特定语句放在最前面:方式一:select from [dbo].[CTS_DUTIES] where [DUTIES_ID] ='特定值'union all select from [dbo].[CTS_DUTIES] where [DUTIES_ID] <>'特定值'方式二:select case when [DUTIES_ID] ='特定值' then 0 else 1 end flag, FROM [dbo].[CTS_DUTIES]ORDER BY flag asc 3.在一个下拉列表中选择的是一个树级菜单 使用的控件: 在ASPxDropDownEdit控件中嵌入一个TreeList控件。 <!--js程序--><script type="text/javascript">function ss() {var key = treeListUnit.GetFocusedNodeKey();Panel_call.PerformCallback(key);ASPxItem.HideDropDown();}</script><!--htmlbody中程序--><td><dx:ASPxCallbackPanel ID="ASPxCallbackPanel_call" ClientInstanceName="Panel_call" runat="server" Width="200px" OnCallback="ASPxCallbackPanel_call_Callback"><PanelCollection><dx:PanelContent><dx:ASPxDropDownEdit ID="dropdown_branch" Theme="Moderno" runat="server" Width="170px" EnableAnimation="False"ClientInstanceName="ASPxItem" OnPreRender="ASPxDropDownEdit2_PreRender"><DropDownWindowTemplate><div style="height: 300px; width: 270px; overflow: auto"><dx:ASPxTreeList ID="ASPxTreeList1" runat="server" AutoGenerateColumns="False" Theme="Aqua"ClientInstanceName="treeListUnit"KeyFieldName="MenuId" ParentFieldName="UpperMenuId"><SettingsText LoadingPanelText="正在加载..." /><Styles><AlternatingNode Enabled="True" CssClass="GridViewAlBgColor" /><Header HorizontalAlign="Center" /><%--d8d8d8--%><FocusedNode BackColor="d8d8d8" ForeColor="teal"></FocusedNode></Styles><Columns><dx:TreeListTextColumn Caption="组织架构名称" FieldName="MenuName" VisibleIndex="0"><CellStyle HorizontalAlign="Left"></CellStyle><EditFormSettings VisibleIndex="0" Visible="True" /></dx:TreeListTextColumn></Columns><SettingsLoadingPanel Text="正在加载..." /><Settings SuppressOuterGridLines="True" GridLines="Horizontal" /><SettingsBehavior AllowFocusedNode="True" AutoExpandAllNodes="true" ExpandCollapseAction="NodeDblClick" /><ClientSideEvents NodeDblClick="function(s, e) {ss();}" /><Border BorderStyle="Solid" /></dx:ASPxTreeList></div><div><dx:ASPxHiddenField ID="ASPxHiddenField_orgname" ClientInstanceName="hid_orgname" runat="server"></dx:ASPxHiddenField></div></DropDownWindowTemplate></dx:ASPxDropDownEdit></dx:PanelContent></PanelCollection></dx:ASPxCallbackPanel></td> HiddenField的作用是将数据库中的ID放置在隐藏域,在文本框中显示名称。 //treelist的获取与绑定DataTable dt = comm.SELECT_DATA(string.Format("select from POWER_CONSTRUC_TPERSON where SERIAL_ID='{0}'", edit.Split(',')[0])).Tables[0];ASPxTreeList treeList = (ASPxTreeList)dropdown_branch.FindControl("ASPxTreeList1");treeList.DataSource = org_manager.GetZT_ORGANIZATION();treeList.DataBind();//隐藏域获取以及绑定ASPxHiddenField hidden_org = (ASPxHiddenField)dropdown_branch.FindControl("ASPxHiddenField_orgname");//单位信息hidden_orgperson.UNIT_CODE = hidden_org.Get("hidden_org").ToString(); 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43357889/article/details/103888475。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-20 18:50:13
309
转载
HessianRPC
...说白了,就是一种能让数据以超快的速度进行打包和解包的黑科技,特别适合在微服务架构这种环境下用来远程“召唤”其他服务,效率贼高!但在默认情况下,HessianRPC并不提供对服务调用频率或QPS的直接限制功能。 2. 为何需要限制QPS? 在高并发环境下,服务端如果没有适当的保护措施,可能会因短时间内接收到过多请求而超负荷运转,进而影响系统的稳定性和响应速度。因此,为HessianRPC服务设置合理的QPS限制是保障系统健康运行的重要手段之一。 3. 实现方案 使用RateLimiter进行限流 Google Guava库中的RateLimiter组件可以很好地帮助我们实现QPS的限制。下面是一个使用Guava RateLimiter配合HessianRPC进行限流的示例: java import com.caucho.hessian.client.HessianProxyFactory; import com.google.common.util.concurrent.RateLimiter; public class HessianServiceCaller { private final HessianProxyFactory factory = new HessianProxyFactory(); private final RateLimiter rateLimiter = RateLimiter.create(10); // 每秒最大10个请求 public void callService() { if (rateLimiter.tryAcquire()) { // 尝试获取令牌,成功则执行调用 SomeService service = (SomeService) factory.create(SomeService.class, "http://localhost:8080/someService"); service.someMethod(); // 调用远程方法 } else { System.out.println("调用过于频繁,请稍后再试"); // 获取令牌失败,提示用户限流 } } } 在这个示例中,我们创建了一个RateLimiter实例,设定每秒最多允许10次请求。在打算呼唤Hessian服务之前,咱们先来个“夺令牌大作战”,从RateLimiter那里试试能不能拿到通行证。如果幸运地拿到令牌了,那太棒了,咱们就继续下一步,执行服务调用。但如果不幸没拿到,那就说明现在请求的频率已经超过我们预先设定的安全值啦,这时候只好对这次请求说抱歉,暂时不能让它通过。 4. 进阶策略 结合服务熔断与降级 单纯依赖QPS限制还不够全面,通常还需要结合服务熔断和服务降级机制,例如采用Hystrix等工具来增强系统的韧性。在咱们实际做项目的时候,完全可以按照业务的具体需求,灵活设计些更高级、更复杂的限流方案。比如说,就像“滑动窗口限流”这种方式,就像是给流量装上一个可以灵活移动的挡板;又或者是采用“漏桶算法”,这就如同你拿个桶接水,不管水流多猛,都只能以桶能承受的速度慢慢流出。这样的策略,既实用又能精准控制流量,让我们的系统运行更加稳健。 5. 总结 在面对复杂多变的生产环境时,理解并合理运用HessianRPC的服务调用频率控制至关重要。使用Guava的RateLimiter或者其他的限流神器,我们就能轻松把控服务的每秒请求数(QPS),这样一来,就算流量洪水猛兽般袭来,也能保证咱的服务稳如泰山,不会被冲垮。同时呢,我们也要像鹰一样,始终保持对技术的锐利眼光,瞅准业务的特点和需求,灵活机动地挑选并运用那些最适合的限流策略。这样一来,咱们就能让整个分布式系统的稳定性和健壮性蹭蹭往上涨,就像给系统注入了满满的活力。
2023-12-08 21:23:59
523
追梦人
转载文章
...广泛关注。 此外,大数据和人工智能技术的应用正在革新房产信息管理方式。各地房管局和不动产登记中心正逐步推进信息化建设,通过先进的数据处理技术和算法模型,可以高效、精准地进行家庭房产信息统计分析,为社会治理提供科学依据。 深入解读方面,著名经济学家吴敬琏曾在其著作《中国改革三部曲》中提到,健全的家庭财产统计体系是完善市场经济体制、保障公民财产权利的重要基础。因此,对于类似L2-007题目的实际应用不仅限于编程实践,还关联到我国经济和社会发展诸多层面的实际需求。 总之,家庭房产统计问题从现实角度看是一个政策与民生热点,而从技术角度,则涉及到大数据处理、算法设计与优化等多个前沿领域。无论是对国家宏观决策还是个人微观权益保障,都具有深远意义。
2023-01-09 17:56:42
563
转载
RabbitMQ
...业务流程就可能乱套,数据的一致性也难免会出岔子。最后,网络波动还可能导致RabbitMQ服务器的CPU负载增加,降低其整体性能。 三、监控网络波动对RabbitMQ性能的影响 为了能够及时发现和解决网络波动对RabbitMQ性能的影响,我们需要对其进行实时的监控。以下是几种常见的监控方法: 1. 使用Prometheus监控RabbitMQ Prometheus是一个开源的监控系统,可以用来收集和存储各种系统的监控指标,并提供灵活的查询语言和可视化界面。我们可以利用Prometheus这个小帮手,实时抓取RabbitMQ的各种运行数据,比如消息收发的速度啦、消息丢失的比例呀等等,这样就能像看仪表盘一样,随时了解RabbitMQ的“心跳”情况,确保它健健康康地运行。 python 安装Prometheus和grafana sudo apt-get update sudo apt-get install prometheus grafana 配置Prometheus的配置文件 cat << EOF > /etc/prometheus/prometheus.yml global: scrape_interval: 1s scrape_configs: - job_name: 'prometheus' static_configs: - targets: ['localhost:9090'] - job_name: 'rabbitmq' metrics_path: '/api/metrics' params: username: 'guest' password: 'guest' static_configs: - targets: ['localhost:15672'] EOF 启动Prometheus sudo systemctl start prometheus 2. 使用RabbitMQ自带的管理界面监控 RabbitMQ本身也提供了一个内置的管理界面,我们可以在这个界面上查看RabbitMQ的各种运行状态和监控指标,如消息的消费速度、消息的发布速度、消息的丢失率等。 javascript 访问RabbitMQ的管理界面 http://localhost:15672/ 3. 使用New Relic监控RabbitMQ New Relic是一款功能强大的云监控工具,可以用来监控各种应用程序和服务的性能。我们可以借助New Relic这个小帮手,实时监控RabbitMQ的各种关键表现,比如消息被“吃掉”的速度有多快、消息被“扔”出去的速度如何,甚至还能瞅瞅消息有没有迷路的(也就是丢失率)。这样一来,咱们就能像看比赛直播那样,对这些指标进行即时跟进啦。 ruby 注册New Relic账户并安装New Relic agent sudo curl -L https://download.newrelic.com/binaries/newrelic_agent/linux/x64_64/newrelic RPM | sudo tar xzv sudo mv newrelic RPM/usr/lib/ 配置New Relic的配置文件 cat << EOF > /etc/newrelic/nrsysmond.cfg license_key = YOUR_LICENSE_KEY server_url = https://insights-collector.newrelic.com application_name = rabbitmq daemon_mode = true process_monitor.enabled = true process_monitor.log_process_counts = true EOF 启动New Relic agent sudo systemctl start newrelic-sysmond.service 四、调试网络波动对RabbitMQ性能的影响 除了监控外,我们还需要对网络波动对RabbitMQ性能的影响进行深入的调试。以下是几种常见的调试方法: 1. 使用Wireshark抓取网络流量 Wireshark是一个开源的网络分析工具,可以用来捕获和分析网络中的各种流量。我们能够用Wireshark这个工具,像侦探一样监听网络中的各种消息发送和接收活动,这样一来,就能顺藤摸瓜找出导致网络波动的幕后“元凶”啦。 csharp 下载和安装Wireshark sudo apt-get update sudo apt-get install wireshark 打开Wireshark并开始抓包 wireshark & 2. 使用Docker搭建测试环境 Docker是一种轻量级的容器化平台,可以用来快速构建和部署各种应用程序和服务。我们可以动手用Docker搭建一个模拟网络波动的环境,就像搭积木一样构建出一个专门用来“折腾”RabbitMQ性能的小天地,在这个环境中好好地对RabbitMQ进行一番“体检”。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 创建一个包含网络波动模拟器的Docker镜像 docker build -t network-flakiness .
2023-10-10 09:49:37
100
青春印记-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl + R
- 启动反向搜索历史命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"