前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[实践 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
NodeJS
....js生态系统的最佳实践指南,帮助开发者更好地利用Node.js的优势进行云原生开发。 此外,Node.js社区近期推出的新的npm安全策略以及对TypeScript更深层次的整合,也正不断加强Node.js在企业级云服务开发领域的安全性与可维护性。对于希望深入掌握Node.js在云环境中的实战技巧和最新动态的开发者来说,持续关注官方博客、技术论坛及行业大会无疑是一个不错的选择。通过这些平台,可以及时获取到关于Node.js如何助力企业实现快速部署、无缝扩展以及高效运维的最新案例和深度解读。
2024-01-24 17:58:24
146
青春印记-t
Etcd
...。 5. 实践案例 假设我们正在开发一个基于Etcd的应用,需要频繁读取和更新数据。在实现过程中,我们发现客户端请求经常因网络延迟导致超时。通过调整客户端超时参数并启用心跳机制,我们成功降低了错误率。 go // 创建Etcd客户端实例 client, err := etcd.New("http://localhost:2379", &etcd.Config{Timeout: time.Second 5}) if err != nil { log.Fatalf("Failed to connect to Etcd: %v", err) } // 执行读取操作 resp, err := client.Get(context.Background(), "/key") if err != nil { log.Fatalf("Failed to get key: %v", err) } // 输出结果 fmt.Println("Key value:", resp.Node.Value) 通过实践,我们可以看到,合理配置和优化Etcd客户端能够有效应对“Request timeout while waiting for Raft term change”的挑战,确保分布式系统的稳定性和高效运行。 结语 面对分布式系统中的挑战,“Request timeout while waiting for Raft term change”只是众多问题之一。哎呀,兄弟!要是咱们能彻底搞懂Etcd这个家伙到底是怎么运作的,还有它怎么被优化的,那咱们系统的稳定性和速度肯定能上一个大台阶!就像给你的自行车加了涡轮增压器,骑起来又快又稳,那感觉简直爽翻天!所以啊,咱们得好好研究,把这玩意儿玩到炉火纯青,让系统跑得飞快,稳如泰山!在实际应用中,持续监控和调整系统配置是保证服务稳定性的关键步骤。希望本文能为你的Etcd之旅提供有价值的参考和指导。
2024-09-24 15:33:54
121
雪落无痕
转载文章
...当下已不作为主流开发实践,但它为我们提供了理解Web开发流程的基础模型,而文中提及的问题改进方案恰好体现了现代Web开发技术的发展趋势——注重用户体验、数据安全以及前后端分离架构的设计理念。因此,无论是重温经典技术还是紧跟时代步伐,这篇文章都为我们提供了一个有价值的思考视角。
2023-08-15 09:02:21
116
转载
Consul
...力尝试新的东西,不断实践,这样才能让咱们的系统在面对那些越来越棘手的安全问题时,还能稳稳地跑起来,不卡顿,不掉链子。就像是个超级英雄,无论遇到什么险境,都能挺身而出,保护好大家的安全。所以啊,咱们得加油干,让系统变得更强大,更聪明,这样才能在未来的挑战中,立于不败之地!
2024-08-26 15:32:27
125
落叶归根
转载文章
...进程通信安全性的最佳实践和指导。 在实际应用层面,华为鸿蒙系统HarmonyOS亦采用了自研的分布式能力Kit,其中其轻量化通信框架实现了与Binder类似的高效、安全的跨进程通信机制,通过全新的“服务卡片”设计理念,展现了对传统IPC通信方式的重要创新。这无疑为Android开发者研究跨进程通信领域提供了新的视角和参考案例。 此外,针对Android Framework底层原理的深入解读,可以参阅《深入理解Android:卷III》一书,作者对Handler循环、Binder驱动模型及其在Java Framework层的工作原理做了详尽剖析,结合实例代码帮助读者更扎实地掌握这些核心技术点。 综上所述,紧跟行业前沿动态和技术发展趋势,结合经典文献资料深入学习,将有助于开发者全面、透彻地理解和掌握Android Framework中Handler与Binder的关键技术和应用场景,从而在面试及实际项目开发中游刃有余。
2023-11-15 10:35:50
218
转载
Kubernetes
...最新的技术趋势和最佳实践至关重要,这将直接影响到企业的竞争力和创新能力。
2025-04-04 15:56:26
22
风轻云淡
转载文章
...跨系统迁移方面的最佳实践,结合行业实例深入解析,将助力我们更好地应对日益增长的数据挑战,为企业决策提供强有力的数据支撑。
2023-09-01 10:55:33
320
转载
Flink
...考 当我们深度剖析并实践Flink的容错机制后,不难发现它的设计之精妙与实用。Flink这个家伙可厉害了,它不仅能确保数据处理的精准无误,就像个严谨的会计师,连一分钱都不会算错。而且在实际工作中,面对各类突发状况,它都能稳如泰山,妥妥地hold住全场,为咱们打造那个既靠谱又高效的大型数据处理系统提供了强大的后盾支持。今后,越来越多的企业会把Flink当作自家数据处理的主力工具,我敢肯定,它的容错机制将在更多实际生产场景中大显身手,效果绝对会越来越赞! 然而,每个技术都有其适用范围和优化空间,我们在享受Flink带来的便利的同时,也应持续关注其发展动态,根据业务特点灵活调整和优化容错策略,以期在瞬息万变的数据世界中立于不败之地。
2023-10-06 21:05:47
392
月下独酌
Hibernate
...缓存应用:深入探索与实践 一、引言 缓存的力量 在开发中,性能优化是一个永恒的主题,而缓存技术则是提升系统响应速度的有效手段之一。Hibernate作为一款优秀的对象关系映射(ORM)工具,提供了多种缓存机制来帮助开发者优化应用性能。本文将深入探讨Hibernate的属性级缓存与局部缓存的应用,通过实际代码示例来展示它们如何在实际项目中发挥作用。 二、属性级缓存概述 属性级缓存是Hibernate提供的一种缓存策略,它允许我们为实体类中的特定属性配置缓存行为。嘿,兄弟!这种灵活度超级棒,能让我们针对各种数据访问方式来调整优化。比如,你有没有那种属性,就是大家经常去查看,却很少动手改的?对这些,咱们可以直接开个缓存,这样每次查数据就不需要老是跑去数据库翻找了,省时又省力!这招儿,是不是挺接地气的? 代码示例: java @Entity public class User { @Id private Long id; // 属性级缓存配置 @Cacheable private String name; // 其他属性... } 在这里,@Cacheable注解用于指定属性name应该被缓存。这就好比你去超市买东西,之前买过的东西放在了购物车里,下次再买的时候,你不用再去货架上找,直接从购物车拿就好了。这样省去了走来走去的时间,是不是感觉挺方便的?同理,在访问User对象的name属性时,如果已经有缓存了,就直接从缓存里取,不需要再跑一趟数据库,效率高多了! 三、局部缓存详解 局部缓存(Local Cache)是一种更高级的缓存机制,它允许我们在应用程序的特定部分(如一个服务层、一个模块等)内部共享缓存实例。哎呀,这个技术啊,它能帮咱们干啥呢?就是说,当你一次又一次地请求相同的信息,比如浏览网页的时候,每次都要重新加载一堆重复的数据,挺浪费时间的对不对?有了这个方法,就像给咱们的电脑装了个超级省电模式,能避免这些重复的工作,大大提升咱们上网的速度和效率。特别是面对海量的相似查询,效果简直不要太明显!就像是在超市里买东西,你不用每次结账都重新排队,直接走绿色通道,是不是感觉轻松多了?这就是这个技术带来的好处,让我们的操作更流畅,体验更棒! 代码示例: java @Service public class UserService { @Autowired private SessionFactory sessionFactory; private final LocalCache userCache = new LocalCache<>(sessionFactory, User.class, String.class); public String getNameById(Long userId) { return userCache.get(userId, User.class.getName()); } public void setNameById(Long userId, String name) { userCache.put(userId, name); } } 在这段代码中,UserService类使用了LocalCache来缓存User对象的name属性。哎呀,你知道不?咱们这里有个小妙招,每次想查查某个用户ID对应的用户名时,就直接去个啥叫“缓存”的地方翻翻,速度快得跟闪电似的!这样就不需要再跑回那个大老远的数据库里去找了。多省事儿啊,对吧? 四、属性级缓存与局部缓存的综合应用 在实际项目中,通常需要结合使用属性级缓存和局部缓存来达到最佳性能效果。例如,在一个高并发的电商应用中,商品信息的查询频率非常高,而商品的详细描述可能很少改变。在这种情况下,我们可以为商品的ID和描述属性启用属性级缓存,并在商品详情页面的服务层中使用局部缓存来存储最近访问的商品信息,从而实现双重缓存优化。 综合应用示例: java @Entity public class Product { @Id private Long productId; @Cacheable private String productName; @Cacheable private String productDescription; // 其他属性... } @Service public class ProductDetailService { @Autowired private SessionFactory sessionFactory; private final LocalCache productCache = new LocalCache<>(sessionFactory, Product.class); public Product getProductDetails(Long productId) { Product product = productCache.get(productId); if (product == null) { product = loadProductFromDB(productId); productCache.put(productId, product); } return product; } private Product loadProductFromDB(Long productId) { // 查询数据库逻辑 } } 这里,我们为商品的名称和描述属性启用了属性级缓存,而在ProductDetailService中使用了局部缓存来存储最近查询的商品信息,实现了对数据库的高效访问控制。 五、总结与思考 通过上述的讨论与代码示例,我们可以看到属性级缓存与局部缓存在Hibernate中的应用不仅可以显著提升应用性能,还能根据具体业务场景灵活调整缓存策略,实现数据访问的优化。在实际开发中,理解和正确使用这些缓存机制对于构建高性能、低延迟的系统至关重要。哎呀,你知道不?随着数据库这玩意儿越来越牛逼,用它的人也越来越多,那咱们用来提速的缓存方法啊,肯定也会跟着变花样!就像咱们吃东西,以前就那么几种口味,现在五花八门的,啥都有。开发大神们呢,就得跟上这节奏,多看看新技术,别落伍了。这样啊,咱们用的东西才能越来越快,体验感也越来越好!所以,关注新技术,拥抱变化,是咱们的必修课!
2024-10-11 16:14:14
103
桃李春风一杯酒
Dubbo
...与维护。同时,理解和实践DevOps理念,注重基础设施即代码(Infrastructure as Code, IaC)以及持续集成/持续部署(CI/CD)等现代软件工程方法,亦是提高服务质量和团队协作效率的关键所在。
2023-06-21 10:00:14
436
春暖花开-t
Superset
...高数据的实时性。 在实践层面,一些企业已经开始采用自动化工具和流程,定期检查数据更新状态,自动触发数据刷新或异常处理,进一步提升了数据管理的智能化水平。同时,随着云计算和边缘计算技术的发展,越来越多的企业开始探索在数据产生源头或靠近数据消费端进行数据处理,以减少数据传输延迟,实现真正的实时数据分析。 综上所述,面对数据更新延迟的挑战,企业需要从数据源配置、数据加载优化、缓存管理、网络优化以及自动化流程等多个维度入手,采取综合策略。随着技术的不断进步和创新,未来有望看到更多高效、智能的数据管理和分析解决方案,助力企业更好地利用数据驱动的决策优势。
2024-08-21 16:16:57
111
青春印记
Redis
...断跟进并学习这些最新实践无疑具有极高的价值。
2023-05-29 08:16:28
270
草原牧歌_t
Spark
...输中断问题上的策略与实践 1. 引言 在大数据处理领域,Apache Spark无疑是一颗璀璨的明星。它厉害的地方在于,拥有超高效的内存计算技术和无比强大的分布式处理本领,在对付海量数据时,那展现出来的性能简直牛到不行!然而,在日常实际操作时,我们常常会碰到这样一些头疼的问题:网络时不时闹脾气、硬件时不时掉链子,这些都可能让咱们的数据传输被迫中断,让人措手不及。好嘞,那么Spark究竟是怎么巧妙地应对这些挑战,而且还处理得如此优雅呢?不如咱们一起揭开这个谜底,深入研究一下,并通过实际的代码实例来看看Spark在碰见数据传输中断这档子事时,到底藏着哪些令人拍案叫绝的设计妙招吧! 2. Spark的数据传输机制概述 Spark的核心组件——RDD(弹性分布式数据集)的设计理念就包含了一种对数据容错性的独特理解。RDD有个特别牛的本领,它能像记日记一样,把创建以来的所有转换操作步骤都一一记录下来。这样,万一数据在传输过程中掉了链子或者出现丢失的情况,它就不用从头开始重新找数据,而是直接翻看“历史记录”,按照之前的操作再来一遍计算过程,这个厉害的功能我们称之为“血统”特性。就像是给数据赋予了一种家族传承的记忆力,让数据自己知道怎么重生。 3. 数据传输中断的应对策略 a. CheckPointing机制:为了进一步增强容错性,Spark提供了CheckPointing功能。通过对RDD执行检查点操作,Spark会将RDD数据持久化存储到可靠的存储系统(如HDFS)上。这样,万一数据不小心飞了,咱们就能直接从检查点那里把数据拽回来,完全不需要重新计算那些繁琐的依赖操作。 scala val rdd = sc.parallelize(1 to 100) rdd.checkpoint() // 设置检查点 // ...一系列转化操作后 rdd.count() // 若在此过程中出现数据传输中断,Spark可以从检查点重新恢复数据 b. 宽窄依赖与数据分区:Spark根据任务间的依赖关系将其分为宽依赖和窄依赖。窄依赖这玩意儿,就好比你做拼图时,如果某一片拼错了或者丢了,你只需要重新找那一片或者再拼一次就行,不用全盘重来。而宽依赖呢,就像是Spark在处理大数据时的一个大招,它通过一种叫“lineage”的技术,把任务分成不同的小关卡(stage),然后在每个关卡内部,那些任务可以同时多个一起尝试完成,即使数据传输过程中突然掉链子了,也能迅速调整策略,继续并行推进,大大减少了影响。 c. 动态资源调度:Spark的动态资源调度器能实时监控任务状态,当检测到数据传输中断或任务失败时,会自动重新提交任务并在其他可用的工作节点上执行,从而保证了整体任务的连续性和完整性。 4. 实际案例分析与思考 假设我们在处理一个大规模流式数据作业时遭遇网络波动导致的数据块丢失,此时Spark的表现堪称“智能”。首先,由于RDD的血统特性,Spark会尝试重新计算受影响的数据分片。若该作业启用了CheckPointing功能,则直接从检查点读取数据,显著减少了恢复时间。同时,Spark这家伙有个超级聪明的动态资源调度器,一旦发现问题就像个灵活的救火队员,瞬间就能重新给任务排兵布阵。这样一来,整个数据处理过程就能在眨眼间恢复正常,接着马不停蹄地继续运行下去。 5. 结论 Spark以其深思熟虑的设计哲学和强大的功能特性,有效地应对了数据传输中断这一常见且棘手的问题。无论是血统追溯这一招让错误无处遁形,还是CheckPointing策略的灵活运用,再或者是高效动态调度资源的绝活儿,都充分展现了Spark在处理大数据时对容错性和稳定性的高度重视,就像一位严谨的大厨对待每一道菜肴一样,确保每个环节都万无一失,稳如磐石。这不仅让系统的筋骨更强壮了,还相当于给开发者们在应对那些错综复杂的现实环境时,送上了超级给力的“保护盾”和“强心剂”。 在实践中,我们需要结合具体的应用场景和业务需求,合理利用Spark的这些特性,以最大程度地减少数据传输中断带来的影响,确保数据处理任务的顺利进行。每一次成功地跨过挑战的关卡,背后都有Spark这家伙对大数据世界的独到见解和持之以恒的探索冒险在发挥作用。
2024-03-15 10:42:00
576
星河万里
Kylin
本文聚焦于如何利用Kylin平台高效执行多模型数据分析与预测任务。Kylin作为一款高性能分布式列式存储与分析引擎,以其卓越的处理速度、强大的分布式架构、直观的多维分析功能及实时性,成为应对PB级数据挑战的理想工具。文章深入解析了在Kylin中构建多模型分析框架的全过程,从数据加载至Cube,到模型训练与预测结果生成,直至最终的可视化展示。通过实例演示了结合线性回归、决策树与随机森林等模型,如何在电商数据场景下预测用户购买行为,评估模型性能。强调了在大数据环境下灵活选择与优化模型的重要性,为提升数据分析效率与准确性提供了实用指南。
2024-10-01 16:11:58
131
星辰大海
Hadoop
...Gateway的最新实践与挑战 随着云计算的普及,越来越多的企业开始将数据存储和处理转移到云端,以获得更高的灵活性、弹性和成本效益。然而,这一转变也带来了数据安全的新挑战。特别是在涉及到敏感数据和合规性要求时,确保数据在云环境中的安全成为了企业关注的焦点。在这个背景下,Hadoop Cloud Storage Gateway(HCSG)作为连接本地存储与云存储的桥梁,扮演着至关重要的角色。 最新实践: 在最新的云计算实践中,HCSG的应用范围正在不断扩大,尤其是在大数据分析、实时数据处理和混合云策略的实施方面。例如,许多企业正采用HCSG来优化其Hadoop集群的数据访问,通过在本地存储数据的快速缓存层,显著提高了数据处理速度,同时将长期存储数据迁移到成本更低的云存储服务中。这种策略不仅提升了数据处理效率,还降低了总体拥有成本(TCO)。 挑战与应对: 尽管HCSG提供了诸多优势,但在实际应用中仍面临一些挑战。首先,数据安全问题不容忽视。在数据传输和存储过程中,确保数据的加密和完整性,以及遵守相关数据保护法规(如GDPR、HIPAA等),是企业必须面对的难题。其次,随着数据量的快速增长,如何高效地管理和扩展HCSG服务成为了一个技术难题。最后,不同云服务提供商的API和接口差异,也可能影响到HCSG的部署和维护。 未来趋势: 为了应对上述挑战,预计未来的HCSG发展将侧重于以下几个方向: 1. 增强安全性:开发更先进的加密算法和技术,加强数据在传输和存储过程中的保护,同时提供更灵活的访问控制策略。 2. 自动化与智能化:引入更多的自动化工具和智能算法,简化HCSG的部署、管理和优化过程,提高整体效率。 3. 跨云互操作性:加强不同云平台之间的兼容性和互操作性,使得HCSG能够更便捷地在多云环境中部署和管理。 4. 边缘计算融合:结合边缘计算技术,使得HCSG能够更有效地处理靠近数据源的数据处理任务,减少延迟,提高响应速度。 总之,Hadoop Cloud Storage Gateway作为云计算与数据安全之间的关键链接,其未来发展将围绕着提升安全性、自动化水平、跨云互操作性和边缘计算融合等方面展开。通过持续的技术创新和实践优化,HCSG有望为数据密集型应用提供更为安全、高效和灵活的存储解决方案。
2024-09-11 16:26:34
110
青春印记
Apache Pig
...验,成为了当前研究和实践的重点。 一、性能优化 在大数据处理场景中,性能优化是提升系统效率的关键。Apache Pig的性能瓶颈主要体现在数据加载、内存管理和并行计算等方面。为了优化性能,可以采取以下策略: 1. 数据预处理:在加载数据之前进行预处理,如去除重复记录、缺失值填充或数据标准化,可以减少后续处理的负担。 2. 内存管理优化:合理设置内存缓冲区大小,避免频繁的磁盘I/O操作,提高数据加载速度。 3. 并行计算优化:利用分布式计算框架的并行处理能力,合理划分任务,减少单点瓶颈。 二、可扩展性提升 随着数据规模的不断扩大,如何保证Apache Pig系统在增加数据量时仍能保持良好的性能和稳定性,是其面临的另一大挑战。提升可扩展性的方法包括: 1. 动态资源分配:通过自动调整集群资源(如CPU、内存和存储),确保在数据量增加时能够及时响应,提高系统的适应性。 2. 水平扩展:增加节点数量,分散计算和存储压力,利用分布式架构的优势,实现负载均衡。 3. 算法优化:采用更高效的算法和数据结构,减少计算复杂度,提高处理效率。 三、用户体验增强 提升用户体验,使得Apache Pig更加易于学习和使用,对于吸引更多的开发者和分析师至关重要。这可以通过以下几个方面实现: 1. 可视化工具:开发图形化界面或增强现有工具的可视化功能,使非专业用户也能轻松理解和操作Apache Pig脚本。 2. 文档和教程:提供详尽的文档和易于理解的教程,帮助新用户快速上手,同时更新最佳实践和案例研究,促进社区交流。 3. 社区建设和支持:建立活跃的开发者社区,提供技术支持和问题解答服务,促进资源共享和经验交流。 四、结语 Apache Pig作为大数据处理领域的重要工具,其性能优化、可扩展性和用户体验的提升,是推动其在实际应用中发挥更大价值的关键。通过上述策略的实施,不仅能够提高Apache Pig的效率和可靠性,还能吸引更多开发者和分析师加入,共同推动大数据技术的发展和应用。随着技术的不断进步和创新,Apache Pig有望在未来的数据处理领域扮演更加重要的角色。
2024-09-30 16:03:59
96
繁华落尽
Saiku
...含着丰富的技术细节和实践经验。只有彻底搞懂每一步操作背后的门道和原理,你才能在任何网络环境里都像老司机那样,轻松玩转这款强大的数据分析神器。 以上内容虽未包含实际代码,但在实践中,每一项配置和设置都会转化为对配置文件或系统参数的具体操作。希望这篇指南能像一位贴心的朋友,手把手带你掌握在各种网络环境下配置和使用Saiku的大招秘籍,而且读完之后,你还能兴奋地想要去解锁更多关于它的新技能呢!
2023-08-17 15:07:18
167
百转千回
Java
转载文章
MySQL
本文详细介绍了如何运用Apache Sqoop将HDFS中的数据高效地导出至MySQL数据库。首先,确保环境已配置好Apache Sqoop、MySQL及Java Development Kit (JDK)。然后,在MySQL中创建目标表结构以匹配HDFS数据。接着,编写Sqoop脚本时,通过JDBC连接MySQL,并利用映射器(mappers)和分区键(split-by)参数优化数据迁移效率。在脚本中执行SQL查询语句实现对HDFS特定数据的筛选与导入。最后运行Sqoop命令完成从HDFS到MySQL的数据导出过程。
2023-04-12 16:50:07
248
素颜如水_t
转载文章
...是一项与时俱进的技术实践。开发者不仅需要关注最新的编程技术和规范,同时也需紧跟行业发展趋势及法律法规要求,以实现用户体验与数据安全之间的平衡。
2023-04-30 21:14:40
49
转载
转载文章
...id应用安全性的最佳实践与建议。这对于从事Android安全卫士研发及关注应用安全性的开发者而言,是一份极具时效性和指导意义的参考资料。 最后,随着跨平台开发工具如Flutter和React Native的兴起,越来越多的开发者开始探索如何将这些框架与Android原生开发相结合,以提高开发效率并实现更好的用户体验。这也为Android开发者带来了新的挑战与机遇,值得进一步研读和探讨相关案例与教程。 总之,在瞬息万变的科技领域,Android开发者不仅要掌握基础技能,更要关注行业的最新动态和发展趋势,才能在竞争激烈的市场环境中保持竞争力。通过不断学习与实践,结合最新的Android开发工具与技术,开发者们可以创造出更多满足市场需求、引领时代潮流的应用产品。
2023-04-15 17:53:42
322
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rsync -avz source destination
- 在本地或远程之间同步文件夹。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"