前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[全局变量引用对Context回收的影响 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HessianRPC
...愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
31
风轻云淡
HessianRPC
...,频繁触发降级会不会影响性能? 为了解决这些问题,我们可以引入熔断器模式(Circuit Breaker Pattern)。简单讲啊,就好比给系统装了个“自动切换”的小开关。要是某个服务老是连不上,失败个好几次之后,这个开关就会自动启动,直接给用户返回个备用的数据,省得一直傻乎乎地去重试那个挂掉的服务,多浪费时间啊! 下面是一个基于HessianRPC的熔断器实现: java public class CircuitBreaker { private final T delegate; private boolean open = false; private int failureCount = 0; public CircuitBreaker(T delegate) { this.delegate = delegate; } public T getDelegate() { if (open && failureCount > 5) { return null; // 返回null表示断路器处于打开状态 } return delegate; } public void recordFailure() { failureCount++; if (failureCount >= 5) { open = true; } } } 将熔断器集成到之前的装饰器中: java public class CircuitBreakingUserServiceDecorator implements UserService { private final CircuitBreaker circuitBreaker; public CircuitBreakingUserServiceDecorator(CircuitBreaker circuitBreaker) { this.circuitBreaker = circuitBreaker; } @Override public UserInfo getUserInfo(int userId) { UserService userService = circuitBreaker.getDelegate(); if (userService == null) { return new UserInfo(-1, "Circuit Opened", "Service Unavailable"); } try { return userService.getUserInfo(userId); } catch (Exception e) { circuitBreaker.recordFailure(); return new UserInfo(-1, "Fallback User", "Service Unavailable"); } } } 这样,我们就能够在一定程度上缓解高负载带来的压力,并且确保系统的稳定性。 5. 总结与展望 回顾这次经历,我深刻体会到服务降级并不是一件轻松的事情。这事儿吧,不光得靠技术硬功夫,还得会提前打算,脑子转得也得快,不然真容易手忙脚乱。虽然HessianRPC没有提供现成的服务降级工具,但通过灵活运用设计模式,我们完全可以打造出适合自己项目的解决方案。 未来,我希望能够在更多场景下探索HessianRPC的应用潜力,同时也期待社区能够推出更加完善的降级框架,让开发者们少走弯路。毕竟,谁不想写出既高效又优雅的代码呢?如果你也有类似的经历或想法,欢迎随时交流讨论!
2025-05-01 15:44:28
17
半夏微凉
转载文章
...) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}复制代码 这里有几点需要注意 1,这这里起始位置的view显示区域如果不超过50%,就不算这个view可见,进而也就不统计曝光。 2,我们通过view.getTag();获取view里的数据,必须在此之前setTag()数据,我这里setTag是在viewholder中把数据set进去的 到这里我们就实现了recylerview列表中view控件曝光量的统计了。下面贴出来完整的代码给大家 package com.example.qcl.demo.xuexi.baoguang;import android.app.Activity;import android.graphics.Rect;import android.support.v7.widget.GridLayoutManager;import android.support.v7.widget.LinearLayoutManager;import android.support.v7.widget.RecyclerView;import android.support.v7.widget.StaggeredGridLayoutManager;import android.text.TextUtils;import android.util.Log;import android.view.View;import com.example.qcl.demo.utils.UiUtils;import java.util.concurrent.ConcurrentHashMap;/ 2019/4/2 13:31 author: qcl desc: 安卓曝光量统计工具类 wechat:2501902696/public class ViewShowCountUtils {//刚进入列表时统计当前屏幕可见viewsprivate boolean isFirstVisible = true;//用于统计曝光量的mapprivate ConcurrentHashMap<String, Integer> hashMap = new ConcurrentHashMap<String, Integer>();/ 统计RecyclerView里当前屏幕可见子view的曝光量 /void recordViewShowCount(RecyclerView recyclerView) {hashMap.clear();if (recyclerView == null || recyclerView.getVisibility() != View.VISIBLE) {return;}//检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {getVisibleViews(recyclerView);} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);//刚进入列表时统计当前屏幕可见viewsif (isFirstVisible) {getVisibleViews(recyclerView);isFirstVisible = false;} }});}/ 获取当前屏幕上可见的view /private void getVisibleViews(RecyclerView reView) {if (reView == null || reView.getVisibility() != View.VISIBLE ||!reView.isShown() || !reView.getGlobalVisibleRect(new Rect())) {return;}//保险起见,为了不让统计影响正常业务,这里做下try-catchtry {int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}if (range == null || range.length < 2) {return;}Log.i("qcl0402", "屏幕内可见条目的起始位置:" + range[0] + "---" + range[1]);for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);} } catch (Exception e) {e.printStackTrace();} }//获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;} }复制代码 使用就是在我们的recylerview设置完数据以后,把recylerview传递进去就可以了。如下图: 我们统计到曝光量,拿到曝光view绑定的数据,就可以结合后面的view点击,来看下那些商品view的曝光量高,那些商品的转化率高。当然,这都是运营小伙伴的事了,我们只需要负责把曝光量统计到即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
RabbitMQ
...连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
转载文章
...小时才开始答题,非常影响学生的答题心情。 试卷不够。同样因为宣讲不知道确切人数,拍脑袋一个方向打印了几十份试卷,结果有的无人问津,如DSP方向;有的则没有试卷,如软件工程师;一些同学发挥才智,直接写答案在自带的空白稿纸上。这也非常影响学生的答题心情。 筛选时间不足。晚上要根据试题和简历筛选出面试人选,并通知到。只有3个小时时间,2百多简历,平均1份不到1分钟,连逐题评分都没有时间。筛选只能跑马观花,看看卷面、答题内容、学校等,个人觉得这种筛选方式非常草率,容易漏掉不善于书写、或发挥不好的其他学校学生。面试中,就有2位同学认为试题答得很好,要求面试。 已将向人事部反应,推荐参考其他公司的,先投简历,初步筛选后,再确定笔试人数,然后再筛选,面试。虽然会多花1天时间,但做题、筛选会更有效率和质量。回复本年度招聘流程就这样了,后续再改进。 2. 与企业职位要求符合度低 与进入面试的学生交谈,主要了解一下课题、自己做的内容,以及与公司职位相关的能力准备。交谈中,发现很多同学对符合职位的特点不能有效突出,从课题项目,转向企业工程化的要求也准备不足。以下是一些问题记录: 课题目的描述不清。一些同学对自己课题的背景、目的、意义描述不清楚,只知道是老师让做的,就去做了。其实硕士期间纯粹研究课题时间只有1年多(2年硕士更少),都要研究出实用东西不太可能,但至少要对自己做的事情有一个系统认识。成人学习过程,只有知道“为什么”,才能学得明白。 课题中自己负责的事情描述不具体。简历中描述的课题常规都很大,不大可能是一个人完成。那就有分模块,模块之间有接口、有通信协议什么的。自己做的这一块,起什么作用,上下游都是干啥的,等等。如果自圆其说都办不到,后续工作任务也会存在问题。 不能突出匹配企业职位的要求。以软件工程师为例,简历上写熟悉面向对象、精通C++,只能说出多态、继承几个名词,用过vector、string;学习C和C++除了谭老的书,就很少自己看其他的;想从事软件工程师,连“新手圣经”代码大全没有听说过。在面试的20多人中,没有一个人拿着笔记本来演示他写的程序,我们都是干说。 对比较适合的人,我都建议他们先看看代码大全、设计模式,不管是否来我们公司。其实,一个真正对某件事情感兴趣的同学,他会主动去找资源,深入理解,不会等到应聘的时候再抱佛脚,找借口。 3. 招聘是体力活 外出前就有些感冒,招聘过程中,拿带子断掉的易拉宝宣传盒子,提数斤重的简历试题,在酒店昏暗灯光中阅卷,坐在椅子中一天且不停地说话,做5小时高铁。。。最后感觉都是机械式的动作,实在是体力活,感冒在武汉有加重倾向,回到深圳后,在草窝中睡了一天,第2天就好了一半。 离开武汉5年多了,本次去武汉招聘,趁着晚上休息时刻,去拜访老师和室友。好久不去,武汉修了环城路,打车都找不到地方,只能到附近的金三利酒店,再重温上学的路。在老师家品尝了招牌的红烧武昌鱼,木耳鸡翅膀,见识老师几十年的工作成果奖励。去室友家,他家公子见到生人就不停的哭,呵呵。回到酒店想一想,时间不在了,记忆模糊了,唯有文字记录之。 节后,我们还要继续后续的校园招聘。(北京、哈尔滨校园招聘记录) 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhouyulu/article/details/8033464。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-02 13:16:24
524
转载
Hive
...或权限设置不当,都会影响Hive对数据的访问。HDFS通过分块存储数据,并提供高吞吐量的数据访问,适合大规模数据集的存储和处理。 NameNode , HDFS的核心组件之一,负责管理文件系统的命名空间和客户端对文件的访问。在文章中,NameNode的状态直接决定了Hive能否正常访问HDFS。如果NameNode宕机或无法运行,Hive将无法读取HDFS中的数据。NameNode记录了每个文件的元信息,并维护文件系统树形结构以及文件块的位置信息。为了确保高可用性,通常会部署Secondary NameNode或启用HA(高可用)模式。
2025-04-01 16:11:37
105
幽谷听泉
Gradle
...,构建系统的选择直接影响着项目的开发效率、质量和稳定性。作为一款强大的自动化构建工具,Gradle 在大型和复杂项目中发挥着关键作用。然而,面对日益增长的项目规模和复杂性,如何在保持高效率的同时,确保构建过程的稳定性和可靠性,成为了一个值得深入探讨的话题。 一、依赖管理的挑战与对策 在大型项目中,依赖管理成为了构建过程中的一个重要挑战。随着项目功能的不断扩展,引入的外部依赖越来越多,这不仅增加了代码的耦合度,还带来了版本冲突的风险。为解决这一问题,开发者可以采用以下策略: 1. 集中管理依赖:使用如 dependencyManagement 特性,统一管理项目依赖的版本,减少版本冲突的可能性。 2. 依赖树可视化:借助 Gradle 插件如 dependencyInsight,生成依赖树图,直观地展示依赖关系,便于查找和解决冲突。 3. 版本锁定与自动更新:通过配置锁定文件(如 pom.xml 或 settings.gradle),限制特定依赖的版本,同时设置自动化脚本来定期检查和更新依赖,确保项目始终运行在稳定且兼容的状态下。 二、构建优化与性能提升 构建过程的效率直接影响到开发者的生产力。针对这一问题,可以从以下几个方面着手优化: 1. 构建缓存:合理利用 Gradle 缓存机制,避免重复构建相同的任务,显著缩短构建时间。 2. 并行构建:在多核处理器上利用 Gradle 的并行构建特性,提高构建速度。合理划分构建任务,最大化利用多线程的优势。 3. 增量构建:针对只修改了一部分代码的情况,仅构建修改的部分,避免不必要的全量构建,节省时间和资源。 三、持续集成与持续部署的整合 为了保证代码质量,持续集成(CI)和持续部署(CD)成为了现代开发流程的重要组成部分。将 Gradle 与 CI/CD 工具(如 Jenkins、GitLab CI)结合,实现自动化构建、测试和部署流程,能够极大地提升项目的交付速度和质量。 1. 自动化测试:集成自动化测试框架,如 JUnit、TestNG,确保每次构建前后的代码质量。 2. 集成环境一致性:确保开发、测试和生产环境的高度一致性,通过 Gradle 插件如 spring-boot-maven-plugin 或 maven-surefire-plugin 等,实现跨环境的部署一致性。 3. 一键部署:利用 CI/CD 工具的部署功能,实现从构建到部署的无缝衔接,提升部署效率和可靠性。 四、未来趋势与展望 随着微服务架构、云原生应用的兴起,Gradle 的角色和应用范围正在不断扩大。未来,开发者将面临更多复杂性和变化,对构建工具的要求也将更加多元化。因此,持续学习和适应新的技术和实践,对于保持项目的竞争力至关重要。 结语 在复杂项目中高效利用 Gradle 进行构建与管理,不仅要求开发者具备深厚的技术功底,还需要灵活运用最佳实践和工具,不断优化构建流程。通过上述策略的实施,不仅能够提升项目的构建效率和稳定性,还能促进团队协作,加速产品的迭代和交付,最终推动业务目标的实现。
2024-07-29 16:10:49
497
冬日暖阳
c++
...,它定义了一组属性(变量)和方法(函数),用于描述一类事物的共同特征和行为。在文章中,类被视为搭建程序结构的基本单元,例如通过定义一个Car类,可以描述汽车的颜色、速度等属性以及加速、刹车等行为,从而为后续创建具体对象提供模板。 对象 , 对象是类的实例化产物,它是基于类定义的具体实体。在文章中,对象通过调用类中的方法来执行特定的操作,比如创建一个Car对象后,可以调用其accelerate方法来模拟汽车加速的过程。对象使得抽象的概念得以具象化,便于在程序中进行实际操作和交互。 函数 , 函数是一段可重用的代码块,通常用来执行特定的任务或计算特定的结果。在文章中,函数起到了连接不同类和对象的作用,例如isFaster函数用于比较两个Car对象的速度。函数提高了代码的模块化程度,避免了重复编写相同逻辑,同时也增强了代码的可读性和维护性。
2025-03-25 15:39:59
10
幽谷听泉_
Apache Atlas
...的要求。这些法规不仅影响了企业的数据存储方式,也对数据分类和权限管理提出了新的标准。 最近,一家国际零售巨头因未能妥善保护客户数据而遭到巨额罚款,这再次提醒我们数据安全和隐私保护的重要性。企业在实施数据治理方案时,不仅要考虑技术实现,还要结合法律法规的要求,确保数据的合法合规使用。例如,在选择像 Apache Atlas 这样的工具时,企业需要评估其是否支持敏感数据的自动识别和加密功能,以及是否符合相关地区的隐私保护规定。 此外,随着云原生架构的普及,越来越多的企业将数据存储迁移到云端。在这种背景下,如何在分布式环境中有效管理元数据和数据血缘关系,成为了新的挑战。一些领先的科技公司正在积极探索基于云的开源解决方案,以满足企业日益增长的数据治理需求。同时,开源社区也在不断改进工具的功能,使其更加适应现代企业的复杂需求。 总之,数据治理不仅仅是技术问题,更是涉及法律、商业和社会责任的综合课题。企业在推进数字化转型的过程中,应当充分认识到这一点,并采取积极措施,确保数据的安全、合规和高效管理。
2025-04-03 16:11:35
60
醉卧沙场
转载文章
...的长期经验,着力解决影响数据输出质量的核心堵点,可兼容类似信令的多种LBS数据源接入并实现自动化、标准化输出数据结果。 技术说明 SSNG多源数据处理平台技术创新部分包括: 行为矩阵:将离散的驻留信息,转化为用户的时空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
343
转载
Apache Solr
...障:任何节点的宕机会影响集群的整体性能。 - 数据一致性:保持集群内数据的一致性是分布式系统的一大挑战。 - 故障恢复:快速而有效地恢复故障节点是维持系统稳定的关键。 第二部分:故障检测与响应 1. 监控与警报系统 在分布式Solr集群中,监控是关键。哎呀,用Prometheus或者Grafana这些小玩意儿啊,简直太方便了!你只需要轻轻一点,就能看到咱们的Solr集群在忙啥,比如CPU是不是快扛不住了,内存是不是快要溢出来了,或者是那些宝贝索引大小咋样了。这不就跟咱家里的监控摄像头似的,随时盯着家里的动静,心里有数多了!哎呀,你得留个心眼儿啊!要是发现啥不对劲儿,比如电脑的处理器忙个不停,或者是某个索引变得特别大,那可得赶紧动手,别拖着!得立马给咱的监控系统发个信号,让它提醒咱们,好让我们能快刀斩乱麻,把问题解决掉。这样子,咱们的系统才能健健康康地跑,不出幺蛾子。 代码示例: python from prometheus_client import CollectorRegistry, Gauge, push_to_gateway registry = CollectorRegistry() gauge = Gauge('solr_cpu_usage', 'CPU usage in percent', registry=registry) gauge.set(75) push_to_gateway('localhost:9091', job='solr_monitoring', registry=registry) 这段代码展示了如何使用Prometheus将Solr CPU使用率数据推送到监控系统。 2. 故障检测与隔离 利用ZooKeeper等协调服务,可以实现节点的健康检查和自动故障检测。一旦检测到节点不可用,可以自动隔离该节点,避免其影响整个集群的性能。 第三部分:数据恢复与重建 1. 快照与恢复 在Solr中,定期创建快照是防止数据丢失的有效手段。一旦发生故障,可以从最近的快照中恢复数据。哎呀,你知道的,这个方法可是大大提高了数据恢复的速度!而且呢,它还能帮咱们守住数据,防止那些无法挽回的损失。简直就像是给咱的数据上了双保险,既快又稳,用起来超安心的! 代码示例: bash curl -X PUT 'http://localhost:8983/solr/core1/_admin/persistent?action=CREATE&name=snapshot&value=20230701' 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
137
风中飘零
MySQL
... 三、查看用户的全局权限 在MySQL中,用户级别的权限是最基础的权限设置。我们可以通过SHOW GRANTS命令来查看某个用户的全局权限。比如,如果你想查看root用户的权限,可以执行以下命令: sql SHOW GRANTS FOR 'root'@'localhost'; 这个命令会返回root用户在localhost上的所有权限。比如: plaintext GRANT ALL PRIVILEGES ON . TO 'root'@'localhost' WITH GRANT OPTION 这里的ALL PRIVILEGES表示root用户拥有所有的权限,包括对所有数据库和表的操作权限。WITH GRANT OPTION表示该用户还可以将这些权限授予其他用户。 但是,有时候我们会忘记具体设置了哪些权限,这时候就需要手动检查了。我们可以用SELECT语句查询mysql.user表来查看详细信息: sql SELECT FROM mysql.user WHERE User='root'; 这个查询会返回root用户的详细权限设置,包括是否允许登录、是否有超级权限等。 四、查看特定数据库的权限 接下来,我们来看如何查看特定数据库的权限。假设我们有一个名为my_database的数据库,想看看这个数据库的所有表的权限,可以使用SHOW GRANTS命令结合具体的数据库名: sql SHOW GRANTS FOR 'some_user'@'%' ON my_database.; 这里的some_user是我们要检查的用户,%表示可以从任何主机连接。ON my_database.表示只查看my_database数据库中的权限。 如果想看更详细的权限设置,可以通过查询mysql.db表来实现: sql SELECT FROM mysql.db WHERE Db='my_database'; 这个查询会返回my_database数据库的所有权限设置,包括用户、权限类型(如SELECT、INSERT、UPDATE等)以及允许的主机。 五、查看特定表的权限 现在,我们已经知道了如何查看整个数据库的权限,那么接下来就是查看特定表的权限了。MySQL里有个SHOW TABLE STATUS的命令,能让我们瞅一眼某个表的基本情况,比如它有多大、创建时间啥的。不过呢,要是想看权限相关的东西,还得再折腾一下才行。 假设我们有一个表叫users,想要查看这个表的权限,可以这样做: sql SHOW GRANTS FOR 'some_user'@'%' ON my_database.users; 这条命令会显示some_user用户在my_database数据库的users表上的所有权限。如果你觉得这样还不够直观,可以查询information_schema.TABLE_PRIVILEGES视图: sql SELECT FROM information_schema.TABLE_PRIVILEGES WHERE TABLE_SCHEMA='my_database' AND TABLE_NAME='users'; 这个查询会返回my_database数据库中users表的所有权限记录,包括权限类型、授权用户等信息。 六、实战演练 批量检查所有表的权限 在实际工作中,我们可能需要批量检查整个数据库中所有表的权限。其实MySQL本身没给个现成的命令能一口气看看所有表的权限,不过咱们可以用脚本自己搞掂啊! 下面是一个简单的Python脚本示例,用来遍历数据库中的所有表并打印它们的权限: python import pymysql 连接到MySQL服务器 conn = pymysql.connect(host='localhost', user='root', password='your_password') cursor = conn.cursor() 获取数据库列表 cursor.execute("SHOW DATABASES") databases = cursor.fetchall() for db in databases: db_name = db[0] 跳过系统数据库 if db_name in ['information_schema', 'performance_schema', 'mysql']: continue 切换到当前数据库 cursor.execute(f"USE {db_name}") 获取表列表 cursor.execute("SHOW TABLES") tables = cursor.fetchall() for table in tables: table_name = table[0] 查询表的权限 cursor.execute(f"SHOW GRANTS FOR 'some_user'@'%' ON {db_name}.{table_name}") grants = cursor.fetchall() print(f"Database: {db_name}, Table: {table_name}") for grant in grants: print(grant) 关闭连接 cursor.close() conn.close() 这个脚本会连接到你的MySQL服务器,依次检查每个数据库中的所有表,并打印出它们的权限设置。你可以根据需要修改脚本中的用户名和密码。 七、总结与思考 通过这篇文章,我们学习了如何查看MySQL中所有表的权限。从最高级别的全局权限,到某个数据库的权限,再细化到某张表的权限,每个环节都有一套对应的命令和操作方法,就跟搭积木一样,一层层往下细分,但每一步都有章可循!MySQL的权限管理系统确实有点复杂,感觉像是个超级强大的工具箱,里面的东西又多又专业。不过别担心,只要你搞清楚了最基本的那些“钥匙”和“门道”,基本上就能搞定各种情况啦,就跟玩闯关游戏一样,熟悉了规则就没什么好怕的! 在这个过程中,我一直在思考一个问题:为什么MySQL要设计这么复杂的权限系统?其实答案很简单,因为安全永远是第一位的。无论是企业级应用还是个人项目,我们都不能忽视权限管理的重要性。希望能通过这篇文章,让你在实际操作中更轻松地搞懂MySQL的权限系统,用起来也更得心应手! 最后,如果你还有其他关于权限管理的问题,欢迎随时交流!咱们一起探索数据库的奥秘!
2025-03-18 16:17:13
50
半夏微凉
SpringBoot
...应充分考虑这些法规的影响,确保数据的收集、存储、处理和传输均符合法律规范。 结论 综上所述,实现高效、安全的文件上传功能需要综合考虑安全性、性能、用户体验和法规遵从性等多个维度。在Spring Boot框架下,通过采用现代安全措施、优化服务性能、提升用户体验并遵循相关法规,企业可以构建出既强大又合规的文件上传系统,满足当前及未来业务发展的需求。随着技术的不断进步和行业标准的更新,持续关注最新实践和趋势,将有助于保持系统的先进性和竞争力。
2024-09-12 16:01:18
85
寂静森林
转载文章
...lt;var>变量</var></body></html 2、HTML <audio> 标签 <audio> 标签是 HTML5 提供的用来播放音频文件的。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><audio controls><source src="/statics/demosource/horse.ogg" ><source src="/statics/demosource/horse.mp3" >您的浏览器不支持 audio 元素。</audio></body></html> 3、HTML <area> 标签 <area> 标签可以在图像上划分区域,这些区域是可以点击的,并且对应不同的操作。 <!DOCTYPE html><html><head><meta charset="utf-8"><title>W3Cschool(w3cschool.cn)</title></head><body><p>点击太阳或其他行星,注意变化:</p><img src="/statics/images/course/planets.gif" width="145" height="126" alt="Planets" usemap="planetmap"><map name="planetmap"><area shape="rect" coords="0,0,82,126" target="_blank" alt="Sun" href="/statics/images/course/sun.gif"><area shape="circle" coords="90,58,3" target="_blank" alt="Mercury" href="/statics/images/course/merglobe.gif"><area shape="circle" coords="124,58,8" target="_blank" alt="Venus" href="/statics/images/course/venglobe.gif"></map></body></html> 4、HTML <select> 标签定义及使用说明 <select> 元素用来创建下拉列表。 <!DOCTYPE html><html><head><meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><select><option value="volvo" style="display:none">Volvo</option><option value="saab">Saab</option><option value="opel">Opel</option><option value="audi">Audi</option></select></body></html> 5、HTML <style> 标签 <style> 标签包含了 HTML 文档的样式详细,在默认情况下,在该元素内写入的样式指令将被认为是CSS。 <!DOCTYPE html><html><head><meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title><style type="text/css">h1 {color:red;}p {color:blue;}</style></head><body><h1>这是一个标题</h1><p>这是一个段落。</p></body></html> 7、HTML <sub> 标签 包含在 <sub> 标签和其结束标签 </sub> 中的内容会以正常内容的一半的高度显示在下方,而且通常较小,请参见下述例子: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool教程(w3cschool.cn)</title> </head><body><p>这个文本包含 <sub>下标</sub>文本。</p><p>这个文本包含 <sup>上标</sup> 文本。</p></body></html> 8、HTML <summary> 标签 <summary> 标签元素作为一个<datails>元素的标题,该标题可以包含详细的信息,但是默认情况下不显示,需要单击才能显示详细信息,请参考下述示 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><details><summary>Copyright 1999-2011.</summary><p> - by Refsnes Data. All Rights Reserved.</p><p>All content and graphics on this web site are the property of the company Refsnes Data.</p></details><p><b>注意:</b>目前只有 Chrome 和 Safari 6 支持 summary 标签。</p></body></html> 9、HTML <table> 标签 <table> 标签用来定义 HTML 表格,一个简单的 HTML 表格应该包括两行两列,如下述示例所示: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool教程(w3cschool.cn)</title> </head><body><table border="1"><tr><th>Month</th><th>Savings</th></tr><tr><td>January</td><td>$100</td></tr><tr><td>February</td><td>$80</td></tr></table></body></html> 10、HTML <textarea> 标签 <textarea> 标签表示多行纯文本编辑控件,用户可在其文本区域中写入文本,请参考下述示例: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool 在线教程(w3cschool.cn)</title> </head><body><textarea rows="10" cols="30">我是一个文本框。</textarea></body></html> 11、HTML <tt> 标签 - HTML5 不支持 <tt> 标签用来改变字体样式,使标签中的文本显示为打字机文本,请参考下述例子: <!DOCTYPE html><html><body><p>This text is normal.</p><p><tt>This text is teletype text.</tt></p></body></html> 12、HTML <u> 标签 <u> 标签可以用来对标签内的文本实现下划线样式,请参考下述示例: <!DOCTYPE html><html><body><p>This is a <u>parragraph</u>.</p></body></html> 13、HTML <ul> 标签 <ul> 标签表示HTML页面中项目的无序列表,一般会以项目符号列表呈现,请参考下述例子: <!DOCTYPE html><html><head><meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><h4>无序列表:</h4><ul><li>咖啡</li><li>茶</li><li>牛奶</li></ul></body></html> 14、HTML <video> 标签 <video> 标签可以将视频内容嵌入到HTML文档中,请参考下述示例: <!DOCTYPE html><html><body><video width="320" height="240" controls><source src="/statics/demosource/movie.mp4" type="video/mp4"><source src="/statics/demosource/movie.ogg" type="video/ogg">您的浏览器不支持 HTML5 video 标签。</video></body></html> 15、HTML <ol> 标签 <ol> 标签在 HTML 中表示有序列表,是 ordered lists 的缩写。您可以自定义有序列表的初始序号,请参考下面的实例: <!DOCTYPE html><html><head><meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><ol><li>咖啡</li><li>茶</li><li>牛奶</li></ol><ol start="50"><li>咖啡</li><li>茶</li><li>牛奶</li></ol></body></html> 16、HTML <noframes> 标签HTML5不支持该标签 <noframes> 标签用于支持不支持 <frame> 元素的浏览器,请参考下面的示例: <html><head><meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><frameset cols="25%,50%,25%"><frame src="/statics/demosource/frame_a.htm"><frame src="/statics/demosource/frame_b.htm"><frame src="/statics/demosource/frame_c.htm"><noframes>抱歉,您的浏览器不支持 frame 属性!</noframes></frameset></html> 17、HTML <hr> 标签 <hr> 标签表示段落级元素之间的主题划分。例如,在下面的实例中我们对具有主题变化的内容使用了 <hr> 标签: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><h1>HTML</h1><p>HTML 是用于描述 web 页面的一种语言。</p><hr><h1>CSS</h1><p>CSS 定义如何显示 HTML 元素。</p></body></html> 18、HTML <h1> - <h6> 标签 <h1> - <h6> 标签用来定义 HTML 标题,表示了 HTML 网页中六个级别的标题。您可以通过下面的这个实例来看看每个级别的标题有什么区别: <!DOCTYPE html><html><head><meta charset="utf-8"><title>W3Cschool(w3cschool.cn)</title></head><body><h1>这是标题1</h1><h2>这是标题2</h2><h3>这是标题 3</h3><h4>这是标题 4</h4><h5>这是标题 5</h5><h6>这是标题 6</h6></body></html> 19、HTML <center> 标签 - HTML 5 不支持 <center> 标签控制文本的居中显示,不能在 HTML5 中使用。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p>这是一些文本。</p><center>这个文本居中对齐。</center><p>这是一些文本</p></body></html> 20、HTML <button> 标签 <button> 标签用来设置 HTML 中的按钮。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><button type="button" onclick="alert('Hello world!')">Click Me!</button></body></html> 21、HTML <br> 标签 <br> 标签是空标签,可插入一个简单的换行符。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p>使用br元素<br>在文本中<br>换行。</p></body></html> 22、HTML <dt> 标签 <dt> 标签只能够作为 <dl> 标签的一个子元素出现,常常后跟一个 <dd> 标签。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><dl><dt>咖啡</dt><dd>黑色的热饮</dd><dt>牛奶</dt><dd>白色的冷饮</dd></dl></body></html> 23、HTML <fieldset> 标签 <fieldset> 标签内的一组表单元素会在 WEB 浏览器中以特殊的方式显示,比如不同样式的边界、3D效果等。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><form><fieldset><legend>个人信息:</legend>姓名: <input type="text"><br>邮箱: <input type="text"><br>生日: <input type="text"></fieldset></form></body></html> 24、HTML <embed> 标签 <embed> 标签用来定义在页面中嵌入的内容,比如插件。比如,在下面的实例中我们嵌入了一个 flash 动画: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><embed src="/statics/demosource/helloworld.swf" tppabs="http://W3Cschool.com/tags/helloworld.swf"></body></html> 25、HTML <font> 标签 - HTML5 不支持 <font> 标签的使用示例如下所示,该标签已经过时,因此我们不建议您使用该标签。 <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p><font size="3" color="red">这是一些文本!</font></p><p><font size="2" color="blue">这是一些文本!</font></p><p><font face="verdana" color="green">这是一些文本!</font></p></body></html> 26、HTML <label> 标签 <label> 标签是一种常见的表单控件,触发对应表单控件功能,让用户在使用表单的时候能够有更好的体验。参考下述的实例: <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>W3Cschool(w3cschool.cn)</title> </head><body><p>点击其中一个文本标签选中选项:</p><form action="/statics/demosource/demo-form.php"><label for="male">Male</label><input type="radio" name="sex" id="male" value="male"><br><label for="female">Female</label><input type="radio" name="sex" id="female" value="female"><br><br><input type="submit" value="提交"></form></body></html> 记录一些重要标签! 本篇文章为转载内容。原文链接:https://blog.csdn.net/chehec2010/article/details/85060460。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-11 23:43:21
296
转载
JSON
本文深入分析JSON解析中冒号误用等号导致格式错误的问题,强调键值对规范对JSON解析的重要性。通过调试发现,等号破坏了JSON结构,需借助验证工具如JSONLint排查。文章提醒注意编程习惯,避免因疏忽或工具误导引发错误,并建议采用自动化测试预防问题。细节决定成败,掌握这些关键词能有效提升JSON处理的准确性与效率。
2025-03-31 16:18:15
12
半夏微凉
转载文章
...了解这一变革所带来的影响和价值。
2023-05-17 18:52:15
318
转载
RabbitMQ
...“啥?API版本还能影响功能?这玩意儿不是应该兼容所有旧版本的嘛?”但事实告诉我,这个世界没有免费的午餐,尤其是涉及到软件开发的时候。 --- 2. 问题重现 为什么我的代码突然崩溃了? 事情要从几个月前说起。那时候,我刚刚完成了一个基于RabbitMQ的消息推送系统。为了赶紧把东西推出去,我就没太细看依赖库的版本,直接装了最新的 pika(就是 RabbitMQ 官方推荐的那个 Python 客户端库)。一切都很完美,测试通过后,我兴高采烈地部署到了生产环境。 然而好景不长,几天后同事反馈说,有些消息无法正常到达消费者端。我赶紧登录服务器检查日志,发现报错信息指向了channel.basic_publish()方法。具体错误是: AttributeError: 'Channel' object has no attribute 'basic_publish' 我当时的第一反应是:“卧槽,这是什么鬼?basic_publish明明在文档里写了啊!”于是我翻阅了官方文档,发现确实存在一个叫做basic_publish的方法,但它属于早期版本的API。 经过一番痛苦的排查,我才意识到问题出在了版本差异上。原来,在较新的pika版本中,basic_publish已经被替换成了basic_publish_exchange,并且参数顺序也发生了变化。而我的代码依然按照旧版本的写法来调用,自然就挂掉了。 --- 3. 深度剖析 过时API的危害与应对之道 这件事让我深刻认识到,RabbitMQ虽然强大,但也需要开发者时刻保持警惕。特别是当你依赖第三方库时,稍不留神就可能踩进“版本陷阱”。以下几点是我总结出来的教训: (1)永远不要忽视版本更新带来的变化 很多开发者习惯于直接复制粘贴网上的代码示例,却很少去验证这些代码是否适用于当前版本。你可能不知道,有时候就算方法名一样,背后的逻辑变了,结果可能会差很多。比如说啊,在RabbitMQ的3.x版本里,你用channel.queue_declare()这个方法的时候,它返回的东西就像是个装满数据的盒子,但这个盒子是那种普通的字典格式的。可到了4.x版本呢,这玩意儿就有点变了味儿,返回的不再是那个简单的字典盒子了,而是一个“高级定制版”的对象实例,感觉像是升级成了一个有专属身份的小家伙。 因此,每次引入新工具之前,一定要先查阅官方文档,确认其最新的API规范。要是不太确定,不妨试试跑一下官方给的例程代码,看看有没有啥奇怪的表现。 (2)版本锁定的重要性 为了避免类似的问题再次发生,我在后续项目中采取了严格的版本管理策略。例如,在requirements.txt文件中明确指定依赖库的具体版本号,而不是使用通配符(如>=)。这样做的好处是,即使未来出现了更高级别的版本,也不会意外破坏现有功能。 下面是一段示例代码,展示了如何在pip中固定pika的版本为1.2.0: python requirements.txt pika==1.2.0 当然,这种方法也有缺点,那就是升级依赖时可能会比较麻烦。不过嘛,要是咱们团队人不多,但手头的项目特别讲究稳当性,那这个方法绝对值得一试! --- 4. 实战演练 修复旧代码,拥抱新世界 既然明白了问题所在,接下来就是动手解决问题了。嘿,为了让大家更清楚地知道怎么把旧版的API换成新版的,我打算用一段代码来给大家做个示范,保证一看就懂! 假设我们有一个简单的RabbitMQ生产者程序,如下所示: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 如果你直接运行这段代码,很可能会遇到如下警告: DeprecationWarning: This method will be removed in future releases. Please use the equivalent method on the Channel class. 这是因为queue_declare方法现在已经被重新设计为返回一个包含元数据的对象,而不是单纯的字典。我们需要将其修改为如下形式: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue channel.basic_publish(exchange='', routing_key=queue_name, body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 可以看到,这里新增了一行代码来获取队列名称,同时调整了routing_key参数的赋值方式。这种改动虽然简单,但却能显著提升程序的健壮性和可读性。 --- 5. 总结与展望 从失败中学习,向成功迈进 回想起这次经历,我既感到懊恼又觉得幸运。真后悔啊,当时要是多花点时间去了解API的新变化,就不会在这上面浪费那么多精力了。不过话说回来,这次小挫折也让我学到了教训,以后会更注意避免类似的错误,而且也会更加重视代码的质量。 最后想对大家说一句:技术的世界瞬息万变,没有人能够永远站在最前沿。但只要保持好奇心和学习热情,我们就一定能找到通往成功的道路。毕竟,正如那句经典的话所说:“失败乃成功之母。”只要勇敢面对挑战,总有一天你会发现,那些曾经让你头疼不已的问题,其实都是成长路上不可或缺的一部分。 希望这篇文章对你有所帮助!如果你也有类似的经历或者见解,欢迎随时交流哦~
2025-03-12 16:12:28
105
岁月如歌
MySQL
...les”的错误,严重影响用户体验。这一事件引发了业内对于数据库资源管理的关注。 事实上,此类问题并非孤立存在。根据权威机构发布的最新报告显示,近年来因数据库配置不当而导致的服务中断比例逐年上升。特别是在互联网行业,随着微服务架构的普及,单个应用程序可能依赖数十甚至上百个数据库实例,这对数据库的稳定性提出了更高要求。此外,随着人工智能算法模型训练需求的增长,大模型的数据存储与计算任务也给传统数据库带来了前所未有的压力。 针对上述趋势,国内外多家科技公司已经开始探索更加智能化的数据库运维解决方案。例如,谷歌推出的Cloud SQL自动扩展功能可以根据实时流量动态调整资源分配,从而有效缓解类似问题的发生;阿里云则推出了PolarDB-X产品线,专门针对超高并发场景进行了优化设计。这些创新举措表明,未来数据库运维将朝着自动化、智能化方向发展。 与此同时,开源社区也在积极贡献力量。Linux内核开发者近日宣布,将在即将发布的5.18版本中引入一项名为“FD-PIN”的新特性,该特性能够显著提高文件描述符管理效率,为数据库等高性能应用场景提供更多可能性。这无疑为解决“Too many open files”这类经典问题提供了全新思路。 综上所述,无论是从技术演进还是实际案例来看,如何高效管理数据库资源已成为当下亟待解决的重要课题。作为从业者,我们需要紧跟时代步伐,不断学习新技术,同时注重实践经验积累,唯有如此才能更好地应对未来的挑战。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
321
转载
Logstash
...日志的先后顺序,直接影响到数据分析的结果。要是时间戳搞混了,你那些日志数据就全成了一群没头苍蝇,到处乱窜,啥用都没有了,后面想统计、监控,甚至报警都玩不转了。 --- 2. Logstash中的时间戳 它是怎么工作的? Logstash本身是一个强大的日志处理工具,它可以通过输入插件收集日志,通过过滤器插件对日志进行处理,最后再通过输出插件将处理好的日志发送到目标存储系统。在这个过程中,时间戳扮演着非常重要的角色。 默认情况下,Logstash会从日志源中提取时间戳,并将其保存为@timestamp字段。这个字段是Logstash内部的核心字段之一,用于表示日志事件发生的时间。哎呀,有时候你会发现,Logstash搞出来的时间戳 totally 不靠谱,要么跟你想的差太远,要么干脆就是错的,简直让人头大!这是怎么回事呢? 2.1 日志源中的时间戳格式不统一 最常见的问题是日志源中的时间戳格式不统一。比如说啊,有些日志的时间戳长得很正式,用的是ISO 8601这种格式,看起来就像2023-09-25T10:30:00Z这样;有些就比较简单随意了,直接就是2023-09-25 10:30:00这种日期加时间的样式;更夸张的是,有些干脆啥时间戳都没有,简直让人摸不着头脑。在这种情况下,Logstash会尝试自动解析时间戳,但如果格式不匹配,它就会抓瞎。 解决方法:手动指定时间戳格式 这时候,我们可以使用Logstash的date过滤器插件来手动指定时间戳格式。比如: plaintext filter { date { match => [ "timestamp", "yyyy-MM-dd HH:mm:ss" ] } } 这段代码告诉Logstash,日志中的时间戳字段叫timestamp,并且它的格式是yyyy-MM-dd HH:mm:ss。这样,Logstash就能正确解析时间戳了。 --- 3. 时间戳的调整与重置 让数据更符合需求 有时候,我们不仅仅需要提取时间戳,还需要对它进行一些调整。比如说,你可能想把时间戳改成UTC时间,或者是转成某个特定的时区,这样用起来更方便。再比如,你想在日志里加个新玩意儿,弄个时间戳啥的,专门用来记录现在是啥时候,方便以后找茬儿不迷路呗。 3.1 调整时区 假设你的日志时间戳是本地时间,而你需要将其转换为UTC时间。你可以使用date过滤器插件的timezone选项来实现: plaintext filter { date { match => [ "@timestamp", "ISO8601" ] timezone => "UTC" } } 这段代码会让Logstash将@timestamp字段的值转换为UTC时间。 3.2 添加新的时间戳字段 如果你希望在日志中添加一个新的时间戳字段,比如记录日志处理的时间,可以使用ruby过滤器插件: plaintext filter { ruby { code => " event.set('processing_time', Time.now.strftime('%Y-%m-%d %H:%M:%S')) " } } 这段代码会在日志中添加一个名为processing_time的新字段,记录当前的日志处理时间。 --- 4. 遇到问题怎么办?调试技巧分享 当然,在实际操作中,我们可能会遇到各种各样的问题。比如,时间戳始终无法正确提取,或者日志时间戳格式复杂到让人崩溃。这时候该怎么办呢? 4.1 使用Logstash的日志查看功能 Logstash本身提供了一个非常有用的调试工具,叫做stdout输出插件。你可以通过它实时查看日志的处理过程,检查时间戳是否正确提取: plaintext output { stdout { codec => rubydebug } } 运行Logstash后,你会看到每条日志的详细信息,包括时间戳字段。通过这种方式,你可以快速定位问题所在。 4.2 逐步排查问题 如果时间戳仍然有问题,可以尝试以下步骤逐步排查: 1. 检查日志源 确保日志中的时间戳字段存在且格式正确。 2. 检查Logstash配置 确保date过滤器插件的match选项与日志时间戳格式匹配。 3. 测试时间戳解析 使用在线工具或脚本测试时间戳格式是否能被正确解析。 --- 5. 总结 时间戳问题并不可怕 经过这一番折腾,你会发现时间戳问题虽然看起来很复杂,但实际上只要掌握了正确的工具和方法,一切都能迎刃而解。Logstash这工具啊,插件多得不得了,配置起来也特别灵活,简直就是对付各种时间戳问题的小能手,用起来超顺手! 希望这篇文章对你有所帮助!如果你还有其他问题,欢迎随时交流。毕竟,技术的世界就是这样,大家一起探索才能走得更远。😄 --- 好了,今天的分享就到这里啦!记得点赞支持哦,下次再见!
2025-05-13 15:58:22
25
林中小径
转载文章
...果从前往后,小区间会影响大区间的,所以从大区间向小区间进行,然后遍历字符串,将每一位的0,1的个数进行计算,然后将a,b不相同的下标进行标记为1,代表需要改变。 从后遍历,cnt进行次数,因为如果是奇数的话,才会变成不一样的数字,偶数的话,区间变化会使它变回去了,在判断当前位之前,我们先看之前的大区间的变化将当前第i位变成了什么,因为只有0,1,跟标记的0,1是代表他是否需要变化,假如说:原先为0,他后面的区间将它变化了奇数次,那么它就现在是需要变化的才能变成吧b。原先为1,它后面的区间将它变化了偶数次,就还是1。如果这个下标的标记为1,代表需要被变化,我们就判断当前位的0,1个数是否相同,相同的话就代表了一次变化cnt++,否则就退出无法变成b了,因为之后没有区间将它再次变化了。然后我们就可以判断了 代码: include<bits/stdc++.h>using namespace std;const int N=3e5+7;int s0[N],s1[N];int a[N],b[N],p[N];int main (){int t;cin>>t;while(t--){int n;cin>>n;string a,b;cin>>a>>b;memset(p,0,sizeof p);for(int i=0;i<n;i++){if(a[i]=='0'){s0[i]=s0[i-1]+1;s1[i]=s1[i-1];}else{s1[i]=s1[i-1]+1;s0[i]=s0[i-1];}if(a[i]!=b[i]){p[i]=1;//是否相同的标记} }int cnt=0;int f=0;for(int i=n-1;i>=0;i--){if(cnt%2==1){//奇数次才会被变化p[i]=1-p[i];}//而且必须在前面判这一步,因为你得先看后面的区间将这一位变成了什么if(p[i]){if(s0[i]==s1[i]) cnt++;//0,1相同时才可以进行一次变化else {f=1;break;} }}if(f==1){cout<<"NO"<<endl;}else{cout<<"YES"<<endl;} }return 0;}//这个就利用了一个标记来判断当前为被影响成了什么/01 01 01 01 01 0110 01 10 01 10 10100101010101011010101010100101011010011001011010100110011010Select the length 12prefix to get.Select the length 8prefix to get.Select the length 4prefix to get.Select the length 6prefix to get01 110100 0001 001011 00/ C. Balance the Bits time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output A sequence of brackets is called balanced if one can turn it into a valid math expression by adding characters ‘+’ and ‘1’. For example, sequences ‘(())()’, ‘()’, and ‘(()(()))’ are balanced, while ‘)(’, ‘(()’, and ‘(()))(’ are not. You are given a binary string s of length n. Construct two balanced bracket sequences a and b of length n such that for all 1≤i≤n if si=1, then ai=bi if si=0, then ai≠bi If it is impossible, you should report about it. Input The first line contains a single integer t (1≤t≤104) — the number of test cases. The first line of each test case contains a single integer n (2≤n≤2⋅105, nis even). The next line contains a string sof length n, consisting of characters 0 and 1.The sum of nacross all test cases does not exceed 2⋅105. Output If such two balanced bracked sequences exist, output “YES” on the first line, otherwise output “NO”. You can print each letter in any case (upper or lower). If the answer is “YES”, output the balanced bracket sequences a and b satisfying the conditions on the next two lines.If there are multiple solutions, you may print any. Example Input Copy 3 6 101101 10 1001101101 4 1100 Output Copy YES ()()() ((())) YES ()()((())) (())()()() NO Note In the first test case, a= “()()()” and b="((()))". The characters are equal in positions 1, 3, 4, and 6, which are the exact same positions where si=1 .In the second test case, a= “()()((()))” and b="(())()()()". The characters are equal in positions 1, 4, 5, 7, 8, 10, which are the exact same positions where si=1 In the third test case, there is no solution. 题意: 一个n代表01串的长度,构造两个长度为n的括号序列,给你一个01串,代表着a,b两个序列串字符不相同。然后你来判断是否有合理的a,b串。有的话输出。 思路: 这题想了很久想不明白,看了大佬的题解,迷迷糊糊差不多理解吧。这题是这样的,就是: (1)第一步得合法的字符串,所以首尾得是相同的且都为1 (2)第二步,因为01串长度为偶数,所以如果合法的话,得( 的个数= ) 的个数,然后你想呀,假如为 ()()()()吧,然后你有一个0破坏了一个括号,但如果合法的话,是不是得还有一个0再破坏一个括号,然后被破坏的这俩个进行分配才能合理,所以如果合法的话,01串得0的个数为偶数,1的个数自然而然为偶数吧。 (3)最后一步构造,既然1的个数为偶数,首尾又都为1,所以1的个数前sum1/2个1构造为‘( ’,后sum1/2个构造为‘)’,然后我们1的所有的目前是合法的,然后剩下的0也是偶数的,然后如果让他们合法进行分配就( )间接进行就可以了,然后我们根据01串将b构造出来。合法的核心就是当前位的(个数大于等于),所以我们在循环进行判断一下a,b串是否都满足,(其实我觉得这么构造出来,a必然合理呀,其实就判b就行了,我保险起见都判了)。 代码: include<bits/stdc++.h>using namespace std;const int N=3e5+7;char a[N],b[N];int main (){int t;cin>>t;while(t--){int n;cin>>n;string s;cin>>s;if(s[0]!=s[n-1]&&s[0]!='1'){cout<<"NO"<<endl;}else{int sum1=0,sum0=0;for(int i=0;i<s.size();i++){if(s[i]=='1') sum1++;else sum0++;}if(sum1%2!=0||sum0%2!=0){cout<<"NO"<<endl;}else{int cnt1=0,cnt0=1;for(int i=0;i<n;i++){if(s[i]=='1'&&cnt1<sum1/2){a[i]='(';cnt1++;}else if(s[i]=='1'&&cnt1>=sum1/2){a[i]=')';cnt1++;}else if(s[i]=='0'&&cnt0%2==1){a[i]='(';cnt0++;}else if(s[i]=='0'&&cnt0%2==0){a[i]=')';cnt0++;}//cout<<a[i]<<endl;}for(int i=0;i<n;i++){if(s[i]=='0'){if(a[i]=='(') b[i]=')';else b[i]='(';}else{b[i]=a[i];}//cout<<b[i]<<endl;}// cout<<"YES"<<endl;int f=0;int s0=0,s1=0;for(int i=0;i<n;i++){if(a[i]=='(') s0++;else if(a[i]==')') s1++;if(s0<s1) {f=1;break;} }s0=0,s1=0;for(int i=0;i<n;i++){if(b[i]=='(') s0++;else if(b[i]==')') s1++;if(s0<s1) {f=1;break;} }if(f==0){cout<<"YES"<<endl;for(int i=0;i<n;i++) cout<<a[i];cout<<endl;for(int i=0;i<n;i++) cout<<b[i];cout<<endl;}else{cout<<"NO"<<endl;} }} }return 0;}/01 01 01 01 01 0110 01 10 01 10 10100101010101011010101010100101011010011001011010100110011010Select the length 12prefix to get.Select the length 8prefix to get.Select the length 4prefix to get.Select the length 6prefix to get01 110100 0001 001011 00/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/lvy_yu_ET/article/details/115575091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 13:54:12
228
转载
Apache Solr
...头疼的问题呢!这不仅影响了用户体验,也可能导致Solr服务本身的负载增加,进一步加剧问题。 二、案例分析 使用Solr查询外部数据源 为了更好地理解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
hostnamectl
- 查看和修改系统的主机名和其他相关设置。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"