前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[磁盘分区识别错误排查]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
344
转载
转载文章
...背后运用了先进的图像识别算法与深度学习技术,确保即使在网络环境不稳定的情况下,也能实现快速、准确的图像处理。 另外,微信团队也于近期发布了关于小程序内用户头像处理接口的更新公告,提供了更灵活、便捷的头像上传与编辑API,开发者可以基于此构建更为丰富的个性化设置功能。此举不仅简化了开发流程,也为用户提供更多样化的头像定制选项。 此外,从安全性和隐私保护角度出发,欧盟GDPR等相关法规对用户数据处理提出了严格要求,这也促使各平台在设计头像上传功能时,必须兼顾到用户信息的安全存储与传输。众多企业开始采用加密上传、权限控制等手段,确保用户头像数据的安全性。 综上所述,在当前互联网环境下,用户头像处理技术正不断迭代创新,以满足日益增长的个性化需求和严格的隐私保护规范。无论是大型社交平台的技术突破,还是各类开发框架对头像上传功能的优化改进,都为我们提供了丰富的实践案例与参考思路,值得广大开发者持续关注并深入研究。
2023-07-18 10:58:17
268
转载
转载文章
...als 方法的重载是错误的,参数不对。 本篇文章为转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 22:30:35
104
转载
Golang
...存泄漏或野指针导致的错误。然而,高并发环境下GC可能会产生停顿现象,为此Go团队引入了分代GC算法,通过区分新旧对象来减少全局停顿时间,从而提升整体性能。 Serve方法 , Serve方法是Go语言标准库net/http包提供的一个高级抽象,用于快速搭建HTTP服务器。它能够自动处理请求的分发、连接池管理以及请求队列,非常适合构建高并发的Web服务。在文章中,通过http.ListenAndServe(\ :8080\ , nil)即可启动一个简单的HTTP服务器,该服务器会监听指定端口并将所有请求交给默认的处理器链进行处理。这种方法屏蔽了底层复杂的网络细节,使开发者可以专注于业务逻辑的实现,同时保证了较高的性能和稳定性。
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
...简友:V旅行指出此处错误! 2017/3/24)就不用那么麻烦的换算了,此时那个90px的直接写成0.9rem就可以了。 4.问:在此方案下,我如果引用了别的UI库,那些UI库的元素会显得特别小,如何解决? 答:可以这样去理解问题的原因,如果不用高清方案,别的UI库的元素在移动设备上(假设这个设备是iphone 5好了)显示是正常的,这没有问题,然后我们在这个设备上将该页面截图放到电脑上看,发现宽度是640(问答1解释过了),根据你的像素眼大致测量,你发现这个设备上的某个字体大小应该是12px,而你在电脑上测量应该是24px。 现在我们使用高清方案去还原这个页面,那么字体大小应该写为 0.24rem 才对! 所以,如果你引用了其他的UI库,为了兼容高清方案,你需要对该UI库里凡是应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
133
转载
转载文章
...l, "出现了未知的错误,增加失败"); } } @Override public void mouseClicked(MouseEvent arg0) { if (arg0.getClickCount() == 2) { int row = jieShou.biaoGe1.getSelectedRow(); jieShou.wenBenKuangBianHao .setText(jieShou.biaoGe1.getValueAt( row, 0).toString()); jieShou.wenBenKuangName .setText(jieShou.biaoGe1.getValueAt( row, 1).toString()); jieShou.wenBenKuangPrice .setText(jieShou.biaoGe1.getValueAt( row, 2).toString()); jieShou.wenBenKuangTypeId .setText(jieShou.biaoGe1.getValueAt( row, 3).toString()); jieShou.wenBenKuangJieShao .setText(jieShou.biaoGe1.getValueAt( row, 4).toString()); } if (arg0.isMetaDown()) { int num = JOptionPane.showConfirmDialog(null, "是否确认删除这条信息?"); if (num == 0) { int row = jieShou.biaoGe1 .getSelectedRow(); String sql = "delete shangpin where sp_id=" + jieShou.biaoGe1.getValueAt( row, 0) + ""; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "册除成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,请重试"); } } } } @Override public void mouseEntered(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent arg0) { // TODO Auto-generated method stub } } static JButton zengJiaAnNiu = null; static DefaultTableModel biaoGeMoXing1 = null; static JScrollPane gunDongTiao = null; static JTable biaoGe1 = null; static JLabel wenZiBianHao, wenZiName, wenZiPrice, wenZiTypeId, wenZiJieShao; static JTextField wenBenKuangBianHao, wenBenKuangName, wenBenKuangPrice, wenBenKuangTypeId, wenBenKuangJieShao; static Vector BiaoTiJiHe = null; static Vector> NeiRongJiHe = null; JPanel mianBan1, mianBan2 = null; public biaoGe() { this.setTitle("登录后的界面"); this.setSize(800, 600); this.setLayout(null); this.setLocationRelativeTo(null); wenZiBianHao = new JLabel("编号"); wenZiName = new JLabel("名称"); wenZiPrice = new JLabel("价格"); wenZiTypeId = new JLabel("类型ID"); wenZiJieShao = new JLabel("介绍"); zengJiaAnNiu = new JButton("添加数据"); zengJiaAnNiu.setBounds(530, 390, 100, 30); zengJiaAnNiu.addActionListener(new shiJian(this)); this.add(zengJiaAnNiu); wenZiBianHao.setBounds(560, 100, 70, 30); wenZiName.setBounds(560, 140, 70, 30); wenZiPrice.setBounds(560, 180, 70, 30); wenZiTypeId.setBounds(560, 220, 70, 30); wenZiJieShao.setBounds(560, 260, 70, 30); this.add(wenZiBianHao); this.add(wenZiName); this.add(wenZiPrice); this.add(wenZiTypeId); this.add(wenZiJieShao); wenBenKuangBianHao = new JTextField(); wenBenKuangBianHao.setEditable(false); wenBenKuangName = new JTextField(); wenBenKuangPrice = new JTextField(); wenBenKuangTypeId = new JTextField(); wenBenKuangJieShao = new JTextField(); wenBenKuangBianHao.setBounds(640, 100, 130, 30); wenBenKuangName.setBounds(640, 140, 130, 30); wenBenKuangPrice.setBounds(640, 180, 130, 30); wenBenKuangTypeId.setBounds(640, 220, 130, 30); wenBenKuangJieShao.setBounds(640, 260, 130, 30); this.add(wenBenKuangBianHao); this.add(wenBenKuangName); this.add(wenBenKuangPrice); this.add(wenBenKuangTypeId); this.add(wenBenKuangJieShao); biaoGeFengZhuangFangFa(); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } //biaoGeFengZhuangFangFa表格的封装方法 private void biaoGeFengZhuangFangFa() { BiaoTiJiHe = new Vector(); BiaoTiJiHe.add("编号"); BiaoTiJiHe.add("名称"); BiaoTiJiHe.add("价格"); BiaoTiJiHe.add("类型"); BiaoTiJiHe.add("介绍"); String sql = "select from shangpin"; ResultSet res = DBUtils.Select(sql); try { NeiRongJiHe = new Vector>(); while (res.next()) { Vector v = new Vector(); v.add(res.getInt("sp_ID")); v.add(res.getString("sp_Name")); v.add(res.getDouble("sp_price")); v.add(res.getInt("sp_TypeID")); v.add(res.getString("sp_Jieshao")); NeiRongJiHe.add(v); } biaoGeMoXing1 = new DefaultTableModel(NeiRongJiHe, BiaoTiJiHe) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe1 = new JTable(biaoGeMoXing1); biaoGe1.addMouseListener(new shiJian(this)); biaoGe1.setBounds(0, 0, 500, 500); gunDongTiao= new JScrollPane(biaoGe1); gunDongTiao .setBounds(0, 0, 550, 150); mianBan1 = new JPanel(); mianBan1.add(gunDongTiao ); mianBan1.setBounds(0, 0, 550, 250); this.add(mianBan1); } catch (SQLException e) { e.printStackTrace(); } } public void chaxunchushihua() { if (this.mianBan1 != null) { this.remove(mianBan1); } biaoGeFengZhuangFangFa(); // 释放资源:this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package SwingJdbc; import java.sql.; public class DBUtils { static Connection con=null; static Statement sta=null; static ResultSet res=null; //在静态代码块中执行 static{ try { Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //封装链接数据库的方法 public static Connection getCon(){ if(con==null){ try { con=DriverManager.getConnection ("jdbc:sqlserver://localhost;databaseName=yonghu","qqq","123"); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return con; } //查询的方法 public static ResultSet Select(String sql){ con=getCon();//建立数据库链接 try { sta=con.createStatement(); res=sta.executeQuery(sql); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return res; } //增删改查的方法 //返回int类型的数据 public static boolean ZSG(String sql){ con=getCon();//建立数据库链接 boolean b=false; try { sta=con.createStatement(); int num=sta.executeUpdate(sql); //0就是没有执行成功,大于0 就成功了 if(num>0){ b=true; } } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return b; } } package SwingJdbc; public class mains { public static void main(String[] args) { new biaoGe(); } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39929646/article/details/114190817。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-18 08:36:23
525
转载
转载文章
...能未因新的更改而引入错误或缺陷。文中提到的Aristole研究组织就涉及了回归测试的研究,探讨如何优化回归测试策略,以及如何通过测试套最小化技术减少回归测试的工作量,提高测试效率。 CMMI(Capability Maturity Model Integration) , CMMI是由美国卡内基梅隆大学软件工程研究所(SEI)开发的一套能力成熟度集成模型,用于评估和改进组织在软件开发和服务方面的过程成熟度。文中提及的ESI组织提供了包括CMMI评估在内的各种服务,这表明CMMI在软件工程领域中被广泛用于衡量和提升企业项目管理、软件开发和服务的质量管理水平。 ISO(International Organization for Standardization) , ISO是一个国际标准化组织,负责制定全球认可的标准,以促进各行业间的技术合作与贸易交流。在本文语境下,ISO标准对于软件测试和质量保证具有重要意义,例如提供关于软件开发、测试过程、文档编制等方面的指导原则和最佳实践,有助于确保软件产品的质量和一致性。
2023-08-29 09:17:46
134
转载
转载文章
...PS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
270
转载
转载文章
...arameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...ace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...了解详情。 · 文本识别 (Text Classifier) 在 Android P 中,我们将识别文本的机器学习模型进行了扩展,使得它可以识别出诸如日期或航班号这样的信息,并通过 TextClassifier API 来让开发者使用到这些改进。我们还更新了 Linkify API 来利用文本识别的结果生成链接,并为用户提供了更多点击后的选项,从而让他们得以更快地进行下一步操作。当然,开发者也可以在给文本识别出来的信息添加链接时拥有更多的选项。智能 Linkify 在识别精准度以及速度上都有明显的提升。 这个模型现在正在通过 Google Play 进行更新,所以您的应用使用现有的 API 就可以享受到本次更新所带来的变化。在安装更新完的模型后,设备即可直接在本地识别文本里的各种信息,而且这些识别出来的信息只保存在您的手机上而不会通过网络流传出去。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 简洁 (Simplicity) 在 Android P,我们格外强调简洁,并据此改进 Android 的 UI 从而帮助用户们更流畅、更高效地完成操作。对开发者来说,简洁的系统则会帮助用户更容易查找、使用和管理您的应用。 · 全新系统导航 (New system navigation) 我们为 Android P 设计了全新的系统导航,只需使用下图中这个在所有界面中都能看到的小按钮,即可更轻松地访问手机主屏、概览页以及 Assistant。新导航系统也使多任务切换及发现关联应用变得更加简单。在概览页,用户可以拥有更大的视野来查看他们之前中断的操作,这自然也会让他们更容易找到并回到之前的应用中。概览页也提供了搜索、预测推荐应用以及上文提到的 App Actions,而且只需再多划一次即可进入所有应用的列表。 · 文字放大镜 (Text Magnifier) 在 Android P 中,我们加入了新的放大镜工具 (Magnifier widget),使选择文本和调整光标位置变得更加轻松。默认情况下,所有继承自 TextView 的类都会自动支持放大镜,但您也可以使用放大镜 API 将它添加到任何自定义的视图上,从而打造更多样化的体验。 · 后台限制 (Background restrictions) 用户可以更加简单地找到并管理那些在后台消耗电量的应用。通过 Android Vitals 积累下来的成果,Android 可以识别那些过度消耗电量的行为,如滥用唤醒锁定等。在 Android P 中,电池设置页面直接列出了这些过度消耗电量的应用,用户只需一次点击就可以限制它们在后台的活动。 一旦应用被限制,那么它的后台任务、警报、服务以及网络访问都会受限。想要避免被限制的话,请留意 Play Console 中的Android Vitals 控制面板,帮助您了解如何提高性能表现以及优化电量消耗。 后台限制能有效保护系统资源不被恶意消耗,从而确保开发者的应用在不同制造商的不同设备上也能拥有一个基础的合理的运行环境。虽然制造商可以在限制列表上额外添加限制的应用,但它们也必须在电池设置页面为用户开放这些限制的控制权。 我们添加了一个标准 API 来帮助应用知晓自己是否被限制,以及一个 ADB 命令来帮助开发者手动限制应用,从而进行测试。具体请参阅相关文档。接下来我们计划在 Play Console 的 Android Vitals 控制面板里添加一个统计数据,以展示应用受到限制的情况。 · 使用动态处理增强音频 (Enhanced audio with Dynamics Processing) Android P 在音频框架里加入了动态处理效果 (Dynamic Processing Effect) 来帮助开发者改善声音品质。通过动态处理,您可以分离出特定频率的声音,降低过大的音量,或者增强那些过小的音量。举例来说,即便说话者离麦克风较远,而且身处嘈杂或者被刺耳的各种环境音包围的地方,您的应用依然可以有效分离并增强他/她的细语。 动态处理 API 提供了多声场、多频段的动态处理效果,包括一个预均衡器、一个多频段压缩器,一个后均衡器以及一个串联的音量限制器。这样您就可以根据用户的喜好或者环境的变化来控制 Android 设备输出的声音。频段数量以及各个声场的开关都完全可控,大多数参数都支持实时控制,如增益、信号的压缩/释放 (attack/release) 时长,阈值等等。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 安全 (Security) · 用户识别提示 (Biometric prompt) Android P 为市面上涌现出来的各种用户识别机制在系统层面提供了统一的使用体验,应用们不再需要自行提供用户识别操作界面,而只需要使用统一的 BiometricPrompt API 即可。这套全新的 API 替代了 DP1 版本中的 FingerprintDialog API,且支持包括指纹识别 (包括屏幕下指纹识别)、面部识别以及虹膜识别,而且所有系统支持的用户识别需求都包含在一个 USE_BIOMETRIC 权限里。FingerprintManager 以及对应的 USE_FINGERPRINT 权限已经被废弃,请开发者尽快转用 BiometricPrompt。 · 受保护的确认操作 (Protected Confirmation) Android P 新增了受保护的确认操作 (Android Protected Confirmation),这个功能使用可信执行环境 (Trusted Execution Environment, TEE) 来确保一个显示出来的提示文本被真实用户确认。只有在用户确认之后,TEE 才会放行这个文本并可由应用去验证。 · 对私有密钥的增强保护 (Stronger protection for private keys) 我们添加了一个新的 KeyStore 类型,StrongBox。并提供对应的 API 来支持那些提供了防入侵硬件措施的设备,比如独立的 CPU,内存以及安全存储。您可以在 KeyGenParameterSpec 里决定您的密钥是否该交给 StrongBox 安全芯片来保存。 Android P Beta 为用户带来新版本的 Android 需要 Google、芯片供应商以及设备制造商和运营商的共同努力。这个过程中充满了技术挑战,并非一日之功 —— 为了让这个过程更加顺畅,去年我们启动了 Project Treble,并将其包含在 Android Oreo 中。我们与合作伙伴们一直在努力开发这个项目,也已经看到 Treble 所能带来的机遇。 我们宣布,以下 6 家顶级合作伙伴将和我们一起把 Android P Beta 带给全世界的用户,这些设备包括:索尼 Xperia XZ2, 小米 Mi Mix 2S, 诺基亚 7 Plus, Oppo R15 Pro, Vivo X21UD 和 X21, 以及 Essential PH‑1。此外,再加上 Pixel 2, Pixel 2 XL, Pixel 和 Pixel XL,我们希望来自世界各地的早期体验者以及开发者们都能通过这些设备体验到 Android P Beta。 您可查看今天推送的文章查阅支持 beta 体验的合作伙伴和 Pixel 设备清单,并能看到每款设备的详细配置说明。如果您使用 Pixel 设备,现在就可以加入 Android Beta program,然后自动获得最新的 Android P Beta。 马上开始在您喜欢的设备上体验 Android P Beta 吧,欢迎您向我们反馈意见和建议!并请继续关注 Project Treble 的最新动态。 确保 app 兼容 随着越来越多的用户开始体验 Android P Beta,是时候开始测试您 app 的兼容性,以尽早解决在测试中发现的问题并尽快发布更新。请查看迁移手册了解操作步骤以及 Android P 的时间推进表。 请从 Google Play 下载您的应用,并在运行 Android P Beta 的设备或模拟器上测试用户流程。确保您的应用体验良好,并正确处理 Android P 的行为变更。尤其注意动态电量管理、Wi-Fi 权限变化、后台调用摄像头以及传感器的限制、针对应用数据的 SELinux 政策、默认启用 TLS 的变化,以及 Build.SERIAL 限制。 · 公开 API 的兼容性 (Compatibility through public APIs) 针对非 SDK 接口的测试十分重要。正如我们之前所强调的,在 Android P 中,我们将逐渐收紧一些非 SDK 接口的使用,这也要求广大的开发者们,包括 Google 内部的应用团队,使用公开 API。 如果您的应用正在使用私有 Android API 或者库,您需要改为使用 Android SDK 或 NDK 公开的 API。我们在 DP1 里已经对使用私有接口的开发者发出了警告信息,从 Android P Beta 开始,调用非 SDK 接口将会报错 (部分被豁免的私有 API 除外) —— 也就是说您的应用将会遭遇异常,而不再只是警告了。 为了帮助您定位非 SDK API 的使用情况,我们在 StrictMode 里加入了两个新的方法。您可以使用 detectNonSdkApiUsage() 在应用通过反射或 JNI 调用非 SDK API 的时候收到警报,您还可以使用 permitNonSdkApiUsage() 来阻止 StrictMode 针对这些调用报错。这些方法都可助您了解应用调用非 SDK API 的情况,但请注意,即便调用的 API 暂时得到了豁免,最保险的做法依然是尽快放弃对它们的使用。 如果您确实遇到了公开 API 无法满足需求的情况,请立刻告知我们。更多详细内容请查看相关文档。 · 凹口屏测试 (Test with display cutout) 针对凹口屏测试您的应用也十分重要。现在您可以在运行 Android P Beta 的合作伙伴机型上测试,确保您的应用在凹口屏上表现良好。同时,您也可以在 Android P 设备的开发者选项里打开对凹口屏的模拟,对您的应用做相应测试。 体验 Android P 在准备好开发条件后,请深入了解 Android P 并学习可以在您的应用中使用到的全新功能和 API。为了帮助您更轻松地探索和使用新 API,请查阅 API 变化报告 (API 27->DP2, DP1->DP2) 以及 Android P API 文档。访问开发者预览版网站了解详情。 下载/更新 Android P 开发者预览版 SDK 和工具包至 Android Studio 3.1,或使用最新版本的 Android Studio 3.2。如果您手边没有 Android P Beta 设备 (或查看今天推送的次条文章),请使用 Android P 模拟器来运行和测试您的应用。 您的反馈一直都至关重要,我们欢迎您畅所欲言。如果您在开发或测试过程中遇到了问题,请在文章下方留言给我们。再次感谢大家一路以来的支持。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34258782/article/details/87952581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-10 18:19:36
338
转载
转载文章
...于证件照生成,能智能识别并分离出照片中的人物主体,以便于后续对背景进行更换或编辑,保证证件照的专业性和规范性。 SeedNet网络 , SeedNet是《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》一文中提出的多阶段分割网络模型,该模型采用了多任务学习策略,旨在提高对图像中特定区域(例如手部)的分割精度和整体效果。在本文研究中,作者选取了SeedNet网络的第一阶段进行实验,并展示了其在证件照生成背景分割上的应用效果。
2023-07-11 23:36:51
131
转载
转载文章
...?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...nnerText 不识别html标签 非标准 去除空格和换行var div = document.querySelector('div');div.innerText = '<strong>今天是:</strong> 2020';// 2.innertHTML 识别html标签 W3C标准 保留空格和换行的 推荐尽量使用这个 因为这个是标准var p = document.querySelector('p')p.innerHTML = '<strong>今天是:</strong> 2020';// 3.这俩个属性是可读写的 意思是 除了改变内容还可以元素读取里面的内容的var ul = document.querySelector('ul')console.log(ul.innerText);console.log(ul.innerHTML);// .4innerHtml innerText 之间的区别:设置内容的时候,如果内容当中包含标签字符串 innerHtml会有标签的特性,也就是说标签会在页面上生效如果内容当中包含标签字符串 innerText会把标签原样展示在页面上,不会让标签生效读取内容的时候,如果标签内部还有其它标签,innerHtml会把标签内部带着其它的标签全部输出如果标签内部还有其它标签,innerText只会输出所有标签里面的内容或者文本,不会输出标签如果标签内部没有其它标签,他们两个一致;都是读取文本内容,innerHtml会带空白和换行</script></body> 2. 操作常见元素属性 innerText、innerHTML 改变元素内容 src、href id、alt、title 代码演示 <body><button id="ldh">刘德华</button><button id="zxy">张学友</button><br><img src="./images/ldh.jpg" alt="" width="200px" height="200px" title="刘德华" id="img"><script>// 修改属性 src// 我们可以操作元素得方法 来修改元素得属性 就是 元素的是什么属性 在重新给值就可以完成相应的赋值操作了// 1.获取元素var ldh = document.getElementById('ldh')var zxy = document.getElementById('zxy')var img = document.getElementById('img')// 2.注册事件 程序处理zxy.onclick = function() {// 当我们点击了图片的时候图片路径就发生变化 这里的.表示 的 得意思 img对象下的src属性img.src = './images/zxy.jpg';// 当我们变换图片得同时里面得title也要跟着变 所以前面要加上img.img.title = '张学友';}ldh.onclick = function() {img.src = './images/ldh.jpg';img.title = '刘德华';}</script> 3.操作表单元素属性 利用DOM可以操作如下表单元素的属性 type、value、checked、selected、disabled 代码演示: <body><button>按钮</button><input type="text" value="输入内容"><script>// 我想把value里面的输入内容改变为 被点击了// 1.获取元素var but = document.querySelector('button')var input = document.querySelector('input')// 2.注册事件 处理程序but.onclick = function() {// input.innerHTML = '被点击了'; 这个是 普通盒子 比如 div 标签里面的内容// 表单里面的值 文字内容是通过value来修改的input.value = '被点击了'// 如果需要某个表单被禁用 不能再点击了使用 disabled 我们想要这个按钮 button禁用// but.disabled = true// 还有一种写法// this指向的是事件函数的调用者 谁调用就指向谁 这里调用者是btnthis.disabled = true}</script></body> 4.操作元素样式属性 我们可以通过 JS 修改元素的大小、颜色、位置等样式。 1.element.style 行内样式操作 注意: JS 里面的样式采取驼峰命名法 比如 fontSize、 backgroundColor JS 修改 style 样式操作,产生的是行内样式,所以行内式比内嵌式高 代码演示 <style>div {width: 200px;height: 200px;background-color: red;}</style></head><body><div></div><script>// 要求点击div变成粉色 height变为250px// 1.获取元素var div = document.querySelector('div');// 2.注册事件 处理程序div.onclick = function() {// div.style里面的属性 采取的是驼峰命名法// this等于div this调用者 谁调用谁执行this.style.backgroundColor = 'pink'this.style.height = '250px'}</script> 2.element.className 类名样式操作 注意: 如果样式修改较多,可以采取操作类名方式更改元素样式。 class因为是个保留字,因此使用className来操作元素类名属性 className 会直接更改元素的类名,会覆盖原先的类名。 代码演示 <style>div {width: 100px;height: 100px;background-color: pink;}.change {background-color: purple;color: fff;font-size: 25px;margin-top: 100px;}</style></head><body><div class="first">文本</div><script>// 1. 使用 element.style 获得修改元素样式 如果样式比较少 或者 功能简单的情况下使用var test = document.querySelector('div');test.onclick = function() {// this.style.backgroundColor = 'purple';// this.style.color = 'fff';// this.style.fontSize = '25px';// this.style.marginTop = '100px';// 让我们当前元素的类名改为了 change// 2. 我们可以通过 修改元素的className更改元素的样式 适合于样式较多或者功能复杂的情况 如果想继续添加样式即在change添加即可// 3. 如果想要保留原先的类名,我们可以这么做 多类名选择器// this.className = 'change';this.className = 'first change';}</script> 5.自定义属性的操作 js给我们规定了可以自己添加属性 在操作元素属性的时候,元素.语法只能操作元素天生具有的属性,如果是自定义的属性,通过.语法是无法操作的只能通过getAttribute和setAttribute去操作,他俩是通用的方法,无论元素天生的还是自定义的都可以可以操作 1.获取属性值 element.属性 获取属性值。 element.getAttribute(‘属性’); 区别: element.属性 获取内置属性值(元素本身自带的属性 如果是自定义属性不能被获取) element.getAttribute(‘属性’);主要获得自定义的属性 (标准) 我们自定义的属性 2.设置属性值 element.属性 = ‘值’ 设置内置属性值 element.setAttribute(‘属性’,‘值’) 区别: element.属性 设置内置属性值 element.setAttribute(‘属性’);主要设置自定义的属性(标准) 3.移除属性 element.removeAttribute(‘属性’); 代码演示 <body><div id="demo" index="1" class="nav"></div><script>var div = document.querySelector('div');// 1.获取元素的属性值// (1) element.属性console.log(div.id);// (2) element.getAttribute('属性') get获取得到 attribute属性的意思 我们自己添加的属性称之为自定义属性console.log(div.getAttribute('id')); //democonsole.log(div.getAttribute('index')); // 1// 2.设置元素的属性值// (1) element.属性 = '值' div.id = 'test'div.className = 'navs'// (2) element.setAttribute('属性','值')div.setAttribute('index', 2);div.setAttribute('class', 'footer') //这里就是class 不是className 比较特殊// 3.移除属性 removeAttribute(属性)div.removeAttribute('index');</script></body> 只要是自定义属性最好都是用element.setAttribute(‘属性’,‘值’)来设置 如果是自带属性用element.属性来设置 6.H5自定义属性 自定义属性的目的:第一、是为了保存属性 第二、并且使用数据。有一些数据可以保存到页面中而不用保存到数据库中。 自定义属性获取是通过getAttribute(‘属性’) 获取的 但是有些自定义属性很容易引起歧义,不容易判断是元素还是自定义属性 H5给我们新增了自定义属性: 1.设置H5自定义属性 H5规定自定义属性data-开头做为属性名并且赋值 比如<div data-index:“1”> 或者使用JS设置element.setAttribute(‘deta-index’,2) 2.获取H5自定义属性 兼容性获取 element.getAttribute(‘data-index’) 推荐开发中使用这个 H5新增element.dataset.index 或者element.datase[‘index’] ie 11以上才支持 代码演示 <body><div getTime="10" data-index="20" data-name-list="40"></div><script>// 获取元素var div = document.querySelector('div');console.log(div.geTime); //undefined getTime是自定义属性不能直接通过元素的属性来获取 而是用自定义属性来获取的getAttribute(‘属性’)console.log(div.getAttribute('getTime')); //10// H5添加自定义属性的写法以data-开头div.setAttribute('data-time', 30)// 1.兼容性获取H5自定义属性console.log(div.getAttribute('data-time')); // 30// 2.H5新增的获取自定义属性的方法 它只能获取data-开头的// dataset 是一个集合的意思存放了所有以data开头的自定义属性 如果你想取其中的某一个只需要在dataset.的后面加上自定义属性名即可console.log(div.dataset);console.log(div.dataset.time); // 30// 还有一种方法dataset['属性']console.log(div.dataset['time']); // 30// 如果自定义属性里面有多个-链接的单词 我们获取的时候采取驼峰命名法 不用要-了console.log(div.dataset.nameList); // 40console.log(div.dataset['nameList']); // 40</script></body> 五.节点操作 1.为什么要学习节点操作 获取元素通常使用俩种方式 (1)利用DOM提供的方法获取元素 但是逻辑性不强 繁琐 (2)利用节点层级关系获取元素 如 利用父子,兄弟关系获取元素 逻辑性强,但是兼容性不怎么好 2.节点概述 网页中的所有内容都是节点(标签、属性、文本、注释等等) ,在DOM中,节点使用node表示。HTML DOM 树中的所有节点均可通过javascript进行访问,所有HTML元素(节点) 均可被修改,也可以创建或删除 一般地,节点至少拥有nade Type(节点类型)、nodeName(节点名称)和nodeValue(节点值) 这三个基本属性 元素节点 nodeType 为 1 属性节点 node Name为 2 文本节点 nodeValue为 3 (文本节点包含文字、空格、换行等等) 实际开发中,节点操作主要操作的是元素节点 3.节点层级 利用DOM树可以把节点划分为不同得层级关系,常见得是父子兄层级关系 1.父级节点 1.node.parentNode parenNode属性可以返回某节点得父节点,注意是最近的父节点哟!!! 如果指定的节点没有父节点就返回null 代码演示 <body><div class="box"><div class="box1"></div></div><script>var box1 = document.querySelector('.box1')// 得到的是离元素最近的父节点(亲爸爸) 得不到就返回得是nullconsole.log(box1.parentNode); // parentNode 翻译过来就是父亲的节点</script></body> 2.子级节点操作 1.parentNode.children(非标准) parentNode.children 是一个只读属性,返回所有的子元素节点。它只返回子元素节点,其余节点不返回(重点记住这个就好,以后重点使用) 虽然children是一个非标准,但是得到了各个浏览器的支持,我们大胆使用即可!!! 代码演示 <body><ul><li>1</li><li>1</li><li>1</li><li>1</li></ul><script>// DOM 提供的方法(APL)获取 这样获取比较麻烦var ul = document.querySelector('ul')var lis = ul.querySelectorAll('li')// children子节点获取 ul里面所有的小li 放心使用没有限制兼容性 实际开发中经常使用的console.log(ul.children);</script> 如何返回子节点的第一个和最后一个? 2.parentNode.firstElementChild firstElementChild返回第一个子元素节点,找不到则返回unll 3.parentNode.lastElementChild lastElementChild返回最后一个子元素节点,找不到则返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 谨慎使用 但是我们有解决方案 如果想要第一个子元素节点,可以使用 parentNode.chilren[0] 如果想要最后一个子元素节点,可以使用 parentNode.chilren[parentNode.chilren.length - 1] 代码演示 <body><ul><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li></ul><script>var ul = document.querySelector('ul')// 1.firstElementChild 返回第一个子元素节点 ie9 以上才支持注意兼容console.log(ul.firstElementChild);// 2.lastElementChild返回最后一个子元素节点console.log(ul.lastElementChild);// 3.实际开发中用到的既没有兼容性问题又可以返回子节点的第一个和最后一个console.log(ul.children[0]);console.log(ul.children[ul.children.length - 1]); //ul.children.length - 1获取的永远是子节点最后一个</script></body> 3.兄弟节点 1.node.nextSibling nextSibling 返回当前元素的下一个兄弟节点,找不到则返回null。注意包含所有的节点 2.node.previousSibling previousSibling 返回当前元素上一个兄弟节点,找不到则返回null。注意包含所以有的节点 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// 返回当前元素的下一个兄弟节点nextSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.nextSibling); //这里返回的是text 因为它的下一个兄弟节点是换行// 返回的是当前元素的上一个节点previousSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.previousSibling); //这里返回的是text 因为它的上一个兄弟节点是换行</script></body> 3.node.nexElementSibling nexElementSibling 返回当前元素下一个兄弟元素节点,找不到返回null 4.node.previousElementSibling previousElementSibling返回当前元素上一个兄弟节点,找不到返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// nextElementSiblingd得到下一个兄弟元素节点console.log(div.nextElementSibling); // span // previousElementSibling 得到的是上一个兄弟元素节点console.log(div.previousElementSibling); // null 因为它上面没有兄弟元素了返回空的</script></body> 怎么解决兼容性问题呢? 可以封装一个兼容性函数(简单了解即可 在实际开发中用的不多) function getNextElementSibling(element) {var el = element;while (el = el.nextSibling) {if (el.nodeType === 1) {return el;} }return null;} 4.创建节点 1.document.createElement('tagName') document.createElement( ) 方法创建由 tagName 指定的 HTML 元素。因为这些元素原先不存在的是根据我们的需求动态生成的,所有我们也称为动态创建元素节点 我们创建了节点要给添加到节点里面去 称为 添加节点 1.node.appendChild(child) node.appendChild( )方法将一个节点添加到指定父节点的子节点列表末尾 2.node.insertBefore(child,指定添加元素位置) node.insertBefore( ) 方法将一个节点添加到父节点的指定子节点前面 代码演示 <body><ul><li>1</li></ul><script>// 1.创建节点 createElementvar li = document.createElement('li')// 2.添加节点 创建了节点要添加到某一个元素身上去 叫添加节点 node.appendChild(child) done 父级 child 子级 如果前面有元素了则在后面追加元素类似数组中的push依次追加var ul = document.querySelector('ul')ul.appendChild(li)// 3.添加节点 node.insertBefore(child,指定元素) 在子节点前面添加子节点 child子级你要添加的元素var lili = document.createElement('li')ul.insertBefore(lili, ul.children[0]) //ul.children 这句话的意思是添加到ul父亲的子节点第一个// 总结 如果想在页面中添加元素分为俩步骤1.创建元素 2.添加元素</script></body> 5.删除节点 node.removeChild(child) node.removeChlid()方法从DOM 中删除一个子节点,返回删除的节点 简单点就是从父元素中删除某一个孩子node就是父亲child就是孩子 删除的节点.remove(没有参数) 注意:ie不支持 代码演示 <body><button>按钮</button><ul><li>熊大</li><li>熊二</li><li>熊三</li></ul><script>// 1.获取元素var ul = document.querySelector('ul')var but = document.querySelector('button');// 2.删除元素// but.onclick = function() {// ul.removeChild(ul.children[0])// }// 3.点击按钮键依次删除,最后没有删除内容了 就禁用按钮 disabled = true 禁用按钮语法but.onclick = function() {if (ul.children.length == 0) {this.disabled = true} else {ul.removeChild(ul.children[0])} }</script></body> 6.复制节点(克隆节点) node.cloneNode() node.dloneNode()方法返回调用该方法节点得一个副本,也称为克隆节点/拷贝节点 注意 1.如果括号参数为空或者为false,则是浅拷贝,只复制里面得标签,不复制内容 2.如果括号参数为true,则是深度拷贝,会复制节点本身以及里面所有的内容 代码演示 <body><ul><li>1</li><li>2</li><li>3</li></ul><script>// 1.获取元素var ul = document.querySelector('ul');// 2.复制元素 node.cloneNode() 如果参数括号为空或者false则只会复制元素不会复制内容,如果待有参数true则内容和元素都会被复制var lis = ul.children[0].cloneNode(true);// 3.获取元素ul.appendChild(lis)</script></body> 7.替换(改)节点 node.replaceChild(新节点,替换到什么位置) 代码演示 <body><ul class="list"><li>1</li><li>2</li></ul><script>// 替换(改)节点 父节点.replaceChild(新元素, 替换到什么位置)// (1)获取父元素var ulNode = document.querySelector('.list');// (2)创建新的元素var liRead = document.createElement('li')// (3)给新元素添加内容liRead.innerHTML = '5';// (4)替换元素ulNode.replaceChild(liRead, ulNode.children[1])</script></body> 8.三种动态创建元素区别 document.write() element.innerHTML document.createElement() 区别 document.write()是直接将内容写入页面的内容流,但是文档流执行完毕,它则会导致页面全部重绘 element.innerHTML是将内容写入某个DOM节点,不会导致页面全部重绘 element.innerHTML 创建多个元素效率更高(不要拼接字符串,采取数组形式拼接),结果有点复杂 createElement()创建多个元素效率低一点点,但是结果更加清晰 总结:不同浏览器下,innerHTML效率要比createElement()高 代码演示 <body><button>点击</button><p>abc</p><div class="inner"></div><div class="create"></div><script>// window.onload = function() {// document.write('<div>123</div>');// }// 三种创建元素方式区别 // 1. document.write() 创建元素 如果页面文档流加载完毕,再调用这句话会导致页面重绘// var btn = document.querySelector('button');// btn.onclick = function() {// document.write('<div>123</div>');// }// 2. innerHTML 创建元素var inner = document.querySelector('.inner');// for (var i = 0; i <= 100; i++) {// inner.innerHTML += '<a href="">百度</a>'// }var arr = [];for (var i = 0; i <= 100; i++) {arr.push('<a href="">百度</a>');}inner.innerHTML = arr.join('');// 3. document.createElement() 创建元素var create = document.querySelector('.create');for (var i = 0; i <= 100; i++) {var a = document.createElement('a');create.appendChild(a);}</script></body> 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_46978034/article/details/110190352。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-04 13:36:05
247
转载
转载文章
..._time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...尔的理念也并不是完全错误的,因为心流虽然是生命的特质,但不是人类的特质,我想笛卡尔的理论中把心灵换做灵魂可能会更妥当一些,尽管灵魂的存在目前还是个未知数。或许我说完接下来的例子,会解释的更充分些。 对于心流的存在,生物学家给出了一个简单的不能再简单的解释,那就是,如果没有感觉和欲望,那么就无法解释生物的各种行为。拿人来做例子或许会比较难以理解,但是拿动物做例子却简单的过分,那就是:当人去踢狗的时候,如果狗没有感到疼痛,愤怒,产生躲避的欲望,那么它就会因此而受到伤害。也就是说,这些种种的感觉与欲望,是那些最原始的东西,即进化论为了使生命更好的活着而产生的,只因人类把自己放在比动物高很多个层次的阶级上,而忽略了这个很简单的问题。 心流的产生 问题的关键,在于心流的产生。这样稍微改动下,上文所提到的笛卡尔的理论或许会更合理些:人与动物都存在感觉与欲望,但是动物的感觉与欲望是依靠自身结构在外界的输入下产生的一种内部输出,而人类的感觉和欲望则是一种可以被称作“灵魂”的东西控制下产生的。从而确立了人类高于动物的地位。 前者很容易理解,现在的科学研究也已经很透彻了。例如兔子见到狮子,电信号便从眼睛传到大脑,刺激某些神经元,又结合之前的记忆神经元,放出更多的信号,整条线路的神经元一一受到刺激,最后指令传到肾上腺,让肾上腺素传遍全身,心脏的跳动也随之加快,肾上腺素也使信号的传递速度更快了些,同时在运动中枢的神经元也向腿部肌肉发出信号,让肌肉随着信号有序的完成伸展和收缩。外在的表现就是兔子从狮子旁边逃之夭夭。至于其中的恐惧的感觉和想要逃跑的欲望,都只不过是内部神经元信号的一种状态。 而对于后者,则难以解释。正因为对前者的理解透彻,对后者的解释才显得很难说通。两个过程本来是相同的过程,只是后者多了对于每个人有且唯一的“灵魂”的存在的介入,但是,它究竟何时介入,如何介入,正如前者所描述的,在这样一个信号的传递网络里,究竟有哪一步,是需要“灵魂”来控制的。思前想后,好像并没有必须存在的那么一个步骤。也就是可能,前者所描述的那个信号传递步骤,适用于所有生物,当然也包括人类。 简单的总结 简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...气中微塑料成分的快速识别与定量分析,为解决日益严重的全球微塑料污染问题提供了有力的技术支持。 此外,随着传感器技术的发展,便携式LIBS-LIF设备的研发也在不断推进。2021年底,某知名科技公司在国际仪器展上展示了其研发的一款轻便型LIBS-LIF检测仪,能够在现场直接完成对重金属污染物的实时检测,极大地提高了环境应急响应速度和精准度。 同时,针对LIBS-LIF技术在土壤重金属检测中的应用,有学者深入探讨了其在复杂地质背景下的适应性及精度提升策略,提出了一种结合深度学习算法进行谱线解卷积和背景扣除的新方法,有望进一步提高LIBS-LIF在实际环境监测中的准确性和可靠性。 综上所述,LIBS-LIF技术作为前沿的元素分析手段,在环境监测方面的潜力正逐渐被挖掘并广泛应用,未来将在更广泛的环境污染治理、生态保护以及环境风险评估等领域发挥重要作用。
2023-08-13 12:41:47
360
转载
转载文章
...值的局部变量”的编译错误。我们也可以使用下面的代码来这样简化这一过程: GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting; 既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”: static void Main(string[] args){GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.WriteLine();delegate1 -= EnglishGreeting;GreetPeople("李志中", delegate1);Console.ReadLine();} 让我们再次对委托作个总结: 使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。 1.2 事件的由来 1.2.1 更好的封装性 我们继续思考上面的程序:上面的三个方法都定义在 Programe 类中,这样做是为了理解的方便,实际应用中,通常都是 GreetPeople 在一个类中,ChineseGreeting 和 EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将 GreetingPeople() 放在一个叫 GreetingManager 的类中,那么新程序应该是这个样子的: namespace Delegate{public delegate void GreetingDelegate(string name);public class GreetingManager{public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} }class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.GreetPeople("Liker", EnglishGreeting);gm.GreetPeople("李志中", ChineseGreeting);} }} 我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了: // Good Morning, Liker 早上好, 李志中 // 现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码: static void Main(string[] args){GreetingManager gm = new GreetingManager();GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting;gm.GreetPeople("Liker", delegate1);} 输出: Good Morning, Liker 早上好, Liker 到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到 GreetManager 类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager 类,像这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} } 现在,我们可以这样使用这个委托变量: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker", gm.delegate1);} 输出为: Good Morning, Liker 早上好, Liker 尽管这样做没有任何问题,但我们发现这条语句很奇怪。在调用gm.GreetPeople 方法的时候,再次传递了gm 的delegate1 字段, 既然如此,我们何不修改 GreetingManager 类成这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name){if (delegate1 != null) // 如果有方法注册委托变量{ delegate1(name); // 通过委托调用方法} }} 在客户端,调用看上去更简洁一些: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker"); //注意,这次不需要再传递 delegate1 变量} 尽管这样达到了我们要的效果,但是还是存在着问题:在这里,delegate1 和我们平时用的string 类型的变量没有什么分别,而我们知道,并不是所有的字段都应该声明成public,合适的做法是应该public 的时候public,应该private 的时候private。 我们先看看如果把 delegate1 声明为 private 会怎样?结果就是:这简直就是在搞笑。因为声明委托的目的就是为了把它暴露在类的客户端进行方法的注册,你把它声明为 private 了,客户端对它根本就不可见,那它还有什么用? 再看看把delegate1 声明为 public 会怎样?结果就是:在客户端可以对它进行随意的赋值等操作,严重破坏对象的封装性。 最后,第一个方法注册用“=”,是赋值语法,因为要进行实例化,第二个方法注册则用的是“+=”。但是,不管是赋值还是注册,都是将方法绑定到委托上,除了调用时先后顺序不同,再没有任何的分别,这样不是让人觉得很别扭么? 现在我们想想,如果delegate1 不是一个委托类型,而是一个string 类型,你会怎么做?答案是使用属性对字段进行封装。 于是,Event 出场了,它封装了委托类型的变量,使得:在类的内部,不管你声明它是public还是protected,它总是private 的。在类的外部,注册“+=”和注销“-=”的访问限定符与你在声明事件时使用的访问符相同。我们改写GreetingManager 类,它变成了这个样子: public class GreetingManager{//这一次我们在这里声明一个事件public event GreetingDelegate MakeGreet;public void GreetPeople(string name){MakeGreet(name);} } 很容易注意到:MakeGreet 事件的声明与之前委托变量 delegate1 的声明唯一的区别是多了一个 event 关键字。看到这里,在结合上面的讲解,你应该明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个进行了封装的委托类型的变量而已。 为了证明上面的推论,如果我们像下面这样改写Main 方法: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.MakeGreet = EnglishGreeting; // 编译错误1gm.MakeGreet += ChineseGreeting;gm.GreetPeople("Liker");} 会得到编译错误: 1.2.2 限制类型能力 使用事件不仅能获得比委托更好的封装性以外,还能限制含有事件的类型的能力。这是什么意思呢?它的意思是说:事件应该由事件发布者触发,而不应该由事件的客户端(客户程序)来触发。请看下面的范例: using System;class Program{static void Main(string[] args){Publishser pub = new Publishser();Subscriber sub = new Subscriber();pub.NumberChanged += new NumberChangedEventHandler(sub.OnNumberChanged);pub.DoSomething(); // 应该通过DoSomething()来触发事件pub.NumberChanged(100); // 但可以被这样直接调用,对委托变量的不恰当使用} }/// <summary>/// 定义委托/// </summary>/// <param name="count"></param>public delegate void NumberChangedEventHandler(int count);/// <summary>/// 定义事件发布者/// </summary>public class Publishser{private int count;public NumberChangedEventHandler NumberChanged; // 声明委托变量//public event NumberChangedEventHandler NumberChanged; // 声明一个事件public void DoSomething(){// 在这里完成一些工作 ...if (NumberChanged != null) // 触发事件{ count++;NumberChanged(count);} }}/// <summary>/// 定义事件订阅者/// </summary>public class Subscriber{public void OnNumberChanged(int count){Console.WriteLine("Subscriber notified: count = {0}", count);} } 上面代码定义了一个NumberChangedEventHandler 委托,然后我们创建了事件的发布者Publisher 和订阅者Subscriber。当使用委托变量时,客户端可以直接通过委托变量触发事件,也就是直接调用pub.NumberChanged(100),这将会影响到所有注册了该委托的订阅者。而事件的本意应该为在事件发布者在其本身的某个行为中触发,比如说在方法DoSomething()中满足某个条件后触发。通过添加event 关键字来发布事件,事件发布者的封装性会更好,事件仅仅是供其他类型订阅,而客户端不能直接触发事件(语句pub.NumberChanged(100)无法通过编译),事件只能在事件发布者Publisher 类的内部触发(比如在方法pub.DoSomething()中),换言之,就是NumberChanged(100)语句只能在Publisher 内部被调用。大家可以尝试一下,将委托变量的声明那行代码注释掉,然后取消下面事件声明的注释。此时程序是无法编译的,当你使用了event 关键字之后,直接在客户端触发事件这种行为,也就是直接调用pub.NumberChanged(100),是被禁止的。事件只能通过调用DoSomething() 来触发。这样才是事件的本意,事件发布者的封装才会更好。 就好像如果我们要定义一个数字类型,我们会使用int 而不是使用object 一样,给予对象过多的能力并不见得是一件好事,应该是越合适越好。尽管直接使用委托变量通常不会有什么问题,但它给了客户端不应具有的能力,而使用事件,可以限制这一能力,更精确地对类型进行封装。 说 明:这里还有一个约定俗称的规定,就是订阅事件的方法的命名,通常为“On 事件名”,比如这里的OnNumberChanged。 1.3 委托的编译代码 这时候,我们注释掉编译错误的行,然后重新进行编译,再借助 Reflactor 来对 event 的声明语句做一探究,看看为什么会发生这样的错误: 可以看到,实际上尽管我们在GreetingManager 里将 MakeGreet 声明为public,但是,实际上MakeGreet 会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager 类的外面以赋值的方式访问,从而验证了我们上面所做的推论。 我们再进一步看下MakeGreet 所产生的代码: // private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量 [MethodImpl(MethodImplOptions.Synchronized)] public void add_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value); } [MethodImpl(MethodImplOptions.Synchronized)] public void remove_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value); } // 现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate 类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册。实际上也就是:“+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。 在add_MakeGreet()方法内部,实际上调用了System.Delegate 的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。 我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候: // public delegate void GreetingDelegate(string name); // 当编译器遇到这段代码的时候,会生成下面这样一个完整的类: // public class GreetingDelegate:System.MulticastDelegate { public GreetingDelegate(object @object, IntPtr method); public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result); public virtual void Invoke(string name); } // 1.4 .NET 框架中的委托和事件 1.4.1 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些! 假设我们有个高档的热水器,我们给它通上电,当水温超过95 度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。 现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做 temperature;当然,还有必不可少的给水加热方法 BoilWater(),一个发出语音警报的方法 MakeAlert(),一个显示水温的方法,ShowMsg()。 namespace Delegate{/// <summary>/// 热水器/// </summary>public class Heater{/// <summary>/// 水温/// </summary>private int temperature;/// <summary>/// 烧水/// </summary>public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){MakeAlert(temperature);ShowMsg(temperature);} }}/// <summary>/// 发出语音警报/// </summary>/// <param name="param"></param>private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);}/// <summary>/// 显示水温/// </summary>/// <param name="param"></param>private void ShowMsg(int param){Console.WriteLine("Display:水快开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater ht = new Heater();ht.BoilWater();} }} 1.4.2 Observer 设计模式简介 上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。 这时候,上面的例子就应该变成这个样子: /// <summary>/// 热水器/// </summary>public class Heater{private int temperature; private void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;} }}/// <summary>/// 警报器/// </summary>public class Alarm{private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }/// <summary>/// 显示器/// </summary>public class Display{private void ShowMsg(int param){Console.WriteLine("Display:水已烧开,当前温度:{0}度。", param);} } 这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器? 在继续进行之前,我们先了解一下Observer 设计模式,Observer 设计模式中主要包括如下两类对象: Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是 temprature 字段,当这个字段的值快到100 时,会不断把数据发给监视它的对象。 Observer:监视者,它监视Subject,当 Subject 中的某件事发生的时候,会告知Observer,而Observer 则会采取相应的行动。在本范例中,Observer 有警报器和显示器,它们采取的行动分别是发出警报和显示水温。 在本例中,事情发生的顺序应该是这样的: 1. 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。 2. 热水器知道后保留对警报器和显示器的引用。 3. 热水器进行烧水这一动作,当水温超过 95 度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。 类似这样的例子是很多的,GOF 对它进行了抽象,称为 Observer 设计模式:Observer 设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer 模式是一种松耦合的设计模式。 1.4.3 实现范例的Observer 设计模式 我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。 namespace Delegate{public class Heater{private int temperature;public delegate void BoilHandler(int param);public event BoilHandler BoilEvent;public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){if (BoilEvent != null){ BoilEvent(temperature); // 调用所有注册对象的方法} }} }}public class Alarm{public void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }public class Display{public static void ShowMsg(int param) // 静态方法{ Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.BoilEvent += alarm.MakeAlert; // 注册方法heater.BoilEvent += (new Alarm()).MakeAlert; // 给匿名对象注册方法heater.BoilEvent += Display.ShowMsg; // 注册静态方法heater.BoilWater(); // 烧水,会自动调用注册过对象的方法} }} 输出为: // Alarm:嘀嘀嘀,水已经 96 度了: Alarm:嘀嘀嘀,水已经 96 度了: Display:水快烧开了,当前温度:96 度。 // 省略... // 1.4.4 .NET 框架中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.NET Framework 中的事件模型和上面的不同?为什么有很多的EventArgs 参数? 在回答上面的问题之前,我们先搞懂 .NET Framework 的编码规范: 1. 委托类型的名称都应该以 EventHandler 结束。 2. 委托的原型定义:有一个void 返回值,并接受两个输入参数:一个Object 类型,一个EventArgs 类型(或继承自EventArgs)。 3. 事件的命名为委托去掉 EventHandler 之后剩余的部分。 4. 继承自 EventArgs 的类型应该以EventArgs 结尾。 再做一下说明: 1. 委托声明原型中的Object 类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm 的MakeAlert)可以通过它访问触发事件的对象(Heater)。 2. EventArgs 对象包含了Observer 所感兴趣的数据,在本例中是temperature。 上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer 端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。 现在我们改写之前的范例,让它符合.NET Framework的规范: using System;using System.Collections.Generic;using System.Text;namespace Delegate{public class Heater{private int temperature;public string type = "RealFire 001"; // 添加型号作为演示public string area = "China Xian"; // 添加产地作为演示public delegate void BoiledEventHandler(Object sender, BoiledEventArgs e);public event BoiledEventHandler Boiled; // 声明事件// 定义 BoiledEventArgs 类,传递给 Observer 所感兴趣的信息public class BoiledEventArgs : EventArgs{public readonly int temperature;public BoiledEventArgs(int temperature){this.temperature = temperature;} }// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBoiled(BoiledEventArgs e){if (Boiled != null){Boiled(this, e); // 调用所有注册对象的方法} }public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){// 建立BoiledEventArgs 对象。BoiledEventArgs e = new BoiledEventArgs(temperature);OnBoiled(e); // 调用 OnBolied 方法} }}public class Alarm{public void MakeAlert(Object sender, Heater.BoiledEventArgs e){Heater heater = (Heater)sender; // 这里是不是很熟悉呢?// 访问 sender 中的公共字段Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);Console.WriteLine();} }public class Display{public static void ShowMsg(Object sender, Heater.BoiledEventArgs e) // 静态方法{Heater heater = (Heater)sender;Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);Console.WriteLine();} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.Boiled += alarm.MakeAlert; //注册方法heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法heater.BoilWater(); //烧水,会自动调用注册过对象的方法} }} } 输出为: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Display:China Xian - RealFire 001: Display:水快烧开了,当前温度:96 度。 // 省略 ... 1.5 委托进阶 1.5.1 为什么委托定义的返回值通常都为 void ? 尽管并非必需,但是我们发现很多的委托定义返回值都为 void,为什么呢?这是因为委托变量可以供多个订阅者注册,如果定义了返回值,那么多个订阅者的方法都会向发布者返回数值,结果就是后面一个返回的方法值将前面的返回值覆盖掉了,因此,实际上只能获得最后一个方法调用的返回值。可以运行下面的代码测试一下。除此以外,发布者和订阅者是松耦合的,发布者根本不关心谁订阅了它的事件、为什么要订阅,更别说订阅者的返回值了,所以返回订阅者的方法返回值大多数情况下根本没有必要。 1.5.2 如何让事件只允许一个客户订阅? 少数情况下,比如像上面,为了避免发生“值覆盖”的情况(更多是在异步调用方法时,后面会讨论),我们可能想限制只允许一个客户端注册。此时怎么做呢?我们可以向下面这样,将事件声明为private 的,然后提供两个方法来进行注册和取消注册: public class Publishser{private event GeneralEventHandler NumberChanged; // 声明一个私有事件// 注册事件public void Register(GeneralEventHandler method){NumberChanged = method;}// 取消注册public void UnRegister(GeneralEventHandler method){NumberChanged -= method;}public void DoSomething(){// 做某些其余的事情if (NumberChanged != null){ // 触发事件string rtn = NumberChanged();Console.WriteLine("Return: {0}", rtn); // 打印返回的字符串,输出为Subscriber3} }} 注意上面,在UnRegister()中,没有进行任何判断就使用了NumberChanged -= method 语句。这是因为即使method 方法没有进行过注册,此行语句也不会有任何问题,不会抛出异常,仅仅是不会产生任何效果而已。 注意在Register()方法中,我们使用了赋值操作符“=”,而非“+=”,通过这种方式就避免了多个方法注册。 1.7 委托和方法的异步调用 通常情况下,如果需要异步执行一个耗时的操作,我们会新起一个线程,然后让这个线程去执行代码。但是对于每一个异步调用都通过创建线程来进行操作显然会对性能产生一定的影响,同时操作也相对繁琐一些。.NET 中可以通过委托进行方法的异步调用,就是说客户端在异步调用方法时,本身并不会因为方法的调用而中断,而是从线程池中抓取一个线程去执行该方法,自身线程(主线程)在完成抓取线程这一过程之后,继续执行下面的代码,这样就实现了代码的并行执行。使用线程池的好处就是避免了频繁进行异步调用时创建、销毁线程的开销。当我们在委托对象上调用BeginInvoke()时,便进行了一个异步的方法调用。 事件发布者和订阅者之间往往是松耦合的,发布者通常不需要获得订阅者方法执行的情况;而当使用异步调用时,更多情况下是为了提升系统的性能,而并非专用于事件的发布和订阅这一编程模型。而在这种情况下使用异步编程时,就需要进行更多的控制,比如当异步执行方法的方法结束时通知客户端、返回异步执行方法的返回值等。本节就对 BeginInvoke() 方法、EndInvoke() 方法和其相关的 IAysncResult 做一个简单的介绍。 我们先看这样一段代码,它演示了不使用异步调用的通常情况: class Program7{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();int result = cal.Add(2, 5);Console.WriteLine("Result: {0}\n", result);// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 上面代码有几个关于对于线程的操作,如果不了解可以看一下下面的说明,如果你已经了解可以直接跳过: 1. Thread.Sleep(),它会让执行当前代码的线程暂停一段时间(如果你对线程的概念比较陌生,可以理解为使程序的执行暂停一段时间),以毫秒为单位,比如Thread.Sleep(1000),将会使线程暂停1 秒钟。在上面我使用了它的重载方法,个人觉得使用TimeSpan.FromSeconds(1),可读性更好一些。 2. Thread.CurrentThread.Name,通过这个属性可以设置、获取执行当前代码的线程的名称,值得注意的是这个属性只可以设置一次,如果设置两次,会抛出异常。 3. Thread.IsThreadPoolThread,可以判断执行当前代码的线程是否为线程池中的线程。 通过这几个方法和属性,有助于我们更好地调试异步调用方法。上面代码中除了加入了一些对线程的操作以外再没有什么特别之处。我们建了一个Calculator 类,它只有一个Add 方法,我们模拟了这个方法需要执行2 秒钟时间,并且每隔一秒进行一次输出。而在客户端程序中,我们使用result 变量保存了方法的返回值并进行了打印。随后,我们再次模拟了客户端程序接下来的操作需要执行2 秒钟时间。运行这段程序,会产生下面的输出: // Client application started! Method invoked! Main Thread: Add executed 1 second(s). Main Thread: Add executed 2 second(s). Method complete! Result: 7 Main Thread: Client executed 1 second(s). Main Thread: Client executed 2 second(s). Main Thread: Client executed 3 second(s). Press any key to exit... // 如果你确实执行了这段代码,会看到这些输出并不是一瞬间输出的,而是执行了大概5 秒钟的时间,因为线程是串行执行的,所以在执行完 Add() 方法之后才会继续客户端剩下的代码。 接下来我们定义一个AddDelegate 委托,并使用BeginInvoke()方法来异步地调用它。在上面已经介绍过,BeginInvoke()除了最后两个参数为AsyncCallback 类型和Object 类型以外,前面的参数类型和个数与委托定义相同。另外BeginInvoke()方法返回了一个实现了IAsyncResult 接口的对象(实际上就是一个AsyncResult 类型实例,注意这里IAsyncResult 和AysncResult 是不同的,它们均包含在.NET Framework 中)。 AsyncResult 的用途有这么几个:传递参数,它包含了对调用了BeginInvoke()的委托的引用;它还包含了BeginInvoke()的最后一个Object 类型的参数;它可以鉴别出是哪个方法的哪一次调用,因为通过同一个委托变量可以对同一个方法调用多次。 EndInvoke()方法接受IAsyncResult 类型的对象(以及ref 和out 类型参数,这里不讨论了,对它们的处理和返回值类似),所以在调用BeginInvoke()之后,我们需要保留IAsyncResult,以便在调用EndInvoke()时进行传递。这里最重要的就是EndInvoke()方法的返回值,它就是方法的返回值。除此以外,当客户端调用EndInvoke()时,如果异步调用的方法没有执行完毕,则会中断当前线程而去等待该方法,只有当异步方法执行完毕后才会继续执行后面的代码。所以在调用完BeginInvoke()后立即执行EndInvoke()是没有任何意义的。我们通常在尽可能早的时候调用BeginInvoke(),然后在需要方法的返回值的时候再去调用EndInvoke(),或者是根据情况在晚些时候调用。说了这么多,我们现在看一下使用异步调用改写后上面的代码吧: using System.Threading;using System;public delegate int AddDelegate(int x, int y);class Program8{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);IAsyncResult asyncResult = del.BeginInvoke(2, 5, null, null); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}int rtn = del.EndInvoke(asyncResult);Console.WriteLine("Result: {0}\n", rtn);Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 此时的输出为: // Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Main Thread: Client executed 3 second(s). Result: 7 Press any key to exit... // 现在执行完这段代码只需要3 秒钟时间,两个for 循环所产生的输出交替进行,这也说明了这两段代码并行执行的情况。可以看到Add() 方法是由线程池中的线程在执行, 因为Thread.CurrentThread.IsThreadPoolThread 返回了True,同时我们对该线程命名为了Pool Thread。另外我们可以看到通过EndInvoke()方法得到了返回值。有时候,我们可能会将获得返回值的操作放到另一段代码或者客户端去执行,而不是向上面那样直接写在BeginInvoke()的后面。比如说我们在Program 中新建一个方法GetReturn(),此时可以通过AsyncResult 的AsyncDelegate 获得del 委托对象,然后再在其上调用EndInvoke()方法,这也说明了AsyncResult 可以唯一的获取到与它相关的调用了的方法(或者也可以理解成委托对象)。所以上面获取返回值的代码也可以改写成这样: private static int GetReturn(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;int rtn = del.EndInvoke(asyncResult);return rtn;} 然后再将int rtn = del.EndInvoke(asyncResult);语句改为int rtn = GetReturn(asyncResult);。注意上面IAsyncResult 要转换为实际的类型AsyncResult 才能访问AsyncDelegate 属性,因为它没有包含在IAsyncResult 接口的定义中。 BeginInvoke 的另外两个参数分别是AsyncCallback 和Object 类型,其中AsyncCallback 是一个委托类型,它用于方法的回调,即是说当异步方法执行完毕时自动进行调用的方法。它的定义为: // public delegate void AsyncCallback(IAsyncResult ar); // Object 类型用于传递任何你想要的数值,它可以通过IAsyncResult 的AsyncState 属性获得。下面我们将获取方法返回值、打印返回值的操作放到了OnAddComplete()回调方法中: using System.Threading;using System;using System.Runtime.Remoting.Messaging;public delegate int AddDelegate(int x, int y);class Program9{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);string data = "Any data you want to pass.";AsyncCallback callBack = new AsyncCallback(OnAddComplete);del.BeginInvoke(2, 5, callBack, data); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();}static void OnAddComplete(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;string data = (string)asyncResult.AsyncState;int rtn = del.EndInvoke(asyncResult);Console.WriteLine("{0}: Result, {1}; Data: {2}\n", Thread.CurrentThread.Name, rtn, data);} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 它产生的输出为: Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Pool Thread: Result, 7; Data: Any data you want to pass. Main Thread: Client executed 3 second(s). Press any key to exit... 这里有几个值得注意的地方: 1、我们在调用BeginInvoke()后不再需要保存IAysncResult 了,因为AysncCallback 委托将该对象定义在了回调方法的参数列表中; 2、我们在OnAddComplete()方法中获得了调用BeginInvoke()时最后一个参数传递的值,字符串“Any data you want to pass”; 3、执行回调方法的线程并非客户端线程Main Thread,而是来自线程池中的线程Pool Thread。另外如前面所说,在调用EndInvoke()时有可能会抛出异常,所以在应该将它放到try/catch 块中,这里就不再示范了。 1.8 总结 我们详细地讨论了C中的委托和事件,包括什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义。拥有了本章的知识,相信你以后遇到委托和事件时,将不会再有所畏惧。 本篇文章为转载内容。原文链接:https://blog.csdn.net/beyonddeg/article/details/53528482。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:02:19
80
转载
转载文章
...ds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
nc -l 8080
- 开启一个监听8080端口的简单网络服务器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"