前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[goka库在分布式系统中的一致性哈希实现...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...内容的解释都应该是相一致,而缺点可以是非常昂贵的。那么如何去寻找一本好的教材呢?答案很简单,就是一些顶尖大学的本科或研究生课程所需的线性代数教材。 我建议的一些基础性的教材包括一下几本(仅供参考): Gilbert Strang,2016·第五版·线性代数概述 Sheldon Alex,2015·第三版·线性代数应该这样学 Ivan Savov,2017·没有废话的线性代数指南 此外,建议的一些更高层次的教材如下: Gene Golub 和 Charles Van Loan,2012·矩阵计算 Lloyd Trefethen 和 David Bau,1997·数值线性代数 另外推荐一些关于多元统计的好教材,这是线性代数和数值统计方法的集合。 Richard Johnson 和 Dean Wichern,2012·应用多元统计分析 Wolfgang Karl Hardle 和 Leopold Simar,2015·应用多元统计分析 也有一些在线的书籍,这些书籍可以在维基百科线性代数词条的最后一部分内容中可以看到。 线性代数大学课程 大学的线性代数课程是有用的,这使得本科生学习到他们应该掌握的线性代数内容。而作为一名机器学习实践者,大学的线性代数课程内容可能超过你所需掌握的内容,但这也能为你学习机器学习相关线性代数内容打下坚实的基础。 现在许多大学课程提供幻灯片的讲义、笔记等PDF电子版内容。有些大学甚至提供了预先录制的讲座视频,这无疑是珍贵的。 我鼓励你通过使用大学课程教材,深入学习相关课程来加深对机器学习中特定主题的理解。而不需要完全从头学到尾,这对于机器学习从业者来说太费时间了。 美国顶尖学校推荐的课程如下: Gilbert Strang·麻省理工学院·线性代数 Philip Klein·布朗大学·计算科学中的矩阵 Rachel Thomas·旧金山大学·针对编程者的线性代数计算 线性代数在线课程 与线性代数大学课程不同,在线课程作为远程教育而言显得不是那么完整,但这对于机器学习从业者而言学起来相当的快。推荐的一些在线课程如下: 可汗学院·线性代数 edX·线性代数:前沿基础 问答平台 目前网络上存在大量的问答平台,读者们可以在上面进行相关话题的讨论。以下是我推荐的一些问答平台,在这里要注意,一定要记得定期访问之前发布的问题及坛友的解答。 数学栈交换中的线性代数标记 交叉验证的线性代数标记 堆栈溢出的线性代数标记 Quora上的线性代数主题 Reddit上的数学主题 Numpy资源 如果你是用Python实现相关的机器学习项目,那么Numpy对你而言是非常有帮助的。 Numpy API文档写得很好,以下是一些参考资料,读者可以阅读它们来了解更多关于Numpy的工作原理及某些特定的功能。 Numpy参考 Numpy数组创建例程 Numpy数组操作例程 Numpy线性代数 Scipy线性代数 如果你同时也在寻找关于Numpy和Scipy更多的资源,下面有几个好的参考教材: 2017·用Python进行数据分析 2017·Elegant Scipy 2015·Numpy指南 作者信息 Jason Brownlee,机器学习专家,专注于机器学习教育 文章原标题《Top Resources for Learning Linear Algebra for Machine Learning》,作者:Jason Brownlee, 译者:海棠,审阅:袁虎。 原文链接 干货好文,请关注扫描以下二维码: 本篇文章为转载内容。原文链接:https://blog.csdn.net/yunqiinsight/article/details/79722954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:21:43
327
转载
Java
...onfigurer实现): java @Configuration public class WebMvcConfig implements WebMvcConfigurer { @Override public void configureViewResolvers(ViewResolverRegistry registry) { InternalResourceViewResolver resolver = new InternalResourceViewResolver(); resolver.setPrefix("/WEB-INF/views/"); resolver.setSuffix(".jsp"); registry.viewResolver(resolver); } } 2. 模块间依赖与资源路径映射 确认module-web是否正确引入了module-views的相关JSP文件,并指定了正确的资源路径。查看module-web的pom.xml或build.gradle文件中对视图资源模块的依赖路径: xml com.example module-views 1.0.0 war runtime classes // Gradle dependencies { runtimeOnly 'com.example:module-views:1.0.0' } 以及主启动类(如Application.java)中的静态资源映射配置: java @SpringBootApplication public class Application { @Bean TomcatServletWebServerFactory tomcat() { TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory(); factory.addContextCustomizer((TomcatWebServerContext context) -> { // 将模块视图目录映射到根URL下 context.addWelcomeFile("index.jsp"); WebResourceRoot resourceRoot = new TomcatWebResourceRoot(context, "static", "/"); resourceRoot.addDirectory(new File("src/main/resources/static")); context.setResources(resourceRoot); }); return factory; } public static void main(String[] args) { SpringApplication.run(Application.class, args); } } 3. 检查JSP引擎配置 确保Tomcat服务器配置已启用JSP支持。在module-web对应的application.properties或application.yml文件中配置JSP引擎: properties server.tomcat.jsp-enabled=true server.tomcat.jsp.version=2.3 或者在module-web的pom.xml或build.gradle文件中为Tomcat添加Jasper依赖: xml org.apache.tomcat.embed tomcat-embed-jasper provided // Gradle dependencies { implementation 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.54' } 4. 控制器与视图名称匹配验证 在完成上述配置后,请务必核实Controller中返回的视图名称与其实际路径是否一致。如果存在命名冲突或者拼写错误,将会导致Spring MVC无法找到预期的JSP视图: java @GetMapping("/home") public String home(Model model) { return "homePage"; // 视图名称应更改为"WEB-INF/views/homePage.jsp" } 四、总结与解决办法 综上所述,Spring Boot返回JSP无效的问题可能源于多个因素的叠加效应,包括但不限于视图解析器配置不完整、模块间依赖关系未正确处理、JSP引擎支持未开启、或Controller与视图名称之间的不对应等。要解决这个问题,需从以上几个方面进行逐一排查和修正。 切记,在面对这类问题时,要保持冷静并耐心地定位问题所在,仔细分析配置文件、源代码和日志输出,才能准确找出症结所在,进而成功解决问题。这不仅让我们实实在在地磨炼了编程功夫,更是让咱们对Spring Boot这家伙的工作内幕有了更深的洞察。这样一来,我们在实际项目中遇到问题时,调试和应对的能力都像坐火箭一样嗖嗖提升啦!
2024-02-17 11:18:11
271
半夏微凉_t
Shell
...型云计算服务提供商因系统资源分配问题导致多个客户的服务中断。据报道,该事件起因是某客户突发性的高并发请求,短时间内消耗了大量的计算资源,而系统未能及时调整资源分配策略,最终触发了一系列连锁反应,不仅影响了目标客户的业务,还波及其他正常运行的服务。 这一事件提醒我们,随着企业数字化转型的加速,云服务的稳定性变得尤为重要。尤其是在面对突发流量高峰时,如何确保资源分配的合理性和弹性成为关键挑战。许多企业已经开始采用微服务架构和容器化技术来提升系统的灵活性,例如使用Kubernetes动态调整资源池,以满足不同时间段的需求波动。此外,AI驱动的自动化运维工具也被越来越多地应用于资源管理中,通过实时监控和预测分析,提前识别潜在风险并采取预防措施。 从长远来看,加强基础设施建设与技术创新同样不可或缺。例如,引入更高效的存储方案,如分布式文件系统或对象存储,可以有效缓解传统存储方式面临的性能瓶颈。同时,制定严格的权限管理和访问控制策略,避免非必要权限滥用,也是防止类似事件再次发生的重要手段。 总之,在信息技术飞速发展的今天,无论是个人还是企业,都需要不断提升自身的IT能力,以适应复杂多变的环境。希望这次事件能引起更多人对资源分配问题的关注,共同推动行业的健康发展。
2025-05-10 15:50:56
105
翡翠梦境
MySQL
近日,随着云计算和分布式架构的普及,越来越多的企业选择将数据库迁移到云端,这一趋势不仅改变了传统IT基础设施的布局,也对数据库的安全性和性能提出了新的挑战。以亚马逊AWS和微软Azure为代表的云服务商纷纷推出专用的托管数据库服务,如Amazon RDS和Azure Database for MySQL。这些服务不仅简化了数据库管理流程,还提供了自动备份、高可用性以及更灵活的扩展能力,帮助企业降低了运维成本。 然而,在享受便利的同时,企业也面临数据隐私保护的压力。例如,欧盟《通用数据保护条例》(GDPR)要求企业在存储和处理个人数据时必须严格遵守相关规定,否则将面临巨额罚款。因此,企业在选择云数据库供应商时,不仅要考虑技术层面的因素,还需关注其合规性与安全性措施。以Google Cloud为例,他们最近宣布升级其Cloud SQL服务,增加了更多加密选项以及更强的身份验证机制,以应对日益严峻的网络安全威胁。 此外,开源数据库社区也在快速发展。PostgreSQL作为功能强大的关系型数据库管理系统,近年来因其丰富的插件生态和高度可定制性而受到广泛关注。据统计,全球范围内PostgreSQL的使用率在过去两年内增长了约40%,成为仅次于MySQL的第二大最受欢迎的关系型数据库。这表明,无论是商业产品还是开源项目,都在不断演进以满足现代企业的多样化需求。 对于普通开发者而言,掌握最新的数据库技术和最佳实践至关重要。例如,了解如何高效地进行数据迁移、优化查询性能以及实施灾难恢复策略,都是确保业务连续性的关键技能。同时,随着人工智能技术的进步,智能化数据库管理工具逐渐兴起,它们能够自动识别潜在问题并提供解决方案,极大提升了开发效率。 总之,数据库领域正经历着前所未有的变革,无论是云转型、法规遵从还是技术创新,都值得每一位从业者持续关注和学习。未来,数据库将更加智能、安全且易于使用,为企业创造更大的价值。
2025-03-24 15:46:41
78
笑傲江湖
转载文章
...口与浏览器进行交互,实现页面加载、元素定位、属性操作、JavaScript执行等功能,为Web自动化测试提供了一套完整的解决方案。 WebDriver BiDi协议 , WebDriver BiDi (Bidirectional) 协议是Selenium 4版本引入的新特性,它使得浏览器与测试脚本之间的通信更加实时和双向。在该协议下,不仅测试脚本可以向浏览器发送指令以模拟用户操作,浏览器也能主动向测试脚本推送状态变化或事件信息,从而增强了自动化测试的响应性和灵活性。 Shadow DOM , Shadow DOM是现代Web组件技术中的一个重要概念,用于封装组件内部结构及样式,保证组件的独立性并减少全局命名空间污染。在Selenium中,强化对Shadow DOM的支持意味着能够更准确地定位和操作嵌入在Shadow DOM树中的元素,这对于针对采用Web组件技术构建的复杂应用进行自动化测试具有重要意义。 持续集成(CI/CD) , 持续集成(Continuous Integration, CI)是一种软件开发实践,强调开发人员频繁地将代码更改合并到共享主分支,并通过自动化的构建和测试确保这些更改能够顺利集成。持续部署(Continuous Deployment, CD)则是指在完成测试后,自动将软件新版本部署到生产环境。文中提到的Jenkins、Travis CI等工具可与Selenium结合,在持续集成流程中执行自动化测试,确保每一次代码变更后的快速反馈与质量保障。 视觉回归测试 , 视觉回归测试是一种自动化测试方法,旨在检测Web界面在不同条件下的视觉效果是否符合预期。在文中提及的Applitools Eyes、PerceptualDiff等工具,它们能配合Selenium捕获页面截图,并通过算法比较前后两次截图的差异,以此判断UI界面是否有异常变化。这种测试方式对于维护跨平台、响应式设计的网站界面一致性极其重要。
2023-12-03 12:51:11
46
转载
Go Gin
...司在其最新的订单管理系统中引入了 Gin 的 Group 功能,将不同业务模块的接口进行了分组,不仅显著提升了系统的可维护性,还大幅降低了新功能上线的风险。据内部技术人员透露,这套系统在部署后的三个月内,Bug 数量减少了近 40%,开发效率提高了约 35%。 与此同时,国内另一家领先的金融科技公司也在探索更高级的路由分组方式。他们尝试将 AI 技术融入到路由管理中,通过智能分析接口调用频率和流量分布,动态调整路由规则,从而实现资源的最优分配。这一创新举措不仅优化了用户体验,还有效降低了服务器成本。该公司负责人表示,这种智能化路由管理方案将在未来几年内推广至更多业务线,进一步推动企业的数字化转型进程。 此外,值得注意的是,Gin 框架的社区也在不断发展壮大。近期,一位开源贡献者提交了一项新特性提案,建议在 Group 中加入对 HTTP/3 协议的支持,以更好地应对现代互联网应用中日益增长的高并发需求。虽然该提案目前仍处于讨论阶段,但已经引发了广泛关注。业内人士普遍认为,这项改进一旦落地,将极大提升 Gin 框架在高负载场景下的性能表现。 从以上案例可以看出,路由分组不仅仅是一种技术手段,更是一种驱动业务发展的核心能力。无论是电商、金融还是其他行业,只要合理运用这一工具,就能在激烈的市场竞争中占据有利地位。因此,对于广大开发者而言,掌握并善用 Gin 的 Group 功能,无疑是迈向成功的关键一步。
2025-04-10 16:19:55
43
青春印记
SpringBoot
...传统的单体应用迁移到分布式环境中。然而,这一过程中也暴露出一些新的挑战,特别是在数据库连接池管理和跨平台协作方面。例如,某大型电商企业在将其核心交易系统迁移至云平台时,曾因未正确配置Druid数据源而导致频繁出现“Query Timeout”问题。尽管问题最终通过增加超时时间得以缓解,但企业内部调查显示,超过半数的开发人员对Druid的高级特性了解不足,尤其是其与Oracle数据库的适配性和监控功能。 与此同时,Oracle公司最近宣布将在其即将发布的19c版本中引入一项名为“Adaptive Query Result Cache”的新特性。该功能旨在通过动态缓存热点查询结果,显著降低高并发场景下的数据库负载压力。业内专家指出,这项更新对于正在使用Oracle作为主数据库的企业而言具有重要意义,特别是在应对大规模在线交易和实时数据分析需求时,能够有效避免因资源耗尽引发的服务中断。 此外,国内开源社区也在积极跟进这一趋势。阿里云近期发布了基于Druid的增强版插件,新增了智能路由、动态扩展等功能,旨在帮助企业更好地管理复杂的分布式数据库架构。该插件已应用于多家企业的生产环境,并获得了良好的反馈。有用户表示,在启用智能路由后,数据库查询效率提升了约30%,同时大幅降低了运维成本。 从长远来看,数据库连接池管理不仅是一个技术问题,更关乎企业的数字化转型进程。如何平衡性能优化与安全稳定,将是未来一段时间内IT从业者需要重点关注的方向。建议企业在升级现有系统前,充分评估需求并制定详细的实施方案,同时加强团队培训,确保每位技术人员都能熟练掌握相关工具的使用技巧。
2025-04-21 15:34:10
40
冬日暖阳_
Mongo
...更快,从而提高了整体系统性能。 索引策略调整:为了适应不同场景的需求,MongoDB 4.4提供了更加灵活的索引策略选择。开发人员可以根据实际应用情况,基于读写模式、数据分布和查询频率等因素,选择最适合的索引类型和结构,以达到最佳的性能表现。 安全性与合规性:在提升性能的同时,MongoDB 4.4也加强了安全性,增强了数据保护措施。这包括对敏感数据的加密存储、访问控制的细化以及对潜在安全漏洞的修补,确保了数据在存储和传输过程中的安全,符合现代数据保护法规的要求。 综上所述,MongoDB 4.4版本不仅在索引管理上取得了显著进展,还在其他多个领域实现了技术突破,为用户提供了一个更为强大、安全、高效的数据库平台。对于依赖MongoDB进行数据管理和分析的企业和开发者来说,了解并充分利用这些更新,将有助于优化业务流程,提升数据分析效率,进而驱动业务增长。 --- 通过这次“延伸阅读”,我们可以看到MongoDB作为一款广泛使用的NoSQL数据库,在持续优化其功能以满足日益增长的性能需求和安全性要求。这种不断迭代的技术进步不仅反映了MongoDB团队致力于提升用户体验和解决实际问题的决心,也为广大开发者和数据库管理员提供了更多创新的工具和策略,以应对复杂的数据管理和分析挑战。
2024-10-14 15:51:43
90
心灵驿站
转载文章
...View滚动事件监听实现首页商品曝光量的统计,这对于产品优化、广告效果评估等方面具有重要价值。 近期,随着互联网广告行业对数据透明度要求的提高,精准的曝光量统计愈发受到重视。例如,Facebook、Google等巨头正不断强化其广告服务中的曝光衡量标准,并采用先进的机器学习技术来更准确地识别和计算广告的真实曝光情况,以解决业内长期存在的“可见性”问题。 此外,国内互联网企业如阿里巴巴、京东等电商平台也在积极探索和完善自家平台内的商品曝光统计体系。今年早些时候,淘宝APP升级了其底层数据追踪系统,引入更精细的商品曝光判断逻辑,不仅考虑了item在屏幕内的可视区域大小,还结合用户停留时长等因素进行综合评估,力求真实反映商品的实际触达效果。 深入理解并实践本文所述的方法,开发者不仅可以应用于商品曝光统计场景,还可将其拓展至更多需要监控用户界面交互的场合,比如新闻Feed流、视频列表等,从而为业务决策提供有力的数据支持。同时,在隐私保护日益严格的今天,确保在合规的前提下进行数据收集与分析也成为所有从业者不容忽视的重要课题。
2023-07-29 13:55:00
323
转载
Hive
...。这些创新不仅提高了系统的性能,也为用户带来了更好的使用体验。 从长远来看,Hive和HDFS的技术演进方向值得关注。一方面,随着云原生技术的普及,越来越多的企业倾向于将大数据平台迁移到云端,这将推动Hive和HDFS向更灵活、更高效的架构转型。另一方面,随着数据量的爆炸式增长,如何提升数据处理能力成为行业关注的重点。在此背景下,开源社区持续活跃,不断推出新的功能和改进版本,为开发者提供了更多选择。 此外,近年来国内外学术界对大数据技术的研究也在不断深入。例如,哈佛大学的一项研究表明,通过优化HDFS的块分布策略,可以有效减少数据冗余,提高存储利用率。而清华大学的一项研究则提出了一种基于深度学习的异常检测算法,能够在早期识别HDFS的潜在故障,为运维人员争取宝贵的时间窗口。 总之,Hive和HDFS作为大数据领域的两大支柱,其未来发展充满无限可能。无论是技术创新还是实际应用,都值得我们保持高度关注。对于企业和开发者而言,及时了解最新进展并积极拥抱变化,将是应对未来挑战的关键所在。
2025-04-01 16:11:37
105
幽谷听泉
转载文章
...(); } 第五步:实现DAO接口 在dao包下创建一个UserMapper.xml文件作为上一步创建的DAO接口的实现。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <!-- namespace:必须与对应的接口全类名一致 id:必须与对应接口的某个对应的方法名一致 --> <mapper namespace="com.tgb.mapper.UserMapper"> <insert id="save" parameterType="User"> insert into t_user(user_name,user_age) values({userName},{age}) </insert> <update id="update" parameterType="User"> update t_user set user_name={userName},user_age={age} where user_id={id} </update> <delete id="delete" parameterType="int"> delete from t_user where user_id={id} </delete> <!-- mybsits_config中配置的alias类别名,也可直接配置resultType为类路劲 --> <select id="findById" parameterType="int" resultType="User"> select user_id id,user_name userName,user_age age from t_user where user_id={id} </select> <select id="findAll" resultType="User"> select user_id id,user_name userName,user_age age from t_user </select> </mapper> 这里对这个xml文件作几点说明: 1、namespace必须与对应的接口全类名一致。 2、id必须与对应接口的某个对应的方法名一致即必须要和UserMapper.java接口中的方法同名。 第六步:Mybatis和Spring的整合 对于Mybatis和Spring的整合是这篇博文的重点,需要配置的内容在下面有详细的解释。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd"> <!-- 1. 数据源 : DriverManagerDataSource --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/mybatis" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- 2. mybatis的SqlSession的工厂: SqlSessionFactoryBean dataSource:引用数据源 MyBatis定义数据源,同意加载配置 --> <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> <property name="dataSource" ref="dataSource"></property> <property name="configLocation" value="classpath:config/mybatis-config.xml" /> </bean> <!-- 3. mybatis自动扫描加载Sql映射文件/接口 : MapperScannerConfigurer sqlSessionFactory basePackage:指定sql映射文件/接口所在的包(自动扫描) --> <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer"> <property name="basePackage" value="com.tgb.mapper"></property> <property name="sqlSessionFactory" ref="sqlSessionFactory"></property> </bean> <!-- 4. 事务管理 : DataSourceTransactionManager dataSource:引用上面定义的数据源 --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"></property> </bean> <!-- 5. 使用声明式事务 transaction-manager:引用上面定义的事务管理器 --> <tx:annotation-driven transaction-manager="txManager" /> </beans> 第七步:mybatis的配置文件 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd"> <configuration> <!-- 实体类,简称 -设置别名 --> <typeAliases> <typeAlias alias="User" type="com.tgb.model.User" /> </typeAliases> <!-- 实体接口映射资源 --> <!-- 说明:如果xxMapper.xml配置文件放在和xxMapper.java统一目录下,mappers也可以省略,因为org.mybatis.spring.mapper.MapperFactoryBean默认会去查找与xxMapper.java相同目录和名称的xxMapper.xml --> <mappers> <mapper resource="com/tgb/mapper/userMapper.xml" /> </mappers> </configuration> 总结 Mybatis和Spring的集成相对而言还是很简单的,祝你成功。 源码下载:SpringMVC+Spring4+Mybatis3 下篇博文我们将Hibernate和Mybatis进行一下详细的对比。 本篇文章为转载内容。原文链接:https://blog.csdn.net/konglongaa/article/details/51706991。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-05 11:56:25
114
转载
Kotlin
...基于Java的异常类系统实现,提供了优雅的方式来管理程序中的错误。 名词 , 静态类型检查。 解释 , 静态类型检查是一种编程语言特性,它在编译阶段而非运行时检查变量、函数参数和返回值的类型是否一致。与动态类型语言相比,静态类型检查可以在编译时发现类型不匹配等问题,有助于提前发现潜在的错误,提高代码的可靠性。Kotlin采用了静态类型系统,通过类型推断、模式匹配和类型安全特性,提高了代码的可读性和维护性,减少了运行时错误的可能性。
2024-09-18 16:04:27
114
追梦人
JSON
...SON数据的正确性和一致性。 自动化测试 , 一种通过编写脚本或程序来自动执行测试任务的方法,用于确保软件的质量和可靠性。文章中提到,在频繁处理JSON数据的项目中,建议编写自动化测试脚本来验证数据格式。这种方法可以提高工作效率,减少人为错误,并能在早期阶段发现潜在问题,保障系统的稳定运行。
2025-03-31 16:18:15
14
半夏微凉
MySQL
...泛使用的是愈发复杂的系统架构和更高的性能需求。就在上周,某知名电商公司在其大规模分布式数据库集群中遭遇了类似的问题——由于未及时调整文件描述符限制,导致核心业务系统在高并发访问时频繁出现“Too many open files”的错误,严重影响用户体验。这一事件引发了业内对于数据库资源管理的关注。 事实上,此类问题并非孤立存在。根据权威机构发布的最新报告显示,近年来因数据库配置不当而导致的服务中断比例逐年上升。特别是在互联网行业,随着微服务架构的普及,单个应用程序可能依赖数十甚至上百个数据库实例,这对数据库的稳定性提出了更高要求。此外,随着人工智能算法模型训练需求的增长,大模型的数据存储与计算任务也给传统数据库带来了前所未有的压力。 针对上述趋势,国内外多家科技公司已经开始探索更加智能化的数据库运维解决方案。例如,谷歌推出的Cloud SQL自动扩展功能可以根据实时流量动态调整资源分配,从而有效缓解类似问题的发生;阿里云则推出了PolarDB-X产品线,专门针对超高并发场景进行了优化设计。这些创新举措表明,未来数据库运维将朝着自动化、智能化方向发展。 与此同时,开源社区也在积极贡献力量。Linux内核开发者近日宣布,将在即将发布的5.18版本中引入一项名为“FD-PIN”的新特性,该特性能够显著提高文件描述符管理效率,为数据库等高性能应用场景提供更多可能性。这无疑为解决“Too many open files”这类经典问题提供了全新思路。 综上所述,无论是从技术演进还是实际案例来看,如何高效管理数据库资源已成为当下亟待解决的重要课题。作为从业者,我们需要紧跟时代步伐,不断学习新技术,同时注重实践经验积累,唯有如此才能更好地应对未来的挑战。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...win32api模块实现对键盘和鼠标事件模拟的实践之后,我们可以进一步关注自动化测试领域的发展动态和技术演进。近期,随着人工智能与软件测试技术的深度融合,诸如Selenium、PyAutoGUI等开源工具在UI自动化测试方面的应用越来越广泛。其中,PyAutoGUI作为一款基于Python的图形用户界面自动化库,不仅能够模拟鼠标和键盘操作,还支持跨平台使用,对于Windows、Mac OS X及Linux系统均能提供一致的操作接口。 与此同时,针对更复杂的交互场景如游戏或三维设计软件,一些高级模拟技术如Robot Framework、Appium也开始受到广泛关注。这些框架不仅能模拟基本的键盘鼠标输入,还能处理更精细的触屏手势操作,并能适应各种移动设备和桌面环境,极大提高了自动化测试的覆盖率和效率。 另外,在安全性方面,研究人员正不断探索如何防止恶意软件通过模拟合法用户的键盘和鼠标操作进行攻击。例如,某些安全软件已开始采用行为分析和机器学习算法来识别并阻止非人类产生的异常输入模式,确保只有真实的用户交互才能触发敏感操作。 总之,Python win32api提供的键盘鼠标模拟功能为自动化测试与脚本编写打开了新世界的大门,而结合最新的自动化测试技术和安全防护手段,我们不仅可以更高效地实现UI自动化,还能在保障用户体验的同时,有效抵御潜在的安全威胁。未来,随着相关技术的持续发展和完善,这一领域的应用场景将更加丰富多元。
2023-06-07 19:00:58
55
转载
Apache Solr
...何确保依赖外部服务的系统稳定性和高效性。近期,全球范围内对云计算和边缘计算的探索与应用,为这一问题提供了新的视角和解决方案。 云计算,尤其是公有云平台,为开发者提供了弹性、可扩展的基础设施,能够动态调整资源以匹配需求的变化。例如,AWS、Azure和Google Cloud等平台,通过其强大的API接口,允许开发者轻松地集成外部服务,如数据存储、计算能力、机器学习模型等。这些服务的即时可用性和全球分布特性,使得应用能够在面临网络延迟或服务中断时,快速转向其他可用资源,从而显著提升了应用的韧性和用户体验。 边缘计算则是云计算的延伸,它将计算和数据存储能力推向离用户更近的位置,例如智能设备、物联网节点或数据中心的边缘位置。这种部署方式减少了数据在中心云之间传输的距离,降低了延迟,同时提高了数据处理速度和实时性。边缘计算特别适用于需要低延迟响应的应用场景,如实时视频流处理、自动驾驶系统等,通过本地化计算和决策,显著提高了系统的整体性能和可靠性。 结合Apache Solr的应用场景,边缘计算和云计算的融合为优化网络连接、提高搜索性能提供了新路径。例如,通过在边缘节点部署轻量级Solr实例,结合云端提供的外部服务,可以实现数据的就近处理和快速响应,同时利用云端的弹性扩展能力应对突发流量或服务需求。此外,边缘计算还能作为数据预处理的节点,减少向云中心传输的数据量,进一步优化网络带宽使用和加速查询响应时间。 总之,云计算和边缘计算的结合,为构建更加稳定、高效且具有弹性的依赖外部服务的系统提供了丰富的技术和实践路径。它们不仅能够改善网络连接问题,还能够促进数据分析、机器学习等高级功能的部署,为用户提供更高质量的服务体验。随着技术的不断进步,未来在优化Apache Solr等搜索引擎性能方面,我们可以期待更多创新的解决方案和实践。
2024-09-21 16:30:17
40
风轻云淡
Hive
...么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
47
翡翠梦境
转载文章
...他类或模块可以继承或实现一个密封类或接口,这种特性在编译阶段会生成更为精确的符号引用,有助于增强类型安全性和提升性能。 同时,随着JIT即时编译器的发展,如GraalVM项目,其先进的动态编译技术能更高效地将字节码转换为机器码,使得Java应用程序执行效率大幅提升。对于Class文件内部结构的理解,有助于我们更好地利用这些新特性和工具进行优化配置。 此外,随着微服务、容器化和云原生架构的普及,Class文件在服务启动速度和资源占用上的优化也显得尤为重要。例如,通过提前解析和验证Class文件以减少运行时开销,或者采用Ahead-of-Time(AOT)编译技术将部分Class文件直接编译成本地代码,从而提升系统启动速度和降低内存使用。 另外,对于安全领域,深入理解Class文件结构有助于分析恶意字节码攻击手段,以及如何通过虚拟机层面的安全防护措施来避免有害类文件的加载执行。例如,最新的Java版本不断强化类加载验证机制,防止非法或恶意篡改的Class文件危害系统安全。 综上所述,随着Java技术栈的持续演进,Class文件这一基础而又关键的概念,在实际开发和运维过程中仍具有极高的研究价值和实战意义,值得开发者们密切关注和深入探索。
2024-01-09 17:46:36
646
转载
转载文章
...ive-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
142
转载
转载文章
...ds这一网络入侵检测系统的核心功能与数据结构后,我们可以进一步探索当前网络安全领域中关于数据包分析、TCP/IP协议栈安全以及实时入侵检测的最新动态和研究成果。 近期,美国国家标准技术研究院(NIST)发布了一份关于提升网络流量分析准确性和效率的研究报告。该报告强调了对IP数据包异常检测算法的优化,以及利用机器学习改进TCP连接状态预测的重要性。研究人员正致力于研发新一代的网络入侵检测系统,这些系统不仅能处理常规的数据包重组和校验和计算,还能够通过深度学习模型识别潜在的未知攻击模式。 与此同时,开源社区也在积极推动类似Libnids的项目发展。例如,Suricata是一款集成了高性能多线程引擎、支持多种入侵检测规则集,并具备实时流量分析能力的下一代IDS/IPS系统。它不仅实现了对网络数据包的精细解析,还在处理海量数据时保证了高效能,同时提供了丰富的API接口以供用户自定义插件和扩展功能。 此外,针对网络扫描攻击等行为,业界也提出了新的防御策略和技术。例如,基于人工智能的动态防火墙策略,可以根据网络流量特征自动调整规则,有效应对端口扫描等攻击行为,极大地提升了网络安全防护水平。 综上所述,在持续演进的网络安全领域,Libnids所涉及的数据包处理机制、TCP连接管理等功能是构建现代网络防御体系的基础,而结合最新的研究进展和技术应用,则有助于我们更好地理解和应对日趋复杂且变化多端的网络威胁环境。
2023-02-08 17:36:31
310
转载
转载文章
...计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
135
转载
ElasticSearch
...rch作为一款强大的分布式搜索和分析引擎,在企业数据管理和实时分析领域得到了广泛应用。然而,像文章中提到的磁盘空间不足引发的NodeNotActiveException问题并非孤例,类似的案例在全球范围内屡见不鲜。例如,某知名电商公司在双十一促销期间,由于流量激增导致Elasticsearch集群负载过高,最终触发了类似异常,严重影响了订单搜索和推荐系统的性能。 这一事件引发了行业对于分布式数据库高可用性和容灾能力的关注。事实上,Elasticsearch的设计初衷是支持弹性扩展和自愈机制,但在实际部署中,仍然需要运维团队对资源配置进行精细化管理。例如,合理规划节点数量、设置合理的磁盘水位阈值以及定期清理冷数据等措施,能够显著降低此类问题的发生概率。 此外,从技术发展的角度来看,Elasticsearch社区也在不断迭代新功能以提升系统的鲁棒性。例如,最新版本引入了更智能的分片分配算法,能够在节点负载不均衡的情况下动态调整数据分布,从而减少单点故障的风险。同时,越来越多的企业开始采用混合云架构,将热数据存储在高性能的本地存储中,而将冷数据迁移到成本更低的对象存储中,这种分层存储策略也有效缓解了磁盘压力。 值得注意的是,尽管技术手段可以降低风险,但人为因素往往是最关键的一环。企业在选择Elasticsearch时,应充分评估自身业务需求和技术实力,避免盲目追求低价方案而导致资源紧张。正如文章作者所言,技术学习是一场持久战,只有不断积累经验并保持警觉,才能在复杂多变的IT环境中立于不败之地。
2025-03-14 15:40:13
66
林中小径
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -n 5 'command'
- 每隔5秒执行一次命令并刷新结果。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"