前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[高可用架构 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...lin Cube基础架构 在我们深入探讨优化策略之前,首先需要理解Apache Kylin的核心——Cube。Kylin Cube是预计算的数据存储模型,通过预先聚合和索引数据来大幅提升大数据查询速度。想象一下,这就像是一个超级有趣的立体魔方,每一个面都是由各种不同的数据拼接而成的小世界。用户只需要轻轻转动到对应的那一面,就能瞬间抓取到他们想要的信息,就像是变魔术一样神奇又便捷。 java // 创建Cube的基本步骤(伪代码) CubeInstance cube = new CubeInstance(); cube.setName("my_cube"); cube.setDimensions(Arrays.asList("dimension1", "dimension2")); // 设置维度 cube.setMeasures(Arrays.asList("measure1", "measure2")); // 设置度量 kylinServer.createCube(cube); 2. Cube设计的关键决策点 2.1 维度选择与层级设计 (1) 精简维度:并非所有维度都需要加入Cube。过于复杂的维度组合会显著增加Cube大小,降低构建效率和查询性能。例如,对于某个特定场景,可能只需要基于"时间"和"地区"两个维度进行分析: java // 示例:只包含关键维度的Cube设计 List tables = ...; // 获取数据表引用 List dimensions = Arrays.asList("cal_dt", "region_code"); CubeDesc cubeDesc = new CubeDesc(); cubeDesc.setDimensions(dimensions); cubeDesc.setTables(tables); (2) 层次维度设计:对于具有层次结构的维度(如行政区划),合理设置维度层级能有效减少Cube大小并提升查询效率。比如,我们可以仅保留省、市两级: java // 示例:层级维度设计 DimensionDesc dimension = new DimensionDesc(); dimension.setName("location"); dimension.setLevelTypes(Arrays.asList(LevelType.COUNTRY, LevelType.PROVINCE)); 2.2 度量的选择与聚合函数 根据业务需求选择合适的度量字段,并配置恰当的聚合函数。例如,如果主要关注销售额的总和和平均值,可以这样配置: java // 示例:定义度量及其聚合函数 MeasureDesc measureSales = new MeasureDesc(); measureSales.setName("sales_amount"); measureSales.setFunctionClass(AggregateFunction.SUM); cubeDesc.addMeasure(measureSales); MeasureDesc avgSales = new MeasureDesc(); avgSales.setName("avg_sales"); avgSales.setFunctionClass(AggregateFunction.AVG); cubeDesc.addMeasure(avgSales); 2.3 切片设计与分区策略 合理的切片划分和分区策略有助于分散计算压力,加快Cube构建和查询响应速度。例如,可以根据时间维度进行分区: java // 示例:按时间分区 PartitionDesc partitionDesc = new PartitionDesc(); partitionDesc.setPartitionDateColumn("cal_dt"); partitionDesc.setPartitionDateFormat("yyyyMM"); cubeDesc.setPartition(partitionDesc); 3. 实践中的调优策略与技巧 这部分我们将围绕实际案例,探讨如何针对具体场景调整Cube设计,包括但不限于动态调整Cube粒度、使用联合维度、考虑数据倾斜问题等。这些策略将依据实际业务需求、数据分布特性以及硬件资源状况灵活运用。 --- 请注意,以上代码仅为示意性的伪代码,真实操作中需参考Apache Kylin官方文档进行详细配置。同时呢,在写整篇文章的时候,我会在每个小节都给你们添上更丰富的细节描述和讨论,就像画画时的细腻笔触一样。而且,我会配上更多的代码实例,就像是烹饪时撒上的调料,让你们能更直观、更深入地明白怎么去优化Kylin Cube的设计,从而把查询性能提得更高。这样一来,保证你们读起来既过瘾又容易消化吸收!
2023-05-22 18:58:46
45
青山绿水
Maven
...。 同时,随着微服务架构的普及,Maven在多模块项目管理和持续集成/持续部署(CI/CD)流程中的角色更加重要。例如,可以研究如何利用Maven的聚合与继承特性组织大型项目结构,或者结合Jenkins、GitLab CI等工具实现自动化构建和测试。另外,对于企业级开发环境,配置并使用Nexus或Artifactory作为私有Maven仓库,既能提高依赖下载速度,又能增强内部组件复用及版本管理能力。 此外,针对Maven依赖冲突这一常见问题,可参考行业专家撰写的深度分析文章,了解如何通过Maven Enforcer插件强制执行依赖规则,以及Gradle等其他构建工具在解决类似问题上的不同策略,从而拓宽视野,提升项目构建效率和稳定性。 总之,不断跟进Maven的新特性、最佳实践以及相关领域的前沿知识,将有助于我们更好地驾驭这款强大的项目管理工具,有效避免和解决实际开发中可能遇到的各种复杂问题。
2024-02-05 11:45:22
90
心灵驿站_t
Shell
...存泄漏的效果,即系统可用内存持续减少。 文件描述符 , 在Unix/Linux操作系统中,文件描述符是用于访问文件系统的抽象指针。它是一个非负整数,通过文件描述符,程序可以对相应的文件进行读写等操作。在文中提到的示例二中,由于Shell脚本打开了大量文件但没有关闭对应的文件描述符,使得这些资源没有得到释放,进而间接引发内存问题,因为每个打开的文件描述符都会占用一定的系统资源。 引用计数机制 , 引用计数是一种内存管理技术,用于跟踪对象被引用的次数。当引用计数为零时,表示该对象不再被任何地方引用,此时可以安全地回收其占用的内存资源。在文章提及的Bash 5.1版本的新特性中,引入了对数组元素的引用计数机制,这意味着Shell脚本在处理数组时能更精确地控制内存分配,减少不必要的字符串复制带来的内存消耗,有助于防止因无效数据保留而导致的“内存泄漏”现象。
2023-01-25 16:29:39
71
月影清风
Mongo
...步编程模式对其数据库架构进行了深度改造。 该公司利用MongoDB的异步写入特性,结合现代JavaScript中的Promise和async/await功能,有效解决了高并发场景下的数据插入瓶颈问题。通过对数据库连接池的精细化管理,确保了资源的有效复用,并显著提升了系统的整体吞吐量和响应速度。同时,MongoDB新版本中引入的Change Streams特性使得实时监听和处理数据库变更更为便捷,进一步增强了系统的实时性和业务灵活性。 此外,MongoDB官方团队近期发布的博客文章《Scaling MongoDB for the Cloud Era》中也深入探讨了如何借助MongoDB Atlas(云托管服务)和分片集群技术来满足大规模、分布式环境下的数据库需求。文中提到,异步驱动设计对于提高I/O密集型任务的执行效率至关重要,尤其在面对全球范围内的用户访问时,能够帮助开发者更好地应对流量高峰挑战。 综上所述,在实际生产环境中充分利用MongoDB的异步特性,结合现代编程范式和技术演进,不仅有助于提升系统性能,更能为企业在数字化转型过程中提供强大且灵活的数据存储解决方案。对开发者而言,紧跟MongoDB的技术发展动态,不断优化数据库操作实践,是适应日益增长的数据处理需求和提升用户体验的关键所在。
2024-03-13 11:19:09
262
寂静森林_t
SpringBoot
...API , 一种软件架构风格,用于构建web服务,它遵循一组特定的设计原则,如使用HTTP方法(GET、POST、PUT、DELETE等)表示操作,以及使用URL表示资源。SpringBoot中的Controller通常用于处理这些RESTful API请求。 JSON (JavaScript Object Notation) , 一种轻量级的数据交换格式,易于人阅读和机器解析。在SpringBoot和Vue.js的交互中,JSON被用来在前后端之间传输数据,如注册表单中的用户信息。 数据验证 , 在前端和后端,验证是确保数据符合预期格式和规则的过程。SpringBoot中的@NotBlank注解就是一个例子,用于验证邮箱字段不能为null或空字符串。 CORS (Cross-Origin Resource Sharing) , 一种安全策略,允许网页从不同的源获取资源,如图片、脚本等。在处理跨域请求时,正确配置CORS可以防止数据在传输过程中出现问题,如类型转换为0。
2024-04-13 10:41:58
83
柳暗花明又一村_
转载文章
...正常运行和全部功能的可用性,必须设置好兼容且稳定的PHP环境,启用特定的系统函数和扩展库,如allow_url_fopen、GD扩展库及MySQL扩展库等。
2023-09-24 09:08:23
279
转载
Tomcat
...ons)是一种标准的架构,用于管理和监控Java应用程序。这个功能让你可以通过MBeans(管理豆子)查看应用在运行时的各种情况,比如内存用得怎么样、线程都在干啥等等。对于像Tomcat这样的Web服务器,JMX简直就是个救星。它能让我们更清楚地知道服务器的状况,帮我们及时揪出并解决那些麻烦的问题。 但是,有时候这个“神”也会掉链子,尤其是在配置不当的情况下。今天咱们聊聊怎么搞定Tomcat里JMX监控连不上的烦人事儿。 2. 检查配置文件 先从最基础的地方入手吧——检查Tomcat的配置文件。在Tomcat的安装目录下,找到conf文件夹,打开catalina.sh(Linux/Mac)或catalina.bat(Windows)。我们需要确保其中包含了JMX相关的配置参数。通常,这些参数应该出现在文件的开头部分: bash JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=9010 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false" 这段代码告诉JVM启动时加载一些系统属性,使得JMX服务能够正常运行。注意这里的端口号9010,这是JMX远程访问的端口。要是别的程序占用了这个端口,或者是防火墙不让访问,那JMX监控可就要闹脾气啦。 当然,这里只是个例子。实际配置可能会根据你的具体需求有所不同。比如,如果你需要启用SSL加密传输,就需要添加更多的配置项。另外,为了安全着想,还是开启身份验证功能吧,别直接设成false了。这样可以防止未授权访问。 3. 配置防火墙和端口 假设你已经正确设置了JMX相关参数,但还是无法连接到JMX服务,这时候就需要考虑网络层面的问题了。别忘了检查一下你的服务器防火墙设置,确保端口9010是开放的。 在Linux上,你可以使用以下命令查看当前的防火墙规则: bash sudo ufw status 如果端口没有开放,你需要添加一条新的规则: bash sudo ufw allow 9010 同样的,在Windows系统上,你也可以通过控制面板中的“Windows Defender 防火墙”来管理端口。 另外,如果你是在云平台上运行Tomcat,记得在云提供商的控制台里也开放相应的端口。比如,AWS的EC2实例需要在安全组中添加入站规则。 4. 使用JConsole进行测试 经过上面的步骤后,我们可以尝试用JConsole来连接看看。JConsole是一个图形化的JMX客户端工具,非常适合用来诊断和监控Java应用程序。 首先,确保你已经在本地安装了Java Development Kit (JDK)。然后,打开命令行窗口,输入以下命令启动JConsole: bash jconsole 启动后,你会看到一个界面,选择你的Tomcat进程ID(可以在任务管理器或ps -ef | grep tomcat命令中找到),点击“连接”按钮。要是没啥问题,你应该就能顺利打开JConsole的主界面,各种性能指标也都会一目了然地出现在你眼前。 如果连接失败,请检查控制台是否有错误提示。常见的问题包括端口被占用、防火墙阻塞、配置文件错误等。根据错误信息逐条排查,相信最终会找到问题所在。 5. 总结与反思 折腾了半天,终于解决了Tomcat JMX监控无法连接的问题。这个过程虽然有些曲折,但也让我学到了不少知识。比如说,我搞懂了JMX到底是怎么运作的,还学会了怎么设置防火墙和端口,甚至用JConsole来排查问题也变得小菜一碟了。 当然,每个人遇到的具体情况可能都不一样,所以在解决问题的过程中,多查阅官方文档、搜索社区问答是非常必要的。希望这篇文章能帮助大家少走弯路,更快地解决类似问题。
2025-02-15 16:21:00
103
月下独酌
Sqoop
...白,又得瞅准整个系统架构和各个组件之间的默契配合,才能让这玩意儿的效能噌噌噌往上涨。只有这样,才能真正发挥出Sqoop应有的效能,实现高效稳定的数据迁移。
2023-06-03 23:04:14
155
半夏微凉
Cassandra
...色的选择。它的分布式架构以及对大数据读写操作的高度优化,使其成为存储和查询时间序列数据的理想平台。不过,有效地利用Cassandra的前提是精心设计数据模型。本文将带你手把手地深入挖掘,如何为时间序列数据量身打造Cassandra的表结构设计。咱会借助实例代码和亲身实战经验,像揭开宝藏地图那样揭示其中的设计秘诀,让你明明白白、实实在在地掌握这门技艺。 1. 理解时间序列数据特点 时间序列数据是指按时间顺序记录的一系列数据点,每个数据点通常与一个特定的时间戳相关联。这类数据在咱们日常生活中可不少见,比如物联网(IoT)、监控系统、金融交易还有日志分析这些领域,都离不开它。它的特点就是会随着时间的推移,像滚雪球一样越积越多。而在查询的时候,人们最关心的通常就是最近产生的那些新鲜热辣的数据,或者根据特定时间段进行汇总统计的信息。 2. 设计原则 (1)分区键选择 在Cassandra中,分区键对于高效查询至关重要。当你在处理时间序列数据时,一个很接地气的做法就是拿时间来做分区的一部分。比如说,你可以把年、月、日、小时这些信息拼接起来,弄成一个复合型的分区键。这样一来,同一时间段的数据就会乖乖地呆在同一个分区里,这样咱们就能轻松高效地一次性读取到这一整段时期的数据了,明白吧? cql CREATE TABLE sensor_data ( sensor_id uuid, event_time timestamp, data text, PRIMARY KEY ((sensor_id, date_of(event_time)), event_time) ) WITH CLUSTERING ORDER BY (event_time DESC); 这里date_of(event_time)是对事件时间进行提取日期部分的操作,形成复合分区键,便于按天或更粗粒度进行分区。 (2)排序列簇与查询路径 使用CLUSTERING ORDER BY定义排序列簇,按照时间戳降序排列,确保最新数据能快速获取。 (3)限制行大小与集合使用 尽管Cassandra支持集合类型,但对于时间序列数据,应避免在一个集合内存放大量数据,以免读取性能受到影响。由于集合不会分页,如果需要存储连续的时序数据点,最好让每一行只包含单个数据点。 (4)宽行与稀疏索引 采用“宽行”策略,即每行代表一段时间窗口内的多个数据点属性,而不是每条数据一个行。这有助于减少跨分区查询,提高查询效率。同时呢,对于那些跟时间没关系的筛选条件,我们可以琢磨着用一下稀疏索引。不过得注意啦,这里有个“度”的把握,就是索引虽然能让查询速度嗖嗖提升,但同时也会让写入数据时的开销变大。所以嘞,咱们得在这两者之间找个最佳平衡点。 3. 示例设计 物联网传感器数据存储 假设我们有一个物联网项目,需要存储来自不同传感器的实时测量值: cql CREATE TABLE sensor_readings ( sensor_id uuid, reading_time timestamp, temperature float, humidity int, pressure double, PRIMARY KEY ((sensor_id, reading_time)) ) WITH CLUSTERING ORDER BY (reading_time DESC); 这个表结构中,sensor_id和reading_time共同组成复合分区键,每个传感器在某一时刻的温度、湿度和压力读数都存放在一行里。 4. 总结与思考 设计Cassandra时间序列数据表的关键在于理解数据访问模式并结合Cassandra的特性和局限性。选对分区键这招儿,就像给海量数据找个宽敞的储藏室,让它们能分散开来存放和快速找到;而把列簇整得井井有条,那就相当于帮我们轻松摸到最新鲜的数据,一抓一个准儿。再配上精心设计的宽行结构,加上恰到好处的索引策略,甭管查询需求怎么变花样,都能妥妥地满足你。 当然,具体实践时还需要根据业务的具体情况进行调整和优化,例如预测未来的数据增长规模、评估查询性能瓶颈以及是否需要进一步的数据压缩等措施。总的来说,用Cassandra搭建时间序列数据模型不是个一劳永逸的事儿,它更像是一个持久的观察、深度思考和反复调整优化的过程。只有这样,我们才能真正把Cassandra处理海量时序数据的洪荒之力给释放出来。
2023-12-04 23:59:13
770
百转千回
Go Iris
...讨论了JWT在微服务架构中的应用。文章提到,尽管JWT具有无状态性和易于扩展的优点,但在处理大量并发请求时,过大的JWT令牌可能会导致性能瓶颈。因此,服务商建议采用适当的令牌大小限制和合理的刷新策略,以优化性能。 此外,2023年7月,一篇学术论文探讨了JWT与OAuth2结合使用的安全性挑战。研究发现,尽管两者结合使用可以提供强大的认证和授权功能,但不当配置可能导致严重的安全漏洞。例如,未正确设置JWT的有效期和刷新策略,可能导致令牌被滥用。研究人员建议,在设计安全策略时,应充分考虑JWT和OAuth2的交互作用,制定详细的策略决策树,以应对各种潜在威胁。 综上所述,JWT和OAuth2在实际应用中仍面临诸多挑战,需要开发者和企业不断优化配置和策略,以确保系统的安全性和高性能。这些案例和研究不仅为开发者提供了宝贵的实践经验,也为未来的技术发展指明了方向。
2024-11-07 15:57:06
57
夜色朦胧
Linux
...合其全球分布式的存储架构,使得即使在大规模灾难场景下也能确保数据安全与业务连续性。 同时,在数据隐私和合规要求愈发严格的背景下,如何在进行备份时兼顾数据加密也成为了业界关注焦点。MongoDB支持TLS加密传输以及客户端字段级加密,以满足不同级别的数据安全保障需求。而在备份文件层面,企业可以结合开源工具如openssl等对备份数据进行加密存储,或采用云服务商提供的加密存储服务来进一步加固数据安全防线。 总而言之,随着技术的发展和实际需求的变化,MongoDB数据库备份策略应与时俱进,不断优化和完善,以适应更加复杂多变的数据保护挑战。通过深入理解并合理运用MongoDB的新特性及最佳实践,企业能够更好地保护自身的核心资产——数据,并为未来的稳健发展打下坚实基础。
2023-06-14 17:58:12
452
寂静森林_
转载文章
...该项目基于RNN-T架构,致力于打造开源、免费且准确度高的语音识别引擎,让更多开发者能够参与到语音技术的研究和创新中来。 总之,随着人工智能及机器学习技术的不断发展,Python语音识别技术的应用将更加广泛,无论是日常生活中的智能助手,还是工业级的自动化设备,都将受益于这项技术的进步。对于开发者而言,紧跟最新技术动态并结合实际应用场景进行技术创新,将是掌握这一领域未来发展的关键所在。
2023-01-27 19:34:15
278
转载
SpringBoot
...比如有专家结合微服务架构模式,探讨如何利用Spring Cloud Data Flow构建基于MongoDB的数据管道,实现数据的实时处理与分析。因此,持续跟踪行业动态、参与社区讨论,结合实际业务需求探索SpringBoot与MongoDB的深度整合方案,是每一个追求技术创新的开发者应当关注的方向。
2023-04-09 13:34:32
77
岁月如歌-t
Superset
...升级,强化其与云原生架构的兼容性,并计划引入更多AI驱动的自动化功能,以提升用户在探索复杂数据集时的效率和洞察力。 同时,随着大数据和AI技术的飞速发展,业界对于数据分析工具易用性和可访问性的要求也在不断提升。例如,Tableau、Power BI等竞品已开始实施更加智能化的交互设计,如自然语言处理(NLP)查询功能,使得非技术人员也能轻松驾驭数据可视化分析。 此外,针对无障碍设计方面,全球范围内的软件开发团队正积极响应WCAG 2.1标准,力求确保各类用户群体都能平等地获取信息。微软就在最近的产品更新中强调了其在BI工具中实现无障碍设计的努力,这无疑为包括Superset在内的同类产品树立了新的标杆。 综上所述,尽管Superset已经在界面设计优化用户体验方面取得了显著成果,但面对快速变化的技术环境和日益增长的用户体验需求,持续迭代更新、借鉴行业最佳实践以及遵循最新无障碍设计标准,将是保持其市场竞争力和用户满意度的关键所在。
2023-09-02 09:45:15
150
蝶舞花间
Apache Lucene
...高并发,需要优化系统架构,如使用分布式系统、缓存机制和负载均衡等技术,以确保系统在高负载下仍能高效稳定地运行。在Apache Lucene中,高并发控制尤为重要,因为它直接影响到搜索结果的实时性和系统的响应速度。 批量操作 , 批量操作是指在计算机程序中一次性处理多个任务或数据项的操作方式。这种方式可以显著减少对系统资源的请求次数,从而提高整体处理效率。在Apache Lucene中,批量操作通常用于索引文档的添加、删除和更新,通过一次操作处理多个文档,而不是逐个处理,可以减少锁定资源的时间,降低死锁风险,并提高并发度和系统吞吐量。此外,批量操作还可以减少I/O操作次数,进一步提升性能。
2024-11-03 16:12:51
116
笑傲江湖
Redis
...的快速发展以及微服务架构的广泛应用,分布式锁的设计与实现面临更多挑战和机遇。 2021年,由开源社区Redis Labs推出的Redis 6.2版本中,新增了RedLock++算法,这是对原有RedLock算法的改进和增强,不仅提高了分布式锁的安全性和性能,还解决了部分边界条件问题。RedLock++通过引入“锁持有者标识”和“锁续期”的机制,使得分布式锁在高并发场景下的表现更为稳定和可靠。 同时,在工业界,阿里巴巴集团内部也在持续优化其大规模分布式系统中的锁服务组件,例如Dragonfly团队研发的基于Redis优化的高性能分布式锁方案,该方案针对大规模、高并发场景进行了深度定制,并结合了智能超时重试、可扩展性设计等前沿理念,有效提升了系统的整体并发处理能力和数据一致性保障。 此外,对于分布式锁的理论研究也未曾停歇,学术界不断有新的论文提出更先进的分布式锁设计模型和算法。例如,一篇发表于2022年的ACM Transactions on Computer Systems期刊上的论文提出了名为"TimeTravel Locks"的新颖分布式锁方案,它利用时间戳预测和冲突解决机制,在保证强一致性的同时,降低了锁操作的延迟和通信开销。 综上所述,无论是从最新的技术发展动态,还是深入的理论研究进展来看,分布式锁作为协调分布式系统中资源访问的核心工具,始终是业界关注的重点。了解并掌握这些最新研究成果和技术趋势,将有助于我们更好地应对日益复杂的分布式环境下的并发控制挑战。
2023-10-15 17:22:05
316
百转千回_t
转载文章
...CA? 求LCA一般可用到倍增,Tarjan(不是用于缩点那个Tarjan)这两种算法,在这里一一讲解. 倍增版LCA 主体思想(请勿联想到某金姓领导人) 倍增是一种二进制拆分的思想,其已广泛应用于ST表,求解LCA等算法,为我国生产力的发展,推进共产主义的早日实现做出了巨大贡献. 实现方式 类比ST表的实现方式,同志们可以设\(path[i][j]\)为结点i向上跳\(2^j\)后到达的结点.显然,\(path[i][0]\)就是\(i\)结点的父亲. 那么如何进行二进制拆分呢?显然,\(path[i][j-1]\)向上再跳\(2^{j-1}\)次后到达的结点就是\(path[i][j]\). 于是同志们可以这样预处理: path[i][j]=path[f[i][j-1]][j-1]; 意为:\(i\)号结点向上跳\(2^j\)个长度到达的结点,等于\(i\)号结点向上跳\(2^{j-1}\)个结点到达的结点再向上跳\(2^{j-1}\)个结点. 然后将两个结点提至同一深度,不断地向上跳即可求出它们的LCA. 建设 求出LCA的具体步骤 进行预处理. 把结点x和y调整至同一高度. 将结点x和y同时向上调整,保持深度一致且二点不相会.具体地说,就是将\(x\)和\(y\)以此向上走\(k\)=\(2^{logn}\),...,\(2^1\),\(2^0\)步,如果\(path[x][k]\)!=\(path[y][k]\)(即两点还未相会),就令\(x\)=\(path[x][k]\),\(y\)=\(path[y][k]\). 这时\(x\)与\(y\)只差一步就相会了,返回\(path[x][0]\),即\(x\)的父亲,即为\(x\)和\(y\)的LCA. 该算法的时间复杂度为\(O(log2(Depth))\) 模板题 代码: include<cstdio>include<cstring>include<algorithm>include<iomanip>include<vector>using namespace std;struct edge{int next,to;}e[1000010];int n,m,s,size;int head[500010],depth[500010],path[500010][51];void EdgeAdd(int,int);int LCA(int,int);void DFS(int,int);int main(){memset(head,-1,sizeof(head));scanf("%d%d%d",&n,&m,&s);for(int _=1;_<=n-1;_++){int father,son;scanf("%d%d",&father,&son);EdgeAdd(father,son);EdgeAdd(son,father);}DFS(s,0);for(int _=1;_<=m;_++){int a,b;scanf("%d%d",&a,&b);printf("%d\n",LCA(a,b));}return 0;}void EdgeAdd(int from,int to){e[++size].to=to;e[size].next=head[from];head[from]=size;}void DFS(int from,int father){depth[from]=depth[father]+1;path[from][0]=father;for(int _=1;(1<<_)<=depth[from];_++){path[from][_]=path[path[from][_-1]][_-1];}for(int _=head[from];_!=-1;_=e[_].next){int to=e[_].to;if(to!=father){DFS(to,from);} }}int LCA(int a,int b){if(depth[a]>depth[b]){swap(a,b);}for(int _=20;_>=0;_--){if(depth[a]<=depth[b]-(1<<_)){b=path[b][_];} }if(a==b){return a;}for(int _=20;_>=0;_--){if(path[a][_]==path[b][_]){continue;}else{a=path[a][_];b=path[b][_];} }return path[a][0];} Tarjan版LCA Tarjan版的LCA是离线的,而上文介绍的倍增版LCA是在线的,所以说如果不是直接输出LCA的话,需要一个数组来记录它. 主体思想 从根结点遍历这棵树,遍历到每个结点并使用并查集记录父子关系. 实现方式 用并查集记录父子关系,将遍历过的点合并为一颗树. 若两个结点\(x\),\(y\)分别位于结点\(a\)的左右子树中,那么结点\(a\)就为\(x\)与\(y\)的LCA. 考虑到该结点本身就是自己的LCA的情况,做出如下修改: 若\(a\)是\(x\)和\(y\)的祖先之一,且\(x\)和\(y\)分别在\(a\)的左右子树中,那么\(a\)便是\(x\)和\(y\)的LCA. 这个定理便是Tarjan版LCA的实现基础. 具体步骤 当遍历到一个结点\(x\)时,有以下步骤: 把这个结点标记为已访问. 遍历这个结点的子结点\(y\),并在回溯时用并查集合并\(x\)和\(y\). 遍历与当前结点有查询关系的结点\(z\),如果\(z\)已被访问,则它们的LCA就为\(find(z)\). 需要同志们注意的是,存查询关系的时候是要双向存储的. 该算法的时间复杂度为\(O(n+m)\) Tarjan版的LCA很少用到,但为了方便理解,这里引用了参考文献2里的代码,望原博主不要介意. 代码: include<bits/stdc++.h>using namespace std;int n,k,q,v[100000];map<pair<int,int>,int> ans;//存答案int t[100000][10],top[100000];//存储查询关系struct node{int l,r;};node s[100000];/并查集/int fa[100000];void reset(){for (int i=1;i<=n;i++){fa[i]=i;} }int getfa(int x){return fa[x]==x?x:getfa(fa[x]);}void marge(int x,int y){fa[getfa(y)]=getfa(x);}/------/void tarjan(int x){v[x]=1;//标记已访问node p=s[x];//获取当前结点结构体if (p.l!=-1){tarjan(p.l);marge(x,p.l);}if (p.r!=-1){tarjan(p.r);marge(x,p.r);}//分别对l和r结点进行操作for (int i=1;i<=top[x];i++){if (v[t[x][i]]){cout<<getfa(t[x][i])<<endl;}//输出} }int main(){cin>>n>>q;for (int i=1;i<=n;i++){cin>>s[i].l>>s[i].r;}for (int i=1;i<=q;i++){int a,b;cin>>a>>b;t[a][++top[a]]=b;//存储查询关系t[b][++top[b]]=a;}reset();//初始化并查集tarjan(1);//tarjan 求 LCA} 参考文献 参考文献1 参考文献2 参考文献3 转载于:https://www.cnblogs.com/Lemir3/p/11112663.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30736301/article/details/96105162。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-09 23:03:55
155
转载
Kylin
...持,使得在现代大数据架构下运行更加高效。同时,Kylin 4.0增强了与云服务的集成能力,更好地满足了企业混合云和多云环境下的部署需求。 此外,业界也开始关注到Kylin与其他开源项目的深度整合,如将其与Apache Flink、Apache Kafka等流式计算框架结合,实现实时或近实时的大数据分析,以应对瞬息万变的业务场景。更有研究者和开发者们积极探索如何利用Kylin处理更复杂的数据模型,挖掘更多深层次的商业洞察。 值得一提的是,全球众多知名企业,包括金融、电信、电商等多个行业,都在实际业务中广泛应用Apache Kylin,验证了其在海量数据处理上的强大实力。通过一系列用户案例分析,我们可以发现Kylin不仅在提升数据分析效率上表现出色,还在助力企业构建数据驱动文化、推动数字化转型等方面发挥了重要作用。 总之,Apache Kylin凭借其与时俱进的技术迭代与广泛的行业实践,正不断拓展大数据处理的可能性边界,为全球企业和开发者提供了一个坚实可靠的大数据分析平台。未来,随着大数据技术的持续发展,Kylin的故事还将书写出更多精彩的篇章。
2023-03-26 14:19:18
78
晚秋落叶
Datax
...据的机密性、完整性和可用性不被破坏。在Datax中,数据传输安全通过采用类似HTTPS的加密协议实现,保障了数据在传输过程中不被窃取和篡改,即使在网络环境中传输也能确保数据的安全。 认证与授权 , 认证与授权是网络安全中的重要概念。在Datax应用中,认证是指验证用户身份的过程,通常需要用户提供有效的凭证(如用户名和密码)以证明其真实身份;授权则是指确定用户有权访问哪些资源以及可以执行何种操作的过程。Datax依赖于各个数据源自身的安全机制进行认证与授权,例如通过配置数据库用户的用户名和密码控制对数据库的访问权限。 敏感信息处理 , 敏感信息处理是指对涉及个人隐私、商业秘密或其他重要数据的信息采取特殊措施进行保护。在Datax场景下,敏感信息包括但不限于数据库连接信息、账号密码等。为防止这些信息在配置文件中直接明文显示导致泄露,Datax支持参数化配置,即将敏感信息存储在环境变量或外部化配置文件中,然后在运行时通过命令行注入,从而降低敏感信息暴露的风险,提高安全性。
2024-01-11 18:45:57
1143
蝶舞花间
Go Iris
最近,随着微服务架构的广泛应用,数据库锁的配置和管理变得越来越重要。例如,Netflix在他们的微服务架构中就广泛使用了各种数据库锁机制来确保数据一致性。Netflix开源的项目如Hystrix和Ribbon,不仅解决了服务间调用的问题,还提供了强大的容错能力和负载均衡能力,进一步增强了系统的稳定性和可靠性。 此外,国内的一些互联网大厂也在积极探索数据库锁的应用。比如阿里云推出的PolarDB数据库,就针对不同的业务场景提供了多种锁机制,包括行级锁和表级锁,以及更加细粒度的锁定策略。这种灵活性使得开发者可以根据实际需求选择最合适的锁类型,从而提高系统的整体性能。 与此同时,关于数据库锁的研究也从未停止。近期,一篇发表在《ACM Transactions on Database Systems》上的论文探讨了如何在分布式数据库中高效实现锁机制,以减少锁竞争和提高并发处理能力。研究者提出了一种基于时间戳的乐观锁方案,该方案能够在不影响性能的前提下,有效解决数据一致性问题。 这些最新的实践和研究成果表明,数据库锁不仅是理论上的一个重要概念,更是现代软件工程中不可或缺的一部分。对于开发者来说,掌握并合理运用数据库锁机制,将极大地提升系统的可靠性和性能。
2025-02-23 16:37:04
76
追梦人
Netty
最近,随着微服务架构和云原生应用的普及,消息队列的监控和管理变得越来越重要。一项最新的研究显示,企业在采用微服务架构后,消息队列的使用频率显著增加,尤其是在金融、电商和物联网等领域。例如,某大型电商平台在其订单处理系统中广泛采用了Kafka作为消息队列,极大地提升了系统的吞吐量和稳定性。然而,随之而来的是对消息队列监控的需求也日益增长,因为任何消息队列的故障都可能导致整个系统的性能下降甚至崩溃。 在此背景下,一些新的技术和工具应运而生,进一步提升了消息队列的监控能力。例如,Apache Kafka最近发布了新版本,增加了内置的监控和管理功能,使得开发者可以直接通过Kafka的API获取队列状态信息,而无需额外集成第三方工具。此外,Elasticsearch和Prometheus等开源项目也在不断完善其与消息队列的集成方案,提供更为全面和实时的监控数据。 同时,业界也开始关注消息队列的安全性问题。根据近期的一份安全报告,由于配置不当或缺乏有效的监控措施,许多企业的消息队列系统容易遭受攻击。因此,除了性能监控外,还需要加强对消息队列安全性的重视,确保数据传输的安全可靠。 值得一提的是,国内一些企业也在积极探索适合本地化需求的消息队列监控解决方案。阿里巴巴的云平台推出了基于Netty的消息队列产品,结合阿里云的监控系统,提供了更为灵活和高效的监控方案。此外,华为云也在其消息队列服务中集成了智能监控和告警功能,帮助企业快速发现并解决潜在问题。 总之,随着技术的发展和应用场景的多样化,消息队列的监控和管理将成为未来一段时间内的重要议题。无论是采用开源工具还是商业解决方案,都需要企业投入更多资源和精力,以确保系统的稳定运行和数据的安全。
2024-11-04 16:34:13
317
青春印记
Nginx
...何更高效地利用分布式架构下的缓存策略。例如,在全球最大的电商平台亚马逊AWS上,许多开发者正在尝试将类似Nginx的缓存机制与Lambda函数结合,以实现更灵活的服务端渲染。这种做法不仅提升了用户体验,还大幅降低了带宽成本。 与此同时,国内也有不少公司在探索类似的解决方案。阿里巴巴旗下的云服务平台阿里云最近推出了一款名为“云缓存”的新产品,专门针对大规模分布式系统设计。这款产品借鉴了开源项目如Varnish和Nginx的经验,并在此基础上增加了智能化调度算法,使得缓存命中率提高了约30%。此外,华为云也在积极布局边缘计算领域,推出了基于Kubernetes的边缘节点服务,允许用户轻松部署和管理分布在不同地理位置的应用程序实例。 从技术角度来看,这类创新背后离不开近年来机器学习的进步。例如,通过引入深度强化学习模型,系统可以自动调整缓存策略,确保在高并发场景下依然保持稳定的响应时间。这不仅解决了传统缓存面临的冷启动问题,还有效缓解了热点资源争夺带来的性能瓶颈。 当然,这一切并非没有挑战。隐私保护法规日益严格,企业在采用新的缓存技术时必须确保符合GDPR等相关法律法规的要求。特别是在处理跨境数据传输时,如何平衡效率与合规成为了一个亟待解决的问题。 总之,无论是国际巨头还是本土企业,都在努力寻找适合自身业务发展的最佳实践。未来几年内,随着5G网络普及以及物联网设备数量激增,缓存技术将迎来更多发展机遇。而像Nginx这样的经典工具,无疑将继续扮演重要角色,在这场数字化转型浪潮中发挥不可替代的作用。
2025-04-18 16:26:46
98
春暖花开
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
zip -r archive.zip dir
- 将目录压缩为ZIP格式。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"