前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[硬件故障影响Oracle备份与恢复的具体...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
134
转载
转载文章
...wing的探讨:随着Oracle将重心转向JavaFX,许多开发者开始考虑从Swing迁移到JavaFX以获得更现代化、高性能且易于维护的UI体验。JavaFX提供了丰富的图形效果、CSS样式支持以及与Web技术更好的集成能力。 2. 现代Java GUI框架介绍:除了官方推荐的JavaFX外,还有诸如TornadoFX(基于JavaFX的声明式MVVM框架)、 Griffon(Groovy为基础的桌面应用框架)等新兴框架,它们为开发者提供了更简洁直观的API和强大的功能集。 3. 跨平台UI工具包Qt Jambi:尽管Java Swing是纯Java环境下的GUI解决方案,但也有其他跨平台工具包值得关注,例如Qt Jambi,它允许开发者使用Java编写原生速度和外观的应用程序,并兼容多种操作系统。 4. 无障碍性设计原则在Swing中的应用:针对日益增长的无障碍需求,开发者应了解并遵循WCAG标准,在Swing应用程序中实施无障碍设计,如提供键盘导航支持、可调整的文字大小及高对比度模式等。 5. Swing组件最佳实践分享:查阅最新的开发者博客和论坛讨论,可以发现众多关于如何优化Swing组件性能、处理并发问题以及改善用户体验的实际案例和建议,这些都能帮助你更好地运用Swing进行复杂GUI的设计与实现。 综上所述,不断跟进最新的GUI开发趋势和技术发展,结合实际项目需求,灵活运用和扩展Swing或其他相关框架,将有助于打造更为出色和易用的桌面应用程序。
2023-01-18 08:36:23
526
转载
转载文章
...99年提出,针对当时硬件资源有限(如2GB内存和千兆网卡)的环境下,由于操作系统内核网络编程模型的限制,尤其是同步阻塞I/O模型导致无法高效地应对大量并发请求的情况。 I/O多路复用 , I/O多路复用是一种计算机网络编程技术,允许单个进程或线程同时监控多个文件描述符(通常是网络套接字),并能检测到哪些描述符已经准备好进行读写操作。通过使用非阻塞I/O配合select、poll、epoll等系统调用,可以在一个线程中响应多个网络I/O事件,从而极大地提高了服务端程序处理并发连接的能力。 epoll , epoll是Linux内核提供的一种I/O事件通知机制,它在Linux 2.6版本以后得到广泛应用。相比于select和poll,epoll通过在内核中维护一个红黑树结构来管理所有关注的文件描述符集合,避免了每次调用时重复传递描述符列表带来的开销,并且采用水平触发和边缘触发两种模式,仅对就绪的描述符发送通知,大大提升了高并发场景下的性能表现。借助epoll,单个线程可以更高效地处理大量并发连接,有效解决了C10K问题,并为解决更高并发级别的C1000K甚至C10M问题提供了基础支持。
2023-04-11 18:25:52
261
转载
转载文章
... 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
60
转载
转载文章
...> ” 来指示具体的连接文件(ls -l) 创建软连接的时候,源文件一定要使用绝对路径给出,(硬连接无此要求) 软连接文件直接用cp复制到别的目录下,软连接文件就会变成实体文件,就算你把源文件删掉,该文件还是有效 正确的复制、移动软连接的用法是:cp -d 如果不用绝对路径,cp -d 软连接文件到别的目录,该软连接文件就会变红,失效 如果用了绝对路径,cp -d 软连接文件到别的目录,该软连接文件还是有效的,还是软连接文件 不用绝对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
81
转载
转载文章
...浏览器有偏差 ,主要表现在非全局匹配上。lastIndex 还支持手动设置,直接赋值操作。 获取控制 正则表达式元字符是包含特殊含义的字符。它们有一些特殊功能,可以控制匹配模式的方式。反斜杠后的元字符将失去其特殊含义。 字符类:单个字符和数字 元字符/元符号 匹配情况 . 匹配除换行符外的任意字符 [a-z0-9] 匹配括号中的字符集中的任意字符 [^a-z0-9] 匹配任意不在括号中的字符集中的字符 \d 匹配数字 \D 匹配非数字,同[^0-9]相同 \w 匹配字母和数字及_ \W 匹配非字母和数字及_ 字符类:空白字符 元字符/元符号 匹配情况 \0 匹配 null 字符 \b 匹配空格字符 \f 匹配进纸字符 \n 匹配换行符 \r 匹配回车字符 \t 匹配制表符 \s 匹配空白字符、空格、制表符和换行符 \S 匹配非空白字符 字符类:锚字符 元字符/元符号 匹配情况 ^ 行首匹配 $ 行尾匹配 \A 只有匹配字符串开始处 \b 匹配单词边界,词在[]内时无效 \B 匹配非单词边界 \G 匹配当前搜索的开始位置 \Z 匹配字符串结束处或行尾 \z 只匹配字符串结束处 字符类:重复字符 元字符/元符号 匹配情况 x? 匹配 0 个或 1 个 x x 匹配 0 个或任意多个 x x+ 匹配至少一个 x (xyz)+ 匹配至少一个(xyz) x{m,n} 匹配最少 m 个、最多 n 个 x 字符类:替代字符 元字符/元符号 匹配情况 this where 字符类:记录字符 元字符/元符号 匹配情况 (string) 用于反向引用的分组 \1 或$1 匹配第一个分组中的内容 \2 或$2 匹配第二个分组中的内容 \3 或$3 匹配第三个分组中的内容 // 使用点元字符var pattern = /g..gle/; // .匹配一个任意字符var str = 'google';alert(pattern.test(str));// 重复匹配var pattern = /g.gle/; // .匹配 0 个一个或多个var str = 'google'; //,?,+,{n,m}alert(pattern.test(str));// 使用字符类匹配var pattern = /g[a-zA-Z_]gle/; // [a-z]表示任意个 a-z 中的字符var str = 'google';alert(pattern.test(str));var pattern = /g[^0-9]gle/; // [^0-9]表示任意个非 0-9 的字符var str = 'google';alert(pattern.test(str));var pattern = /[a-z][A-Z]+/; // [A-Z]+表示 A-Z 一次或多次var str = 'gOOGLE';alert(pattern.test(str));// 使用元符号匹配var pattern = /g\wgle/; // \w匹配任意多个所有字母数字_var str = 'google';alert(pattern.test(str));var pattern = /google\d/; // \d匹配任意多个数字var str = 'google444';alert(pattern.test(str));var pattern = /\D{7,}/; // \D{7,}匹配至少 7 个非数字var str = 'google8';alert(pattern.test(str));// 使用锚元字符匹配var pattern = /^google$/; // ^从开头匹配,$从结尾开始匹配var str = 'google';alert(pattern.test(str));var pattern = /goo\sgle/; // \s 可以匹配到空格var str = 'goo gle';alert(pattern.test(str));var pattern = /google\b/; // \b 可以匹配是否到了边界var str = 'google';alert(pattern.test(str));// 使用或模式匹配var pattern = /google|baidu|bing/; // 匹配三种其中一种字符串var str = 'google';alert(pattern.test(str));// 使用分组模式匹配var pattern = /(google){4,8}/; // 匹配分组里的字符串 4-8 次var str = 'googlegoogle';alert(pattern.test(str));var pattern = /8(.)8/; // 获取 8..8 之间的任意字符var str = 'This is 8google8';str.match(pattern);alert(RegExp.$1); // 得到第一个分组里的字符串内容var pattern = /8(.)8/;var str = 'This is 8google8';var result = str.replace(pattern,'<strong>$1</strong>'); // 得到替换的字符串输出document.write(result);var pattern = /(.)\s(.)/;var str = 'google baidu';var result = str.replace(pattern, '$2 $1'); // 将两个分组的值替换输出document.write(result); 贪婪 惰性 + +? ? ?? ? {n} {n}? {n,} {n,}? {n,m} {n,m}? // 关于贪婪和惰性var pattern = /[a-z]+?/; // ?号关闭了贪婪匹配,只替换了第一个var str = 'abcdefjhijklmnopqrstuvwxyz';var result = str.replace(pattern, 'xxx');alert(result);var pattern = /8(.+?)8/g; // 禁止了贪婪,开启的全局var str = 'This is 8google8, That is 8google8, There is 8google8';var result = str.replace(pattern,'<strong>$1</strong>');document.write(result);var pattern = /8([^8])8/g; // 另一种禁止贪婪var str = 'This is 8google8, That is 8google8, There is 8google8';var result = str.replace(pattern,'<strong>$1</strong>');document.write(result);// 使用 exec 返回数组var pattern = /^[a-z]+\s[0-9]{4}$/i;var str = 'google 2012';alert(pattern.exec(str)); // 返回整个字符串var pattern = /^[a-z]+/i; // 只匹配字母var str = 'google 2012';alert(pattern.exec(str)); // 返回 googlevar pattern = /^([a-z]+)\s([0-9]{4})$/i; // 使用分组var str = 'google 2012';alert(pattern.exec(str)[0]); // google 2012alert(pattern.exec(str)[1]); // googlealert(pattern.exec(str)[2]); // 2012// 捕获性分组和非捕获性分组var pattern = /(\d+)([a-z])/; // 捕获性分组var str = '123abc';alert(pattern.exec(str));var pattern = /(\d+)(?:[a-z])/; // 非捕获性分组var str = '123abc';alert(pattern.exec(str));// 使用分组嵌套var pattern = /(A?(B?(C?)))/; // 从外往内获取var str = 'ABC';alert(pattern.exec(str));// 使用前瞻捕获var pattern = /(goo(?=gle))/; // goo 后面必须跟着 gle 才能捕获var str = 'google';alert(pattern.exec(str));// 使用特殊字符匹配var pattern = /\.\[\/b\]/; // 特殊字符,用\符号转义即可var str = '.[/b]';alert(pattern.test(str));// 使用换行模式var pattern = /^\d+/mg; // 启用了换行模式var str = '1.baidu\n2.google\n3.bing';var result = str.replace(pattern, '');alert(result); 常用的正则 检查邮政编码 var pattern = /[1-9][0-9]{5}/; // 共 6 位数字,第一位不能为 0var str = '224000';alert(pattern.test(str)); 检查文件压缩包 var pattern = /[\w]+\.zip|rar|gz/; // \w 表示所有数字和字母加下划线var str = '123.zip'; // \.表示匹配.,后面是一个选择alert(pattern.test(str)); 删除多余空格 var pattern = /\s/g; // g 必须全局,才能全部匹配var str = '111 222 333';var result = str.replace(pattern,''); // 把空格匹配成无空格alert(result); 删除首尾空格 var pattern = /^\s+/; // 强制首var str = ' goo gle ';var result = str.replace(pattern, '');pattern = /\s+$/; // 强制尾result = result.replace(pattern, '');alert('|' + result + '|');var pattern = /^\s(.+?)\s$/; // 使用了非贪婪捕获var str = ' google ';alert('|' + pattern.exec(str)[1] + '|');var pattern = /^\s(.+?)\s$/;var str = ' google ';alert('|' + str.replace(pattern, '$1') + '|'); // 使用了分组获取 简单的电子邮件验证 var pattern = /^([a-zA-Z0-9_\.\-]+)@([a-zA-Z0-9_\.\-]+)\.([a-zA-Z]{2,4})$/;var str = 'yc60.com@gmail.com';alert(pattern.test(str));var pattern = /^([\w\.\-]+)@([\w\.\-]+)\.([\w]{2,4})$/;var str = 'yc60.com@gmail.com';alert(pattern.test(str)); 3、Function类型 在 ECMAScript 中,Function(函数)类型实际上是对象。每个函数都是 Function 类型的实例,而且都与其他引用类型一样具有属性和方法。由于函数是对象,因此函数名实际上也是一个指向函数对象的指针。 函数的声明方式 普通的函数声明 function box(num1, num2) {return num1+ num2;} 使用变量初始化函数 var box= function(num1, num2) {return num1 + num2;}; 使用 Function 构造函数 var box= new Function('num1', 'num2' ,'return num1 + num2'); 第三种方式我们不推荐,因为这种语法会导致解析两次代码(第一次解析常规 ECMAScript 代码,第二次是解析传入构造函数中的字符串),从而影响性能。但我们可以通过这种语法来理解"函数是对象,函数名是指针"的概念。 作为值的函数 ECMAScript 中的函数名本身就是变量,所以函数也可以作为值来使用。也就是说,不仅可以像传递参数一样把一个函数传递给另一个函数,而且可以将一个函数作为另一个函数的结果返回。 function box(sumFunction, num) {return sumFunction(num); // someFunction}function sum(num) {return num + 10;}var result = box(sum, 10); // 传递函数到另一个函数里 函数内部属性 在函数内部,有两个特殊的对象:arguments 和 this。arguments 是一个类数组对象,包含着传入函数中的所有参数,主要用途是保存函数参数。但这个对象还有一个名叫 callee 的属性,该属性是一个指针,指向拥有这个 arguments 对象的函数。 function box(num) {if (num <= 1) {return 1;} else {return num box(num-1); // 一个简单的的递归} } 对于阶乘函数一般要用到递归算法,所以函数内部一定会调用自身;如果函数名不改变是没有问题的,但一旦改变函数名,内部的自身调用需要逐一修改。为了解决这个问题,我们可以使用 arguments.callee 来代替。 function box(num) {if (num <= 1) {return 1;} else {return num arguments.callee(num-1); // 使用 callee 来执行自身} } 函数内部另一个特殊对象是 this,其行为与 Java 和 C中的 this 大致相似。换句话说 ,this 引用的是函数据以执行操作的对象,或者说函数调用语句所处的那个作用域。当在全局作用域中调用函数时,this 对象引用的就是 window。 // 便于理解的改写例子window.color = '红色的'; // 全局的,或者 var color = '红色的';也行alert(this.color); // 打印全局的 colorvar box = {color : '蓝色的', // 局部的 colorsayColor : function () {alert(this.color); // 此时的 this 只能 box 里的 color} };box.sayColor(); // 打印局部的 coloralert(this.color); // 还是全局的// 引用教材的原版例子window.color = '红色的'; // 或者 var color = '红色的';也行var box = {color : '蓝色的'};function sayColor() {alert(this.color); // 这里第一次在外面,第二次在 box 里面}getColor();box.sayColor = sayColor; // 把函数复制到 box 对象里,成为了方法box.sayColor(); 函数属性和方法 ECMAScript 中的函数是对象,因此函数也有属性和方法。每个函数都包含两个属性 :length 和 prototype。其中,length 属性表示函数希望接收的命名参数的个数。 function box(name, age) {alert(name + age);}alert(box.length); // 2 对于 prototype 属性,它是保存所有实例方法的真正所在,也就是原型。这个属性 ,我们将在面向对象一章详细介绍。而 prototype 下有两个方法:apply()和 call(),每个函数都包含这两个非继承而来的方法。这两个方法的用途都在特定的作用域中调用函数,实际上等于设置函数体内 this 对象的值。 function box(num1, num2) {return num1 + num2; // 原函数}function sayBox(num1, num2) {return box.apply(this, [num1, num2]); // this 表示作用域,这里是 window} // []表示 box 所需要的参数function sayBox2(num1, num2) {return box.apply(this, arguments); // arguments 对象表示 box 所需要的参数}alert(sayBox(10,10)); // 20alert(sayBox2(10,10)); // 20 call()方法于 apply()方法相同,他们的区别仅仅在于接收参数的方式不同。对于 call()方法而言,第一个参数是作用域,没有变化,变化只是其余的参数都是直接传递给函数的。 function box(num1, num2) {return num1 + num2;}function callBox(num1, num2) {return box.call(this, num1, num2); // 和 apply 区别在于后面的传参}alert(callBox(10,10)); 事实上,传递参数并不是 apply()和 call()方法真正的用武之地;它们经常使用的地方是能够扩展函数赖以运行的作用域。 var color = '红色的'; // 或者 window.color = '红色的';也行var box = {color : '蓝色的'};function sayColor() {alert(this.color);}sayColor(); // 作用域在 windowsayColor.call(this); // 作用域在 windowsayColor.call(window); // 作用域在 windowsayColor.call(box); // 作用域在 box,对象冒充 这个例子是之前作用域理解的例子修改而成,我们可以发现当我们使用 call(box)方法的时候,sayColor()方法的运行环境已经变成了 box 对象里了。 使用 call()或者 apply()来扩充作用域的最大好处,就是对象不需要与方法发生任何耦合关系(耦合,就是互相关联的意思,扩展和维护会发生连锁反应)。也就是说,box 对象和 sayColor()方法之间不会有多余的关联操作,比如 box.sayColor = sayColor;。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gongxifacai_believe/article/details/108286196。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-24 13:01:25
530
转载
转载文章
...用愈发广泛的背景下,硬件设备的兼容性和优化配置显得尤为重要。近期,开源社区对Linux声卡驱动程序PulseAudio进行了重大更新,增加了对更多新型声卡的支持,并提升了音质和延迟性能。同时,显卡领域也有新动态,Mesa 3D图形库已实现对最新一代GPU的初步支持,为Linux用户带来更流畅、高效的图形体验。 随着网络技术的发展,内核开发者正不断强化Linux系统对各种网卡芯片组的支持,特别是针对无线网卡和高速以太网卡的驱动程序更新频繁,确保用户在网络环境中的稳定连接与高效传输。 此外,针对Linux下多媒体播放方面,VLC团队宣布其跨平台媒体播放器将在下一个版本中增强对高清视频流和蓝光盘的支持,进一步丰富了Linux用户的娱乐选择。 对于那些热衷于Linux游戏的用户来说,Steam Proton项目持续取得突破,使得越来越多Windows原生游戏能够在Linux环境下无缝运行,这一进展无疑极大增强了Linux作为游戏平台的吸引力。 总之,无论是从底层硬件驱动到上层应用软件,Linux生态系统都在快速发展和进化中,为用户提供更为友好和全面的使用体验。而了解并掌握这些最新的设置技巧和功能更新,将有助于广大Linux爱好者及专业用户更好地发挥系统的潜能,享受更加便捷、高效的工作与娱乐环境。
2023-10-27 09:27:49
256
转载
转载文章
...荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
323
转载
转载文章
...们在不同场景下的性能表现,了解各自的优缺点以及如何根据实际需求选择合适的分词工具。例如,在处理大规模文本数据集时,考量速度、准确率以及资源消耗等因素至关重要。 3. 行业应用实例剖析:在新闻资讯、搜索引擎优化、社交媒体监控等领域,高效的中文分词技术具有广泛的应用价值。阿里巴巴、腾讯等企业在其产品中就广泛应用了此类技术,用于用户行为分析、智能推荐系统构建等方面。通过研究这些真实案例,可以深入了解jieba等分词工具在解决实际问题时所发挥的关键作用。 4. 学术研究与发展趋势:查阅最新的自然语言处理学术论文,可以发现对于中文分词的研究正逐渐从规则驱动转向数据驱动,并尝试结合多种上下文信息进行更精细化的词语切分。同时,跨语言模型的出现也为中文分词带来了新的挑战与机遇,比如探讨如何利用多语言模型对未登录词或新词进行有效识别和处理。 综上所述,关于jieba中文分词组件的延伸阅读,可以从深度学习技术在分词任务上的前沿发展、同类开源工具比较、具体行业应用案例以及学术研究趋势等多个维度展开,以全面把握这一领域的现状与未来发展方向。
2023-12-02 10:38:37
501
转载
转载文章
...lg-不存在, 也影响大屏幕设备。 2.2 栅格参数 超小屏幕 手机 (<768px) 小屏幕 平板 (≥768px) 中等屏幕 桌面显示器 (≥992px) 大屏幕 大桌面显示器 (≥1200px) .container 最大宽度 None (自动) 750px 970px 1170px 类前缀 .col-xs- .col-sm- .col-md- .col-lg- 最大列(column)宽 自动 ~62px ~81px ~97px 2.3 栅格系统使用 使用单一的一组 .col-md- 栅格类,就可以创建一个基本的栅格系统,在手机和平板设备上一开始是堆叠在一起的(超小屏幕到小屏幕这一范围),在桌面(中等)屏幕设备上变为水平排列。所有“列(column)必须放在 ” .row 内。 <div class="row"><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div><div class="col-md-1">.col-md-1</div></div><div class="row"><div class="col-md-8">.col-md-8</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div><div class="col-md-4">.col-md-4</div></div><div class="row"><div class="col-md-6">.col-md-6</div><div class="col-md-6">.col-md-6</div></div> 2.4 不同屏幕设置不同宽度 <div class="row"><div class="col-xs-12 col-sm-6 col-md-8">.col-xs-12 .col-sm-6 .col-md-8</div><div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div></div><div class="row"><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div><!-- Optional: clear the XS cols if their content doesn't match in height --><div class="clearfix visible-xs-block"></div><div class="col-xs-6 col-sm-4">.col-xs-6 .col-sm-4</div></div> 2.5 列偏移 使用 .col-md-offset- 类可以将列向右侧偏移。这些类实际是通过使用 选择器为当前元素增加了左侧的边距(margin)。例如,.col-md-offset-4 类将 .col-md-4 元素向右侧偏移了4个列(column)的宽度。 <div class="row"><div class="col-md-4">.col-md-4</div><div class="col-md-4 col-md-offset-4">.col-md-4 .col-md-offset-4</div></div><div class="row"><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div><div class="col-md-3 col-md-offset-3">.col-md-3 .col-md-offset-3</div></div><div class="row"><div class="col-md-6 col-md-offset-3">.col-md-6 .col-md-offset-3</div></div> 2.6 列位置移动 通过使用 .col-md-push- 和 .col-md-pull- 类就可以很容易的改变列(column)的顺序。 <div class="row"><div class="col-md-9 col-md-push-3">.col-md-9 .col-md-push-3</div><div class="col-md-3 col-md-pull-9">.col-md-3 .col-md-pull-9</div></div> 3 排版 3.1 标题 HTML 中的所有标题标签,<h1> 到 <h6> 均可使用。另外,还提供了 .h1 到 .h6 类,为的是给内联(inline)属性的文本赋予标题的样式。 <h1>h1. Bootstrap heading</h1><h2>h2. Bootstrap heading</h2><h3>h3. Bootstrap heading</h3><h4>h4. Bootstrap heading</h4><h5>h5. Bootstrap heading</h5><h6>h6. Bootstrap heading</h6> 在标题内还可以包含 <small> 标签或赋予 .small 类的元素,可以用来标记副标题。 <h1>h1. Bootstrap heading <small>Secondary text</small></h1><h2>h2. Bootstrap heading <small>Secondary text</small></h2><h3>h3. Bootstrap heading <small>Secondary text</small></h3><h4>h4. Bootstrap heading <small>Secondary text</small></h4><h5>h5. Bootstrap heading <small>Secondary text</small></h5><h6>h6. Bootstrap heading <small>Secondary text</small></h6> 3.2 突出显示 通过添加 .lead 类可以让段落突出显示。 <p class="lead">...</p> 3.3 对齐 <p class="text-left">Left aligned text.</p><p class="text-center">Center aligned text.</p><p class="text-right">Right aligned text.</p><p class="text-justify">Justified text.</p><p class="text-nowrap">No wrap text.</p> 3.4 改变大小写 <p class="text-lowercase">Lowercased text.</p><p class="text-uppercase">Uppercased text.</p><p class="text-capitalize">Capitalized text.</p> 3.5 引用 <blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p></blockquote><blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.</p><footer>Someone famous in <cite title="Source Title">Source Title</cite></footer></blockquote><blockquote class="blockquote-reverse">...</blockquote> 3.6 列表 无样式列表 <ul class="list-unstyled"><li>...</li></ul> 内联列表 <ul class="list-inline"><li>...</li></ul> 水平排列的内联列表 <dl class="dl-horizontal"><dt>...</dt><dd>...</dd></dl> 4 代码 4.1 内联代码 通过 <code> 标签包裹内联样式的代码片段。 For example, <code><section></code> should be wrapped as inline. 4.2 用户输入 通过 <kbd> 标签标记用户通过键盘输入的内容。 To switch directories, type <kbd>cd</kbd> followed by the name of the directory.<br>To edit settings, press <kbd><kbd>ctrl</kbd> + <kbd>,</kbd></kbd> 4.3 代码块 多行代码可以使用 <pre> 标签。为了正确的展示代码,注意将尖括号做转义处理。 <pre><p>Sample text here...</p></pre> 还可以使用 .pre-scrollable 类,其作用是设置 max-height 为 350px ,并在垂直方向展示滚动条。 4.3 变量 通过 <var> 标签标记变量。 <var>y</var> = <var>m</var><var>x</var> + <var>b</var> 4.4 程序输出 通过 <samp> 标签来标记程序输出的内容。 <samp>This text is meant to be treated as sample output from a computer program.</samp> 5 表格 5.1 基本 为任意 <table> 标签添加 .table 类可以为其赋予基本的样式 <table class="table">...</table> 5.2 条纹状表格 <table class="table table-striped">...</table> 5.3 带边框的表格 <table class="table table-bordered">...</table> 5.4 鼠标悬停 <table class="table table-hover">...</table> 5.5 紧缩表格 <table class="table table-condensed">...</table> 5.6 状态类 通过这些状态类可以为行或单元格设置颜色。 Class 描述 .active 鼠标悬停在行或单元格上时所设置的颜色 .success 标识成功或积极的动作 .info 标识普通的提示信息或动作 .warning 标识警告或需要用户注意 .danger 标识危险或潜在的带来负面影响的动作 5.7 响应式表格 将任何 .table 元素包裹在 .table-responsive 元素内,即可创建响应式表格,其会在小屏幕设备上(小于768px)水平滚动。当屏幕大于 768px 宽度时,水平滚动条消失。 6 表单 6.1 基本实例 单独的表单控件会被自动赋予一些全局样式。所有设置了 .form-control 类的 <input>、<textarea> 和 <select> 元素都将被默认设置宽度属性为 width: 100%;。 将 label 元素和前面提到的控件包裹在 .form-group 中可以获得最好的排列。 <form><div class="form-group"><label for="exampleInputEmail1">Email address</label><input type="email" class="form-control" id="exampleInputEmail1" placeholder="Email"></div><div class="form-group"><label for="exampleInputPassword1">Password</label><input type="password" class="form-control" id="exampleInputPassword1" placeholder="Password"></div><div class="form-group"><label for="exampleInputFile">File input</label><input type="file" id="exampleInputFile"><p class="help-block">Example block-level help text here.</p></div><div class="checkbox"><label><input type="checkbox"> Check me out</label></div><button type="submit" class="btn btn-default">Submit</button></form> 6.2 内联表单 为 <form> 元素添加 .form-inline 类可使其内容左对齐并且表现为 inline-block 级别的控件。只适用于视口(viewport)至少在 768px 宽度时(视口宽度再小的话就会使表单折叠) 6.3 水平排列的表单 通过为表单添加 .form-horizontal 类,并联合使用 Bootstrap 预置的栅格类,可以将 label 标签和控件组水平并排布局。这样做将改变 .form-group 的行为,使其表现为栅格系统中的行(row),因此就无需再额外添加 .row 了 <form class="form-horizontal"><div class="form-group"><label for="inputEmail3" class="col-sm-2 control-label">Email</label><div class="col-sm-10"><input type="email" class="form-control" id="inputEmail3" placeholder="Email"></div></div><div class="form-group"><label for="inputPassword3" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword3" placeholder="Password"></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><div class="checkbox"><label><input type="checkbox"> Remember me</label></div></div></div><div class="form-group"><div class="col-sm-offset-2 col-sm-10"><button type="submit" class="btn btn-default">Sign in</button></div></div></form> 6.4 表单控件 输入框 包括大部分表单控件、文本输入域控件,还支持所有 HTML5 类型的输入控件: text、password、datetime、datetime-local、date、month、time、week、number、email、url、search、tel 和 color。 只有正确设置了 type 属性的输入控件才能被赋予正确的样式。 文本域 支持多行文本的表单控件。可根据需要改变 rows 属性。 多选和单选框 默认样式 <div class="checkbox"><label><input type="checkbox" value="">Option one is this and that—be sure to include why it's great</label></div><div class="checkbox disabled"><label><input type="checkbox" value="" disabled>Option two is disabled</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios1" value="option1" checked>Option one is this and that—be sure to include why it's great</label></div><div class="radio"><label><input type="radio" name="optionsRadios" id="optionsRadios2" value="option2">Option two can be something else and selecting it will deselect option one</label></div><div class="radio disabled"><label><input type="radio" name="optionsRadios" id="optionsRadios3" value="option3" disabled>Option three is disabled</label></div> 内联单选和多选框 <label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox1" value="option1"> 1</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox2" value="option2"> 2</label><label class="checkbox-inline"><input type="checkbox" id="inlineCheckbox3" value="option3"> 3</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio1" value="option1"> 1</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio2" value="option2"> 2</label><label class="radio-inline"><input type="radio" name="inlineRadioOptions" id="inlineRadio3" value="option3"> 3</label> 不带文本的Checkbox 和 radio <label><input type="checkbox" id="blankCheckbox" value="option1" aria-label="..."></label></div><div class="radio"><label><input type="radio" name="blankRadio" id="blankRadio1" value="option1" aria-label="..."></label></div> 下拉列表 <select class="form-control"><option>1</option><option>2</option><option>3</option><option>4</option><option>5</option></select> 静态内容 如果需要在表单中将一行纯文本和 label 元素放置于同一行,为 <p> 元素添加 .form-control-static 类即可 <form class="form-horizontal"><div class="form-group"><label class="col-sm-2 control-label">Email</label><div class="col-sm-10"><p class="form-control-static">email@example.com</p></div></div><div class="form-group"><label for="inputPassword" class="col-sm-2 control-label">Password</label><div class="col-sm-10"><input type="password" class="form-control" id="inputPassword" placeholder="Password"></div></div></form> 帮助文字 <label class="sr-only" for="inputHelpBlock">Input with help text</label><input type="text" id="inputHelpBlock" class="form-control" aria-describedby="helpBlock">...<span id="helpBlock" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span> 校验状态 Bootstrap 对表单控件的校验状态,如 error、warning 和 success 状态,都定义了样式。使用时,添加 .has-warning、.has-error或 .has-success 类到这些控件的父元素即可。任何包含在此元素之内的 .control-label、.form-control 和 .help-block 元素都将接受这些校验状态的样式。 <div class="form-group has-success"><label class="control-label" for="inputSuccess1">Input with success</label><input type="text" class="form-control" id="inputSuccess1" aria-describedby="helpBlock2"><span id="helpBlock2" class="help-block">A block of help text that breaks onto a new line and may extend beyond one line.</span></div><div class="form-group has-warning"><label class="control-label" for="inputWarning1">Input with warning</label><input type="text" class="form-control" id="inputWarning1"></div><div class="form-group has-error"><label class="control-label" for="inputError1">Input with error</label><input type="text" class="form-control" id="inputError1"></div><div class="has-success"><div class="checkbox"><label><input type="checkbox" id="checkboxSuccess" value="option1">Checkbox with success</label></div></div><div class="has-warning"><div class="checkbox"><label><input type="checkbox" id="checkboxWarning" value="option1">Checkbox with warning</label></div></div><div class="has-error"><div class="checkbox"><label><input type="checkbox" id="checkboxError" value="option1">Checkbox with error</label></div></div> 添加额外的图标 你还可以针对校验状态为输入框添加额外的图标。只需设置相应的 .has-feedback 类并添加正确的图标即可 <div class="form-group has-success has-feedback"><label class="control-label" for="inputSuccess2">Input with success</label><input type="text" class="form-control" id="inputSuccess2" aria-describedby="inputSuccess2Status"><span class="glyphicon glyphicon-ok form-control-feedback" aria-hidden="true"></span><span id="inputSuccess2Status" class="sr-only">(success)</span></div> 控件尺寸 通过 .input-lg 类似的类可以为控件设置高度,通过 .col-lg- 类似的类可以为控件设置宽度。 高度尺寸 创建大一些或小一些的表单控件以匹配按钮尺寸 <input class="form-control input-lg" type="text" placeholder=".input-lg"><input class="form-control" type="text" placeholder="Default input"><input class="form-control input-sm" type="text" placeholder=".input-sm"><select class="form-control input-lg">...</select><select class="form-control">...</select><select class="form-control input-sm">...</select> 水平排列的表单组的尺寸 通过添加 .form-group-lg 或 .form-group-sm 类,为 .form-horizontal 包裹的 label 元素和表单控件快速设置尺寸。 <form class="form-horizontal"><div class="form-group form-group-lg"><label class="col-sm-2 control-label" for="formGroupInputLarge">Large label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputLarge" placeholder="Large input"></div></div><div class="form-group form-group-sm"><label class="col-sm-2 control-label" for="formGroupInputSmall">Small label</label><div class="col-sm-10"><input class="form-control" type="text" id="formGroupInputSmall" placeholder="Small input"></div></div></form> 7 按钮 7.1 可作为按钮使用的标签或元素 为 <a>、<button> 或 <input> 元素添加按钮类(button class)即可使用 Bootstrap 提供的样式 <a class="btn btn-default" href="" role="button">Link</a><button class="btn btn-default" type="submit">Button</button><input class="btn btn-default" type="button" value="Input"><input class="btn btn-default" type="submit" value="Submit"> 7.2 预定义样式 <!-- Standard button --><button type="button" class="btn btn-default">(默认样式)Default</button><!-- Provides extra visual weight and identifies the primary action in a set of buttons --><button type="button" class="btn btn-primary">(首选项)Primary</button><!-- Indicates a successful or positive action --><button type="button" class="btn btn-success">(成功)Success</button><!-- Contextual button for informational alert messages --><button type="button" class="btn btn-info">(一般信息)Info</button><!-- Indicates caution should be taken with this action --><button type="button" class="btn btn-warning">(警告)Warning</button><!-- Indicates a dangerous or potentially negative action --><button type="button" class="btn btn-danger">(危险)Danger</button><!-- Deemphasize a button by making it look like a link while maintaining button behavior --><button type="button" class="btn btn-link">(链接)Link</button> 7.3 尺寸 需要让按钮具有不同尺寸吗?使用 .btn-lg、.btn-sm 或 .btn-xs 就可以获得不同尺寸的按钮。 通过给按钮添加 .btn-block 类可以将其拉伸至父元素100%的宽度,而且按钮也变为了块级(block)元素。 7.4 激活状态 添加 .active 类 7.5 禁用状态 为 <button> 元素添加 disabled 属性,使其表现出禁用状态。 为基于 <a> 元素创建的按钮添加 .disabled 类。 8 图片 8.1 响应式图片 在 Bootstrap 版本 3 中,通过为图片添加 .img-responsive 类可以让图片支持响应式布局。其实质是为图片设置了 max-width: 100%;、 height: auto; 和 display: block; 属性,从而让图片在其父元素中更好的缩放。 如果需要让使用了 .img-responsive 类的图片水平居中,请使用 .center-block 类,不要用 .text-center <img src="..." class="img-responsive" alt="Responsive image"> 8.2 图片形状 <img src="..." alt="..." class="img-rounded"><img src="..." alt="..." class="img-circle"><img src="..." alt="..." class="img-thumbnail"> 9 辅助类 9.1 文本颜色 <p class="text-muted">...</p><p class="text-primary">...</p><p class="text-success">...</p><p class="text-info">...</p><p class="text-warning">...</p><p class="text-danger">...</p> 9.2 背景色 <p class="bg-primary">...</p><p class="bg-success">...</p><p class="bg-info">...</p><p class="bg-warning">...</p><p class="bg-danger">...</p> 9.3 三角符号 <span class="caret"></span> 9.4 浮动 <div class="pull-left">...</div><div class="pull-right">...</div> 9.5 让内容块居中 <div class="center-block">...</div> 9.6 清除浮动 通过为父元素添加 .clearfix 类可以很容易地清除浮动(float) <!-- Usage as a class --><div class="clearfix">...</div> 9.7 显示或隐藏内容 <div class="show">...</div><div class="hidden">...</div> 9.10 图片替换 使用 .text-hide 类或对应的 mixin 可以用来将元素的文本内容替换为一张背景图。 <h1 class="text-hide">Custom heading</h1> 10 响应式工具 10.1 不同视口下隐藏显示 .visible-xs- .visible-sm- .visible-md- .visible-lg- .hidden-xs .hidden-sm .hidden-md .hidden-lg.visible--block .visible--inline .visible--inline-block 10.2 打印类 .visible-print-block.visible-print-inline.visible-print-inline-block.hidden-print 打印机下隐藏 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_67155975/article/details/123351126。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-18 14:41:25
151
转载
转载文章
...基石。在工业化发展的影响下,土壤重金属污染和积累成为了一个世界性的问题,尤其在中国特别是长三角地区尤为严重[1]。 水是生命之源,水体问题直接关系到所有生物体的生存。环境中的水体问题,主要集中在工业废水的治理与监测上。工业废水中含有大量重金属元素,其难以生物降解,重金属元素会随着水体流动而扩散。 物质元素分析在土壤分析和水质分析上是常用的方式。传统的分析方法是基于实验室的元素光谱分析法,其具有高精度、高稳定的特点,如:原子吸收光谱法(Atomic absorption spectrometry, AAS)、电感耦合等离子体质谱法(Inductively coupled plasma mass spectrometry, ICP-MS)、电感耦合等离子体原子发射光谱法(Inductively coupled plasma atomic emission spectrometry, ICP-AES)等,但是此类光谱的检测样品预处理复杂、检测操作难度高、需要庞大复杂的实验设备,且对样品造成损坏,有所不便[2,3]。 激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)是一种基于原子光谱分析技术,与传统的光谱分析技术相比,其实验装置简单便携、操作简便、应用广泛、可远程测量,同时有在简单预处理样品或根本不预处理的情况下进行现场测量的潜力。因此,其满足在环境监测中,特别是土壤监测和水质监测此类希望可以在现场检测、快速便捷检测,同时精度较高的需求。LIBS技术很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,进一步提高了 LIBS技术的检测准确度和竞争力[4]。 1. 技术简介 1.1 LIBS技术简介 LIBS技术最早可以追溯到20世纪60年代Brech, F.和Cross, L.所做的激光诱导火花散射实验,其中的一项实验使用红宝石激光器产生的激光照射材料后产生等离子体羽流。经过了几十年的发展,LIBS技术得到了显著发展,其在环境检测、文物保护鉴定、岩石检测、宇宙探索等领域中被广泛应用。 1.1.1 LIBS技术的基本原理 LIBS技术的装置主要由脉冲激光器、光谱仪、样品装载平台和计算机组成,光谱仪和计算机之间常常由光电倍增管或CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
361
转载
转载文章
...d(100),这将会影响到所有注册了该委托的订阅者。而事件的本意应该为在事件发布者在其本身的某个行为中触发,比如说在方法DoSomething()中满足某个条件后触发。通过添加event 关键字来发布事件,事件发布者的封装性会更好,事件仅仅是供其他类型订阅,而客户端不能直接触发事件(语句pub.NumberChanged(100)无法通过编译),事件只能在事件发布者Publisher 类的内部触发(比如在方法pub.DoSomething()中),换言之,就是NumberChanged(100)语句只能在Publisher 内部被调用。大家可以尝试一下,将委托变量的声明那行代码注释掉,然后取消下面事件声明的注释。此时程序是无法编译的,当你使用了event 关键字之后,直接在客户端触发事件这种行为,也就是直接调用pub.NumberChanged(100),是被禁止的。事件只能通过调用DoSomething() 来触发。这样才是事件的本意,事件发布者的封装才会更好。 就好像如果我们要定义一个数字类型,我们会使用int 而不是使用object 一样,给予对象过多的能力并不见得是一件好事,应该是越合适越好。尽管直接使用委托变量通常不会有什么问题,但它给了客户端不应具有的能力,而使用事件,可以限制这一能力,更精确地对类型进行封装。 说 明:这里还有一个约定俗称的规定,就是订阅事件的方法的命名,通常为“On 事件名”,比如这里的OnNumberChanged。 1.3 委托的编译代码 这时候,我们注释掉编译错误的行,然后重新进行编译,再借助 Reflactor 来对 event 的声明语句做一探究,看看为什么会发生这样的错误: 可以看到,实际上尽管我们在GreetingManager 里将 MakeGreet 声明为public,但是,实际上MakeGreet 会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager 类的外面以赋值的方式访问,从而验证了我们上面所做的推论。 我们再进一步看下MakeGreet 所产生的代码: // private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量 [MethodImpl(MethodImplOptions.Synchronized)] public void add_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value); } [MethodImpl(MethodImplOptions.Synchronized)] public void remove_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value); } // 现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate 类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册。实际上也就是:“+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。 在add_MakeGreet()方法内部,实际上调用了System.Delegate 的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。 我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候: // public delegate void GreetingDelegate(string name); // 当编译器遇到这段代码的时候,会生成下面这样一个完整的类: // public class GreetingDelegate:System.MulticastDelegate { public GreetingDelegate(object @object, IntPtr method); public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result); public virtual void Invoke(string name); } // 1.4 .NET 框架中的委托和事件 1.4.1 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些! 假设我们有个高档的热水器,我们给它通上电,当水温超过95 度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。 现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做 temperature;当然,还有必不可少的给水加热方法 BoilWater(),一个发出语音警报的方法 MakeAlert(),一个显示水温的方法,ShowMsg()。 namespace Delegate{/// <summary>/// 热水器/// </summary>public class Heater{/// <summary>/// 水温/// </summary>private int temperature;/// <summary>/// 烧水/// </summary>public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){MakeAlert(temperature);ShowMsg(temperature);} }}/// <summary>/// 发出语音警报/// </summary>/// <param name="param"></param>private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);}/// <summary>/// 显示水温/// </summary>/// <param name="param"></param>private void ShowMsg(int param){Console.WriteLine("Display:水快开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater ht = new Heater();ht.BoilWater();} }} 1.4.2 Observer 设计模式简介 上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。 这时候,上面的例子就应该变成这个样子: /// <summary>/// 热水器/// </summary>public class Heater{private int temperature; private void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;} }}/// <summary>/// 警报器/// </summary>public class Alarm{private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }/// <summary>/// 显示器/// </summary>public class Display{private void ShowMsg(int param){Console.WriteLine("Display:水已烧开,当前温度:{0}度。", param);} } 这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器? 在继续进行之前,我们先了解一下Observer 设计模式,Observer 设计模式中主要包括如下两类对象: Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是 temprature 字段,当这个字段的值快到100 时,会不断把数据发给监视它的对象。 Observer:监视者,它监视Subject,当 Subject 中的某件事发生的时候,会告知Observer,而Observer 则会采取相应的行动。在本范例中,Observer 有警报器和显示器,它们采取的行动分别是发出警报和显示水温。 在本例中,事情发生的顺序应该是这样的: 1. 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。 2. 热水器知道后保留对警报器和显示器的引用。 3. 热水器进行烧水这一动作,当水温超过 95 度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。 类似这样的例子是很多的,GOF 对它进行了抽象,称为 Observer 设计模式:Observer 设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer 模式是一种松耦合的设计模式。 1.4.3 实现范例的Observer 设计模式 我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。 namespace Delegate{public class Heater{private int temperature;public delegate void BoilHandler(int param);public event BoilHandler BoilEvent;public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){if (BoilEvent != null){ BoilEvent(temperature); // 调用所有注册对象的方法} }} }}public class Alarm{public void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }public class Display{public static void ShowMsg(int param) // 静态方法{ Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.BoilEvent += alarm.MakeAlert; // 注册方法heater.BoilEvent += (new Alarm()).MakeAlert; // 给匿名对象注册方法heater.BoilEvent += Display.ShowMsg; // 注册静态方法heater.BoilWater(); // 烧水,会自动调用注册过对象的方法} }} 输出为: // Alarm:嘀嘀嘀,水已经 96 度了: Alarm:嘀嘀嘀,水已经 96 度了: Display:水快烧开了,当前温度:96 度。 // 省略... // 1.4.4 .NET 框架中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.NET Framework 中的事件模型和上面的不同?为什么有很多的EventArgs 参数? 在回答上面的问题之前,我们先搞懂 .NET Framework 的编码规范: 1. 委托类型的名称都应该以 EventHandler 结束。 2. 委托的原型定义:有一个void 返回值,并接受两个输入参数:一个Object 类型,一个EventArgs 类型(或继承自EventArgs)。 3. 事件的命名为委托去掉 EventHandler 之后剩余的部分。 4. 继承自 EventArgs 的类型应该以EventArgs 结尾。 再做一下说明: 1. 委托声明原型中的Object 类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm 的MakeAlert)可以通过它访问触发事件的对象(Heater)。 2. EventArgs 对象包含了Observer 所感兴趣的数据,在本例中是temperature。 上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer 端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。 现在我们改写之前的范例,让它符合.NET Framework的规范: using System;using System.Collections.Generic;using System.Text;namespace Delegate{public class Heater{private int temperature;public string type = "RealFire 001"; // 添加型号作为演示public string area = "China Xian"; // 添加产地作为演示public delegate void BoiledEventHandler(Object sender, BoiledEventArgs e);public event BoiledEventHandler Boiled; // 声明事件// 定义 BoiledEventArgs 类,传递给 Observer 所感兴趣的信息public class BoiledEventArgs : EventArgs{public readonly int temperature;public BoiledEventArgs(int temperature){this.temperature = temperature;} }// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBoiled(BoiledEventArgs e){if (Boiled != null){Boiled(this, e); // 调用所有注册对象的方法} }public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){// 建立BoiledEventArgs 对象。BoiledEventArgs e = new BoiledEventArgs(temperature);OnBoiled(e); // 调用 OnBolied 方法} }}public class Alarm{public void MakeAlert(Object sender, Heater.BoiledEventArgs e){Heater heater = (Heater)sender; // 这里是不是很熟悉呢?// 访问 sender 中的公共字段Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);Console.WriteLine();} }public class Display{public static void ShowMsg(Object sender, Heater.BoiledEventArgs e) // 静态方法{Heater heater = (Heater)sender;Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);Console.WriteLine();} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.Boiled += alarm.MakeAlert; //注册方法heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法heater.BoilWater(); //烧水,会自动调用注册过对象的方法} }} } 输出为: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Display:China Xian - RealFire 001: Display:水快烧开了,当前温度:96 度。 // 省略 ... 1.5 委托进阶 1.5.1 为什么委托定义的返回值通常都为 void ? 尽管并非必需,但是我们发现很多的委托定义返回值都为 void,为什么呢?这是因为委托变量可以供多个订阅者注册,如果定义了返回值,那么多个订阅者的方法都会向发布者返回数值,结果就是后面一个返回的方法值将前面的返回值覆盖掉了,因此,实际上只能获得最后一个方法调用的返回值。可以运行下面的代码测试一下。除此以外,发布者和订阅者是松耦合的,发布者根本不关心谁订阅了它的事件、为什么要订阅,更别说订阅者的返回值了,所以返回订阅者的方法返回值大多数情况下根本没有必要。 1.5.2 如何让事件只允许一个客户订阅? 少数情况下,比如像上面,为了避免发生“值覆盖”的情况(更多是在异步调用方法时,后面会讨论),我们可能想限制只允许一个客户端注册。此时怎么做呢?我们可以向下面这样,将事件声明为private 的,然后提供两个方法来进行注册和取消注册: public class Publishser{private event GeneralEventHandler NumberChanged; // 声明一个私有事件// 注册事件public void Register(GeneralEventHandler method){NumberChanged = method;}// 取消注册public void UnRegister(GeneralEventHandler method){NumberChanged -= method;}public void DoSomething(){// 做某些其余的事情if (NumberChanged != null){ // 触发事件string rtn = NumberChanged();Console.WriteLine("Return: {0}", rtn); // 打印返回的字符串,输出为Subscriber3} }} 注意上面,在UnRegister()中,没有进行任何判断就使用了NumberChanged -= method 语句。这是因为即使method 方法没有进行过注册,此行语句也不会有任何问题,不会抛出异常,仅仅是不会产生任何效果而已。 注意在Register()方法中,我们使用了赋值操作符“=”,而非“+=”,通过这种方式就避免了多个方法注册。 1.7 委托和方法的异步调用 通常情况下,如果需要异步执行一个耗时的操作,我们会新起一个线程,然后让这个线程去执行代码。但是对于每一个异步调用都通过创建线程来进行操作显然会对性能产生一定的影响,同时操作也相对繁琐一些。.NET 中可以通过委托进行方法的异步调用,就是说客户端在异步调用方法时,本身并不会因为方法的调用而中断,而是从线程池中抓取一个线程去执行该方法,自身线程(主线程)在完成抓取线程这一过程之后,继续执行下面的代码,这样就实现了代码的并行执行。使用线程池的好处就是避免了频繁进行异步调用时创建、销毁线程的开销。当我们在委托对象上调用BeginInvoke()时,便进行了一个异步的方法调用。 事件发布者和订阅者之间往往是松耦合的,发布者通常不需要获得订阅者方法执行的情况;而当使用异步调用时,更多情况下是为了提升系统的性能,而并非专用于事件的发布和订阅这一编程模型。而在这种情况下使用异步编程时,就需要进行更多的控制,比如当异步执行方法的方法结束时通知客户端、返回异步执行方法的返回值等。本节就对 BeginInvoke() 方法、EndInvoke() 方法和其相关的 IAysncResult 做一个简单的介绍。 我们先看这样一段代码,它演示了不使用异步调用的通常情况: class Program7{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();int result = cal.Add(2, 5);Console.WriteLine("Result: {0}\n", result);// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 上面代码有几个关于对于线程的操作,如果不了解可以看一下下面的说明,如果你已经了解可以直接跳过: 1. Thread.Sleep(),它会让执行当前代码的线程暂停一段时间(如果你对线程的概念比较陌生,可以理解为使程序的执行暂停一段时间),以毫秒为单位,比如Thread.Sleep(1000),将会使线程暂停1 秒钟。在上面我使用了它的重载方法,个人觉得使用TimeSpan.FromSeconds(1),可读性更好一些。 2. Thread.CurrentThread.Name,通过这个属性可以设置、获取执行当前代码的线程的名称,值得注意的是这个属性只可以设置一次,如果设置两次,会抛出异常。 3. Thread.IsThreadPoolThread,可以判断执行当前代码的线程是否为线程池中的线程。 通过这几个方法和属性,有助于我们更好地调试异步调用方法。上面代码中除了加入了一些对线程的操作以外再没有什么特别之处。我们建了一个Calculator 类,它只有一个Add 方法,我们模拟了这个方法需要执行2 秒钟时间,并且每隔一秒进行一次输出。而在客户端程序中,我们使用result 变量保存了方法的返回值并进行了打印。随后,我们再次模拟了客户端程序接下来的操作需要执行2 秒钟时间。运行这段程序,会产生下面的输出: // Client application started! Method invoked! Main Thread: Add executed 1 second(s). Main Thread: Add executed 2 second(s). Method complete! Result: 7 Main Thread: Client executed 1 second(s). Main Thread: Client executed 2 second(s). Main Thread: Client executed 3 second(s). Press any key to exit... // 如果你确实执行了这段代码,会看到这些输出并不是一瞬间输出的,而是执行了大概5 秒钟的时间,因为线程是串行执行的,所以在执行完 Add() 方法之后才会继续客户端剩下的代码。 接下来我们定义一个AddDelegate 委托,并使用BeginInvoke()方法来异步地调用它。在上面已经介绍过,BeginInvoke()除了最后两个参数为AsyncCallback 类型和Object 类型以外,前面的参数类型和个数与委托定义相同。另外BeginInvoke()方法返回了一个实现了IAsyncResult 接口的对象(实际上就是一个AsyncResult 类型实例,注意这里IAsyncResult 和AysncResult 是不同的,它们均包含在.NET Framework 中)。 AsyncResult 的用途有这么几个:传递参数,它包含了对调用了BeginInvoke()的委托的引用;它还包含了BeginInvoke()的最后一个Object 类型的参数;它可以鉴别出是哪个方法的哪一次调用,因为通过同一个委托变量可以对同一个方法调用多次。 EndInvoke()方法接受IAsyncResult 类型的对象(以及ref 和out 类型参数,这里不讨论了,对它们的处理和返回值类似),所以在调用BeginInvoke()之后,我们需要保留IAsyncResult,以便在调用EndInvoke()时进行传递。这里最重要的就是EndInvoke()方法的返回值,它就是方法的返回值。除此以外,当客户端调用EndInvoke()时,如果异步调用的方法没有执行完毕,则会中断当前线程而去等待该方法,只有当异步方法执行完毕后才会继续执行后面的代码。所以在调用完BeginInvoke()后立即执行EndInvoke()是没有任何意义的。我们通常在尽可能早的时候调用BeginInvoke(),然后在需要方法的返回值的时候再去调用EndInvoke(),或者是根据情况在晚些时候调用。说了这么多,我们现在看一下使用异步调用改写后上面的代码吧: using System.Threading;using System;public delegate int AddDelegate(int x, int y);class Program8{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);IAsyncResult asyncResult = del.BeginInvoke(2, 5, null, null); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}int rtn = del.EndInvoke(asyncResult);Console.WriteLine("Result: {0}\n", rtn);Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 此时的输出为: // Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Main Thread: Client executed 3 second(s). Result: 7 Press any key to exit... // 现在执行完这段代码只需要3 秒钟时间,两个for 循环所产生的输出交替进行,这也说明了这两段代码并行执行的情况。可以看到Add() 方法是由线程池中的线程在执行, 因为Thread.CurrentThread.IsThreadPoolThread 返回了True,同时我们对该线程命名为了Pool Thread。另外我们可以看到通过EndInvoke()方法得到了返回值。有时候,我们可能会将获得返回值的操作放到另一段代码或者客户端去执行,而不是向上面那样直接写在BeginInvoke()的后面。比如说我们在Program 中新建一个方法GetReturn(),此时可以通过AsyncResult 的AsyncDelegate 获得del 委托对象,然后再在其上调用EndInvoke()方法,这也说明了AsyncResult 可以唯一的获取到与它相关的调用了的方法(或者也可以理解成委托对象)。所以上面获取返回值的代码也可以改写成这样: private static int GetReturn(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;int rtn = del.EndInvoke(asyncResult);return rtn;} 然后再将int rtn = del.EndInvoke(asyncResult);语句改为int rtn = GetReturn(asyncResult);。注意上面IAsyncResult 要转换为实际的类型AsyncResult 才能访问AsyncDelegate 属性,因为它没有包含在IAsyncResult 接口的定义中。 BeginInvoke 的另外两个参数分别是AsyncCallback 和Object 类型,其中AsyncCallback 是一个委托类型,它用于方法的回调,即是说当异步方法执行完毕时自动进行调用的方法。它的定义为: // public delegate void AsyncCallback(IAsyncResult ar); // Object 类型用于传递任何你想要的数值,它可以通过IAsyncResult 的AsyncState 属性获得。下面我们将获取方法返回值、打印返回值的操作放到了OnAddComplete()回调方法中: using System.Threading;using System;using System.Runtime.Remoting.Messaging;public delegate int AddDelegate(int x, int y);class Program9{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);string data = "Any data you want to pass.";AsyncCallback callBack = new AsyncCallback(OnAddComplete);del.BeginInvoke(2, 5, callBack, data); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();}static void OnAddComplete(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;string data = (string)asyncResult.AsyncState;int rtn = del.EndInvoke(asyncResult);Console.WriteLine("{0}: Result, {1}; Data: {2}\n", Thread.CurrentThread.Name, rtn, data);} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 它产生的输出为: Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Pool Thread: Result, 7; Data: Any data you want to pass. Main Thread: Client executed 3 second(s). Press any key to exit... 这里有几个值得注意的地方: 1、我们在调用BeginInvoke()后不再需要保存IAysncResult 了,因为AysncCallback 委托将该对象定义在了回调方法的参数列表中; 2、我们在OnAddComplete()方法中获得了调用BeginInvoke()时最后一个参数传递的值,字符串“Any data you want to pass”; 3、执行回调方法的线程并非客户端线程Main Thread,而是来自线程池中的线程Pool Thread。另外如前面所说,在调用EndInvoke()时有可能会抛出异常,所以在应该将它放到try/catch 块中,这里就不再示范了。 1.8 总结 我们详细地讨论了C中的委托和事件,包括什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义。拥有了本章的知识,相信你以后遇到委托和事件时,将不会再有所畏惧。 本篇文章为转载内容。原文链接:https://blog.csdn.net/beyonddeg/article/details/53528482。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:02:19
81
转载
转载文章
...示了一个较为经典的代表现代数字基础设施的巨大结构,它是由“内布拉斯加州的某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe 的XKCD漫画展示了目前开源面临的困境:过度依赖少数项目维护志愿者。 (开源项目由志愿者自发来维护,)这本来会是一件很有趣的事情,只是去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 然而这个基于Java的日志记录工具已经在企业记录中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 Log4j是Sonatype公司旗下的Black Duck Open Hub所研发的研究工具。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的工作是仅仅靠五个人来完成的。 Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “如今几乎没有人愿意为现有的开源项目作出贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” 与此同时,随着项目的逐渐火爆,对于维护方面的核心团队来说,他们的负担也在不断增加。 “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1公地悲剧 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 这些常见开源项目的列表还在逐渐增加着。 所以没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO的好处:更少的技术负债,更好的招聘效果 参与开源社区----特别是在内部开源计划办公室(OSPO)的指导下----不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的作用。 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以处理且看到投资回报的事情。” 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才干。 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找到为开源做出贡献的员工无疑就找到一座金矿,”他说。 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些顶级的实践,并将这些收获带回到你的组织之中。” “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。”— Suzanne Ambiel,VMware 开源营销和战略总监 “但是这一切终究不会白费--开发人员不应该把空闲时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “开源团队的成员也可以成为开源技术的伟大内部传播者,并充当组织与更广泛社区之间的桥梁。”他补充道。 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3更多OSPO的好处:商业优势 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式”他说,“很高兴看到IT领导者们也认识到了这一点。” 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源计划办公室则可以为其提供帮助。 “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 这与公司拥有安全运营中心的方式类似,他说。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “如果你对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时应对安全事件。”他说。 “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 根据Red Hat 2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 但收益的不仅仅是软件供应商们。 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 他说,参与开源系统对公司来说有着重大的经济效益。 “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4如何入门开源 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “首先,节流一下”,VMware 的 Ambiel 建议道。 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “对于那些你较感兴趣的项目中,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” Ambiel 说,开源计划办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 中英对照版 How an OSPO Can Help Your Engineers Give Back to Open Source OSPO (开源项目办公室)是如何使工程师回馈开源的 When it comes to open source software, there’s a big and growing problem: most organizations are takers, not givers. 谈到开源软件,有一个较大且日益严重的问题:大多数组织都是索取者,而不是给予者。 There’s a classic XKCD comic that shows a giant structure representing modern digital infrastructure, dependent on a tiny component created by “some random person in Nebraska” who has been “thanklessly maintaining since 2003.” 经典漫画XKCD展示了一个代表现代数字基础设施的巨大结构,它依赖于“内布拉斯加州的某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe’s XKCD comic illustrates the open source dilemma: overreliance on a small number of volunteer project maintainers. Randall Monroe 的XKCD漫画展示了目前开源面临的窘境:过度依赖少数项目维护志愿者的志愿服务。 This would have been funny, except that this is exactly what happened when security vulnerabilities were discovered in Log4j last December. (开源项目由志愿者自发来维护,)这听起来像是一件很滑稽的事情,但事实上去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 The Java-based logging tool is ubiquitous in enterprise publications. In the last three months, for example, Log4j has been downloaded more than 30 million times, according to a report by the enterprise software company Sonatype. 然而这个基于Java的日志记录工具已经在企业内部刊物中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 The tool has 440,000 lines of code, according to Synopsys‘ Black Duck Open Hub research tool, with nearly 24,000 contributions by nearly 200 developers. That’s a large dev team compared to other open source projects. But looking closer at the numbers, more than 70% of commits were by just five people. 根据Synopsys(新思)公司旗下的Black Duck Open Hub 研究工具显示。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的提交是仅仅靠五个人来完成的。 Log4j’s home page lists about a dozen members on its project team. Most projects have far fewer developers working on them — and that presents a problem for the organizations that depend on them. Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “There is little incentive for anyone today to contribute to an existing open source project,” said Jeremy Stretch, distinguished engineer at NS1, a DNS network company. “There’s usually no direct compensation, and few accolades are offered — most users don’t even know who maintains the software that they use.” “如今的人没有什么动力去为现有的开源项目做贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” The most common motivation among open source contributors is to add a feature that they themselves want to see, he said. “Once this has been achieved, the contributor rarely sticks around.” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” Meanwhile, as a project becomes more popular, the burden on the core team of maintainers keeps increasing. 与此同时,随着项目的逐渐流行,对于维护方面的核心团队来说,他们的负担也在不断增加。 “More users means more feature requests and more bug reports — but not more maintainers,” Stretch said. “What was once an enjoyable hobby can quickly become a tedious chore, and many maintainers understandably opt to simply abandon their projects altogether.” “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1The Tragedy of the Commons The open source software ecosystem is a perfect example of the “tragedy of the commons.” 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 And the tragedy is — when everyone uses, but no one contributes, that resource — whether it’s an overrun park or an open source project — eventually collapses from overuse and underinvestment. Everyone loves using free stuff, but everyone expects someone else to take care of it. 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 This approach can save you money in the short term, but it can become a fatal flaw over time. Especially since open source software is everywhere, running everything. 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 Linux, for example, the open source operating system, runs on 96% of the world’s top 1 million servers, and 90% of all cloud infrastructure is on Linux. Not to mention that 85% of all smartphones in the world run Linux, in the form of the Android OS. 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 Then there’s Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes — the list of ubiquitous open source projects goes on and on. 还有Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes--这些常见开源项目的列表还在逐渐增加着。 Without open source, much of today’s technical infrastructure would immediately grind to a halt. 如果没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “It is a real problem,” said Danil Mikhailov, executive director at Data.org, a nonprofit backed by the Mastercard Center for Inclusive Growth and The Rockefeller Foundation that promotes the use of data science to tackle society’s greatest challenges. “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 While nearly all organizations use open source software, only a minority contribute to those projects. Forty-two percent of participants in a survey released in September by The New Stack, Linux Foundation Research, and the TODO Group said tthey contribute at least sometimes to open source projects. 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 The same study showed that only 36% of organizations train their engineers to contribute to open source. 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 Individual companies should support projects that they use the most and are critical to their success, Mikhailov said: “If you use, you contribute.” 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO Benefits:Less Tech Debt,Better Recruiting Participating in open source communities — especially when guided by an in-house open source program office (OSPO) — can help ensure the health of projects critical to your organization’s success, improve those projects’ security, and allow your engineers to have more impact in the projects’ development road map. 参与开源社区——特别是在内部开源项目办公室(OSPO)的指导下——不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的影响。 Say, for example, a company uses an open source tool and modifies it a little to make it better. If that improvement isn’t contributed back to the community, then the official version of the open source project will start to diverge from what the company is using 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “You start to grow technical debt because when the original source changes and you’ve got a different version. Those differences grow rapidly, compounding daily. It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant,” said Suzanne Ambiel, director, open source marketing and strategy at VMware. “当原始代码来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “The technical debt gets bigger and bigger and it gets very expensive for a company to manage.” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 Support for open source activity can also be a recruiting tool. “It’s really a talent magnet,” said Ambiel. “It’s one of the things that new hires look for.” 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 Some engineering managers might worry that open source contributions will detract from core product development, she said. Their rationale, she added, might run along the lines of, “I only have so much talent, and so many hours, and I need them to only work on things where I can measure and see the return on investment.” 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以度量且看到投资回报的事情。” But that attitude, she said, is shortsighted. Supporting employees who contribute to open source communities can build skills and develop talent, she said. 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才华。 Loris Degionni, chief technology officer and founder at Sysdig, a cloud security vendor, echoed this notion: “Finding employees who contribute to open source is a gold mine,” said. 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找出为开源做出贡献的员工无疑就找到一座金矿,”他说。 These employees are more capable of delivering features a company wants to use and merge them into community-supported standards, he said. And in a war for talent, companies that embrace open source are more attractive to developers. 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “Lastly, open source is driven by a community of technical experts you may not be able to hire,” he said. “When employees actively contribute and collaborate with these experts, they’ll be better informed of best practices and bring them back to your organization. “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些最佳实践,并将这些收获带回到你的组织之中。” “You start to grow technical debt because when the original source changes and you’ve got a different version … It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant.” —Suzanne Ambiel, director, open source marketing and strategy, VMware “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。” — Suzanne Ambiel,VMware 开源营销和战略总监 “All of this should be rewarded — developers shouldn’t have to spend their free time honing their skills, as your company will quickly see benefits from their efforts.” “但是这一切终究不会白费--开发人员不应该把业余时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” An OSPO, Degionni suggested, can help achieve these goals, as well as help prioritize contributions and ensure collaboration. In addition, they can help provide governance that mirrors what companies would have for internally developed applications. Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “Members of the open source team are also in a position to be great internal evangelists for open source technologies, and act as bridges between the organization and the broader community,” he added. “开源团队的成员也可以成为开源技术的伟大内部布道师,并充当组织与更广泛社区之间的桥梁。”他补充道。 In the September survey from The New Stack, Linux Foundation Research and the TODO Group, nearly 53% of organizations with OSPOs said they saw more innovation as a result of having an OSPO, while almost 43% said they saw increased participation in external open source projects. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3More OSPO Benefits:A Business Edge Contributing to open source communities doesn’t just help the communities, but the companies that contribute to them, said Tom Hickman, chief innovation officer at ThreatX, a cybersecurity firm. 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “Growing the community of developers around a project helps the code base, and attracts more developers,” he said. “It can become a virtuous circle.” “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” Also, companies that contribute to open source projects get twice the productive value from their use of open source than companies that don’t, according to research by Harvard Business School. 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Many of the biggest companies in the world are contributing to open source, said Chris Aniszczyk, chief technology officer at Cloud Native Computing Foundation. He pointed to the Open Source Contributor Index as a reference for exactly just how much companies are doing. Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 The tech giants dominate the list: Google, Microsoft, Red Hat, Intel, IBM, Amazon, Facebook, VMware, GitHub and SAP are the top 10 contributors, in that order. But there are also a lot of end users on the top 100 list, said Aniszczyk, including Uber, the BBC, Orange, Netflix, and Square. 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “We’ve always known working in upstream projects is not just the right thing to do —it’s the best approach to open source software development and the best way to deliver open source benefits to our customers,” he said. “It’s great to see that IT leaders recognize this as well.” “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式“他说,“很高兴看到IT领导者们也认识到了这一点。” To contribute alongside these giants, companies need to have their own open source strategies, and having an open source program office can help. 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源项目办公室则可以为其提供帮助。 “OSPOs provide a critical center of competency in a company when it comes to utilizing open source software,” he said. “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 It’s similar to the way that companies have security operations centers, he said. 这与公司拥有安全运营中心的方式类似,他说。 “Growing the community of developers around a project helps the code base, and attracts more developers. It can become a virtuous circle.” —Tom Hickman, chief innovation officer, ThreatX “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “If you don’t make the investment in a security team, you generally don’t expect your software to be secure or be able to respond to security incidents in a timely fashion,” he said. “如果你没有对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时响应安全事件。”他说。 “The same logic applies to OSPOs and is why you see many leading companies out there such as Apple, Meta, Twitter, Goldman Sachs, Bloomberg, and Google all have OSPOs. They are ahead of the curve.” “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如 Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” Support for open source activity within your organization can become a differentiator and marketing opportunity for software vendors. 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 According to a Red Hat survey released in February, 82% of IT leaders are more likely to select a vendor who contributes to the open source community. 根据Red Hat2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 Respondents said that when vendors support open source communities they are more familiar with open source processes and are more effective if customers have technical challenges. 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 But it’s not just software vendors who benefit. 但收益的不仅仅是软件供应商们。 According to September’s survey by The New Stack, Linux Foundation Research, and the TODO Group, 57% of organizations with OSPOs use them to further strategic relationships and build partnerships. 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 Mark Hinkle started an open source program office back when he worked at Citrix a decade ago. He pointed out how having an OSPO in-house benefited the company. 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “For us the biggest job was to educate our employees who weren’t familiar with open source to get involved and be good community members,” he said. “We also provided guidance on how to make sure our IP didn’t enter projects without proper understanding and we made sure we didn’t incorporate open source that conflicted with our enterprise software licensing.” “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” The OSPO also helped Citrix identify strategic opportunities for the company to participate in open source projects and trade organizations like The Linux Foundation, he said. 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 Today, he’s the CEO and co-founder of TriggerMesh, a cloud native, open source integration platform. 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 There are some significant economic benefits to participating in the open source ecosystem, he said. 他说,参与开源系统对公司来说有着重大的经济效益。 “We participate in Knative to share the development of our underlying platform but we develop value-added services as part of our business,” he said. “By sharing the R and D for the platform, it gives us more resources to develop our own differentiated technology.” “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4How to Get Started in Open Source Sixty-three percent of companies in the September survey from The New Stack, Linux Foundation Research and the TODO Group said that having an OSPO was very or extremely critical to the success of their engineering or product teams, up from 54% in the previous annual study. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 In particular, 77% said that their open source program had a positive impact on their software practices, such as improved code quality. 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 But companies can’t always contribute to every single open source project that they use. 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “First, thin the herd a little bit,” advised VMware’s Ambiel. “首先,节流一下”,VMware 的 Ambiel 建议道。 Companies should look at the projects that make the most sense for their use cases. This is an area where an OSPO can help set priorities and ensure technical and strategic alignment. 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 Then, developers should go and check out the projects themselves. Projects typically offer online documentation, often with contributor guides, governance documents, and lists of open issues. 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “For the projects that rise to the top of your strategic list, introduce yourself — say hello,” she said. “Go to the Slack channel or the distribution list and ask where they need help. Maybe they don’t need help and everything is good. Or maybe they can use a new person to review code.” “对于那些上升到你的战略清单顶端的项目,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” An open source program office can not only help make a business case for contributing to the open source community, Ambiel said, but can help companies do it in a way that’s safe, secure and sound. Ambiel 说,开源项目办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “If I work for a company and want to contribute to open source, I don’t want to accidentally disclose, divulge or undermine any patents,” she said. “An OSPO helps you make smart choices.” “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” An OSPO can also help provide leadership and the guiding philosophy about supporting open source, she said. “It can provide guidance, mentorship, coaching and best practices.” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Commitment to support open source has to start at the top, said Anaïs Urlichs, developer advocate at Aqua Security. Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 “Too often,” she said, “companies do not value investment into open source, so employees are not encouraged to contribute to it.” 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” In those cases, employees with a passion for open source end up contributing during their free time, which is not sustainable. 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “If companies rely on open source projects, it is important to make open source contributions part of an engineer’s work schedule,” she said. “Some companies define a time percentage that employees can contribute to open source as part of their normal workday.” “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack is a wholly owned subsidiary of Insight Partners, an investor in the following companies mentioned in this article: Sysdig, Aqua Security. The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 相关阅读 | Related Reading 《开源合规指南(企业篇)》正式发布,为推动我国开源合规建设提供参考 “目标->用户->指标”——企业开源运营之道|瞰道@谭中意 开源之夏邀请函——仅限高校学子开启 开源社简介 开源社成立于 2014 年,是由志愿贡献于开源事业的个人成员,依 “贡献、共识、共治” 原则所组成,始终维持厂商中立、公益、非营利的特点,是最早以 “开源治理、国际接轨、社区发展、开源项目” 为使命的开源社区联合体。开源社积极与支持开源的社区、企业以及政府相关单位紧密合作,以 “立足中国、贡献全球” 为愿景,旨在共创健康可持续发展的开源生态,推动中国开源社区成为全球开源体系的积极参与及贡献者。 2017 年,开源社转型为完全由个人成员组成,参照 ASF 等国际顶级开源基金会的治理模式运作。近八年来,链接了数万名开源人,集聚了上千名社区成员及志愿者、海内外数百位讲师,合作了近百家赞助、媒体、社区伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/kaiyuanshe/article/details/124976824。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-03 09:19:23
274
转载
转载文章
...类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
329
转载
转载文章
...上看起来要深远得多的影响(参见:《深挖CVE-2018-10933(libssh服务端校验绕过)兼谈软件供应链真实威胁》)。 以上这些,抛开体系化的设想,只看案例,可能会得到这样的印象:这种威胁,都是由蓄意的上游或第三方参与者造成的;即便在最极端情况下,假使一个大型软件商或开源组织,被发现存在广泛、恶意的上游代码污染,那它顶多也不过相当于“奥创”一样的邪恶寡头,与其划清界限、清除历史包袱即可,虽然可能有阵痛。 可惜,并非如此。 在我们组织比赛的后半程中,对我们面临的这种威胁类型,不断有孤立的事例看似随机地发生,对此我以随笔的方式对它们做了分析和记录,以下与大家分享。 Ⅰ. 从感染到遗传:LibVNC与TightVNC系列漏洞 2018年12月10日晚9:03,OSS漏洞预警平台弹出的一封漏洞披露邮件,引起了我的注意。披露者是卡巴斯基工控系统漏洞研究组的Pavel Cheremushkin。 一些必要背景 VNC是一套屏幕图像分享和远程操作软件,底层通信为RFB协议,由剑桥某实验室开发,后1999年并入AT&T,2002年关停实验室与项目,VNC开源发布。 VNC本被设计用在局域网环境,且诞生背景决定其更倾向研究性质,商用级安全的缺失始终是个问题。后续有若干新的实现软件,如TightVNC、RealVNC,在公众认知中,AT&T版本已死,后起之秀一定程度上修正了问题。 目前各种更优秀的远程控制和分享协议取代了VNC的位置,尽管例如苹果仍然系统內建VNC作为远程方式。但在非桌面领域,VNC还有我们想不到的重要性,比如工控领域需要远程屏幕传输的场景,这也是为什么这系列漏洞作者会关注这一块。 漏洞技术概况 Pavel总结到,在阶段漏洞挖掘中共上报11个漏洞。在披露邮件中描述了其中4个的技术细节,均在协议数据包处理代码中,漏洞类型古典,分别是全局缓冲区溢出、堆溢出和空指针解引用。其中缓冲区溢出类型漏洞可方便构造PoC,实现远程任意代码执行的漏洞利用。 漏洞本身原理简单,也并不是关键。以其中一个为例,Pavel在发现时负责任地向LibVNC作者提交了issue,并跟进漏洞修复过程;在第一次修复之后,复核并指出修复代码无效,给出了有效patch。这个过程是常规操作。 漏洞疑点 有意思的是,在漏洞披露邮件中,Pavel重点谈了自己对这系列漏洞的一些周边发现,也是这里提到的原因。其中,关于存在漏洞的代码,作者表述: 我最初认为,这些问题是libvnc开发者自己代码中的错误,但看起来并非如此。其中有一些(如CoRRE数据处理函数中的堆缓冲区溢出),出现在AT&T实验室1999年的代码中,而后被很多软件开发者原样复制(在Github上搜索一下HandleCoRREBPP函数,你就知道),LibVNC和TightVNC也是如此。 为了证实,翻阅了这部分代码,确实在其中数据处理相关代码文件看到了剑桥和AT&T实验室的文件头GPL声明注释,中国菜刀 这证实这些文件是直接从最初剑桥实验室版本VNC移植过来的,且使用方式是 直接代码包含,而非独立库引用方式。在官方开源发布并停止更新后,LibVNC使用的这部分代码基本没有改动——除了少数变量命名方式的统一,以及本次漏洞修复。通过搜索,我找到了2000年发布的相关代码文件,确认这些文件与LibVNC中引入的原始版本一致。 另外,Pavel同时反馈了TightVNC中相同的问题。TightVNC与LibVNC没有继承和直接引用关系,但上述VNC代码同样被TightVNC使用,问题的模式不约而同。Pavel测试发现在Ubuntu最新版本TightVNC套件(1.3.10版本)中同样存在该问题,上报给当前软件所有者GlavSoft公司,但对方声称目前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
301
转载
转载文章
...安全政策对网络爬虫的影响:近期,各国对于数据安全和个人隐私保护的法律法规日趋严格,如欧盟的GDPR(一般数据保护条例)以及我国的《个人信息保护法》。这些法规对网络爬虫抓取网站信息的行为提出了更高的合规要求,包括如何合法获取并使用带有用户身份信息的cookie及session数据。 2. HTTPS加密协议强化与新型证书策略:随着网络安全技术的发展,越来越多的网站采用更高级别的SSL/TLS证书以增强安全性。例如,Let's Encrypt等项目推动了免费SSL证书的广泛部署,使得HTTP站点向HTTPS过渡成为主流趋势。这对网络爬虫而言意味着必须更新应对策略,理解和适配不同类型的SSL证书验证机制。 3. 反爬策略的技术演进与对策研究:面对日益复杂的网站反爬机制,诸如基于用户行为分析、动态验证码、IP封锁等手段层出不穷。研究人员正在探索更先进的模拟登录方法和维持session活性技术,同时利用AI图像识别技术破解复杂验证码也成为业界热门话题。 4. 网络爬虫伦理与法律边界探讨:在实际应用中,网络爬虫技术往往涉及道德和法律问题。例如,未经许可抓取受版权保护的内容或侵犯用户隐私。相关案例引发了关于合理使用网络爬虫、尊重数据来源权和用户知情权的深入讨论,这对于指导开发者正确运用cookie和session管理用户状态具有重要意义。 综上所述,无论是从技术层面还是法律伦理角度,处理不信任SSL证书、cookie和session的相关知识都是网络爬虫领域发展的重要组成部分。不断跟进相关政策变化和技术演进,将有助于我们更好地在遵守规则的前提下进行有效的数据采集和分析工作。
2023-03-01 12:40:55
565
转载
SpringBoot
Oracle查询超时问题:Spring Boot与Druid集成场景? 1. 引子 我的困惑之旅 作为一个刚入行不久的Java开发工程师,我最近在负责一个基于Spring Boot的项目。这个项目需要与Oracle数据库交互,而我选用了Druid作为数据源管理工具。事情本来挺顺的,大家都觉得没啥问题,结果有一天,我们的系统突然蹦出个消息,说啥“查询超时”!就那么一下,气氛瞬间紧张了,感觉空气都凝固了似的。 当时我整个人都懵了——这到底是什么情况?是Oracle的问题吗?还是Spring Boot的锅?或者是我对Druid的理解还不够深入?带着这些疑问,我开始了一段探索之旅。今天,我想把这段经历分享给大家,希望能帮助那些和我一样遇到类似问题的朋友。 --- 2. 什么是“查询超时”? 简单来说,“查询超时”就是你的SQL语句执行的时间超过了设定的最大允许时间,导致系统直接抛出异常。哎呀,这种情况在实际开发里真的挺常见的,特别是那种高并发的场景。你要是数据库连接池没配好,那问题就容易冒出来了,简直防不胜防! 对于我来说,这个问题尤其令人头疼,因为我们的项目依赖于Oracle数据库,而Oracle本身就是一个功能强大的关系型数据库,但同时也有一些“坑”。比如说啊,它的默认查询超时时间可能设得有点短,要是咱们不改一下这个设置,那查询的时候就容易卡壳儿,最后连结果都拿不到。 --- 3. Spring Boot与Druid集成的基本配置 首先,让我们回顾一下如何在Spring Boot项目中集成Druid。这是一个非常基础的操作,但也是解决问题的第一步。 3.1 添加依赖 在pom.xml文件中添加Druid的相关依赖: xml com.alibaba druid-spring-boot-starter 1.2.8 3.2 配置数据源 接着,在application.yml文件中配置Druid的数据源信息: yaml spring: datasource: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: oracle.jdbc.driver.OracleDriver url: jdbc:oracle:thin:@localhost:1521:orcl username: your_username password: your_password druid: initial-size: 5 max-active: 20 min-idle: 5 max-wait: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false 这段配置看似简单,但实际上每一项参数都需要仔细斟酌。比如说啊,“max-wait”这个参数呢,就是说咱们能等连接连上的最长时间,单位是毫秒,相当于给它设了个“最长等待时间”;然后还有个“validation-query”,这个名字听起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
40
冬日暖阳_
转载文章
...us的时候都会调用$ORACLE_HOME/sqlplus/admin/glogin.sql文件。我们可以修改这个文件,使得每次登录时都设置好一些sqlplus的环境变量,并将默认显示的SQL>改为显示登录的用户名和登录的数据库实例名 在glogin.sql文件末尾加如下几行 1 2 3 4 vi /opt/oracle/product/10.2.0/db_1/sqlplus/admin/glogin.sql set linesize 150 set pagesize 30 set sqlprompt "_user'@'_connect_identifier>" 参数说明: set linesize 150 //设置一行可以容纳的字符数 set pagesize 30 //设置一页面显示多少行数 set sqlprompt "_user'@'_connect_identifier>" //修改sqlplus提示符,可以提醒你所在的用户模式,减少误操作 本文转自ling118 51CTO博客,原文链接:http://blog.51cto.com/meiling/1775065,如需转载请自行联系原作者 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34349320/article/details/89831921。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-30 12:31:19
304
转载
Flink
...ps://docs.oracle.com/javase/8/docs/api/ 3. Stream Processing with Flink: A Hands-on Guide by Kostas Tsichlas and Thomas Hotham (Packt Publishing, 2017).
2023-01-01 13:52:18
406
月影清风-t
建站模板下载
...类企业网站,提升在线影响力与用户体验。 点我下载 文件大小:1.83 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-03 10:04:08
55
本站
建站模板下载
...品,助力提升在线品牌影响力。 点我下载 文件大小:2.43 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-10 20:24:45
110
本站
建站模板下载
...多潜在客户,提升品牌影响力。 点我下载 文件大小:4.33 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-05-26 22:44:48
119
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 显示文件开头的10行内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"