前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[组件化开发 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hadoop
...adoop生态系统的组件。近期发布的Beam 2.30版本中,增强了与Hadoop FileSystem的集成,使得开发者能够更加便捷地在Beam程序中操作HDFS数据。 此外,随着数据隐私和安全问题日益凸显,业界对于如何在使用Hadoop和ETL工具的同时确保数据安全提出了更高要求。一些最新的研究论文和行业报告探讨了如何结合加密技术、访问控制策略以及审计机制,保障大数据处理流程中的数据安全与合规性,这为在实践中深化Hadoop与各类ETL工具的应用提供了重要指导。 综上所述,关注Hadoop与ETL工具集成的最新动态和技术演进,将有助于企业和开发者紧跟大数据处理发展趋势,构建高效、安全的大数据解决方案,从而在数字化转型浪潮中占据竞争优势。
2023-06-17 13:12:22
583
繁华落尽-t
Material UI
...用ChipGroup组件? 1. 什么是ChipGroup?它为什么这么重要? 兄弟们,咱们先聊聊ChipGroup是什么玩意儿吧!在开发UI的时候,你是不是经常遇到这样的场景——用户需要从一堆选项里选择一个或者多个东西?比如你喜欢的音乐类型(摇滚、爵士、流行)、你的兴趣爱好(运动、读书、旅行)啥的。唉,你说这事儿啊,在这种场景下,要是还用那种传统的单选框或者复选框,感觉就像是在穿一件硬邦邦的老古董衣服,不仅自己戴着不舒服,别人看着也觉得没劲。用户体验嘛,简直可以用“惨不忍睹”来形容! 这时候,ChipGroup就登场了!它是Material UI提供的一个组件,用来展示一组标签式的选项。这些选项啊,长得就跟小芯片似的,点一下就能立马切换状态,特别直观,用起来贼顺手!而且它还能根据你的需求支持单选或多选,简直是UI设计中的神器! 我第一次用这个组件的时候,简直觉得相见恨晚。想想看,以前做这种功能得自己写一堆逻辑,现在直接调用一个组件就能搞定,省了多少时间啊!所以今天,我就来手把手教大家怎么玩转这个组件,让它成为你项目里的小助手。 --- 2. ChipGroup的基本结构和属性 好啦,接下来咱们得搞清楚这个组件长啥样,以及它有哪些参数可以配置。说实话,刚开始接触的时候,我也是懵圈的,不过慢慢琢磨就明白了。 首先,ChipGroup是一个容器,里面可以放一堆Chip(也就是那些小标签)。它的核心属性主要有以下几个: - children: 这个就是你要显示的Chip列表啦,每个Chip都是一个单独的小标签。 - value: 如果你设置了这个属性,表示当前选中的Chip是哪些。要是单选的话,就只能选一个值,不能多选;但如果是多选模式呢,那就可以传一串数组,想选几个选几个,自由得很! - onValueChange: 这个属性很重要,它是一个回调函数,每当用户选择了一个新的Chip时,都会触发这个函数,你可以在这里处理业务逻辑。 - variant: 可以设置Chip的样式,比如“filled”(填充型)或者“outlined”(边框型),具体看你喜欢哪种风格。 - color: 设置Chip的颜色,比如“primary”、“secondary”之类的,挺简单的。 让我举个例子吧,比如你想做一个音乐类型的筛选器,代码可以这样写: jsx import React from 'react'; import { Chip, ChipGroup } from '@mui/material'; export default function MusicTypeFilter() { const [selectedTypes, setSelectedTypes] = React.useState([]); const handleTypeChange = (event, newValues) => { setSelectedTypes(newValues); console.log('Selected types:', newValues); }; return ( value={selectedTypes} onChange={handleTypeChange} variant="outlined" color="primary" aria-label="music type filter" > ); } 这段代码创建了一个音乐类型筛选器,用户可以选择多个类型。每次选择后,handleTypeChange函数会被调用,并且打印出当前选中的类型。是不是超简单? --- 3. 单选模式 vs 多选模式 说到ChipGroup,肯定要提到它的两种模式——单选模式和多选模式。这就跟点菜一样啊!单选模式就像你只能从菜单上挑一道菜,不能多点;多选模式呢,就好比你想吃啥就点啥,爱点几个点几个,随便你开心!这听起来很基础对吧?但其实这里面有很多细节需要注意。 比如说,如果你用的是单选模式,那么每次点击一个新的Chip时,其他所有Chip的状态都会自动取消掉。这是Material UI默认的行为,但有时候你可能不想要这种效果。比如你做的是一个问卷调查,用户可以选择“非常同意”、“同意”、“中立”等选项,但你希望他们能同时勾选多个答案怎么办呢? 解决办法也很简单,只需要给ChipGroup设置multiple属性为true就行啦!比如下面这段代码: jsx multiple value={['同意', '中立']} onChange={(event, newValues) => { console.log('Selected values:', newValues); } } > 在这个例子中,用户可以同时选择“同意”和“中立”,而不是只能选一个。是不是感觉特别灵活? --- 4. ChipGroup的高级玩法 最后,咱们来说点更酷的东西!你知道吗,ChipGroup其实还有很多隐藏技能,只要你稍微动点脑筋,就能让它变得更强大。 比如说,你想让某些Chip一开始就被选中,该怎么办?很简单,只要在初始化的时候把它们的值放到value属性里就行啦!比如: jsx const [selectedTypes, setSelectedTypes] = React.useState(['摇滚', '流行']); 再比如,你想给某个Chip加上特殊的图标或者颜色,也可以通过自定义Chip来实现。比如: jsx label="摇滚" icon={} color="error" /> 还有哦,有时候你可能会遇到一些动态数据,比如从后台获取的一组选项。这种情况下,你可以用循环来生成ChipGroup的内容,代码如下: jsx const musicTypes = ['摇滚', '爵士', '流行', '古典']; return ( value={selectedTypes} onChange={handleTypeChange} > {musicTypes.map((type) => ( ))} ); 看到没?是不是特别方便?这种灵活性真的让人爱不释手! --- 5. 总结与反思 好了,到这里咱们就差不多聊完了ChipGroup的所有知识点啦!其实吧,我觉得这个组件真的挺实用的,无论是做前端还是后端,都能帮我们省去很多麻烦事。对啊,刚开始接触的时候确实会有点迷糊,感觉云里雾里的。不过别担心,多试着上手操作个几次,慢慢你就明白了,其实一点都不难! 话说回来,我觉得学习任何技术都得抱着一种探索的心态,不能死记硬背。嘿嘿,说到ChipGroup,我当初也是被它折腾了好一阵子呢!各种属性啊、方法啊,全都得自己动手试一遍,慢慢摸索才知道咋用。就像吃 unfamiliar 的菜一样,一开始啥都不懂,只能一个劲儿地尝,最后才找到门道!所以说啊,大家要是用的时候碰到啥难题,别急着抓头发,先去瞅瞅官方文档呗,说不定就有答案了。实在不行,就自己动手试试,有时候动手一做,豁然开朗的感觉就来了! 总之呢,希望大家都能用好这个组件,把它变成自己的得力助手!如果有啥疑问或者更好的玩法,欢迎随时交流哦~ 😊
2025-05-09 16:08:24
101
月下独酌
Consul
...,服务网格是一个关键组件,它提供了一系列的功能来管理服务间的通信,包括服务发现、流量控制、安全性和监控等。服务发现是服务网格的核心功能之一,它允许服务在运行时动态地发现和连接到其他服务。在本文中,我们将探讨如何使用Consul作为服务发现的基础设施,构建一个高效、灵活且可扩展的服务网格。 1. 为什么选择Consul? Consul 是一个开源的分布式系统工具包,提供了服务发现、健康检查、配置管理和多数据中心支持等功能。哎呀,这个东西啊,是建立在Raft一致性算法的基础上的,就像咱们家里的电路,不管外面刮风下雨,都能稳稳地供电一样,它在那些分散开来的设备间跑来跑去,遇到问题也能自己想办法解决,保证啥时候你用着都舒心,不会突然断电。这可是个厉害的小家伙呢!相比于其他服务发现方案,Consul 的优势在于其简洁的设计、丰富的API接口以及良好的社区支持。 2. Consul 的基本概念 - 服务(Service):在Consul中,服务被定义为一组运行在同一或不同节点上的实例。 - 服务注册(Service Registration):服务需要主动向Consul注册自己,提供诸如服务名称、标签、地址和端口等信息。 - 服务发现(Service Discovery):Consul通过服务标签和健康检查结果,为客户端提供服务的动态位置信息。 3. 安装与配置Consul 首先,确保你的开发环境已经安装了Go语言环境。然后,可以使用官方提供的脚本或者直接从源码编译安装Consul。接下来,配置Consul的基本参数,如监听端口、数据目录等。对于生产环境,建议使用持久化存储(如Etcd、KV Store)来存储状态信息。 bash 使用官方脚本安装 curl -s https://dl.bintray.com/hashicorp/channels | bash -s -- -b /usr/local/bin consul 启动Consul服务 consul server 4. 使用Consul进行服务注册与发现 服务注册是Consul中最基础的操作之一。通过简单的HTTP API,服务可以将自己的信息(如服务名、IP地址、端口)发送给Consul服务器,完成注册过程。 go package main import ( "fmt" "net/http" "os" "github.com/hashicorp/consul/api" ) func main() { c, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { fmt.Println("Error creating Consul client:", err) os.Exit(1) } // 注册服务 svc := &api.AgentService{ ID: "example-service", Name: "Example Service", Tags: []string{"example", "service"}, Address: "127.0.0.1", Port: 8080, Weights: []float64{1.0}, Meta: map[string]string{"version": "v1"}, Check: &api.AgentServiceCheck{ HTTP: "/healthcheck", Interval: "10s", DeregisterCriticalServiceAfter: "5m", }, } // 发送注册请求 resp, err := c.Agent().ServiceRegister(svc) if err != nil { fmt.Println("Error registering service:", err) os.Exit(1) } fmt.Println("Service registered:", resp.Service.ID) } 服务发现则可以通过查询Consul的服务列表来完成。客户端可以通过Consul的API获取所有注册的服务信息,并根据服务的标签和健康状态来选择合适的服务进行调用。 go package main import ( "fmt" "time" "github.com/hashicorp/consul/api" ) func main() { c, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { fmt.Println("Error creating Consul client:", err) os.Exit(1) } // 查询特定标签的服务 opts := &api.QueryOptions{ WaitIndex: 0, } // 通过服务名称和标签获取服务列表 services, _, err := c.Health().ServiceQuery("example-service", "example", opts) if err != nil { fmt.Println("Error querying services:", err) os.Exit(1) } for _, svc := range services { fmt.Printf("Found service: %s (ID: %s, Address: %s:%d)\n", svc.Service.Name, svc.Service.ID, svc.Service.Address, svc.Service.Port) } } 5. 性能与扩展性 Consul通过其设计和优化,能够处理大规模的服务注册和发现需求。通过集群部署,可以进一步提高系统的可用性和性能。同时,Consul支持多数据中心部署,满足了跨地域服务部署的需求。 6. 总结 Consul作为一个强大的服务发现工具,不仅提供了简单易用的API接口,还具备高度的可定制性和扩展性。哎呀,你知道吗?把Consul整合进服务网格里头,就像给你的交通系统装上了智能导航!这样一来,各个服务之间的信息交流不仅快得跟风一样,还超级稳,就像在高速公路上开车,既顺畅又安全。这可是大大提升了工作效率,让咱们的服务运行起来更高效、更可靠!随着微服务架构的普及,Consul成为了构建现代服务网格不可或缺的一部分。兄弟,尝试着运行这些示例代码,你会发现如何在真正的工程里用Consul搞服务发现其实挺好玩的。就像是给你的编程技能加了个新魔法,让你在项目中找服务就像玩游戏一样简单!这样一来,你不仅能把这玩意儿玩得溜,还能深刻体会到它的魅力和实用性。别担心,跟着我,咱们边做边学,保证让你在实际操作中收获满满!
2024-08-05 15:42:27
34
青春印记
转载文章
...接口和服务支持,使得开发者能够在NDN环境中开发和部署各种应用服务。 NFD (Named-Data Networking Forwarding Daemon) , 作为NDN网络中的核心组件,NFD是一个转发器守护进程,负责处理NDN网络中的数据包转发、路由表维护以及与其它NFD节点之间的交互协作。NFD通过解析并执行Interest报文来获取或生成对应的数据包,并根据路由策略将数据包正确地转发到请求者。 waf , waf是一种通用的、灵活的构建系统,类似于Makefile或CMake,在本文中被用来编译和安装ndn-cxx和NFD项目。waf可以根据项目需求自动化完成配置、编译、链接等一系列构建步骤,简化软件开发和部署流程。 Interest 报文 , 在NDN体系结构中,Interest报文是用来表达用户对特定数据内容的需求,包含了用户想要获取的数据的名字等信息。当一个节点发送Interest报文时,沿途的转发器会记录这个请求,并试图找到并返回相应的数据内容给请求者。 Consumer/Producer 模型 , 在NDN环境下,consumer是数据的请求者,producer则是数据的提供者。文中提到的示例程序即遵循这一模型,producer程序负责发布数据,consumer程序则发出Interest报文请求这些数据。通过搭建环境并运行这两个程序,可以验证NDN平台的基本功能是否正常运作。
2023-03-30 19:22:59
322
转载
Dubbo
...但是呢,对于我们这些开发者来说,也得把目光放在实际应用场景的优化上,比如像是给程序设定个恰到好处的超时时间啦,挑选最对胃口的负载均衡策略什么的,这样一来才能让咱的业务需求灵活应变,不断升级! 每一次对Dubbo特性的探索,都让我们对其在构建高可用分布式系统中的价值有了更深的理解。在面对这瞬息万变、充满挑战的生产环境时,Dubbo可不仅仅是个普通的小工具,它更像是我们身边一位超级给力的小伙伴,帮我们守护着服务质量的大门,让系统的稳定性蹭蹭上涨,成为我们不可或缺的好帮手。在实践中不断学习和改进,是我们共同的目标与追求。
2024-03-25 10:39:14
485
山涧溪流
Apache Solr
...组织这些信息,成为了开发者和数据科学家们面临的挑战。Apache Solr,这玩意儿啊,简直就是搜索界的超级英雄!它不仅速度快得飞起,还能在多台服务器上同时工作,就像组建了一支无坚不摧的搜索小分队。而且,它的功能那叫一个强大,用起来特别灵活,就像是个万能工,啥活都能干。所以,不管是大企业还是小团队,用它来做搜索和分析,那可真是再合适不过了。很多开发者都对它情有独钟,因为它真的能帮我们解决不少难题,提升工作效率,简直就是咱们的好帮手嘛!在这篇文章中,我们将深入探讨Solr的核心技术——倒排索引,揭开其背后的工作原理,以及如何通过代码实践来优化搜索体验。 1. 倒排索引是什么? 倒排索引,又称为反向索引,是一种用于存储和检索文档中词汇位置的技术。在老派的正向索引里,咱们是按照词儿出现的先后顺序来整理的。比如说,你查一个词,咱们就顺着文章的顺序给你找。但在倒排索引这阵子,玩法就不一样了,它是按照文档的编号来排的。就好比,你找某个文档,咱们就直接告诉你这个文档在哪儿,而不是先从头翻到尾。这样找东西,是不是更高效呢?哎呀,简单来说,倒排索引就像是一个超级大笔记本,专门用来记下每个单词(咱们就叫它“词汇”吧)都藏在哪些故事(文档)里头,而且还会记得每个词在故事里的准确位置。这样,当我们想找某个词的时候,就能直接翻到对应的页码,快速找到所有相关的内容了。这招儿可比一页一页地找,省事儿多了!哎呀,这设计超级棒!就像是有个魔法一样,你一搜,立马就能找到对应的文档清单。这样一来,找东西的速度嗖嗖的,效率那叫一个高,简直让人爽到飞起! 2. Solr的倒排索引实现 Solr 是基于 Apache Lucene 构建的,Lucene 是一个开源的全文检索库。在 Solr 中,倒排索引是通过索引器(Indexer)来构建的。当文档被索引时,Lucene 分析器(Analyzer)将文本分解成一系列词素(tokens),然后为每个词素创建一个倒排列表,这个列表包含了所有包含该词素的文档的标识符及其在文档中的位置信息。 示例代码:构建倒排索引 以下是一个简单的示例代码片段,展示如何使用 Solr API 构建倒排索引: java import org.apache.solr.client.solrj.SolrClient; import org.apache.solr.client.solrj.impl.HttpSolrClient; import org.apache.solr.client.solrj.response.UpdateResponse; import org.apache.solr.common.SolrInputDocument; public class SolrIndexer { private static final String SOLR_URL = "http://localhost:8983/solr/mycore"; private static final SolrClient solrClient = new HttpSolrClient(SOLR_URL); public static void main(String[] args) throws Exception { // 创建索引文档 SolrInputDocument document = new SolrInputDocument(); document.addField("id", 1); document.addField("title", "Java Programming Guide"); document.addField("content", "This is a guide for Java programming."); // 提交文档到索引 UpdateResponse response = solrClient.add(document); System.out.println("Documents added: " + response.getAddedDocCount()); // 关闭连接 solrClient.close(); } } 这段代码展示了如何创建一个简单的 Solr 索引文档,并将其添加到索引中。每一步都涉及到倒排索引的构建过程,即对文档中的文本进行分析和索引化。 3. 倒排索引的优化与应用 倒排索引的优化主要集中在索引构建的效率和查询的性能上。为了让你的索引构建工作跑得更快,咱们可以给索引器来点小调整,就像给你的自行车加点油,让它跑得飞快!首先,咱们可以试试增加并行度,就像开多台打印机同时工作,效率自然翻倍。还有,优化分词器,就像是给你的厨房添置一台高效的榨汁机,让食材(数据)处理得又快又好。这样一来,你的索引构建工作不仅高效,还能像欢快的小鸟一样轻松自在地翱翔在数据世界里。同时,通过合理的查询优化策略,如利用缓存、预加载、分片查询等技术,可以进一步提高查询性能。 在实际应用中,倒排索引不仅用于全文搜索,还可以应用于诸如推荐系统、语义理解等领域。例如,在一个电商网站中,倒排索引可以帮助用户快速找到相关的产品,或者根据用户的搜索历史和浏览行为提供个性化推荐。 4. 结语 倒排索引是 Solr 的核心组件,它不仅极大地提高了搜索性能,也为构建复杂的信息检索系统提供了强大的基础。哎呀,兄弟!咱们得给倒排索引这玩意儿好好整一整,让它变得更聪明,搜索起来也更快更高效!这样咱就能找到用户想要的内容,就像魔法一样,瞬间搞定!这不就是咱们追求的智能全文搜索嘛!希望本文能帮助你深入了解 Solr 的倒排索引机制,并激发你在实际项目中的创新应用。让我们一起探索更多可能,构建更加出色的信息检索系统吧!
2024-07-25 16:05:59
426
秋水共长天一色
Golang
...杂系统分解成若干独立组件或模块的设计方法。每个模块负责特定功能或任务,具有相对独立性,易于开发、测试和维护。在文章中,模块化设计被提及作为减少技术债务、提高代码可维护性的一种策略。通过模块化,可以将“未实现”的功能封装在独立的模块中,便于后期补充实现,同时减少不同部分之间的影响,使系统结构更加清晰、易于扩展。 行业名词三 , 持续集成与自动化测试。 解释 , 持续集成是一种软件开发实践,它强调频繁地将代码合并到共享仓库,并通过自动化构建、测试和部署过程来检测和解决集成问题。自动化测试则是指使用自动化工具执行测试脚本,以验证软件功能、性能和稳定性。在面对“未实现”的问题时,持续集成与自动化测试可以确保代码的稳定性和一致性,通过自动化流程提前捕获错误,减少人工测试的时间和成本,提高开发效率。同时,这也是一种预防性维护策略,有助于及早发现和修复潜在的“未实现”问题,保证软件质量。
2024-07-26 15:58:24
422
素颜如水
Beego
...o语言的高性能Web开发框架,设计简洁、易用,适合快速开发Web应用。它提供了路由、模板、数据库连接等基本功能,同时支持RESTful风格的API开发。在本文中,Beego框架被用来搭建Web服务,实现JWT的生成、验证和管理等功能,展示了如何在Go语言环境中集成和管理JWT令牌的生命周期。 名词 , 中间件。 解释 , 在软件架构中,中间件是指位于应用程序与操作系统、网络协议栈之间的一层软件组件,用于协调不同的系统、服务或协议。在本文中,中间件被用来作为验证JWT的有效性的手段,通过定义一个名为authMiddleware的函数,该函数作为HTTP请求处理流程的一部分,负责解析和验证传入的JWT,确保只有合法的请求才能访问受保护的资源。这种方式提高了系统的安全性,同时简化了验证逻辑的实现。
2024-10-15 16:05:11
71
风中飘零
Consul
...由HashiCorp开发的一款开源工具,因其全面的服务管理功能而备受开发者青睐。这东西可不只是提供服务发现那么简单,它还自带一个强大的Key-Value存储内核,这就意味着,用它来搭建既稳定可靠、又能灵活扩展的架构,简直就是绝佳拍档!今天,咱们就手拉手,一起揭开Consul数据存储的秘密面纱,瞧瞧它是如何在背后默默地支持整个系统的顺畅运行。 2. 数据存储基础 Consul的Key-Value存储,简称KV Store,是其核心组件之一。这个存储系统就像一个乱丢乱放的抽屉,你往里面塞东西、找东西都特简单方便,就跟你在一堆钥匙和小纸条中找对应的那把钥匙开对应的锁一样,只不过这里是应用程序在存取数据罢了。每一个键(Key)对应一个值(Value),并且支持版本控制和过期时间设置。这使得KV Store非常适合用于配置管理、状态跟踪和元数据存储。 go // 使用Consul的Go客户端存储键值对 package main import ( "fmt" "github.com/hashicorp/consul/api" ) func main() { config := api.DefaultConfig() config.Address = "localhost:8500" client, err := api.NewClient(config) if err != nil { panic(err) } // 存储键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb"), }, nil) if err != nil { fmt.Printf("Error storing key: %v\n", err) } else { fmt.Println("Key-value stored successfully") } } 3. 版本控制与事务 Consul KV Store支持版本控制,这意味着每次更新键值对时,都会记录一个新的版本。这对于确保数据一致性至关重要。例如,你可以使用KV() API的CheckAndSet方法原子性地更新值,只有当键的当前值与预期一致时才进行更新。 go // 更新键值对并确保值匹配 _, _, err = client.KV().CheckAndSet(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb-updated"), Version: 1, // 假设我们已经知道当前版本是1 }, nil) 4. 过期时间与自动清理 Consul允许为键设置过期时间,一旦超过这个时间,Consul会自动删除该键值对,无需人工干预。这对于临时存储或缓存数据特别有用。 go // 设置过期时间为1小时的键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/temp_data", Value: []byte("temp data"), TTL: time.Hour, }, nil) 5. 集群同步与一致性 Consul的KV Store采用复制和一致性算法,确保所有节点上的数据保持同步。当有新数据需要写入时,Consul会发动一次全体节点参与的协同作战,确保这些新鲜出炉的数据会被所有节点稳稳接收到,这样一来,就不用担心数据会神秘消失或者出现啥不一致的情况啦。 6. 动态配置与服务发现 Consul的KV Store常用于动态配置,如应用的环境变量。同时呢,它还跟服务发现玩得可亲密了。具体来说就是,服务实例会主动把自己的信息挂到KV Store这个公告板上,其他服务一看,嘿,只要找到像service/myapp这样的关键词,就能轻松查到这些服务的配置情况和健康状况啦。 go // 注册服务 service := &api.AgentServiceRegistration{ ID: "myapp", Name: "My App Service", Tags: []string{"web"}, Address: "192.168.1.100:8080", } _, _, err = client.Agent().ServiceRegister(service, nil) 7. 总结与展望 Consul的Key-Value存储是其强大功能的核心,它使得数据管理变得简单且可靠。嘿,你知道吗?KV Store就像个超能小管家,在分布式系统里大显身手。它通过灵活的版本控制机制,像记录家族大事记一样,确保每一次数据变动都有迹可循;再搭配上过期时间管理这一神技能,让数据能在合适的时间自动更新换代,永葆青春;最关键的是,它还提供了一致性保证这个法宝,让所有节点的数据都能保持同步协调,稳如磐石。所以说啊,KV Store实实在在地为分布式系统搭建了一个无比坚实的基础支撑。无论是服务发现还是配置管理,Consul都展现了其灵活和实用的一面。随着企业越来越离不开微服务和云原生架构,Consul这个家伙将在现代DevOps的日常运作中持续扮演它的“大主角”,而且这戏份只会越来越重。 --- 在撰写这篇文章的过程中,我尽力将复杂的概念以易于理解的方式呈现,同时也融入了一些代码示例,以便读者能更直观地感受Consul的工作原理。甭管你是刚刚开始摸Consul的开发者小哥,还是正在绞尽脑汁提升自家系统稳定性的工程师大佬,都能从Consul这儿捞到实实在在的好处。希望本文能帮助你在使用Consul时更好地理解和利用其数据存储能力。
2024-03-04 11:46:36
433
人生如戏-t
转载文章
... DOM的支持,方便开发者针对现代Web组件进行精确测试。 对于实际应用场景,Selenium结合Python、Java等编程语言可以构建复杂的自动化测试框架,如pytest-selenium、TestNG+Selenium等。而在持续集成(CI/CD)环境中,Jenkins、Travis CI等工具与Selenium的集成使用也日益普及,实现自动化测试在开发流程中的无缝衔接。 此外,为了提高测试覆盖率和效率,许多团队开始采用基于AI技术的视觉回归测试工具,如Applitools Eyes、PerceptualDiff等,它们能够与Selenium配合,通过比较页面截图来检测UI界面的变化,尤其适用于响应式设计及跨平台测试场景。 另外值得注意的是,在Web应用安全测试方面,Selenium还可以与其他安全测试工具如ZAP (Zed Attack Proxy) 结合使用,通过对网站进行爬取和模拟用户交互,帮助发现潜在的安全漏洞。 综上所述,Selenium作为Web自动化测试的核心工具,在不断迭代升级中正逐步适应更多复杂且多样化的测试需求。随着DevOps理念的深入推广和实践,熟练掌握并灵活运用Selenium将成为软件质量保障工程师必备技能之一。与此同时,关注相关领域的最新发展动态和技术趋势,将有助于我们在实际项目中更好地利用Selenium以及其他配套工具,不断提升自动化测试的效果与价值。
2023-12-03 12:51:11
46
转载
Go Gin
...PI是一种定义了软件组件之间交互规则的接口,它使得开发者可以在不深入了解底层实现细节的情况下,使用特定的功能或服务。在文中,API访问控制指的是通过设置规则限制对API的访问频率,以保护系统资源不受恶意或过度请求的侵害。 名词 , Gin 框架。 解释 , Gin是一个轻量级的Go语言Web框架,旨在提供简洁、快速的HTTP服务器端编程体验。在文中,Gin框架被用来构建示例应用,其中集成gin-contrib/ratelimit库以实现API访问控制。Gin框架以其灵活性和高性能而著称,常用于构建高负载的Web服务。 名词 , 速率限制(Rate Limiting)。 解释 , 速率限制是一种流量控制策略,旨在通过限定单位时间内可以访问API的请求数量,防止过多请求对系统造成负担。在文中,通过gin-contrib/ratelimit库配置速率限制规则,例如每分钟允许的最大请求次数,以此保护API免受滥用或恶意攻击。速率限制是API安全管理的重要组成部分,有助于维护系统的稳定性与响应速度。
2024-08-24 16:02:03
110
山涧溪流
转载文章
...过精准控制各类对话框组件,可以辅助残障人士进行计算机操作,为其提供便利。 另外,值得注意的是,尽管win32gui提供了强大的本地化操作能力,但在跨平台兼容性和未来发展趋势上,开发者也应关注像PyAutoGUI、Selenium等更为现代化且支持多平台的自动化工具包。这些工具不仅同样支持窗口控件的定位与交互,还能够无缝对接Web应用和移动应用的自动化测试与操作。 综上所述,对win32gui模块的深入理解和熟练运用,既有助于我们解决实际工作中的自动化需求,也能启发我们思考如何在更广阔的自动化技术领域拓展应用。同时,结合最新的自动化工具和技术动态,我们将更好地应对日益复杂的应用场景挑战,不断推动软件自动化技术的进步与发展。
2023-12-17 22:46:11
254
转载
Etcd
...的任务,它不仅考验了开发者对Etcd内部机制的理解,还涉及到了分布式系统中常见的问题,如一致性、容错性和性能优化。通过合理的设计和实现,我们可以构建出既高效又可靠的分布式系统。哎呀,未来的日子里,技术这东西就像那小兔子一样,嗖嗖地往前跑。Etcd这个家伙,功能啊性能啊,就跟吃了长生不老药似的,一个劲儿地往上窜。这下好了,咱们这些码农兄弟,干活儿的时候能省不少力气,还能开动脑筋想出更多好玩儿的新点子!简直不要太爽啊!
2024-09-23 16:16:19
187
时光倒流
RocketMQ
... 与AI的深度融合:开发支持深度学习、自然语言处理等AI技术的消息队列,使其能够更好地服务于智能应用,如自动驾驶、医疗诊断等领域。 4. 跨云服务:随着多云环境的普及,消息队列需要具备跨云服务能力,支持在不同云平台间无缝传输消息,满足企业多云战略的需求。 总之,消息队列作为分布式系统中的核心组件,其未来发展将紧密围绕着提高效率、增强功能、提升智能化水平等方面展开,以更好地适应不断变化的技术环境和业务需求。
2024-10-02 15:46:59
574
蝶舞花间
转载文章
...、更便于管理和控制的组件的过程。它通过树状图或列表形式展现,从项目的最高层级目标开始,逐层向下细分直至最底层的具体可执行任务。在本文中,作者通过举例说明不同的任务划分方式对应的工作分解结构,探讨了其对项目沟通成本、开发效率以及团队协作的影响。 责任矩阵(Responsibility Assignment Matrix, RAM) , 在项目管理实践中,责任矩阵是一种直观展示各个工作任务与团队成员之间关系的工具,通常以表格形式存在,明确每个工作任务由谁负责(Responsible)、由谁最终承担责任(Accountable)、需要咨询谁的意见(Consulted)以及需要通知哪些相关人员(Informed),简称为RACI模型。文章中提到的责任矩阵有助于确定每个人员在完成工作分解结构中各工作细目时的角色定位,从而降低沟通成本和提高项目执行效率。 模块化设计 , 在软件工程和系统设计领域中,模块化设计是一种将复杂系统划分为一系列相互独立且功能相对集中的模块的方法。这些模块间通过清晰定义的接口进行交互,使得每个模块都能够单独开发、测试、维护和复用。文中,作者提倡采用模块化设计来优化任务分解,强调在任务划分过程中应遵循“输入什么、做什么事、输出什么”的原则,确保每个模块接口设计得当,以便于团队成员高效协作,减少重复劳动,并降低因理解误差和沟通不畅导致的成本增加。
2023-07-29 21:22:45
112
转载
Lua
行业名词 , 游戏开发。 解释 , 游戏开发是指从创意构思到最终成品发布全过程的设计、制作和实现。涉及多个专业领域,包括但不限于游戏策划、游戏设计、程序开发、美术设计、音效制作、测试验证等。游戏开发的目标是创造出吸引玩家、具有趣味性和创新性的娱乐产品。在现代游戏中,开发者经常利用各种编程语言、游戏引擎和工具来实现游戏的各个功能和效果。 行业名词 , 游戏引擎。 解释 , 游戏引擎是一种用于创建和运行视频游戏的软件平台,它提供了游戏开发所需的基本工具和技术,如渲染图形、物理模拟、动画控制、音频处理、网络连接等。游戏引擎通常包括核心引擎组件和一系列插件或工具集,允许开发者根据自己的需求定制和扩展游戏功能。LÖVE框架就是一个基于Lua的游戏开发引擎的例子,它为开发者提供了高效、灵活的环境来开发各种类型的游戏。 行业名词 , 跨平台应用。 解释 , 跨平台应用指的是能在多种操作系统或设备上运行的应用程序。在游戏开发领域,实现跨平台应用意味着开发者可以使用一种编程语言或一套开发工具集,创建一次开发出能在不同平台(如Windows、Mac、Linux、iOS、Android等)运行的游戏或应用。这样不仅减少了开发成本和时间,也扩大了游戏的受众群体,使得游戏可以在更广泛的设备上获得传播。
2024-09-19 16:01:49
92
秋水共长天一色
RabbitMQ
...接故障? 在现代软件开发中,高可用性和稳定性是至关重要的。特别是在分布式系统中,各种组件之间的通信变得频繁且复杂。消息队列在分布式系统里可是个关键角色,它的稳定性和可靠性直接关系到整个系统的运行表现,一点儿都不能马虎。RabbitMQ,作为一款广泛使用的开源消息队列服务,它不仅提供了强大的消息传递功能,还支持多种消息模式和协议。不过嘛,在实际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
95
红尘漫步
Gradle
... , 构建系统是软件开发过程中的核心组成部分,主要负责将源代码转换成可执行的应用程序或库。构建系统通过一系列自动化任务,包括编译、链接、打包和测试,确保软件产品的质量与稳定性。在文章中,构建系统被视为软件开发的关键环节,其效能直接影响项目的开发效率和产品质量。 名词 , 依赖管理。 解释 , 依赖管理是指在软件项目中,对项目所依赖的其他组件或库进行组织、跟踪和协调的过程。依赖管理涉及确定依赖关系、版本控制、冲突解决以及确保所有依赖项正确安装和配置。在文章中,依赖管理被强调为大型和复杂项目中的关键挑战,通过有效管理依赖,可以降低版本冲突风险,优化构建过程,提升项目的整体稳定性。 名词 , 持续集成与持续部署(CI/CD)。 解释 , 持续集成与持续部署(CI/CD)是一种软件开发实践,旨在通过自动化构建、测试和部署流程,加快软件交付速度并提高质量。持续集成(CI)侧重于频繁地合并代码更改,并在每次合并后自动执行构建和测试,以快速发现和解决集成问题。持续部署(CD)则关注于将通过测试的代码自动部署到生产环境。在文章中,CI/CD被看作是提升项目交付效率和质量的关键手段,通过自动化流程,可以减少人为错误,加速软件迭代周期。
2024-07-29 16:10:49
497
冬日暖阳
转载文章
...间的交互。在本文中,开发者使用的是Mybatis 3.2.0版本,它通过提供SQL映射文件和接口的方式来解耦Java程序与SQL语句,简化了数据访问操作,实现了数据的增删改查等功能。 Spring Framework , Spring是一个开源的企业级Java应用程序框架,文中使用的版本是Spring-4.0.0。Spring以其控制反转(IoC)和面向切面编程(AOP)等特性著称,能帮助开发者构建高质量、松耦合的应用系统。在该项目中,Spring负责管理和整合各组件,如数据源配置、事务管理以及集成Mybatis实现业务逻辑层的功能。 DAO(Data Access Object)接口 , 在软件开发领域,DAO是一种设计模式,常用于将底层的数据访问细节与业务逻辑分离。在本文中,创建的UserMapper.java文件就是一个DAO接口示例,定义了一系列与用户表t_user相关的CRUD操作方法,如保存(save)、更新(update)、删除(delete)、按ID查找(findById)以及查询所有用户信息(findAll)。通过这种方式,业务层代码只需调用这些接口方法即可进行数据库操作,无需关心具体的SQL执行细节。 XML映射文件 , 在Mybatis框架中,XML映射文件用于描述SQL语句以及SQL结果如何映射到Java对象上。例如,UserMapper.xml文件就是对UserMapper.java接口中的方法对应的SQL实现,每个方法对应一个SQL片段,并通过 参数名 的方式引用Java方法传递过来的参数,确保SQL执行时能够动态绑定参数值,同时也提供了处理结果集映射到Java对象的方法,实现了ORM(对象关系映射)功能。
2023-09-05 11:56:25
114
转载
Hive
...则在HDFS的基础上开发了多租户隔离技术,为企业用户提供更加安全可靠的数据存储方案。这些创新不仅提高了系统的性能,也为用户带来了更好的使用体验。 从长远来看,Hive和HDFS的技术演进方向值得关注。一方面,随着云原生技术的普及,越来越多的企业倾向于将大数据平台迁移到云端,这将推动Hive和HDFS向更灵活、更高效的架构转型。另一方面,随着数据量的爆炸式增长,如何提升数据处理能力成为行业关注的重点。在此背景下,开源社区持续活跃,不断推出新的功能和改进版本,为开发者提供了更多选择。 此外,近年来国内外学术界对大数据技术的研究也在不断深入。例如,哈佛大学的一项研究表明,通过优化HDFS的块分布策略,可以有效减少数据冗余,提高存储利用率。而清华大学的一项研究则提出了一种基于深度学习的异常检测算法,能够在早期识别HDFS的潜在故障,为运维人员争取宝贵的时间窗口。 总之,Hive和HDFS作为大数据领域的两大支柱,其未来发展充满无限可能。无论是技术创新还是实际应用,都值得我们保持高度关注。对于企业和开发者而言,及时了解最新进展并积极拥抱变化,将是应对未来挑战的关键所在。
2025-04-01 16:11:37
105
幽谷听泉
转载文章
...是Java语言的核心组件,它是一个抽象化的计算机系统,提供了运行和管理Java字节码的运行时环境。JVM负责加载、验证、执行Java程序,并提供内存管理、垃圾回收等服务,确保Java程序能够在不同的操作系统和硬件平台上无缝运行,从而实现Java语言的跨平台特性。 垃圾回收机制(Garbage Collection) , 在Java编程环境中,垃圾回收机制是一种自动内存管理技术,用于跟踪并回收不再使用的对象所占用的内存空间。程序员无须手动释放已分配给对象的内存,Java虚拟机会周期性地检查并清理堆内存中的无用对象,防止内存泄露问题,降低了开发人员在内存管理方面的负担,提升了编程效率和程序的健壮性。 多线程 , 在Java中,多线程是一种并发执行多个任务的能力。每个线程代表一个独立的执行路径,在同一应用程序中可以同时运行多个线程以提高程序的响应速度和资源利用率。Java通过Thread类及其相关API支持创建和管理线程,并提供了同步机制来协调多线程间的通信和数据共享,防止因并发访问共享资源导致的数据不一致问题。 分布式 , 在Java编程语境下,分布式意味着Java能够很好地支持构建分布式系统应用。Java提供了丰富的网络编程API,允许开发者编写可在不同网络节点间通信和协同工作的软件组件,如RMI(Remote Method Invocation)、EJB(Enterprise JavaBeans)等技术,以及对HTTP、TCP/IP协议的支持,使得Java程序可以方便地部署到分布式环境中,实现高可用性和可扩展性。
2023-03-25 09:18:50
85
转载
转载文章
...业 中国联通智慧足迹开发的SSNG多源数据处理平台,是完全自研的新一代面向行为集成的位置数据处理系统。平台沉淀海量信令处理过程中的长期经验,着力解决影响数据输出质量的核心堵点,可兼容类似信令的多种LBS数据源接入并实现自动化、标准化输出数据结果。 技术说明 SSNG多源数据处理平台技术创新部分包括: 行为矩阵:将离散的驻留信息,转化为用户的时空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
344
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sed 's/pattern/replacement/' file.txt
- 使用sed进行文本替换操作。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"