前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[图的增广路径搜索算法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
...i固定值 2、模块的搜索路径 Python在启动时会进行一系列的初始化操作,其中之一就是建立Python解释器的模块搜索路径。当Python想要加载一个模块时,会依据一定的顺序在这些搜索路径中搜索特定的模块文件。如果找到了对应的文件,就利用这个文件生成一个新的模块对象。 import sys print(sys.path) 3、模块的暂存方法 Python还有一个重要的方法,就是模块的暂存方法。当Python加载一个模块文件后,会将模块对象暂存起来。这意味着如果再次加载同一个模块,Python会立即给出暂存中的模块对象,而不是重新加载模块文件。这种方法可以在一定程度上提高Python的执行效率。 import my_module import my_module 不会重新加载my_module模块文件,而是给出暂存中的模块对象 总之,Python模块调用方法是Python编程中非常重要的一部分,了解它可以让我们更好地理解Python语言的要点和难点问题。
2023-02-16 21:48:21
260
代码侠
MySQL
...这项技术结合机器学习算法,为大规模生产环境下的MySQL性能调优提供了有力支持。 此外,MariaDB也在其最新的5.5版本中推出了一系列性能优化工具及特性,如动态列压缩技术和更完善的资源组管理,旨在帮助企业用户更好地监控和调整数据库操作,降低SQL执行时间(链接:[实际链接])。 总之,在数据库性能优化领域,无论是开源的MySQL还是其分支MariaDB,都在不断演进和创新,以满足日益增长的数据处理需求。持续跟进相关领域的最新研究和技术动态,对于提高数据库系统效能、保障业务稳定运行具有不可忽视的意义。
2023-03-20 17:28:08
51
数据库专家
HTML
...同特性提供不同的代码路径或资源,从而实现网页在不同浏览器下的兼容性优化。例如,如果浏览器不支持HTML5视频标签,Modernizr可以检测到这一点并触发一个回退方案,如使用Flash播放器来替代。 语义化标签 , 语义化标签是HTML5中的一个重要概念,指的是HTML标签具有明确的语义含义,能够清晰地表达出其所包含内容的意义和结构。比如<section>表示页面的一个独立区块,<article>用来定义文章内容,<header>代表页面或区域的头部信息等。通过合理使用语义化标签,不仅有助于搜索引擎优化(SEO),提升网页的可访问性和可读性,也有利于开发者更好地组织和维护代码,以及为未来可能的辅助技术提供更好的支持。
2023-10-08 13:53:02
408
算法侠
Python
...以提升大数据环境下的搜索性能。研究团队通过深度剖析re模块的底层算法,并结合现代硬件特性进行了创新性改进,实现了显著的速度提升,这对于处理大规模文本数据具有重大意义。 同时,Python社区也在不断更新和完善其正则表达式教程资源。Python官方文档针对re模块进行了详尽更新,新增了许多实用案例和高级技巧说明,帮助开发者紧跟时代步伐,解决实际工作中遇到的各种字符串匹配难题。 对于有兴趣深入了解正则表达式理论基础的读者,推荐阅读由Jeffrey Friedl所著的《Mastering Regular Expressions》一书,该书以其丰富的示例和深入浅出的解析,被广大开发者誉为正则表达式领域的经典之作。通过研读此类资料,您不仅能深化对Python中正则表达式的掌握,还能将其应用于更多跨语言、跨平台的场景,从而提升自身在文本挖掘、数据分析等领域的专业技能。
2023-08-02 16:27:28
304
代码侠
Python
...Python模块存储路径,主要用于存放项目或个人开发的自定义模块。与全局模块存放目录不同,局部模块存放目录并非所有Python程序都能自动搜索到,需要开发者在程序中通过修改sys.path列表来添加这个目录,使得Python解释器能够在导入模块时找到这些自定义模块。这样做的好处是可以避免将自定义模块混入全局模块目录,提高代码组织性和可维护性,同时也能支持不同项目的模块隔离使用。
2023-01-16 18:22:18
157
键盘勇士
Tesseract
...信息转换为可编辑、可搜索的数据的技术。在Tesseract工具中,OCR引擎是实现这一功能的核心算法模块,用户可以根据不同的任务需求选择合适的OCR引擎以提高识别效果。 卷积神经网络(CNN) , 卷积神经网络是一种深度学习模型,特别适用于处理图像数据。在本文的语境下,CNN可以用于解决文本行边界的识别问题。通过多层卷积层对输入图像进行特征提取,并结合池化层进行下采样以及全连接层进行分类识别,CNN能够自动学习并识别图像中与文本行边界相关的复杂视觉特征,从而有效且精确地定位文本行的位置和范围。
2023-07-23 18:49:51
116
素颜如水-t
Linux
...ONPATH中列出的路径顺序进行搜索,以找到对应的模块文件。在Linux系统中,通过设置PYTHONPATH可以扩展Python默认的搜索路径,使得解释器能够在自定义的目录下查找和导入所需的模块。 虚拟环境(venv或conda) , 虚拟环境是Python开发中用于隔离项目依赖的一种工具。venv是Python自带的虚拟环境管理器,而conda则是Anaconda发行版提供的更强大的环境管理工具。它们允许开发者为每个独立的项目创建一个纯净的Python运行环境,其中包含特定版本的Python解释器及项目所需的各种第三方库。这样可以避免不同项目间因库版本冲突带来的问题,同时也便于项目的部署和迁移。 PEP 582提案 , “Path-based module import”(基于路径的模块导入)是PEP 582提案的核心内容,该提案旨在改进Python的模块导入机制。在Python 3.9及更高版本中,这个提案允许开发者直接从文件系统的指定路径中导入模块,增强了对大型项目和复杂模块层次结构的支持,简化了模块管理和组织方式,使代码更加灵活和易于维护。
2023-03-09 18:38:16
107
时光倒流_t
HTML
...可能需要采用广度优先搜索、深度优先搜索等其他算法,甚至自定义迭代器以满足特定需求,这也是深入学习和实践中不可或缺的一部分。
2023-03-18 12:14:48
303
梦幻星空_t
ElasticSearch
...详尽的学习指南和实践路径。 总的来看,随着技术的发展与应用场景的拓展,ElasticSearch及其Painless scripting将继续在搜索优化、数据分析乃至AIops等领域发挥关键作用,值得广大技术人员持续关注和学习。
2023-02-04 22:33:34
479
风轻云淡-t
Python
...一定的规则;使用加密算法对口令进行加密;使用 ORM 框架将数据存储到数据库中等。 总的来说,Python 框架提供的表单提交功能可以大大简化程序员的工作,快速实现用户数据的获取和处理,提高应用的可靠性和用户体验。
2023-10-31 17:23:22
282
码农
Python
...泛应用的多级边缘检测算法,由John F. Canny于1986年提出。在本文的上下文中,它被用于Python编程中的图像处理阶段,通过计算图像灰度梯度强度的变化,以一种最优的方式找出图像中的显著边缘,从而定位潜在的正方形轮廓。 轮廓检测 , 轮廓检测是图像分析和处理中的关键技术之一,是指从数字图像中识别并提取目标物体外形轮廓的过程。在文章中,使用cv2.findContours函数来实现轮廓检测,该函数基于二值图像(如经过Canny边缘检测后的图像)找到连接像素点的连续路径,这些路径即为图像中的各个轮廓。 OpenCV (Open Source Computer Vision Library) , OpenCV是一个开源的跨平台计算机视觉库,包含了大量的图像和视频处理功能,支持多种编程语言,其中在Python环境中通常称为cv2模块。在本文的具体应用中,OpenCV提供了诸如图像读取、颜色空间转换、高斯滤波、边缘检测、轮廓查找以及形状近似等一系列图像处理函数,帮助开发者高效地完成正方形检测任务。
2023-04-20 10:25:03
50
软件工程师
JQuery
转载文章
在算法设计与编程挑战赛中,自然数拆分问题不仅是一项有趣的智力挑战,也与实际的计算机科学和数学研究紧密相连。近期,在ACM国际大学生程序设计竞赛(ACM-ICPC)的一场区域赛上,就出现了一道关于整数拆分优化问题的题目,要求参赛者在限定时间内找出最优的拆分方案,这与全国大学生算法设计与编程挑战赛中的自然数拆分问题有着异曲同工之妙。 深入探究此类问题,其实质是组合数学、图论以及动态规划等理论在实践中的应用。例如,贝尔数B(n,k)可以用来表示将n个不同元素分成k组的不同方式总数,这种理论在解决自然数拆分问题时提供了重要的数学工具。 此外,自然数拆分还与数论领域中的 partitions问题密切相关。在20世纪初,印度数学家拉马努金发展了一系列关于整数分区的恒等式,为后来的研究奠定了基础。现代计算机科学家通过算法优化,如记忆化搜索、回溯法及动态规划等,实现了对大规模自然数高效且精准的拆分计算。 同时,自然数拆分的实际应用也十分广泛,例如在数据压缩、编码理论、资源分配等领域都有所体现。在当前大数据和人工智能技术蓬勃发展的时代背景下,这类算法的设计与优化显得尤为重要。 总之,对于全国大学生算法设计与编程挑战赛中的自然数拆分问题,无论是从学术研究深度还是现实应用场景广度来看,都值得我们进一步探索和学习。不断跟进最新的科研进展,结合经典理论进行实战演练,无疑会提升我们在算法设计与编程领域的综合能力。
2023-10-17 08:23:11
544
转载
JSON
...许开发人员通过简洁的路径表达式直接筛选和操作JSON文档,极大地优化了大规模JSON数据的检索速度。 此外,学术界与工业界也正积极探索更高效的JSON数据处理算法和技术。一篇发表于《计算机科学》期刊的论文提出了基于索引结构的新型JSON查询引擎设计,通过预处理构建索引以加速查询过程,实现了对海量JSON数据的实时、高效访问。 而在实际应用层面,诸如前端框架React、Vue等也逐渐集成了更智能的JSON数据处理能力,如Vue 3.x中的reactive特性,可以自动跟踪JSON对象的变化,动态更新视图,使得JSON数据不仅在查询上更为便捷,在UI渲染层面也实现了性能飞跃。 总之,随着技术演进,针对JSON数据查询和处理的方案愈发丰富且高效,对于广大开发者而言,紧跟技术趋势,了解并掌握这些先进的查询和处理方式,无疑将大大提升项目整体性能及用户体验。
2023-09-15 23:03:34
484
键盘勇士
HTML
...要嵌入网页的图像文件路径或URL链接。例如,<img src=\ https://example.com/image.jpg\ >表示从指定的URL加载并显示图片。 alt属性 , alt是HTML img标签中的一个重要属性,全称为“alternative text”。当图片由于各种原因无法正常显示时,浏览器将展示alt属性所设定的文字内容作为图片的替代信息,这不仅有助于用户理解原本应显示的图片内容,还对搜索引擎优化(SEO)具有重要意义,因为搜索引擎爬虫可以读取alt属性来理解图片的主题内容。例如,<img src=\ picture.jpg\ alt=\ 这是一张示例图片\ >,若图片加载失败,浏览器会显示“这是一张示例图片”。 文件路径 , 在计算机文件系统中,文件路径是指从一个起始点(通常是根目录)到目标文件的一系列连续指向,用于唯一标识和定位文件的位置。在HTML文档引用本地磁盘上的图片资源时,需要提供正确的文件路径,例如<img src=\ images/picture.jpg\ alt=\ 本地图像\ >,其中\ images/picture.jpg\ 就是本地图像的相对文件路径。 远程URL , 远程URL(Uniform Resource Locator)是一种互联网上的资源定位符,它指定了网络上某一资源的具体位置,通常以\ http://\ 或\ https://\ 开头。在HTML中使用<img>标签引用远程服务器上的图片资源时,需提供其URL地址,如<img src=\ https://example.com/image.jpg\ alt=\ 远程图片\ >,这样浏览器就能根据提供的URL从远程服务器下载并显示图片。
2023-10-13 11:52:48
468
逻辑鬼才
转载文章
...此时我们就可以在当前路径下看到rsa_private_key.pem文件了。 2)把RSA私钥转换成PKCS8格式 输入命令pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM –nocrypt,并回车 得到生成功的结果,这个结果就是PKCS8格式的私钥,如下图: 3) 生成RSA公钥 输入命令rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem,并回车, 得到生成成功的结果,如下图: 此时,我们可以看到一个文件名为rsa_public_key.pem的文件,打开它,可以看到-----BEGIN PUBLIC KEY-----开头, -----END PUBLIC KEY-----结尾的没有换行的字符串,这个就是公钥。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33915554/article/details/85830576。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-18 17:04:03
89
转载
Kibana
...布式、RESTful搜索引擎,能够处理大规模数据的近实时搜索与分析。在本文上下文中,Elasticsearch服务作为Kibana的数据后端,为Kibana提供数据检索和API接口,当其出现异常或未启动时,可能导致Kibana无法正常访问内部API。 API(Application Programming Interface) , API是一种让软件之间交互和通信的标准方式,它定义了软件组件如何互相调用并交换信息。在本文中,Kibana内部API指的是Kibana系统内部用于获取、处理和展示Elasticsearch中数据的一系列接口。如果这些API调用失败,将直接影响到Kibana的数据展现和分析功能。 配置文件(kibana.yml) , 在Kibana中,kibana.yml是一个核心配置文件,用于存储和管理Kibana的各种设置参数,如Elasticsearch服务地址、网络配置、安全性设置等。当此文件中的配置错误,特别是与API访问权限或URL路径相关的设置有误时,可能会导致Kibana无法正确调用内部API。 Role-Based Access Control (RBAC) , 角色基于访问控制,是一种常见的授权机制,用于根据用户的角色分配不同级别的系统资源访问权限。在Elasticsearch中,通过实现RBAC可以精细控制不同用户对Elasticsearch API的访问权限,防止因权限设置不当引发的API调用失败问题。
2023-10-18 12:29:17
609
诗和远方-t
转载文章
... 我们在分析应用签名算法的时候,可以很方面的直接以sign为关键字搜索整个apk 查找用例,对代码或者类名右键,可以直接查找用例,在哪里使用了这些类或接口, 有助于我们更好的跟踪和定位 查询接口或类的用例, 在类的标题栏点击右键可以直接复制类名,这个功能用在Frida中, 使用Java.use时很方便。 var RpcSignUtil = Jave.use("com.xxxxx.xxxxx.common.transport.utils.RpcSignUtil"); 而且最新版的jadx还可以在code和smali之间切换,非常方便,有时候我们有看smali的需求,比如匿名内部类的时候,就可以直接切过去看smali 本篇文章为转载内容。原文链接:https://blog.csdn.net/chang995196962/article/details/123278366。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-20 16:12:18
465
转载
Python
...士都在寻求高效的学习路径。近期,《计算机世界》杂志发布了一篇深度报道,探讨了Python在人工智能、数据分析等领域的最新发展趋势及其对学习者技能需求的影响。文中指出,随着Python生态系统的不断壮大和完善,企业对于具备实战经验且能够灵活运用Python解决复杂问题的人才需求日益增长。 同时,一项由Codecademy进行的研究表明,采用混合式学习方法(结合在线教程、项目实践与定期复习)的学员,在Python学习效率上远超仅依赖单一教材或视频教程的学员。他们建议每天保持至少1-2小时的专注学习时间,并积极参与开源项目以提升实际操作能力。 此外,Coursera、EdX等知名在线教育平台也纷纷推出Python专项课程,如“使用Python进行数据科学”、“Python全栈开发实战”,这些课程紧跟行业前沿,为学习者提供从基础知识到高级应用的全方位指导。 值得注意的是,Python之父Guido van Rossum曾在一次访谈中强调,持续不断的编码实践是掌握任何编程语言的关键,他鼓励学习者不仅限于理论知识的理解,更要通过编写代码、解决实际问题来深化对Python的认知。 总之,在Python学习过程中,关注行业动态、结合多元化的学习资源并注重实践应用,才能更好地适应市场需求,从而在人工智能及大数据时代立于不败之地。
2023-09-23 08:54:15
329
电脑达人
Apache Solr
...收集等机制,进而提升搜索服务性能和稳定性。 堆内存 , 在Java虚拟机内存区域中,堆内存是一个重要的部分,它是所有对象实例化的存储区域。在Solr中,设置合理的堆内存大小对于大数据处理至关重要,因为它直接影响到索引构建、查询响应的速度以及系统能否有效避免因内存不足导致的性能瓶颈或溢出错误。 垃圾收集器 , 垃圾收集器是Java运行时环境中的关键组件,负责自动回收不再使用的对象所占用的内存空间,以维护系统的稳定性和性能。在Solr中,通过调整垃圾收集器参数(如启用并发标记清除算法),可以在不影响服务运行的情况下提高内存回收效率,从而降低内存占用并优化整体性能。例如,-XX:+UseConcMarkSweepGC参数指示JVM使用并发标记清除垃圾收集器。
2023-01-02 12:22:14
468
飞鸟与鱼-t
Tesseract
...OCR引擎,它的核心算法是一种名为CRNN(Convolutional Recurrent Neural Network)的模型。这种模型的特点是可以同时处理图像和文本,从而达到较好的识别效果。然而,当你遇到那种糊到不行的图片时,因为图片的清晰度大打折扣,Tesseract就有点抓瞎了,没法精准地认出图片上的字符。 三、解决方案 针对上述问题,我们可以从以下几个方面入手来改善Tesseract的识别效果: 1. 图像预处理 对于模糊的图像,我们可以通过图像预处理的方法来增强其清晰度,从而提高Tesseract的识别率。实际上,我们可以用一些神奇的小工具,比如说高斯滤波器、中值滤波器这类家伙,来帮咱们把图片里的那些讨厌的噪点给清理掉,这样一来,图片原本隐藏的细节就能亮丽如新地呈现出来啦。例如,我们可以使用Python的OpenCV库来实现这样的操作: python import cv2 加载图像 img = cv2.imread('image.jpg') 使用高斯滤波器进行去噪 blur_img = cv2.GaussianBlur(img, (5, 5), 0) 显示原始图像和处理后的图像 cv2.imshow('Original', img) cv2.imshow('Blurred', blur_img) cv2.waitKey(0) cv2.destroyAllWindows() 2. 字符级的后处理 除了对整个图像进行处理外,我们还可以对识别出的每一个字符进行单独的后处理。具体来说,我们可以根据每个字符的特征,如形状、大小、位置等,来调整其对应的像素值,从而进一步提高其清晰度。例如,我们可以使用Python的PIL库来实现这样的操作: python from PIL import Image 加载字符图像 char = Image.open('char.png') 调整字符的亮度和对比度 enhanced_char = char.convert('L').point(lambda x: x 1.5) 显示原字符和处理后的字符 char.show() enhanced_char.show() 3. 模型优化 最后,我们还可以尝试对Tesseract的模型进行优化,使其更加适合处理模糊图像。简单来说,我们在训练模型的时候,可以适当掺入一些模糊不清的样本数据,这样做能让模型更能适应这种“迷糊”的情况,就像让模型多见识见识各种不同的环境,提高它的应变能力一样。另外,我们也可以考虑尝鲜一些更高端的深度学习玩法,比如采用带注意力机制的OCR模型,让它代替老旧的CRNN模型,给咱们的任务加点猛料。 四、总结 总的来说,通过上述方法,我们可以有效地提高Tesseract识别模糊图像的效果。当然啦,这还只是我们的一次小小试水,要想真正挖掘出更优的解决方案,我们还得加把劲儿,继续深入研究和探索才行。
2023-05-12 09:28:36
115
时光倒流-t
转载文章
...(GCC-PHAT)算法的基础上,进一步探索其在现代信号处理和声源定位领域的实际应用与最新进展至关重要。近期的研究表明,GCC-PHAT由于其对宽带信号的优良处理性能,在无人机自主导航、室内声源定位以及噪声环境下的语音识别系统中都展现出了强大的潜力。 例如,在2023年的一项研究中,科研团队成功将GCC-PHAT应用于城市环境中自动驾驶车辆的复杂声源追踪,通过精确计算声音信号到达时间差,显著提高了车辆对周围环境感知的精度和实时性。此外,随着深度学习技术的发展,研究人员正在尝试结合GCC-PHAT与神经网络模型,以优化声源定位问题中的噪声抑制和多路径干扰校正。 另一篇报道指出,某科技公司开发了一款基于GCC-PHAT算法的新型无线麦克风波束成形系统,能够在嘈杂会议场景下有效分离和增强目标发言人的语音信号,从而提升远程通讯和会议系统的用户体验。 不仅如此,学术界也在不断探讨和完善GCC-PHAT算法,如针对算法在低信噪比条件下的稳健性改进策略,以及与其他高级信号处理技术(如稀疏表示、盲源分离等)的有效融合,这些都将为GCC-PHAT在未来更广泛的工程应用中提供更为坚实的基础和广阔的空间。 总之,GCC-PHAT作为一项重要的信号处理技术,其理论研究和实际应用正处于快速发展的阶段,持续跟踪该领域的最新研究成果和技术动态,对于提高各类声学系统的性能及其实用价值具有重要意义。
2023-05-02 19:41:15
335
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ps aux | grep keyword
- 查看含有特定关键词的进程详情。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"