前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[卷积神经网络改善文本行定位准确性]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Impala
...度学习 , 一种人工神经网络(ANN)形式的机器学习方法,其特点是具有多个隐藏层,可以自动从数据中学习复杂的特征表示。深度学习模型通过反向传播算法调整权重,以最小化预测误差。在文章语境中,深度学习被提及与SQL查询相结合,用于优化查询执行路径和提升查询性能,展现了深度学习在提升数据分析效率方面的潜力。 行业名词二 , SQL查询优化。 SQL查询优化 , 是指通过调整查询计划、索引选择、执行策略等手段,以提高SQL查询执行效率的过程。在大数据分析中,优化SQL查询可以显著减少数据处理时间,提高系统性能。文章中提到的深度学习辅助SQL查询优化策略,即是利用机器学习技术来预测和选择最佳的查询执行方案,进一步提升查询性能。 行业名词三 , 深度强化学习。 深度强化学习 , 一种结合了深度学习和强化学习(RL)的机器学习方法。在强化学习中,智能体通过与环境交互,学习如何采取行动以最大化累积奖励。深度强化学习引入深度神经网络来近似智能体的价值函数或策略,使其能够处理高维状态空间和长期依赖性问题。在文中,深度强化学习模型被用于预测SQL查询的执行路径和最佳执行计划,以此来优化查询性能,体现了其在复杂数据分析任务中的应用价值。
2024-08-19 16:08:50
71
晚秋落叶
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 前阵子,小天的同事程序员H偷偷的向阿里菜鸟投递了自己的简历... 不久后程序员H就收到了阿里菜鸟的面试通知,经历5轮面试,一举成功拿下offer并定级P6。 小天趁着未来的阿里大佬还在身边,向程序员H讨教了一下面试阿里菜鸟的经验,于是有了下面的情景: 小天把程序员H叫到了公司外面的阳台上,伸手递了一根相思鸟。 小天(小声地):大佬,你那边准备什么时候入职哇? 程序员H:唉~不知道呀,我想尽早过去,但是这边离职流程走下来至少也得一个月,难搞哦! 小天:确实,以大佬你的能力,在这里一个月才拿8.5k实在是有点屈才了... 程序员H:嘘~小声点,公司不让谈论薪资的,你还想不想混了。我之前是跟老板提了三次涨薪,可老板一推再推,说是我以后在公司的前途无可限量,不要总是局限于眼前的这点工资 说完,程序员H望着远方,吐了一个烟圈,随着烟圈的远去,变得越来越大。 程序员H(指着烟圈):老板给我画的饼呐,就是这个烟圈里看到的世界,大得很...对了,咱两差不多大,我看,你也尽快跳了吧! 小天:嘿嘿,有想过,但是能力不够,跳不得跳不得... 程序员H:啥跳不得啊?多看点技术书籍就差不多了 小天:唉~就是不喜欢看书,对了,大佬,你这次去面试问了些什么啊?很好奇阿里是怎么面试的,有哪些环节? 程序员H(突然振作精神):我跟你讲啊,不得不说,这大公司到底是大公司,规范得很。我面试的时候加HR面,一共有5轮,大概回忆一下... 一面 (电话面试) 介绍自己比较熟悉的项目和项目中遇到的难点 Springbean生命周期 谈谈依赖注入和面向切面 HashMap原理和扩容机制 常用并发包下的类 Redis持久化方式,为什么这么快? 自己平时如何提升的,看书或者网站? 二面 Jvm类加载机制,分别每一步做了什么工作? Jvm内存模型,垃圾回收机制,如何确定被清除的对象? 了解哪些垃圾回收器和区别? 多线程相关,线程池的参数列表和拒绝策略 Jvm如何分析出哪个对象上锁? Mysql索引类型和区别,事务的隔离级别和事务原理 Spring scope 和设计模式 Sql优化 三面 fullgc的时候会导致接口的响应速度特别慢,该如何排查和解决? 项目内存或者CPU占用率过高如何排查? ConcurrentHashmap原理 数据库分库分表 MQ相关,为什么kafka这么快,什么是零拷贝? 小算法题 http和https协议区别,具体原理 四面(Leader) 手画自己项目的架构图,并且针对架构和中间件提问 印象最深的一本技术书籍是什么? 五面(HR) 没什么过多的问题,主要就是聊了一下自己今后的职业规划,告知了薪资组成体系等等。 插播一条福利!!!最近整理了一套1000道面试题的文档(详细内容见文首推荐文章),以及大厂面试真题,和最近看的几本书。 需要刷题和跳槽的朋友,这些可以免费赠送给大家,帮忙转发文章,宣传一下,后台私信【面试】免费领取! 小天:好像问了两次看书的情况诶?现在面试还问这个? 程序员H:是啊,幸亏之前为了弄懂JVM还看了两本书,不然真不知道说啥了! 小天:看来,我也要找几本书去看了,感情没看过两本书都不敢跳槽了! 程序员H:对了,还有简历,告诉你一个捷径 简历尽量写好一些,项目经验突出: 1、自己的知识广度和深度 2、自身的优势 3、项目的复杂性和难度以及指标 4、自己对于项目做的贡献或者优化 程序员H:唉~这还不能走可怎么办呀!你说,我把主管打一顿,是不是马上就可以走了? 小天:... 查看全文 http://www.taodudu.cc/news/show-3387369.html 相关文章: 阿里菜鸟面经 Java后端开发 社招三年 已拿offer 阿里 菜鸟网络(一面) 2021年阿里菜鸟网络春招实习岗面试分享,简历+面试+面经全套资料! 阿里菜鸟国际Java研发面经(三面+总结):JVM+架构+MySQL+Redis等 2021年3月29日 阿里菜鸟实习面试(一面)(含部分总结) mongodb 子文档排序_猫鼬101:基础知识,子文档和人口简介 特征工程 计算方法Gauss-Jordan消去法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 前言 一、数字识别的模型训练 1.下载训练集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 2.2 将图片按照标签分类到具体文件夹 2.3 数据存在的缺陷 2.4 优化建议(核心) 二、模型训练 三、项目实现 1. 代码实现 2. 采用器件 2. 注意事项 总结 前言 第一次接触OpenMV也是第一次将理论用于实践,是老师让我实现的一个小测验,这几天完成后决定写下完整的过程。本文主要是当缝合怪,借鉴和参考了其他人的代码再根据我个人设备进行了一定的调整,此外还包括了我自身实践过程中的一些小意外。 !!!一定要根据个人器件型号和个人设备来参考 一、数字识别的模型训练 1.下载训练集 研究期间,我发现大部分人以及官网教程采用的都是自己拍摄照片再进行网络训练,存在的缺陷就是数据集较小不全面、操作繁琐。个人认为如果是对标准的数字进行识别,自己手动拍取照片进行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文系转载。文中的“我”均为原作者 作者:张彦飞allen 十年,一个听起来感觉很长的时间,已经从我身边悄悄地滑过了。一直想写点什么,却也一直也没时间动笔。今天捡了个周末,就随点写点流水文吧,写到哪儿算哪儿。 01 职场首站 我是 2010 年硕士毕业。还记得在 2009 年 11 月的校园招聘季的时候,我当时只面试了两家公司。一家是中科大洋,承诺 100% 解决户口。另外一家就是腾讯,技术面试全部通过以后,hr面试中各种旁敲侧击发现我还是希望长期在北京发展(当时我面试的是深圳的岗位),而且也有解决户口的工作后,就卡了我的offer。 现在回想起来,其实反而还有点感谢当时的腾讯 hr。因为我确实是想在北京长期发展的,北京的户口只有毕业的时候最好拿。错过了这次机会后会非常的难得到。进大厂机会多的是,但是户口的窗口却很少很少。 面试完这两家公司以后,我就没再面试其它公司。而是开始准备将我的一篇 ICPR 论文(https://projet.liris.cnrs.fr/imagine/pub/proceedings/ICPR-2010/data/4109b670.pdf) 里的算法去申请了个专利,然后去安安心心去中科大洋实习。 在第一家公司工作的时候,我不局限于完成自己的任务,而是花时间去看团队里的所有代码。这种工作方式刚开始的时候会比较吃力。因为我不仅仅只是把问题处理完了就完事,而是非得想把和它相关的周边业务逻辑都挖一遍才甘心。因此,班也没少加,好多个周末我都一个人在公司看代码,做测试。 不过这种方式的好处也是显而易见的,我花了大概一年的时间就熟悉了团队里的各种模块和业务。当有老员工离职的时候,我们领导很惆怅。我告诉他不用担心,这些模块我能顶住。有了前期看代码的积累,确实后来的各种事情处理起来都非常的得心应手。入职一年就顶起了团队里的大梁。 而且我还发现我们公司的客户端软件在启动的时候比较慢,通过主动调研和测试,最后给领导提交了一个客户端启动加速的方案。现在能想起来的方式其中一个技术方式是 DLL 的基地址重定位。 02 入职腾讯 在 2011 年下半年,工作了一年多的时候,感觉广播电视领域整体的盘子还是太小了,当时领头企业的营业额一年也就才十个亿左右。再通过和自己在腾讯的同学交流,还是觉得互联网的空间更大。所以也婉拒了领导给的副组长的提拔挽留,又毅然跳到了北京腾讯。 我是 2011 年 11 月加入腾讯的。在项目上,仍然保持和第一家公司时工作类似的风格,全力以赴。不仅仅局限于完成自己手头的工作,主动做一切可能有价值的事情。其中一件事情就是我发现在当时的项目中,存在很多运营后台的开发需求。每次开发一个后台都得有人力去投入。 后来我就在老大的所开发的一套 PHP 框架的基础上进行改进。实现了只要指定一张 Mysql 数据库中的表,就可以自动生成 bootstrap 样式的管理后台界面。支持列表展示、搜索、删除、批量删除、文本框、时间控件等等一切基础功能。再以后涉及管理后台的功能,只需要在这个基础上改造就行了,人力投入降低了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
转载文章
...提高代码重用性、减少网络传输开销以及增强安全性。 全文索引(FULLTEXT Index) , 全文索引是针对文本字段建立的一种特殊索引类型,主要用于支持全文本搜索功能。不同于常规的B树索引,全文索引能够对文本内容进行分词,并为每个词语创建索引,使得用户可以根据词语或短语快速定位包含相关词汇的记录。在MySQL中,默认引擎不直接支持全文索引,但可通过安装并使用特定的全文搜索引擎插件(如MyISAM引擎)来实现。全文索引极大地增强了对大量文本数据进行高效检索的能力,尤其适用于博客文章、文档库、论坛帖子等场景下的关键词搜索需求。
2023-04-26 19:09:16
83
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 写在开头的话 从很久之前就开始构思,一直到今天才开始动笔。这篇文章是送给那些希望更深刻地了解这个世界的人,然而,知道的多了,也不一定是件好事。另外注明,本篇文章全部为作者的个人观点。 引子 现在人工智能越来越火,我们的故事,要从它开始说起。 相信很多人都听说过王者荣耀,即使自己没有亲自玩过,应该也对这个游戏不陌生。我曾经也沉迷这个游戏,当时我有一个朋友,特别喜欢玩小号1。她说,玩小号匹配出来的对手都特别垃圾,玩起来就像切萝卜一样爽。当时我的感觉是玩小号匹配出来的都是新手,技术不高也不足为奇,然而在接下来的事情当中,我发现事情并没有这么简单。首先有网友反映在匹配时遇到了自己多年不用的小号2,也有网友反映,在连输很多局之后,会有一局赢得异常简单,就好像对手都是机器人一样3。 网友称这一类玩家为“ 电脑人”,还总结出了“ 电脑人”的若干特征: 4 1.加载速度非常快 2.进入游戏后在泉水的行为,走路姿势差不多,行动路线也差不多 3.查不到战绩 4.无法沟通 5.很怪异或者说无法解释的名字 但是,真正的玩家和所谓的“电脑人”仅靠这些特征真的可以完全的分辨开吗?这些“电脑人”,究竟是一些行为怪异的玩家,还是天美给玩家的一个惊喜,这并不是我这篇文章所想要讲述的重点。我想说的是,在人类日复一日研究人工智能,希望其更接近人类的同时,已经开始出现了人类与人工智能分不清的现象。更严重的情况是,已经开始了怀疑人类为人工智能的现象。 不难想象,在科技足够发达的未来,这一现象会愈加严重,人类究竟与人工智能有什么本质上的区别,在以下的内容中我将给出解释。 灵魂的存在 自古以来就有一个强大的神话:人类拥有永恒的灵魂。虽然肉体会消失,但是灵魂是永存的。尽管这一神话有人相信,有人不信,但是它确确实实的影响着我们的现实生活,是我们现有的法律,政治的经济制度的重要支柱。 如果灵魂确实存在的话,那么它作为区别人与人工智能的本质区别再合适不过了。但是,灵魂究竟是什么东西,或者说,它究竟存在与哪里。至今为止,科学家研究了动植物和人类的各个角落,也没有发现类似“灵魂”的东西。 又或许说,灵魂根本就是看不见,摸不着的。那灵魂又是如何产生的呢?从最开始的宇宙开始形成,灵魂显然是不存在的。而灵魂又是不可分割的,永恒不变的,那么在生物一步步进化的过程中,究竟是在那一刻,灵魂突然出现。由达尔文的《进化论》,由最初的单细胞生物到最后的人,都可以用基因突变来解释,但是究竟在那一代,突变产生了第一个具有灵魂的生物?人们不得而知。当然也有可能,灵魂是在某个时刻,由“上帝”加入到这个世界的。 本篇文章中,“灵魂”作为我们的唯一存在来描述,下文我会具体的解释。 心流的存在 与灵魂的存在相反,心灵的存在,是一个不争的事实,是一个我们每时每刻都在接受的明确的现实。心流包含两方面:感觉和欲望。 我们可以非常明确的知道,我们自身,是有感觉和欲望的,以及,人工智能,是不具备感觉和欲望。在这里,我想我需要简述一下笛卡尔的心灵哲学5,笛卡尔认为,人不是机器,但是动物是机器,只有人类才拥有感觉和欲望,其他动物都是没有心灵的自动物。所以当有人踢狗的时候,狗会自动的退缩,躲避,并开始狂吠,但是没有任何的感觉和欲望,就像自动贩卖机一样,按下开关,出来商品。所以人类对待动物,也很少有怜悯。早期17世纪的医生和学者对活狗进行解剖,观察其内脏器官如何运作,但完全不用麻醉,他们也不会感到不安。因为在他们眼中这没有什么不对,就像现在人们把机器拆开看看内部的电路是如何工作一样6。 当然,现在有了很多的动物保护者,他们认为动物和人类是平等的,也有自己的意识,也有喜怒哀乐。在《剑桥意识宣言》中提到:“各种证据均指出,非人类动物拥有构成意识所需的神经结构,神经化学及神经生理基础物质,并且能展现出有意图的行为。因此,证据已充分显示,负责产生意识的神经基础物质并非人类所独有。非人类动物,包括所有哺乳动物,鸟类,以及章鱼等其他生物,均拥有这些神经基础物质。” 确实,我承认心流并不只存在与人类,而是存在与所有生物之中。但是笛卡尔的理念也并不是完全错误的,因为心流虽然是生命的特质,但不是人类的特质,我想笛卡尔的理论中把心灵换做灵魂可能会更妥当一些,尽管灵魂的存在目前还是个未知数。或许我说完接下来的例子,会解释的更充分些。 对于心流的存在,生物学家给出了一个简单的不能再简单的解释,那就是,如果没有感觉和欲望,那么就无法解释生物的各种行为。拿人来做例子或许会比较难以理解,但是拿动物做例子却简单的过分,那就是:当人去踢狗的时候,如果狗没有感到疼痛,愤怒,产生躲避的欲望,那么它就会因此而受到伤害。也就是说,这些种种的感觉与欲望,是那些最原始的东西,即进化论为了使生命更好的活着而产生的,只因人类把自己放在比动物高很多个层次的阶级上,而忽略了这个很简单的问题。 心流的产生 问题的关键,在于心流的产生。这样稍微改动下,上文所提到的笛卡尔的理论或许会更合理些:人与动物都存在感觉与欲望,但是动物的感觉与欲望是依靠自身结构在外界的输入下产生的一种内部输出,而人类的感觉和欲望则是一种可以被称作“灵魂”的东西控制下产生的。从而确立了人类高于动物的地位。 前者很容易理解,现在的科学研究也已经很透彻了。例如兔子见到狮子,电信号便从眼睛传到大脑,刺激某些神经元,又结合之前的记忆神经元,放出更多的信号,整条线路的神经元一一受到刺激,最后指令传到肾上腺,让肾上腺素传遍全身,心脏的跳动也随之加快,肾上腺素也使信号的传递速度更快了些,同时在运动中枢的神经元也向腿部肌肉发出信号,让肌肉随着信号有序的完成伸展和收缩。外在的表现就是兔子从狮子旁边逃之夭夭。至于其中的恐惧的感觉和想要逃跑的欲望,都只不过是内部神经元信号的一种状态。 而对于后者,则难以解释。正因为对前者的理解透彻,对后者的解释才显得很难说通。两个过程本来是相同的过程,只是后者多了对于每个人有且唯一的“灵魂”的存在的介入,但是,它究竟何时介入,如何介入,正如前者所描述的,在这样一个信号的传递网络里,究竟有哪一步,是需要“灵魂”来控制的。思前想后,好像并没有必须存在的那么一个步骤。也就是可能,前者所描述的那个信号传递步骤,适用于所有生物,当然也包括人类。 简单的总结 简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、引言 IM等社交应用的开发工作中,乱码问题也很常见,比如: 1)IM聊天消息中的Emoji表情为什么发给后端后MySQL数据库里会乱码; 2)文件名中带有中文的大文件聊天消息发送后,对方看到的文名是乱码; 3)Http rest接口调用时,后端读取到APP端传过来的参数有中文乱码问题; ... ... 那么,对于乱码这个看似不起眼,但并不是一两话能讲清楚的问题,是很有必要从根源了解字符集和编码原理,知其然知其所以然显然是一个优秀码农的基本素养,所以,便有了本文,希望能帮助到你。 推荐阅读:关于字符编码知识的详细讲解请见《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 学习交流: - 即时通讯/推送技术开发交流5群:215477170 [推荐] - 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》 (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 2、关于作者 卢钧轶:爱捣腾Linux的DBA。曾任职于大众点评网DBA团队,主要关注MySQL、Memcache、MMM等产品的高性能和高可用架构。 个人微博:米雪儿侬好的cenalulu Github地址:https://github.com/cenalulu 3、系列文章 本文是IM开发干货系列文章中的第21篇,总目录如下: 《IM消息送达保证机制实现(一):保证在线实时消息的可靠投递》 《IM消息送达保证机制实现(二):保证离线消息的可靠投递》 《如何保证IM实时消息的“时序性”与“一致性”?》 《IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?》 《IM群聊消息如此复杂,如何保证不丢不重?》 《一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)》 《移动端IM登录时拉取数据如何作到省流量?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《浅谈移动端IM的多点登陆和消息漫游原理》 《IM开发基础知识补课(一):正确理解前置HTTP SSO单点登陆接口的原理》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《IM群聊消息的已读回执功能该怎么实现?》 《IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《一个低成本确保IM消息时序的方法探讨》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《IM里“附近的人”功能实现原理是什么?如何高效率地实现它?》 《IM开发基础知识补课(七):主流移动端账号登录方式的原理及设计思路》 《IM开发基础知识补课(八):史上最通俗,彻底搞懂字符乱码问题的本质》(本文) 4、正文概述 字符集和编码无疑是IT菜鸟甚至是各种大神的头痛问题。当遇到纷繁复杂的字符集,各种火星文和乱码时,问题的定位往往变得非常困难。 本文内容就将会从原理方面对字符集和编码做个简单的科普介绍,同时也会介绍一些通用的乱码故障定位的方法以方便读者以后能够更从容的定位相关问题。 在正式介绍之前,先做个小申明:如果你希望非常精确的理解各个名词的解释,那么可以详细阅读这篇《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 本文是博主通过自己理解消化后并转化成易懂浅显的表述后的介绍,会尽量以简单明了的文字来从要源讲解字符集、字符编码的概念,以及在遭遇乱码时的一些常用诊断技巧,希望能助你对于“乱码”问题有更深地理解。 5、什么是字符集 在介绍字符集之前,我们先了解下为什么要有字符集。 我们在计算机屏幕上看到的是实体化的文字,而在计算机存储介质中存放的实际是二进制的比特流。那么在这两者之间的转换规则就需要一个统一的标准,否则把我们的U盘插到老板的电脑上,文档就乱码了;小伙伴QQ上传过来的文件,在我们本地打开又乱码了。 于是为了实现转换标准,各种字符集标准就出现了。 简单的说:字符集就规定了某个文字对应的二进制数字存放方式(编码)和某串二进制数值代表了哪个文字(解码)的转换关系。 那么为什么会有那么多字符集标准呢? 这个问题实际非常容易回答。问问自己为什么我们的插头拿到英国就不能用了呢?为什么显示器同时有DVI、VGA、HDMI、DP这么多接口呢?很多规范和标准在最初制定时并不会意识到这将会是以后全球普适的准则,或者处于组织本身利益就想从本质上区别于现有标准。于是,就产生了那么多具有相同效果但又不相互兼容的标准了。 说了那么多我们来看一个实际例子,下面就是“屌”这个字在各种编码下的十六进制和二进制编码结果,怎么样有没有一种很屌的感觉? 6、什么是字符编码 字符集只是一个规则集合的名字,对应到真实生活中,字符集就是对某种语言的称呼。例如:英语,汉语,日语。 对于一个字符集来说要正确编码转码一个字符需要三个关键元素: 1)字库表(character repertoire):是一个相当于所有可读或者可显示字符的数据库,字库表决定了整个字符集能够展现表示的所有字符的范围; 2)编码字符集(coded character set):即用一个编码值code point来表示一个字符在字库中的位置; 3)字符编码(character encoding form):将编码字符集和实际存储数值之间的转换关系。 一般来说都会直接将code point的值作为编码后的值直接存储。例如在ASCII中“A”在表中排第65位,而编码后A的数值是 0100 0001 也即十进制的65的二进制转换结果。 看到这里,可能很多读者都会有和我当初一样的疑问:字库表和编码字符集看来是必不可少的,那既然字库表中的每一个字符都有一个自己的序号,直接把序号作为存储内容就好了。为什么还要多此一举通过字符编码把序号转换成另外一种存储格式呢? 其实原因也比较容易理解:统一字库表的目的是为了能够涵盖世界上所有的字符,但实际使用过程中会发现真正用的上的字符相对整个字库表来说比例非常低。例如中文地区的程序几乎不会需要日语字符,而一些英语国家甚至简单的ASCII字库表就能满足基本需求。而如果把每个字符都用字库表中的序号来存储的话,每个字符就需要3个字节(这里以Unicode字库为例),这样对于原本用仅占一个字符的ASCII编码的英语地区国家显然是一个额外成本(存储体积是原来的三倍)。算的直接一些,同样一块硬盘,用ASCII可以存1500篇文章,而用3字节Unicode序号存储只能存500篇。于是就出现了UTF-8这样的变长编码。在UTF-8编码中原本只需要一个字节的ASCII字符,仍然只占一个字节。而像中文及日语这样的复杂字符就需要2个到3个字节来存储。 关于字符编码知识的详细讲解请见:《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 7、UTF-8和Unicode的关系 看完上面两个概念解释,那么解释UTF-8和Unicode的关系就比较简单了。 Unicode就是上文中提到的编码字符集,而UTF-8就是字符编码,即Unicode规则字库的一种实现形式。 随着互联网的发展,对同一字库集的要求越来越迫切,Unicode标准也就自然而然的出现。它几乎涵盖了各个国家语言可能出现的符号和文字,并将为他们编号。详见:Unicode百科介绍。 Unicode的编号从 0000 开始一直到10FFFF 共分为17个Plane,每个Plane中有65536个字符。而UTF-8则只实现了第一个Plane,可见UTF-8虽然是一个当今接受度最广的字符集编码,但是它并没有涵盖整个Unicode的字库,这也造成了它在某些场景下对于特殊字符的处理困难(下文会有提到)。 8、UTF-8编码简介 为了更好的理解后面的实际应用,我们这里简单的介绍下UTF-8的编码实现方法。即UTF-8的物理存储和Unicode序号的转换关系。 UTF-8编码为变长编码,最小编码单位(code unit)为一个字节。一个字节的前1-3个bit为描述性部分,后面为实际序号部分: 1)如果一个字节的第一位为0,那么代表当前字符为单字节字符,占用一个字节的空间。0之后的所有部分(7个bit)代表在Unicode中的序号; 2)如果一个字节以110开头,那么代表当前字符为双字节字符,占用2个字节的空间。110之后的所有部分(5个bit)加上后一个字节的除10外的部分(6个bit)代表在Unicode中的序号。且第二个字节以10开头; 3)如果一个字节以1110开头,那么代表当前字符为三字节字符,占用3个字节的空间。110之后的所有部分(5个bit)加上后两个字节的除10外的部分(12个bit)代表在Unicode中的序号。且第二、第三个字节以10开头; 4)如果一个字节以10开头,那么代表当前字节为多字节字符的第二个字节。10之后的所有部分(6个bit)和之前的部分一同组成在Unicode中的序号。 具体每个字节的特征可见下表,其中“x”代表序号部分,把各个字节中的所有x部分拼接在一起就组成了在Unicode字库中的序号。如下图所示。 我们分别看三个从一个字节到三个字节的UTF-8编码例子: 细心的读者不难从以上的简单介绍中得出以下规律: 1)3个字节的UTF-8十六进制编码一定是以E开头的; 2)2个字节的UTF-8十六进制编码一定是以C或D开头的; 3)1个字节的UTF-8十六进制编码一定是以比8小的数字开头的。 9、为什么会出现乱码 乱码也就是英文常说的mojibake(由日语的文字化け音译)。 简单的说乱码的出现是因为:编码和解码时用了不同或者不兼容的字符集。 对应到真实生活中:就好比是一个英国人为了表示祝福在纸上写了bless(编码过程)。而一个法国人拿到了这张纸,由于在法语中bless表示受伤的意思,所以认为他想表达的是受伤(解码过程)。这个就是一个现实生活中的乱码情况。 在计算机科学中一样:一个用UTF-8编码后的字符,用GBK去解码。由于两个字符集的字库表不一样,同一个汉字在两个字符表的位置也不同,最终就会出现乱码。 我们来看一个例子,假设我们用UTF-8编码存储“很屌”两个字,会有如下转换: 于是我们得到了E5BE88E5B18C这么一串数值,而显示时我们用GBK解码进行展示,通过查表我们获得以下信息: 解码后我们就得到了“寰堝睂”这么一个错误的结果,更要命的是连字符个数都变了。 10、如何识别乱码的本来想要表达的文字 要从乱码字符中反解出原来的正确文字需要对各个字符集编码规则有较为深刻的掌握。但是原理很简单,这里用以MySQL数据库中的数据操纵中最常见的UTF-8被错误用GBK展示时的乱码为例,来说明具体反解和识别过程。 10.1 第1步:编码 假设我们在页面上看到“寰堝睂”这样的乱码,而又得知我们的浏览器当前使用GBK编码。那么第一步我们就能先通过GBK把乱码编码成二进制表达式。 当然查表编码效率很低,我们也可以用以下SQL语句直接通过MySQL客户端来做编码工作: mysql [localhost] {msandbox} > selecthex(convert('寰堝睂'using gbk)); +-------------------------------------+ | hex(convert('寰堝睂'using gbk)) | +-------------------------------------+ | E5BE88E5B18C | +-------------------------------------+ 1 row inset(0.01 sec) 10.2 第2步:识别 现在我们得到了解码后的二进制字符串E5BE88E5B18C。然后我们将它按字节拆开。 然后套用之前UTF-8编码介绍章节中总结出的规律,就不难发现这6个字节的数据符合UTF-8编码规则。如果整个数据流都符合这个规则的话,我们就能大胆假设乱码之前的编码字符集是UTF-8。 10.3 第3步:解码 然后我们就能拿着 E5BE88E5B18C 用UTF-8解码,查看乱码前的文字了。 当然我们可以不查表直接通过SQL获得结果: mysql [localhost] {msandbox} ((none)) > selectconvert(0xE5BE88E5B18C using utf8); +------------------------------------+ | convert(0xE5BE88E5B18C using utf8) | +------------------------------------+ | 很屌 | +------------------------------------+ 1 row inset(0.00 sec) 11、常见的IM乱码问题处理之MySQL中的Emoji字符 所谓Emoji就是一种在Unicode位于 \u1F601-\u1F64F 区段的字符。这个显然超过了目前常用的UTF-8字符集的编码范围 \u0000-\uFFFF。Emoji表情随着IOS的普及和微信的支持越来越常见。 下面就是几个常见的Emoji(IM聊天软件中经常会被用到): 那么Emoji字符表情会对我们平时的开发运维带来什么影响呢? 最常见的问题就在于将他存入MySQL数据库的时候。一般来说MySQL数据库的默认字符集都会配置成UTF-8(三字节),而utf8mb4在5.5以后才被支持,也很少会有DBA主动将系统默认字符集改成utf8mb4。 那么问题就来了,当我们把一个需要4字节UTF-8编码才能表示的字符存入数据库的时候就会报错:ERROR 1366: Incorrect string value: '\xF0\x9D\x8C\x86' for column 。 如果认真阅读了上面的解释,那么这个报错也就不难看懂了:我们试图将一串Bytes插入到一列中,而这串Bytes的第一个字节是 \xF0 意味着这是一个四字节的UTF-8编码。但是当MySQL表和列字符集配置为UTF-8的时候是无法存储这样的字符的,所以报了错。 那么遇到这种情况我们如何解决呢? 有两种方式: 1)升级MySQL到5.6或更高版本,并且将表字符集切换至utf8mb4; 2)在把内容存入到数据库之前做一次过滤,将Emoji字符替换成一段特殊的文字编码,然后再存入数据库中。之后从数据库获取或者前端展示时再将这段特殊文字编码转换成Emoji显示。 第二种方法我们假设用 --1F601-- 来替代4字节的Emoji,那么具体实现python代码可以参见Stackoverflow上的回答。 12、参考文献 [1] 如何配置Python默认字符集 [2] 字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8 [3] Unicode中文编码表 [4] Emoji Unicode Table [5] Every Developer Should Know About The Encoding 附录:更多IM开发方面的文章 [1] IM开发综合文章: 《新手入门一篇就够:从零开发移动端IM》 《移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”》 《移动端IM开发者必读(二):史上最全移动弱网络优化方法总结》 《从客户端的角度来谈谈移动端IM的消息可靠性和送达机制》 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《小白必读:闲话HTTP短连接中的Session和Token》 《IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理》 《移动端IM开发需要面对的技术问题》 《开发IM是自己设计协议用字节流好还是字符流好?》 《请问有人知道语音留言聊天的主流实现方式吗?》 《一个低成本确保IM消息时序的方法探讨》 《完全自已开发的IM该如何设计“失败重试”机制?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《微信对网络影响的技术试验及分析(论文全文)》 《即时通讯系统的原理、技术和应用(技术论文)》 《开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》 《全面掌握移动端主流图片格式的特点、性能、调优等》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》 《融云技术分享:解密融云IM产品的聊天消息ID生成策略》 《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》 《拿起键盘就是干:跟我一起徒手开发一套分布式IM系统》 >> 更多同类文章 …… [2] 有关IM架构设计的文章: 《浅谈IM系统的架构设计》 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》 《一套原创分布式即时通讯(IM)系统理论架构方案》 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》 《蘑菇街即时通讯/IM服务器开发之架构选择》 《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《17年的实践:腾讯海量产品的技术方法论》 《移动端IM中大规模群消息的推送如何保证效率、实时性?》 《现代IM系统中聊天消息的同步和存储方案探讨》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《WhatsApp技术实践分享:32人工程团队创造的技术神话》 《微信朋友圈千亿访问量背后的技术挑战和实践总结》 《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》 《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《以微博类应用场景为例,总结海量社交系统的架构设计步骤》 《快速理解高性能HTTP服务端的负载均衡技术原理》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》 《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》 《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》 《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》 《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》 《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》 《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》 《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》 《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》 《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》 《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》 《社交软件红包技术解密(八):全面解密微博红包技术方案》 《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》 《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》 《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》 《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》 《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》 《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》 《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》 >> 更多同类文章 …… (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 本篇文章为转载内容。原文链接:https://blog.csdn.net/hellojackjiang2011/article/details/103586305。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-04-29 12:29:21
522
转载
转载文章
...匹配,微信则借助社交网络数据提升公众号文章推送的精准度。同时,对于推荐系统的公平性、透明度以及防止信息茧房效应等问题,学术界和产业界也给予了高度重视,并积极研发兼顾多样性和新颖性的新型推荐策略。 值得注意的是,在内容安全方面,各大平台持续加强审核机制,运用AI技术自动识别低俗、违法内容,确保推荐内容的质量和社会责任。例如,字节跳动公司近期就对其内容审核系统进行了升级,不仅提升了文本、图片和视频内容的智能识别准确率,还引入了更严格的人工复审流程,以构建更为健康、绿色的内容生态。 总之,个性化推荐系统的构建与发展是一个持续演进的过程,它既要紧跟技术前沿,如深度学习、自然语言处理等,也要应对社会伦理、用户体验等多元挑战,从而为用户提供更优质、更个性化的信息服务体验。
2024-01-13 09:21:23
322
转载
JQuery插件下载
...产品目录、用户查询、文本编辑器中的代码补全,还是其他需要快速定位与匹配的场景,Fuzzysearch都能发挥重要作用。其核心优势在于:1.快速响应:插件采用优化的搜索算法,能够实时响应用户的输入,提供几乎即时的搜索结果与建议,显著提升了操作效率。2.精准匹配:通过模糊匹配技术,即使用户输入有误或不完整,也能准确地识别并推荐相关选项,减少错误输入带来的困扰。3.用户体验优化:自动完成功能减少了用户手动输入的工作量,提高了数据输入的准确性和速度,使交互过程更加流畅自然。4.灵活性与可定制性:Fuzzysearch提供了丰富的配置选项,允许开发者根据具体需求调整插件行为,如搜索范围、匹配模式等,以适应不同应用场景。总之,Fuzzysearch是一个强大而灵活的工具,旨在简化搜索流程,提升用户在各种场景下的工作效率与满意度。无论是网页应用、移动应用还是桌面软件,引入Fuzzysearch都能显著增强其功能性和用户体验。 点我下载 文件大小:105.23 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-05 20:49:50
104
本站
JQuery插件下载
...得(WYSIWYG)文本编辑器。此插件的核心特色在于无缝集成EmojiOne表情符号库,使得用户在编辑文本时能够轻松添加丰富多样的表情符号,极大地增强了信息表达的生动性和情感传达能力。EmojioneArea的灵活性体现在其易于集成性上,无论是网站论坛、社交媒体平台还是内部通讯工具,只需简单地引入插件代码,即可在其HTML元素中启用编辑功能并支持表情符号输入。用户界面简洁直观,无需额外学习成本,即可享受到与专业级文本编辑器相媲美的体验。插件的另一个显著优势在于其响应式设计,确保无论是在桌面端还是移动端设备上使用,都能获得一致的高质量用户体验。EmojioneArea通过优化性能和兼容性,确保在各种网络环境下都能稳定运行,提升了用户的创作效率和满意度。EmojioneArea不仅限于基本的文本编辑与表情符号插入,还提供了丰富的自定义选项,如调整编辑器外观、配置表情符号显示方式以及定制化编辑器行为,以满足不同应用场景的需求。此外,插件支持实时预览功能,让用户在编辑过程中即时看到修改效果,有效提高了内容创作的准确性和效率。总之,EmojioneArea作为一款功能全面、易于集成的jQuery文本编辑器插件,通过其强大的表情符号支持和直观的编辑界面,为用户提供了一种高效、便捷的文本创作工具,是现代Web开发中不可或缺的组件。 点我下载 文件大小:99.16 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-03 10:39:47
297
本站
Python
...ata"的项目,利用神经网络模型学习和预测用户的操作模式,使得自动化测试更加精准且适应性更强。 同时,业界也在探讨如何将Selenium与自然语言处理(NLP)结合,以实现通过文本指令控制浏览器,进一步降低自动化测试的门槛。这不仅可以简化测试脚本的编写,还能使非技术背景的团队成员也能参与到测试流程中来。 此外,随着DevOps的普及,Selenium正在与容器化、云服务和微服务架构紧密结合,实现跨环境、跨平台的无缝自动化测试。这不仅提升了测试效率,也使得测试结果在不同环境中的一致性得到了保障。 总之,Python与Selenium的结合正在朝着更智能、更灵活的方向发展,预示着自动化测试将迎来一场深刻的变革,为软件质量保证提供更为高效和可靠的解决方案。开发者和测试工程师们应关注这些新兴趋势,以便及时掌握并应用到自己的工作中。
2024-05-01 16:24:58
245
编程狂人
转载文章
...行,还可能解决潜在的网络连接问题和性能瓶颈。 时至今日,尽管该型号的1.0版驱动支持WinXP、Vista及Win7系统,但考虑到微软已停止对这些老旧系统的官方支持,用户在使用过程中可能会面临安全风险或无法利用到最新的无线技术标准。因此,建议用户前往腾达官网查看W311U或其他新型号产品的最新驱动,确保与Windows 10等现代操作系统完美兼容,并享受更高的网络传输速度和安全性。 此外,对于无线网络设备的优化配置,除了关注驱动更新外,了解基本的Wi-Fi设置技巧、无线信号优化策略同样重要。例如,合理选择无线信道以减少干扰、采用5GHz频段提升带宽利用率、开启QoS功能保障关键应用流畅度等。同时,针对老旧设备,在硬件条件允许的情况下,升级至支持802.11ac或Wi-Fi 6标准的无线网卡,将极大地改善网络体验。 总之,紧跟时代步伐,定期检查并更新无线网卡驱动,结合实际应用场景进行深度优化配置,是确保无线网络高效稳定运行的关键举措。
2023-06-04 16:02:43
278
转载
Python
...叉熵作为损失函数改进神经网络模型的分类准确率,特别是在图像识别和自然语言处理任务上,这一策略有效降低了模型过拟合风险并提高了泛化能力。 此外,信息熵还在金融风控、网络流量分析等领域发挥着重要作用。例如,金融机构利用交易数据的信息熵来评估市场风险与不确定性,帮助投资者做出更精准的投资决策。而在网络安全方面,信息熵被用来检测异常网络行为,通过量化网络流量的随机性,可有效发现潜在的攻击行为。 总之,从理论到实践,信息熵无处不在,它不仅是一个强大的数学工具,更是推动各领域技术进步的关键要素。随着算法和计算能力的不断提升,信息熵的应用将更加广泛且深入,值得广大科研工作者和工程师持续关注和研究。
2023-08-02 10:52:00
222
数据库专家
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 oracle ceil函数:取大于等于数值n的最大整数 oracle floor函数:取小于等于数值n的最小整数 eg: select ceil(‘8.1’) from dual; select floor(‘8.1’) from dual; oracle ceil和floor函数在业务处理分析的时候经常用到,但是跟其他函数结合的时候出问题的时候,导致较难分析定位,这里给出一个案例: select Ceil(NVL(REPLACE(‘3s元’, ‘元’, ‘’), 0)) from dual; 原因分析:ceil函数需要传入的参数为数值类型数据,字符串类型数据会报错:无效数字 本篇文章为转载内容。原文链接:https://blog.csdn.net/a200822146085/article/details/117334582。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-18 18:54:51
343
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 背景: 相同的域名对应不同的调试环境 前提: 手机root 步骤: 1.adb root 2.adb remount (更改为可写状态) 3.adb pull /system/etc/hosts c:/hosts (将hosts文件从手机拉取到本地,其中c:/hosts 为本地目标地址) 4.修改c:/hosts文件 5.adb push c:/hosts /system/etc/hosts (将c盘的hosts文件替换手机指定位置的hosts文件) 验证: 1.adb shell 2.cat /system/etc/hosts (看是否是修改之后的内容,如果是就说明替换成功,否则失败。) 本篇文章为转载内容。原文链接:https://blog.csdn.net/zgjswp/article/details/101572924。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-01 08:27:48
100
转载
JSON
...的数据交换格式,基于文本,易于人阅读和编写,同时也易于机器解析和生成。在Web应用开发中广泛应用,用于在网络间传输数据,其语法简洁、清晰,可表示数组、对象、字符串、数字、布尔值以及null等多种数据类型,并且支持日期和时间的ISO-8601格式表示。 UTC时间(Coordinated Universal Time) , 协调世界时,是一种国际标准的时间尺度,基于原子钟精确测量得到,不随地球自转变化而调整。在JSON中通常以ISO-8601格式(如1995-01-02T15:04:05.999Z)表示时间戳,其中“Z”代表零时区,即UTC时间。 ISO-8601 , 是国际标准化组织制定的日期和时间表示法标准,它定义了一套统一的日期和时间表示格式。在JSON中,时间戳通常按照ISO-8601格式进行序列化,例如\ 1995-01-02T15:04:05.999Z\ ,这种格式包括年月日小时分钟秒以及可选的小数秒部分,并可以通过加减时区偏移量来转换为不同地区的本地时间。 JavaScript Date对象 , 在JavaScript编程语言中,Date对象用于处理日期和时间,提供了获取当前日期和时间、设置日期和时间、计算日期与时间之间的时间差等功能。在处理JSON中的时间信息时,可以将符合ISO-8601格式的字符串转化为Date对象,进而进行各种时间相关的计算,包括时区转换等操作。 时区偏移量 , 是指特定地点或地区相对于UTC时间的标准时间差,通常用小时和分钟表示,例如+08:00表示东八区(北京时间)。在处理多时区的JSON数据时,需要计算并应用这个偏移量来实现时间的正确转换和显示。
2023-08-18 10:38:11
520
算法侠
转载文章
...是一种软件架构风格和网络应用程序设计模式。在这种风格下,Web服务通过HTTP协议暴露资源,并使用统一接口(包括GET、POST、PUT、DELETE等HTTP方法)进行资源的创建、读取、更新和删除操作。通过URI(Uniform Resource Identifier)定位资源,并以JSON、XML等形式返回资源的状态。在本文中,通过在RESTful web服务的控制器方法上应用@CrossOrigin注解,实现对这些服务的跨域访问支持。
2023-11-11 12:31:12
330
转载
JSON
...数据交换格式。它基于文本,易于阅读和编写,同时也易于机器解析和生成。在文中,JSON被广泛应用于前后端开发中,作为数据交换的标准格式,其简洁的键值对结构使得开发者能够方便地将数据序列化为JSON字符串在网络间传输或存储,并反序列化还原为原生对象进行处理。 JSONPath , 类似于XPath在XML文档中的作用,JSONPath是一种查询和筛选JSON数据的语言,可以用来定位JSON文档中的特定节点或者满足一定条件的子集。在本文给出的例子中,通过使用JSONPath表达式 $.. ?(@.age >= 30) ,我们能快速准确地找到所有年龄大于等于30岁的用户对象,从而展现出相对于传统遍历方法更高的查询效率。 filter() 方法 , filter() 是JavaScript数组的一个内置方法,用于创建一个新的数组,其中包含通过所提供函数实现的测试的所有元素。在文章提到的具体场景中,filter() 方法接收一个回调函数作为参数,该函数会应用到数组的每个元素上,只有当回调函数返回true时,该元素才会被包含在新创建的数组中。所以,在查询JSON数据中年龄大于等于30岁的用户时,filter() 方法直接根据给定的条件过滤出符合条件的用户对象,相比for循环遍历的方式,代码更简洁且执行速度更快。
2023-09-15 23:03:34
484
键盘勇士
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1009. Complement of Base 10 Integer https://leetcode.com/problems/complement-of-base-10-integer/ 题目描述 Every non-negative integer N has a binary representation. For example, 5 can be represented as "101" in binary, 11 as "1011" in binary, and so on. Note that except for N = 0, there are no leading zeroes in any binary representation. The complement of a binary representation is the number in binary you get when changing every 1 to a 0 and 0 to a 1. For example, the complement of "101" in binary is "010" in binary. For a given number N in base-10, return the complement of it’s binary representation as a base-10 integer. Example 1: Input: 5Output: 2Explanation: 5 is "101" in binary, with complement "010" in binary, which is 2 in base-10. Example 2: Input: 7Output: 0Explanation: 7 is "111" in binary, with complement "000" in binary, which is 0 in base-10. Example 3: Input: 10Output: 5Explanation: 10 is "1010" in binary, with complement "0101" in binary, which is 5 in base-10. Note: 0 <= N < 10^9 C++ 实现 1 从 868. Binary Gap 学习用右移以及按位与 & 来获取二进制的每一位 binary. 为了获取合适长度的位而不是一直执行循环 32 次, 用 sum 来进行控制. 注意 N == 0 时需要专门处理. class Solution {public:int bitwiseComplement(int N) {if (N == 0) return 1;int res = 0, sum = 0;for (int i = 0; i < 32; ++ i) {int binary = (N >> i) & 1;sum += (binary << i);if (sum >= N) break;int complement = 1 - binary;res += (complement << i);}return res;} }; C++ 实现 2 来自 LeetCode Submission. class Solution {public:int bitwiseComplement(int N) {if (!N)return 1;int exponent = 0;int res = 0;while (N) {// 这里只考虑二进制为 0, 翻转后为 1 的情况if (!(N & 1))res += (1 << exponent);exponent++;N >>= 1;} return res;} }; 本篇文章为转载内容。原文链接:https://blog.csdn.net/Eric_1993/article/details/104609580。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-09 11:10:16
614
转载
HTML
...你的标记是否配置准确。如果你想要显示的是本地图像文件上的图片,你需要验证路径是否配置准确。如果你想要显示的是网络链接上的图片,你需要验证地址是否正确并且是否可访问。 另外,如果你想要设置图片的大小,可以在标记中插入width和height属性来分别定义宽和高。不过需要注意的是,这些属性只是建议性的,浏览器可以根据自身的显示尺寸对图片进行缩放,因此你无法完全控制图片的显示尺寸。 下面是一些代码的示例,用于说明如何在HTML中插入图片: <img src="https://example.com/image.jpg" alt="这是一张图片"> 这个代码段用于在页面中插入一张来自网络链接的图片,如果无法正常加载,就会显示alt属性中的文本。 <img src="picture.jpg" alt="这是一张本地图片"> 这个代码段用于在页面中插入一张来自本地图像文件上的图片,需要验证路径是否正确。 <img src="picture.jpg" alt="这是一张本地图片" width="300" height="200"> 这个代码段用于在页面中插入一张来自本地图像文件上的图片,并且设置了固定的宽和高来控制图片的尺寸。 结论 在HTML中插入图片需要详细审查代码,验证图片的地址、路径以及文件是否存在等等。如果你想要控制图片的显示尺寸,可以在标记中插入width和height属性,但需要注意浏览器可能会根据自身的特性对图片进行缩放,因此无法完全控制其尺寸。
2023-10-13 11:52:48
468
逻辑鬼才
转载文章
...这对于精细控制背景与文本、子元素间的关系至关重要。 此外,对于复杂的布局或动画效果,可利用CSS mix-blend-mode属性实现背景图片与前景元素之间的混合模式,以创造出极具艺术感的半透明视觉效果。这种方法尤其适用于需要叠加多层背景或者希望图片与文字、图形相互融合的设计场景。 同时,对于关注无障碍设计的开发者来说,应当注意过度依赖滤镜导致的可访问性问题。尽管半透明效果能提升视觉体验,但可能影响视力障碍用户对页面内容的理解。因此,在应用透明度效果时,建议结合WCAG(Web内容可访问性指南)标准进行优化,确保信息传达的有效性和完整性。 近期,各大浏览器厂商正积极跟进并实现新的CSS特性,如“contain-intrinsic-size”属性,它可以帮助浏览器更准确地预加载和呈现带有透明度控制的背景图片,从而改善性能表现和用户体验。未来,随着CSS Houdini等底层API的成熟,开发者将拥有前所未有的能力来创建自定义渲染效果,包括对背景图片透明度的更精细化控制,值得持续关注和学习。
2023-06-07 16:19:06
258
转载
转载文章
...ail)是一种用于在网络上安全传输邮件和附件的标准格式,同时也广泛应用于存储各种密码学对象,如证书、私钥和公钥等。在文章上下文中,“PEM文件格式”指的是rsa_private_key.pem和rsa_public_key.pem这两种密钥文件的编码方式,其内容以ASCII文本形式表示,并且用\ -----BEGIN...\ 和\ -----END...\ 这样的行标记进行封装,便于在不同系统和工具间交换和处理密钥信息。
2024-01-18 17:04:03
89
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl --compressed http://example.com
- 使用压缩方式获取网页内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"