前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Android Shape资源文件创建圆...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Solr
...解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...何都会被执行,常用于资源清理工作,如关闭数据库连接、文件流等。 using()结构 , 在C中,using语句提供了一种更简洁的方式来管理那些实现IDisposable接口的对象生命周期,以确保其Dispose方法在适当的时候被调用,从而释放非托管资源或执行其他清理任务。在本文中,通过将SqlConnection对象置于using语句中,可以自动在离开using代码块时关闭数据库连接,即使在执行过程中遇到异常也能确保资源得到释放。 SqlDataReader , SqlDataReader是.NET框架中System.Data.SqlClient命名空间下的一个类,它提供了一种只进、只读、高性能的方式从SQL Server数据库获取查询结果。在文中,SqlDataReader被用来执行SQL命令并逐行读取返回的数据集,进而将这些数据转换为CategoryInfo对象,并添加到IList集合中进行后续操作。它的特点是按需读取数据,而不是一次性加载所有数据到内存,因此适用于处理大量数据的情形。 CommandBehavior.CloseConnection , 这是SqlCommand.ExecuteReader方法的一个可选参数,当设置此标志时,在SqlDataReader关闭时,会同时关闭与之关联的SqlConnection。在文章中,作者建议通过设置CommandBehavior.CloseConnection,确保在完成数据读取后能自动关闭数据库连接,从而简化了代码并降低了资源泄漏的风险。
2023-03-18 20:09:36
89
转载
转载文章
...一、socket主机创建和使用过程 1、socket()//创建套接字 2、Setsockopt()//将套接字属性设置为允许和特定地点绑定 3、Bind()//将套接字绑定特定地址端口 4、Listen()//打开监听端口属性 以下重复进行 5、Accept()//接收客户端的连接请求 6、Read()//从客户端读数据 7、Write()//将处理好的结果发送给客户端 二、HTTP传输协议 基于socket的TCP通信,按HTTP传输协议格式化传输内容。 示例: 1、客户端发送HTTP请求 GET/txt?hal=1000HTTP/1.1 Host:localhost:1024 User-Agent:Mozilla/5.0(X11;Linuxi686;rv:2.0)Gecko/20100101Firefox/4.0 Accept:text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8 Accept-Language:zh-cn,zh;q=0.5 Accept-Encoding:gzip,deflate Accept-Charset:GB2312,utf-8;q=0.7,;q=0.7 Keep-Alive:115 Connection:keep-alive GET:发送HTTP请求的方法,还可以是SET或者POST /txt?hal=1000是请求根目录下的txt文件内容并传入参数hal=1000 HTTP/1.1表示HTTP版本是1.1 2、服务端传回HTTP响应 HTTP/1.0200OK Server:ReageWebServer Content-Type:text/html <!DOCTYPEhtmlPUBLIC"-//W3C//DTDXHTML1.0Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <htmlxmlns="http://www.w3.org/1999/xhtml"> <!--Copyright(c)2000-2008QuadralayCorporation.Allrightsreserved.--> <head> <title>WebWorksHelp5.0</title> </head> <body>wuff</body> </html> 前面四行(包括空行)是消息体,后面是消息。一般要指明消息体的长度,方便客户端的接收处理。 三、示例程序 ====================================================================== / 主要实现功能,处理浏览器的get请求信息,发送网页文件。处理404、403等错误。 1.实现绑定本机机器的1024端口作为ReageWeb服务提供网页服务的端口。(避免与机器上装有web服务器产生端口冲突) 2.实现get获取网页方式。 3.实现index.html作为网站的首页面 作者:Reage blog:http://blog.csdn.net/rentiansheng / include<stdio.h> include<stdlib.h> include<string.h> include<sys/types.h> include<sys/socket.h> include<sys/un.h> include<netinet/in.h> include<arpa/inet.h> include<fcntl.h> include<string.h> include<sys/stat.h> include<signal.h> defineMAX1024 intres_socket; voidapp_exit(); / @description:开始服务端监听 @parameter ip:web服务器的地址 port:web服务器的端口 @result:成功返回创建socket套接字标识,错误返回-1 / intsocket_listen(charip,unsignedshortintport){ intres_socket;//返回值 intres,on; structsockaddr_inaddress; structin_addrin_ip; res=res_socket=socket(AF_INET,SOCK_STREAM,0); setsockopt(res_socket,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); memset(&address,0,sizeof(address)); address.sin_family=AF_INET; address.sin_port=htons(port); address.sin_addr.s_addr=htonl(INADDR_ANY);//inet_addr("127.0.0.1"); res=bind(res_socket,(structsockaddr)&address,sizeof(address)); if(res){printf("portisused,nottorepeatbind\n");exit(101);}; res=listen(res_socket,5); if(res){printf("listenportiserror;\n");exit(102);}; returnres_socket; } / @description:向客户端发送网页头文件的信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 / voidsend_http_head(intconn_socket,intstatus,chars_status,charfiletype){ charbuf[MAX]; memset(buf,0,MAX); sprintf(buf,"HTTP/1.0%d%s\r\n",status,s_status); sprintf(buf,"%sServer:ReageWebServer\r\n",buf); sprintf(buf,"%sContent-Type:%s\r\n\r\n",buf,filetype); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送错误页面信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 @msg:错误页面信息内容 / voidsend_page_error(intconn_socket,intstatus,chars_status,charmsg){ charbuf[MAX]; sprintf(buf,"<html><head></head><body><h1>%s</h1><hr>ReageWebServer0.01</body></head>",msg); send_http_head(conn_socket,status,s_status,"text/html"); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送文件 @parameter conn_socket:套接字描述符。 @file:要发送文件路径 / intsend_html(intconn_socket,charfile){ intf; charbuf[MAX]; inttmp; structstatfile_s; //如果file为空,表示发送默认主页。主页暂时固定 if(0==strlen(file)){ strcpy(file,"index.html"); } //如果获取文件状态失败,表示文件不存的,发送404页面,暂时404页面内容固定。 if(stat(file,&file_s)){ send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagedoesnotimplementthismothod\n"); return0; } //如果不是文件或者无读权限,发送无法读取文件 if(!(S_ISREG(file_s.st_mode))||!(S_IRUSR&file_s.st_mode)){ send_page_error(conn_socket,403,"Forbidden","Forbidden<br/>Reagecouldn'treadthefile\n"); return0; } //发送头文件,现在只提供html页面 send_http_head(conn_socket,200,"OK","text/html"); f=open(file,O_RDONLY); if(0>f){ //打开文件失败,发送404页面,其实感觉发送5xx也可以的,服务器内部错误 send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagecouldn'treadthefile\n"); return0; } buf[MAX-1]=0;//将文件内容缓冲区最后的位设置位结束标志。 //发送文件的内容 while((tmp=read(f,buf,MAX-1))&&EOF!=tmp){ write(conn_socket,buf,strlen(buf)); } } / @description:提取url中可用的信息。访问的网页和数据访问方式 @parameter: conn_socket:与客户端链接的套接字 uri:要处理的url,注意不是浏览器中的url,而是浏览器发送的http请求 @resutl: / intdo_uri(intconn_socket,charuri){ charp; p=strchr(uri,'?'); if(p){p=0;p++;} send_html(conn_socket,uri); } voidulog(charmsg){} voidprint(charmsg){ ulog(msg); printf(msg); } intmain(intargc,charargv[]){ intconn_socket; inttmp; intline; structsockaddr_inclient_addr; charbuf[MAX]; intlen=sizeof(client_addr); charmethod[100],uri[MAX],version[100]; charpwd[1024]; res_socket=socket_listen("127.0.0.1",1024); //当按ctrl+c结束程序时调用,使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
90
转载
Tornado
...接把密钥啥的写进配置文件的老办法,那简直就是在玩火自焚啊!Google Cloud Secret Manager 提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
Javascript
...比如fetch请求、文件上传下载、定时器这些地方都可能遇到它。它就像是一个警报器,告诉你某件事中途被中断了。 举个简单的例子: javascript const controller = new AbortController(); const signal = controller.signal; setTimeout(() => { console.log('定时器触发了!'); }, 3000); controller.abort(); // 中断定时器 console.log(signal.reason); // 输出 "AbortError: The operation was aborted." 在这个例子中,我们创建了一个AbortController实例,并通过调用它的abort()方法来中断定时器。嘿,瞧瞧最后一行输出啊!这告诉我们出问题了,是个“AbortError”,简单说就是有某个操作被强行中断啦。 --- 二、AbortError的实际应用场景 说到AbortError的应用场景,我觉得最典型的就是网络请求了。你有没有过这样的经历?比如你在网页上点了个下载按钮,想看个大图或者视频啥的。刚点完没多久,就觉得“这速度也太磨叽了吧!再等下去我都快睡着了”,然后一狠心就直接取消了操作。哎呀,这就像是服务器那边正拼了命地给你打包数据呢,结果你这边的浏览器直接甩出一句:“兄弟,不用忙活了,我不等了!””这就是AbortError发挥作用的地方。 让我们来看一段代码: javascript async function fetchData() { const controller = new AbortController(); const signal = controller.signal; try { const response = await fetch('https://example.com/large-file', { signal }); console.log('数据已成功获取'); } catch (error) { if (error.name === 'AbortError') { console.log('请求被用户取消'); } else { console.error('发生了其他错误:', error); } } // 取消请求 controller.abort(); } fetchData(); 在这段代码里,我们使用AbortController来管理一个网络请求。如果用户决定取消请求,我们就调用controller.abort(),这时fetch函数会抛出一个AbortError。嘿嘿,简单来说呢,就是咱们逮住这个错误,看看它是不是个“AbortError”,如果是的话,就用一种超优雅的方式把它处理了,不搞什么大惊小怪的。 --- 三、AbortError与其他错误的区别 说到错误,难免要和其他错误比较一番。比如说嘛,就有人会好奇地问:“AbortError跟一般的错误到底有啥不一样呀?”说实话呢,这个问题我也琢磨了好久好久,头都快想大了! 首先,AbortError是一种特殊的错误类型,专门用于表示操作被人为中断的情况。其实很多小错误啊,就是程序员自己不小心搞出来的,像打字打错了变量名,或者一激动让数组越界了之类的,都是挺常见的乌龙事件。简单来说呢,这俩的区别就是——AbortError就像是个“计划内”的小插曲,咱们事先知道它可能会发生,也能提前做好准备去应对;但普通的错误嘛,就好比是突然从天而降的小麻烦,压根儿没得防备,让人措手不及! 举个例子: javascript function divide(a, b) { if (b === 0) { throw new Error('除数不能为零'); } return a / b; } try { console.log(divide(10, 0)); // 抛出普通错误 } catch (error) { console.error(error.message); // 输出 "除数不能为零" } 在这个例子中,divide函数因为传入了非法参数(即分母为0)而抛出了一个普通错误。而如果我们换成AbortError呢? javascript const controller = new AbortController(); function process() { setTimeout(() => { console.log('处理完成'); }, 5000); } process(); controller.abort(); // 中断处理 这里虽然也有中断操作的意思,但并没有抛出任何错误。这就像是说,AbortError不会自己偷偷跑出来捣乱,得咱们主动去点那个abort()按钮才行。就好比你得自己动手去按开关,灯才不会自己亮起来一样。 --- 四、深入探讨AbortError的优缺点 说到优点嘛,我觉得AbortError最大的好处就是它让我们的代码更加健壮和可控。比如说啊,在面对一堆同时涌来的请求时, AbortError 就像一个神奇的开关,能帮我们把那些没用的请求一键关掉,这样就不会白白浪费资源啦!对了,它还能帮咱们更贴心地照顾用户体验呢!比如说,当用户等得花儿都快谢了,就给个机会让他们干脆放弃这事儿,省得干着急。 但是呢,凡事都有两面性。AbortError也有它的局限性。首先,它只适用于那些支持AbortSignal接口的操作,比如fetch、XMLHttpRequest之类。如果你尝试在一个不支持AbortSignal的操作上使用它,那就会直接报错。另外啊,要是随便乱用 AbortError 可不好,比如说老是取消请求的话,系统可能就会被折腾得够呛,负担越来越重,你说是不是? 说到这里,我想起了之前开发的一个项目,当时为了优化性能,我给每个API请求都加了AbortController,结果发现有时候会导致页面加载速度反而变慢了。后来经过反复调试,我才意识到,频繁地取消请求其实是得不偿失的。所以啊,大家在使用AbortError的时候一定要权衡利弊,不能盲目追求“安全”。 --- 五、总结与展望 总的来说,AbortError是一个非常实用且有趣的错误类型。它不仅能让我们更轻松地搞定那些乱七八糟的异步任务,还能让代码变得更好懂、更靠谱!不过,就像任何工具一样,它也需要我们在实践中不断摸索和完善。 未来,随着前端开发越来越复杂,我相信AbortError会有更多的应用场景。不管是应对一大堆同时进行的任务,还是让咱们跟软件互动的时候更顺畅、更开心,它都绝对是我们离不开的得力助手!所以,各位小伙伴,不妨多尝试用它来解决实际问题,说不定哪天你会发现一个全新的解决方案呢! 好了,今天的分享就到这里啦。希望能给大家打开一点思路,也期待大家在评论区畅所欲言,分享你的想法!最后,祝大家coding愉快,早日成为编程界的高手!
2025-03-27 16:22:54
106
月影清风
转载文章
...统系列采用的一种高级文件系统,相较于早期的FAT系统,它提供了更高效的数据存储和安全性特性。文中提到的NTFSInfo工具就是用来查看详细的NTFS分区信息,包括主文件表(MFT)、MFT区域大小与位置,以及NTFS元数据文件大小等重要信息。 Active Directory , Active Directory是Microsoft Windows Server操作系统的一部分,提供网络环境中的中央身份认证、授权与目录服务功能。管理员可以利用Active Directory管理域内的用户账户、计算机、组策略、安全设置等资源。文章提及AdRestore工具能够恢复Server 2003 Active Directory对象,表明该工具在AD故障恢复场景中有重要作用。 登录会话(Logon Sessions) , 在多用户操作系统的环境中,登录会话是指用户通过验证后,在系统上创建的一个独立的工作环境,其中包含了用户的配置、权限和其他相关状态信息。Sysinternals工具集中的LogonSessions工具则能列出当前系统上的所有活动登录会话,帮助管理员监控和管理用户登录情况。 动态磁盘分区(Dynamic Disk Partitioning) , 动态磁盘是Windows操作系统中相对于基本磁盘而言的一种更为灵活的磁盘管理方式,它可以支持诸如跨多个物理磁盘的卷扩展等功能。LDMDump工具在文章中被提及,作用是倾倒逻辑磁盘管理器在Windows 2000动态磁盘分区上的数据库内容,从而让管理员了解和分析动态磁盘的详细配置信息。
2024-01-22 15:44:41
102
转载
ElasticSearch
...个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
96
星辰大海
.net
...写死了另一个类的对象创建逻辑,这就跟在菜谱上直接固定了所有食材的品牌一样,一旦你想换点新鲜的或者调整一下,就得满世界翻找那些用到这个菜谱的地方,挨个改过来。更惨的是,改完还得一项项地重新验证,生怕哪里漏掉了,搞得自己头都大了。 这就是没有依赖注入(Dependency Injection, DI)的问题。依赖注入嘛,简单说就是把对象的创建和管理工作“外包”给一个外部的“容器”,这样就能让代码之间的关系变得松散一些,彼此不那么死板地绑在一起,开发起来也更灵活方便。这样做简直太棒了!代码变得超级清晰,就像一条干净整洁的小路,谁走都明白;维护起来也轻松多了,像是收拾一个不大的房间,根本不用费劲找东西;而且还能轻松做单元测试,就像给每个小零件单独体检一样简单! 但是,依赖注入也不是万能的。如果我们配置不对,那就会出大问题。今天我们就来聊聊这个话题——DI容器配置错误。 --- 2. 配置错误 从一个小例子说起 先来看一个简单的例子: csharp public interface IService { void DoWork(); } public class Service : IService { public void DoWork() { Console.WriteLine("Doing work..."); } } 假设我们有一个Service类实现了IService接口,现在我们需要在程序中使用这个服务。按照传统的做法,可能会直接在类内部实例化: csharp public class Worker { private readonly IService _service = new Service(); public void Execute() { _service.DoWork(); } } 这种方式看起来没什么问题,但实际上隐藏着巨大的隐患。比如,如果你需要替换Service为其他实现(比如MockService),你就得修改Worker类的代码。这违背了开闭原则。 于是,我们引入了依赖注入框架,比如Microsoft的Microsoft.Extensions.DependencyInjection。让我们看看如何正确配置。 --- 3. 正确配置 DI容器的正确姿势 首先,你需要注册服务。比如,在Program.cs文件中: csharp using Microsoft.Extensions.DependencyInjection; var services = new ServiceCollection(); services.AddTransient(); var serviceProvider = services.BuildServiceProvider(); 这里的关键点在于Transient这个词。它表示每次请求时都会生成一个新的实例。对了,还有别的选择呢,比如说 Scoped——在一个作用域里大家用同一个实例,挺节省资源的;再比如 Singleton——在整个应用跑着的时候大家都用一个“独苗”实例,从头到尾都不换。选择合适的生命周期很重要,否则可能会导致意想不到的行为。 接下来,我们可以通过依赖注入获取实例: csharp public class Worker { private readonly IService _service; public Worker(IService service) { _service = service; } public void Execute() { _service.DoWork(); } } 在这个例子中,Worker类不再负责创建IService的实例,而是由DI容器提供。这种解耦的方式让代码更加灵活。 --- 4. 配置错误 常见的坑 然而,现实总是比理想复杂得多。以下是一些常见的DI配置错误,以及它们可能带来的后果。 4.1 注册类型时搞错了 有时候我们会不小心把类型注册错了。比如: csharp services.AddTransient(); // 想注册MockService,却写成了Service 结果就是,无论你在代码中怎么尝试,拿到的永远是Service而不是MockService。其实这个坑挺容易被忽略的,毕竟编译器又不报错,一切都看起来风平浪静,直到程序跑起来的时候,问题才突然冒出来,啪叽一下给你整一个大 surprise! 我的建议是,尽量使用常量或者枚举来定义服务名称,这样可以减少拼写错误的风险: csharp public static class ServiceNames { public const string MockService = "MockService"; public const string RealService = "RealService"; } services.AddTransient(ServiceNames.MockService, typeof(MockService)); 4.2 生命周期设置不当 另一个常见的问题是生命周期设置错误。比如说,你要是想弄个单例服务,结果不小心把它设成了 Transient,那每次调用的时候都会新生成一个实例。这就好比你本来想让一个人负责一件事,结果每次都换个人来干,不仅效率低得让人崩溃,搞不好还会出大乱子呢! csharp // 错误示范 services.AddTransient(); // 正确示范 services.AddSingleton(); 记住,单例模式适用于那些无状态或者状态不重要的场景。嘿,想象一下,你正在用一个数据库连接池这种“有状态”的服务,要是把它搞成单例模式,那可就热闹了——多个线程或者任务同时去抢着用它,结果就是互相踩脚、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
40
夜色朦胧
Hive
...非常适合用于压缩单个文件,而BZIP2则在某些场景下能提供更高的压缩比。所以说嘛,官方案子虽然说了不让搞,但我们不妨大胆试试,看看这些玩意儿到底能整出啥名堂! --- 二、理论基础 GZIP vs BZIP2 vs Hive的“规则” 在深入讨论具体操作之前,我们得先搞清楚这三个东西之间的差异。嘿,先说个大家可能都知道的小秘密——GZIP可是个超火的压缩“神器”呢!它最大的特点就是又快又好用,压缩文件的速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
转载文章
...容器和Pod分配内存资源 1 Before you begin 2 创建一个命名空间 3 配置内存申请和限制 4 超出容器的内存限制 5 配置超出节点能力范围的内存申请 6 内存单位 7 如果不配置内存限制 8 内存申请和限制的原因 9 清理 这篇教程指导如何给容器分配申请的内存和内存限制。我们保证让容器获得足够的内存 资源,但是不允许它使用超过限制的资源。 Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube. 你的集群里每个节点至少必须拥有300M的内存。 这个教程里有几个步骤要求Heapster , 但是如果你没有Heapster的话,也可以完成大部分的实验,就算跳过这些Heapster 步骤,也不会有什么问题。 检查看Heapster服务是否运行,执行命令: kubectl get services --namespace=kube-system 如果Heapster服务正在运行,会有如下输出: NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGEkube-system heapster 10.11.240.9 <none> 80/TCP 6d 创建一个命名空间 创建命名空间,以便你在实验中创建的资源可以从集群的资源中隔离出来。 kubectl create namespace mem-example 配置内存申请和限制 给容器配置内存申请,只要在容器的配置文件里添加resources:requests就可以了。配置限制的话, 则是添加resources:limits。 本实验,我们创建包含一个容器的Pod,这个容器申请100M的内存,并且内存限制设置为200M,下面 是配置文件: memory-request-limit.yaml apiVersion: v1kind: Podmetadata:name: memory-demospec:containers:- name: memory-demo-ctrimage: vish/stressresources:limits:memory: "200Mi"requests:memory: "100Mi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在这个配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
495
转载
Apache Lucene
...nStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
Hadoop
Hadoop支持文件的跨硬件复制 1. 初识Hadoop 为什么我们需要它? 大家好!今天我们要聊聊一个超级酷的东西——Hadoop。作为一个程序员或者数据工程师,你可能已经听说过这个名字。Hadoop是一种开源的大数据处理框架,它的核心功能是存储和处理海量的数据。不过,我今天想带大家深入探讨的是Hadoop的一个非常实用的功能:跨硬件复制文件。 为什么这个功能这么重要呢?想象一下,如果你正在运行一个大型的分布式系统,突然某个节点挂了怎么办?数据丢了?那可太惨了!Hadoop通过分布式文件系统(HDFS)来解决这个问题。HDFS 可不只是简单地把大文件切成小块儿,它还特聪明,会把这些小块儿分散存到不同的机器上。这就跟把鸡蛋放在好几个篮子里一个道理,哪怕有一台机器突然“罢工”了(也就是挂掉了),你的数据还是稳稳的,一点都不会丢。 那么,Hadoop是如何做到这一点的呢?咱们先来看看它是怎么工作的。 --- 2. HDFS的工作原理 数据块与副本 HDFS是一个分布式的文件系统,它的设计理念就是让数据更加可靠。简单讲啊,HDFS会把一个大文件切成好多小块儿(每块默认有128MB这么大),接着把这些小块分开放到集群里的不同电脑上存着。更关键的是,HDFS会为每个数据块多弄几个备份,一般是三个副本。这就相当于给你的数据买了“多重保险”,哪怕有一台机器突然“罢工”或者出问题了,你的数据还是妥妥地躺在别的机器上,一点都不会丢。 举个例子,假设你有一个1GB的文件,HDFS会把这个文件分成8个128MB的小块,并且每个小块会被复制成3份,分别存储在不同的服务器上。这就意味着啊,就算有一台服务器“挂了”或者出问题了,另外两台服务器还能顶上,数据照样能拿得到,完全不受影响。 说到这里,你可能会问:“为什么要复制这么多份?会不会浪费空间?”确实,多副本策略会占用更多的磁盘空间,但它的优点远远超过这一点。先说白了就是,它能让数据更好用、更靠谱啊!再说了,在那种超大的服务器集群里头,这样的备份机制还能帮着分散压力,不让某一个地方出问题就整个崩掉。 --- 3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
97
冬日暖阳
转载文章
...会接触到Class类文件,了解了JVM虚拟机之后也会大量接触到class字节码,那么它到底是什么样的文件?内部由什么构成?虚拟机又是如何去识别它的?这篇文章就来学习一下Class类文件的结构。 ps:我在面试蚂蚁的时候被问到过这个问题!你没看错,面试也有可能会问。 一、什么是Class文件 Class文件又称字节码文件,一种二进制文件,它是由某种语言经过编译而来,注意这里并不一定是Java语言,还有可能是Clojure、Groovy、JRuby、Jython、Scala等,Class文件运行在Java虚拟机上。Java虚拟机不与任何一种语言绑定,它只与Class文件这种特定的二进制文件格式所关联。 虚拟机具有语言无关性,它不关心Class文件的来源是何种语言,它只关心Class文件中的内容。Java语言中的各种变量、关键字和运算符号的语义最终都是由多条字节码命名组合而成的,因此字节码命令所能提供的语义描述能力比Java语言本身更加强大。 二、Class文件的结构 虚拟机可以接受任何语言编译而成的Class文件,因此也给虚拟机带来了安全隐患,为了提供语言无关性的功能就必须做好安全防备措施,避免危险有害的类文件载入到虚拟机中,对虚拟机造成损害。所以在类加载的第二大阶段就是验证,这一步工作是虚拟机安全防护的关键所在,其中检查的步骤就是对class文件按照《Java虚拟机规范》规定的内容来对其进行验证。 1.总体结构 Class文件是一组以8位字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在Class文件之中,中间没有添加任何分隔符,Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。当遇到需要占用8位字节以上空间的数据项时,就按照高位在前的方式分割成若干个8位字节进行存储。 Class文件格式采用类似于C语言结构体的伪结构来存储数据,这种伪结构只有两种数据类型:无符号数和表。 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节、8个字节的无符号数,无符号数可以来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串值。 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,所有表都习惯性的以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class文件本质上就是一张表,它的数据项构成如下图。 2.魔数(Magic Number) 每一个Class文件的头4个字节成为魔数(Magic Number),它的唯一作用是确定这个文件是否是一个能被虚拟机接收的Class文件。很多文件存储标准中都是用魔数来进行身份识别,比如gif、png、jpeg等都有魔数。使用魔数主要是来识别文件的格式,相比于通过文件后缀名识别,这种方式准确性更高,因为文件后缀名可以随便更改,但更改二进制文件内容的却很少。Class类文件的魔数是Oxcafebabe,cafe babe?咖啡宝贝?至于为什么是这个, 这个名字在java语言诞生之初就已经确定了,它象征着著名咖啡品牌Peet's Coffee中深受欢迎的Baristas咖啡,Java的商标logo也源于此。 3.文件版本(Version) 在魔数后面的4个字节就是Class文件的版本号,第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。Java的版本号是从45开始的,JDK1.1之后的每个JDK大版本发布主版本号向上加1(JDK1.0~1.1使用的版本号是45.0~45.3),比如我这里是十六进制的Ox0034,也就是十进制的52,所以说明该class文件可以被JDK1.8及以上的虚拟机执行,否则低版本虚拟机执行会报java.lang.UnsupportedClassVersionError错误。 4.常量池(Constant Pool) 在主版本号紧接着的就是常量池的入口,它是Class文件结构中与其他项目关联最多的数据类型,也是占用空间最大的数据之一。常量池的容量由后2个字节指定,比如这里我的是Ox001d,即十进制的29,这就表示常量池中有29项常量,而常量池的索引是从1开始的,这一点需要特殊记忆,因为程序员习惯性的计数法是从0开始的,而这里不一样,所以我这里常量池的索引范围是1~29。设计者将第0项常量空出来是有目的的,这样可以满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义。 通过javap -v命令反编译出class文件之后,我们可以看到常量池的内容 常量池中主要存放两大类常量:字面量和符号引用。比如文本字符、声明为final的常量值就属于字面量,而符号引用则包含下面三类常量: 类和接口的全限名 字段的名称和描述符 方法的名称和描述符 在之前的文章(详谈类加载的全过程)中有详细讲到,在加载类过程的第二大阶段连接的第三个阶段解析的时候,会将常量池中的符号引用替换为直接引用。相信很多人在开始了解那里的时候也是一头雾水,作者我也是,当我了解到常量池的构成的时候才明白真正意思。Java代码在编译的时候,是在虚拟机加载Class文件的时候才会动态链接,也就是说Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法获得真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。 常量池中每一项常量都是一张表,这里我只找到了JDK1.7之前的常量池项目类型表,见下图。 常量池项目类型表: 常量池常量项的结构总表: 比如我这里测试的class文件第一项常量,它的标志位是Ox0a,即十进制10,即表示tag为10的常量项,查表发现是CONSTANT_Methodref_info类型,和上面反编译之后的到的第一个常量是一致的,Methodref表示类中方法的符号引用。查上面《常量池常量项的结构总表》可以看到Methodref中含有3个项目,第一个tag就是上述的Ox0a,那么第二个项目就是Ox0006,第三个项目就是Ox000f,分别指向的CONSTANT_Class_info索引项和CONSTANT_NameAndType_info索引项为6和15,那么反编译的结果该项常量指向的应该是6和15,查看上面反编译的图应证我们的推测是对的。后面的常量项就以此类推。 这里需要特殊说明一下utf8常量项的内容,这里我以第29项常量项解释,也就是最后一项常量项。查《常量池常量项的结构总表》可以看到utf8项有三个内容:tag、length、bytes。tag表示常量项类型,这里是Ox01,表示是CONSTANT_Utf8_info类型,紧接着的是长度length,这里是Ox0015,即十进制21,那么再紧接着的21个字节都表示该项常量项的具体内容。特别注意length表示的最大值是65535,所以Java程序中仅能接收小于等于64KB英文字符的变量和变量名,否则将无法编译。 5.访问标志(Access Flags) 在常量池结束后,紧接着的两个字节代表访问标志(Access Flags),该标志用于识别一些类或者接口层次的访问信息,其中包括:Class是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
Netty
...个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
Docker统一文件系统(Union File System) , 在Docker技术中,统一文件系统是一种将多个文件系统层合并成一个单一视图的机制。它允许容器和镜像通过堆叠只读层的方式构建,每个层代表了对文件系统的更改或添加内容。当容器运行时,最上层为可读写层,其下的只读层则提供了容器的基础环境和应用依赖。这样设计的优点在于能够实现高效的存储和快速的部署,因为多个容器可以共享底层的只读层,同时保持各自的独立性和可变性。 进程隔离空间(Process Isolation Space) , 在Docker中,进程隔离空间是指为容器内的进程提供的一种资源隔离机制,确保容器内部的进程与主机和其他容器的进程互不影响。Docker利用操作系统级别的功能如控制组(cgroups)和命名空间(namespaces)来实现这一目标。每个运行态容器都有自己的独立进程空间,限制了它们对CPU、内存、网络、磁盘等资源的访问,并且让容器内的进程看起来像是在独立的操作系统环境中运行。 镜像层(Image Layer) , 在Docker镜像结构中,镜像层是构成镜像的基本单元。每一个镜像层代表了对文件系统的一次修改或新增内容,且每一层都包含相应的元数据以及指向其父层的指针。镜像层之间采用堆叠的方式组合在一起,形成最终的镜像。这种分层的设计使得镜像能够高效地复用已有的层,并且便于跟踪和理解镜像的历史变更记录。在创建容器时,基于镜像最上面加上一层可读写层,从而保证了容器具有独立的存储空间,可以在不改变镜像本身的情况下进行持久化存储或者动态调整。
2023-11-26 15:47:20
538
转载
Mahout
...,旨在利用分布式计算资源来加速大规模数据集上的算法执行。哎呀,这个家伙可真厉害!它能用上各种各样的机器学习魔法,比如说分门别类的技巧(就是咱们说的分类)、把相似的东西归到一块儿的本事(聚类)还有能给咱们推荐超棒东西的神奇技能(推荐系统)。而且,它最擅长的就是对付那些海量的数据,就像大鱼吃小鱼一样,毫不费力就能搞定!通过Mahout,我们可以构建复杂的模型来挖掘数据中的模式和关系,从而驱动业务决策。 3. Spark Streaming简介 Apache Spark Streaming是Spark生态系统的一部分,专为实时数据流处理设计。哎呀,这个玩意儿简直就是程序员们的超级神器!它能让咱这些码农兄弟们轻松搞定那些超快速、高效率的实时应用,你懂的,就是那种分秒必争、数据飞速流转的那种。想象一下,一秒钟能处理几千条数据,那感觉简直不要太爽啊!就像是在玩转数据的魔法世界,每一次点击都是对速度与精准的极致追求。这不就是我们程序员的梦想吗?在数据的海洋里自由翱翔,每一刻都在创造奇迹!Spark Streaming的精髓就像个魔术师,能把连续不断的水流(数据流)变换成小段的小溪(微批次)。这小溪再通过Spark这个强大的分布式计算平台,就像是在魔法森林里跑的水车,一边转一边把水(数据)处理得干干净净。这样一来,咱们就能在实时中捕捉到信息的脉动,做出快速反应,既高效又灵活! 4. Mahout与Spark Streaming的集成 为了将Mahout的机器学习能力与Spark Streaming的实时处理能力结合起来,我们需要创建一个流水线,使得Mahout可以在实时数据流上执行分析任务。这可以通过以下步骤实现: - 数据接入:首先,我们需要将实时数据流接入Spark Streaming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
Docker
... 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
ZooKeeper
...的各种操作请求(比如创建节点、删除节点等)。嘿嘿,想象一下,这就好比一个超挤的电梯,已经装满了人,再有人想挤进去肯定会被拒之门外啦!ZooKeeper也一样,当它的小“队伍”排满了的时候,新来的请求就别想加塞儿了,直接就被它无情地“拒绝”了,然后还甩给你一个“异常”的小牌子,意思是说:“兄弟,这儿真的装不下了!”这种情况通常发生在高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
ElasticSearch
...顺利,数据导入、索引创建啥的都没问题。但当我尝试对某些节点进行操作时,突然蹦出了这么一行错误: org.elasticsearch.cluster.block.ClusterBlockException: blocked by: [SERVICE_UNAVAILABLE/2/no active shards]; 当时我心里那个急啊!赶紧去查文档,发现这是NodeNotActiveException的表现之一。简单说吧,就好比某个关键的小哥突然“罢工”了,可能是因为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...包发现了一个很重要的文件:playlist.m3u8 里面包含了数个 .ts 的网络地址; .ts 文件是可以播放的视频片段; 发现 可以通过合并 .ts 片段可以得到完整视频; 出现一个问题:playlist.m3u8 怎么获取? 发现:https://v.douyu.com/api/stream/getStreamUrl 可以获取 playlist.m3u8 文件地址; 需要POST传入一些参数才行,发现: sign 参数是一种签名,一般通过JS生成,找了半天没有方法生成 sign 参数; 通过查阅大佬文献发现:手机端的斗鱼视频有接口可以直接获取 playlist.m3u8 文件地址,成功越过 sign 签名防线; 手机端斗鱼视频链接:https://vmobile.douyu.com/show/0Q8mMY0xXDL749Ad 通过抓包发现:https://vmobile.douyu.com/video/getInfo?vid=0Q8mMY0xXDL749Ad; 这就解决了playlist.m3u8 文件获取问题:json[‘data’][‘video_url’] 第一个难题解决!!; 综上所述,整理一下具体采集流程: 获取vid = 0Q8mMY0xXDL749Ad (就是链接中的参数); 通过 https://vmobile.douyu.com/video/getInfo?vid=0Q8mMY0xXDL749Ad 获取 playlist.m3u8 文件地址; 解析 playlist.m3u8 文件提取所有 .ts文件; 下载所有 .ts 文件; 合并 .ts 成视频文件输出; Python实现 不要开启线程池,因为会有一些问题 app.py config 中可以配置 import requestsimport reimport jsonimport timeimport pymongoimport psutilfrom hashlib import md5from moviepy.editor import from multiprocessing import Pool基本配置config = {'UID':'gKpdxKRWXwaW',用户ID'CID':104,栏目ID'TYPE':1, 1=>按用户id采集列表,2=>按栏目ID采集列表'TIME_START':1,起始时间'TIME_ENT':500,结束时间'PAGE_START':1,起始页'PAGE_END':10,结束页'TIME_GE':0,每个下载间隔时间'POOL':False,是否开启线程池'CHECKID':True, True 过滤已经下载过的视频 False 不过滤'FILE_PATH':'F:/ceshi/',下载目录,【会自动创建文件夹】'TS_PATH':'F:/ceshi/download/',缓存文件目录,【会自动创建文件夹】'DB_URL':'localhost',数据库地址'DB_NAME':'douyu',数据库名称''DB_TABLE':'douyu'数据库表}MongoDB初始化client = pymongo.MongoClient(config['DB_URL'])mango_db = client[config['DB_NAME']]MongoDB存储def save_to_mango(result):if mango_db[config['DB_TABLE']].insert_one({'vid':result}):print('成功存储到MangoDB')return Truereturn FalseMongoDB验证重复def check_to_mongo(vid):count = mango_db[config['DB_TABLE']].find({'vid':vid}).count()if count==0:return Falsereturn True删除文件def del_file(page):if os.path.exists(page): 删除文件,可使用以下两种方法。os.remove(page) os.unlink(my_file)else:print('no such file:%s' % page)循环列表删除文件def loop_del_file(arr):for item in arr:del_file(item)请求器def get_content_requests(url):headers = {}headers['user-agent']='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'headers['cookie'] = 'dy_did=07f83a57d1d2e22942e0883200001501; acf_did=07f83a57d1d2e22942e0883200001501; Hm_lvt_e99aee90ec1b2106afe7ec3b199020a7=1556514266,1557050422,1557208315; acf_auth=; acf_auth_wl=; acf_uid=; acf_nickname=; acf_username=; acf_own_room=; acf_groupid=; acf_notification=; acf_phonestatus=; _dys_lastPageCode=page_video,page_video; Hm_lpvt_e99aee90ec1b2106afe7ec3b199020a7=1557209469; _dys_refer_action_code=click_author_video_cate2'try:req_content = requests.get(url,headers = headers)if req_content.status_code == 200:return req_contentprint('请求失败:',url)return Noneexcept:print('请求失败:', url)return None把时间换算成秒def str_to_int(time):try:time_array = time.split(':')time_int = (int(time_array[0])60)+int(time_array[1])return time_intexcept:print('~~~~~计算视频时间失败~~~~~')return None提取需要采集的数据def get_list(html,type = 1):data = []try:list_json = json.loads(str(html))for om in list_json['data']['list']:gtime = str_to_int(om['video_str_duration'])if gtime > config['TIME_START'] and gtime < config['TIME_ENT']:if type == 2:data.append({'title': om['title'], 'vid': om['url'].split('show/')[1]})else:data.append({'title': om['title'], 'vid': om['hash_id']})return dataexcept:print('~~~~~数据提取失败~~~~~')return None解析playlist.m3u8def get_ts_list(m3u8):data = []try:html_m3u8_json = json.loads(m3u8)m3u8_text = get_content_requests(html_m3u8_json['data']['video_url'])m3u8_vurl =html_m3u8_json['data']['video_url'].split('playlist.m3u8?')[0]if m3u8_text:get_text = re.findall(',\n(.?).ts(.?)\n',m3u8_text.text,re.S)for item in get_text:data.append(m3u8_vurl+item[0]+'.ts'+item[1])return datareturn Noneexcept:print('~~~~~解析playlist.m3u8失败~~~~~')return None 杀死moviepy产生的特定进程def killProcess(): 处理python程序在运行中出现的异常和错误try: pids方法查看系统全部进程pids = psutil.pids()for pid in pids: Process方法查看单个进程p = psutil.Process(pid) print('pid-%s,pname-%s' % (pid, p.name())) 进程名if p.name() == 'ffmpeg-win64-v4.1.exe': 关闭任务 /f是强制执行,/im对应程序名cmd = 'taskkill /f /im ffmpeg-win64-v4.1.exe 2>nul 1>null' python调用Shell脚本执行cmd命令os.system(cmd)except:pass下载.ts文件def download_ts(m3u8_list,name):try:if not os.path.exists(config['FILE_PATH']):os.makedirs(config['FILE_PATH'])if not os.path.exists(config['TS_PATH']):os.makedirs(config['TS_PATH'])if os.path.exists(config['FILE_PATH']+name+'.mp4'):name = name+'_'+str(int(time.time()))print('开始下载:',name)L = []R = []for p in m3u8_list:ts_find = get_content_requests(p)file_ts = '{0}{1}.ts'.format(config['TS_PATH'],md5(ts_find.content).hexdigest())with open(file_ts,'wb') as f:f.write(ts_find.content)R.append(file_ts)hebing = VideoFileClip(file_ts)L.append(hebing)killProcess()print('下载完成:',file_ts)mp4file = '{0}{1}.mp4'.format(config['FILE_PATH'],name)final_clip = concatenate_videoclips(L)final_clip.to_videofile(mp4file, fps=24, remove_temp=True)killProcess()loop_del_file(R)print('\n下载完成:',name)print('')return Trueexcept:print('~~~~~合成.ts文件失败~~~~~')return None下载视频列表def list_get_kong(list_json):for item in list_json:y = Trueif config['CHECKID']:if check_to_mongo(item['vid']):print('~~~~~检测到重复项~~~~~')y = Falseif y:get_show_html = get_content_requests('https://vmobile.douyu.com/video/getInfo?vid=' + item['vid'])if get_show_html:m3u8_list = get_ts_list(get_show_html.text)if m3u8_list:download = download_ts(m3u8_list, item['title'])if download: save_to_mango(item['vid'])time.sleep(config['TIME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
... 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
scp local_file user@remote_host:destination_path
- 安全复制文件到远程主机。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"