前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[连接测试]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
DorisDB
...因此,网络带宽成为了连接各个节点的关键因素。 3. 常见的网络带宽问题及解决方案 3.1 数据压缩 数据压缩是减少网络传输量的有效手段。DorisDB支持多种压缩算法,如LZ4和ZSTD。我们可以根据实际情况选择合适的压缩算法。例如,在配置文件中启用LZ4压缩: sql ALTER SYSTEM SET enable_compression = 'lz4'; 这样可以显著减少数据在网络中的传输量,从而减轻网络带宽的压力。 3.2 调整并行度 并行度是指同时执行的任务数量。如果并行度过高,会导致网络带宽竞争激烈,进而影响整体性能。相反,如果并行度过低,则会降低查询效率。我们可以通过调整parallel_fragment_exec_instance_num参数来控制并行度。例如,将其设置为2: sql ALTER SYSTEM SET parallel_fragment_exec_instance_num = 2; 这可以根据实际情况进行调整,以达到最佳的网络带宽利用效果。 3.3 使用索引 索引可以显著提高查询效率,减少需要传输的数据量。想象一下,我们有个用户信息表叫users,里面有个age栏。咱们经常得根据年龄段来捞人,就是找特定年纪的用户。为了提高查询效率,我们可以创建一个针对age列的索引: sql CREATE INDEX idx_users_age ON users (age); 这样,在执行查询时,DorisDB可以直接通过索引来定位需要的数据,而无需扫描整个表,从而减少了网络传输的数据量。 3.4 使用分区表 分区表可以将大数据集分成多个较小的部分,从而提高查询效率。想象一下,我们有个表格叫sales,里面记录了所有的销售情况,还有一个日期栏叫date。每次我们需要查某个时间段内的销售记录时,就得用上这个表格了。为了提高查询效率,我们可以创建一个基于date列的分区表: sql CREATE TABLE sales ( id INT, date DATE, amount DECIMAL(10, 2) ) PARTITION BY RANGE (date) ( PARTITION p2023 VALUES LESS THAN ('2024-01-01'), PARTITION p2024 VALUES LESS THAN ('2025-01-01') ); 这样,在执行查询时,DorisDB只需要扫描相关的分区,而无需扫描整个表,从而减少了网络传输的数据量。 4. 实践经验分享 在实际工作中,我发现以下几点可以帮助我们更好地优化DorisDB的网络带宽使用: - 监控网络流量:定期检查网络流量情况,找出瓶颈所在。可以使用工具如iftop或nethogs来监控网络流量。 - 分析查询日志:通过分析查询日志,找出频繁执行且消耗资源较多的查询,对其进行优化。 - 合理规划集群:合理规划集群的规模和节点分布,避免因节点过多而导致网络带宽竞争激烈。 - 持续学习和实践:DorisDB的技术不断更新迭代,我们需要持续学习新的技术和最佳实践,不断优化我们的系统。 5. 结语 优化DorisDB的网络带宽使用是一项系统工程,需要我们从多方面入手,综合考虑各种因素。用上面说的那些招儿,咱们能让系统跑得飞快又稳当,让用户用起来更爽!希望这篇文章能对你有所帮助,让我们一起努力,让数据流动得更顺畅!
2025-01-14 16:16:03
86
红尘漫步
转载文章
...audio 6、再次测试 rec test.wav 7、使用ctrl + c停止录音,aplay test.wav播放。 8、下载snowboy,编译出适合自己系统的_snowboydetect.so 在这个链接下载:https://github.com/kitt-ai/snowboy 使用命令:git clone https://github.com/Kitt-AI/snowboy.git下载 安装以下工具,用以编译 sudo apt-get install swig (3.0.10或者更高的版本)sudo apt-get install libatlas-base-dev 进入snowboy目录,执行以下命令,进行编译 cd /snowboy/swig/Python3make 得到了编译好的文件_snowboydetect.so 新建自己文件夹,将snowboy/example/Python3下的文件全复制到自己文件夹下,并将上一步编译后得到的_snowboydetect.so放到自己的文件夹中。 9、生成自己的唤醒词 训练模型:参考https://github.com/Kitt-AI/snowboy/ 10、将自己的模型.pmdl放到自己创建的文件夹snowboy里。 11、使用以下代码运行 注意:需要将官方案例中的 snowboydecoder.py 文件修改一下,把from . import snowboydetect 改为 import snowboydetect然后再运行。并将编译后的swig/Python3目录下的snowboydetect.py复制到自己的目录中。 python3 demo.py .pmdl 听到叮的一声,代表成功了。 完整参考文档:http://docs.kitt.ai/snowboy/downloads 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_43556844/article/details/113617602。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-05 08:57:02
123
转载
Gradle
...为一个整体进行构建和测试,大大简化了大型项目的维护工作流。 与此同时,Gradle Kotlin DSL的应用越来越普遍,它利用Kotlin语言的强类型和表达力优势,使构建脚本更易于阅读、编写和维护。许多开源项目如Spring Boot已开始推荐并采用Gradle Kotlin DSL作为默认构建脚本格式。 总之,Gradle作为一个强大且灵活的构建工具,其发展和进步始终紧跟现代软件开发的步伐,为开发者提供了更加先进和高效的依赖管理及构建解决方案。对于热衷于提升开发效率和保障项目质量的开发者来说,持续关注和学习Gradle的最新技术和最佳实践无疑是明智之举。
2024-01-15 18:26:00
435
雪落无痕_
Javascript
...前向纠错、0-RTT连接恢复等一系列优化技术,旨在进一步提升网络应用的数据传输效率和可靠性。在Web开发场景下,HTTP/3有助于减少资源加载失败的概率,比如确保JavaScript文件能够更快更稳定地从服务器端加载至客户端,降低出现“Script did not run”错误的可能性。
2023-03-26 16:40:33
374
柳暗花明又一村
Scala
...量编译速度以及对并行测试任务的支持,显著提升了Scala项目的构建效率。 此外,针对轻量级编辑器用户, Metals与Bloop这类Language Server Protocol服务器也日益成熟,它们通过提供实时类型检查、代码导航等特性,让Scala开发者能够在自己喜欢的编辑器中也能享受近乎IDE级别的开发体验。 另外值得注意的是,Scala社区活跃度不断提升,许多围绕Scala开发的工具、库以及最佳实践文档层出不穷,对于解决实际开发中的IDE环境问题有着直接帮助。因此,建议Scala开发者持续关注官方博客、GitHub仓库及论坛讨论,紧跟社区步伐,以便及时应对新出现的技术挑战,提升自身开发技能和项目管理能力。
2023-01-16 16:02:36
104
晚秋落叶
SpringBoot
...I文档,并通过自动化测试确保JSON数据格式的有效性和完整性。例如,结合SpringDoc OpenAPI,不仅可以可视化地展示API接口及其所需的JSON结构,还可以自动生成客户端SDK,显著提升前后端协作效率。 此外,对于JSON数据的安全性问题,Spring Security也提供了相应的防护措施,如通过JsonParseException处理非法或恶意构造的JSON数据,以及利用Jackson库提供的@JsonFilter进行敏感字段的过滤。随着Spring生态系统的不断演进,开发者在享受便捷高效的JSON数据处理能力的同时,也能兼顾安全性与合规性要求,以应对愈发复杂多变的现代软件工程挑战。
2024-01-02 08:54:06
101
桃李春风一杯酒_
Nginx
...定超过10,000个连接请求。第一次跟Nginx打交道,那会儿我正忙着搞个项目,优化性能呢。我们的应用服务器都快累瘫了,响应速度慢得让人想砸电脑。于是,我们决定尝试一下Nginx,看看能不能解决问题。 2. Nginx的工作原理 如何让网站飞起来? 要理解Nginx的强大,首先得了解它是如何工作的。Nginx用了一种特别聪明的设计,叫做异步事件驱动。这就意味着它能轻松应对成千上万的连接,而且还不费劲儿。跟那些传统的Web服务器(比如Apache)不一样,Nginx可不会为了每个连接都新建一个进程或线程。它聪明地用少量的进程来搞定所有的请求,这样效率高多了。这个机制让Nginx在应对海量并发连接时,依然能保持“吃”不了多少内存和CPU,就像是个轻量级的小飞侠,既灵活又高效! 3. Nginx的实际运用 从配置到实践 接下来,让我们看看Nginx是如何在我的实际工作中大展身手的。想象一下,我们有个小网站,放在一台服务器上跑着。结果有一天,突然涌来了一大波访客,就像大家都同时跑来参加party一样,把我们的服务器给挤爆了,差点儿喘不过气来。为了不让服务器累趴下,咱们可以用Nginx这个神器当“交通指挥官”,把访问请求合理分配一下。下面是一个简单的Nginx配置文件示例: nginx http { upstream backend { server 192.168.1.1:8080; server 192.168.1.2:8080; } server { listen 80; location / { proxy_pass http://backend; } } } 在这个配置文件中,我们定义了一个名为backend的上游服务器组,它包含两个后端服务器。然后,在server块中,我们指定了监听80端口,并将所有请求转发到backend组。这样一来,当客户端的请求找到Nginx时,Nginx就会按照负载均衡的规则,把请求派给后端的服务器们去处理。 4. Nginx的高级功能 定制化与扩展性 Nginx不仅仅是一个基本的反向代理服务器,它还提供了许多高级功能,可以满足各种复杂的需求。比如说,你可以用Nginx来搞缓存,这样就能少给后端服务器添麻烦,减轻它的负担啦。以下是一个简单的缓存配置示例: nginx location /images/ { proxy_cache my_cache; proxy_cache_valid 200 1h; proxy_pass http://backend; } 在这个配置中,我们定义了一个名为my_cache的缓存区,并设置了对200状态码的响应缓存时间为1小时。这样一来,对于那些静态资源比如图片,Nginx会先看看缓存里有没有。如果有,就直接把缓存里的东西给用户,根本不需要去后台问东问西的。 5. 总结与展望 Nginx带给我的启示 通过这段时间的学习和实践,我对Nginx有了更深入的理解。这不仅仅是个能扛事儿的Web服务器和反向代理,还是应对高并发访问的超级神器呢!在未来的项目中,我相信Nginx还会继续陪伴着我,帮助我们应对各种挑战。希望这篇分享能对你有所帮助,如果你有任何问题或想法,欢迎随时交流! --- 希望这篇文章能够帮助你更好地理解和使用Nginx。如果你有任何疑问或想要了解更多细节,请随时提问!
2025-01-17 15:34:14
70
风轻云淡
Redis
... (2)限制客户端连接数 过多的并发连接可能会导致Redis资源消耗过大,降低响应速度。因此,我们需要合理设置最大客户端连接数: bash maxclients 10000 请根据实际情况调整此数值。 2. 使用Pipeline和Multi-exec批量操作 Redis Pipeline功能允许客户端一次性发送多个命令并在服务器端一次性执行,从而减少网络往返延迟,显著提升性能。以下是一个Python示例: python import redis r = redis.Redis(host='localhost', port=6379, db=0) pipe = r.pipeline() for i in range(1000): pipe.set(f'key_{i}', 'value') pipe.execute() 另外,Redis的Multi-exec命令用于事务处理,也能实现批量操作,确保原子性的同时提高效率。 3. 数据结构与编码优化 Redis支持多种数据结构,选用合适的数据结构能极大提高查询效率。比如说,如果我们经常要做一些关于集合的操作,像是找出两个集合的交集啊、并集什么的,那这时候,我们就该琢磨着别再用那个简单的键值对(Key-Value)了,而是考虑选用Set或者Sorted Set,它们在这方面更管用。 python 使用Sorted Set进行范围查询 r.zadd('sorted_set', {'user1': 100, 'user2': 200, 'user3': 300}) r.zrangebyscore('sorted_set', 150, 350) 同时,Redis提供了多种数据编码方式,比如哈希表的ziplist编码能有效压缩存储空间,提高读写速度,可通过修改hash-max-ziplist-entries和hash-max-ziplist-value进行配置。 4. 精细化监控与问题排查 定期对Redis服务器进行性能监控和日志分析至关重要。Redis自带的INFO命令能提供丰富的运行时信息,包括内存使用情况、命中率、命令统计等,结合外部工具如RedisInsight、Grafana等进行可视化展示,以便及时发现潜在性能瓶颈。 当遇到性能问题时,我们要像侦探一样去思考和探索:是由于内存不足导致频繁淘汰数据?还是因为某个命令执行过于耗时?亦或是客户端并发过高引发的问题?通过针对性的优化措施,逐步改善Redis服务器的响应时间和性能表现。 总结来说,优化Redis服务器的关键在于深入了解其内部机制,合理配置参数,巧妙利用其特性,以及持续关注和调整系统状态。让我们一起携手,打造更为迅捷、稳定的Redis服务环境吧!
2023-11-29 11:08:17
236
初心未变
Netty
...序里头,即使之前某个连接还在“TIME_WAIT”这个等待状态没完全断开,也能重新使用同一个IP地址和端口进行绑定。这就像是同一家咖啡馆,即使前一位客人还没完全离开座位,服务员也能让新客人坐到同一个位置上。这对于服务器程序来说,可是个大大的关键点。想象一下,如果服务器突然罢工或者重启了,如果我们没把这个选项给设置好,新的服务在启动时就可能遇到些小麻烦。具体是什么呢?就是那些旧的、还没彻底断开的TIME_WAIT连接可能会霸占着端口不放,导致新服务无法立马投入使用,这样一来,咱的服务连续性和可用性可就大打折扣啦! 2. Netty中的SO_REUSEADDR配置 在Netty中,我们可以通过ChannelOption.SO_REUSEADDR来启用这个特性。下面是一段典型的Netty ServerBootstrap配置SO_REUSEADDR的代码示例: java EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 配置SO_REUSEADDR选项 .option(ChannelOption.SO_REUSEADDR, true) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { // 初始化通道处理器等操作... } }); ChannelFuture f = b.bind(PORT).sync(); f.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } 在这段代码中,我们在创建ServerBootstrap实例后,通过.option(ChannelOption.SO_REUSEADDR, true)设置了SO_REUSEADDR选项为true,这意味着我们的Netty服务器将能够快速地重新绑定到之前被关闭或异常退出的服务器所占用的端口上,显著提升了服务的重启速度和可用性。 3. 应用场景分析及思考过程 想象这样一个场景:我们的Netty服务因某种原因突然宕机,此时可能存在大量未完全关闭的连接在系统中处于TIME_WAIT状态,如果立即重启服务,未配置SO_REUSEADDR的情况下,服务可能会因为无法绑定端口而无法正常启动。当咱们给服务开启了SO_REUSEADDR这个神奇的设置后,新启动的服务就能对那些处于TIME_WAIT状态的连接“视而不见”,直接霸道地占用端口,然后以迅雷不及掩耳之势恢复对外提供服务。这样一来,系统的稳定性和可用性就蹭蹭地往上飙升了,真是给力得很呐! 然而,这里需要强调的是,虽然SO_REUSEADDR对于提升服务可用性有明显帮助,但并不意味着它可以随意使用。当你在处理多个进程或者多个实例同时共享一个端口的情况时,千万可别大意,得小心翼翼地操作,不然可能会冒出一些你意想不到的“竞争冲突”或是“数据串门”的麻烦事儿。因此,理解并合理运用SO_REUSEADDR是每个Netty开发者必备的技能之一。 总结来说,通过在Netty中配置ChannelOption.SO_REUSEADDR,我们可以优化服务器重启后的可用性,减少由于端口占用导致的延迟,让服务在面对故障时能更快地恢复运行。这不仅体现了Netty在实现高性能、高可靠服务上的灵活性,也展示了其对底层网络通信机制的深度掌握和高效利用。
2023-12-02 10:29:34
440
落叶归根
Nacos
...服务器未启动或未成功连接到数据库。在这种情况下,我们得瞅瞅Nacos服务器的状态咋样了,确保它已经顺利启动并且稳稳地连上了数据库。 2. dataId不存在或者被删除了。如果dataId不存在或者已经被删除,那么在访问这个dataId时就会出现问题。 3. 数据更新不及时。如果Nacos中的数据没有及时更新,那么在访问这个dataId时也可能会出现问题。 三、解决方案 对于上述问题,我们可以采取以下几种方式来解决: 1. 检查Nacos服务器状态 首先,我们需要检查Nacos服务器的状态,确保其已经成功启动并连接到了数据库。如果Nacos服务器尚未启动,我们可以按照如下步骤进行操作: 1) 打开终端,输入命令 service nacos start 启动Nacos服务器; 2) 等待一段时间后,再次输入命令 netstat -anp | grep 8848 查看Nacos服务器的监听端口是否处于监听状态; 3) 如果处于监听状态,那么恭喜您,Nacos服务器已经成功启动!如果处于关闭状态,那么您可以尝试重启Nacos服务器; 4) 另外,我们还需要检查Nacos服务器的配置文件,确保其配置无误,并且已经连接到了数据库。如果配置文件存在问题,您可以参考Nacos官方文档来进行修复。 2. 确认dataId是否存在 其次,我们需要确认dataId是否存在。如果dataId找不着了,那咱们就得动手去找找相关的配置文件,然后把它塞到Nacos服务器里头去。具体操作如下: 1) 打开终端,输入命令 ncs config list --group application 查找与当前环境相关的所有dataId; 2) 如果找不到相关dataId,那么我们可以尝试创建一个新的dataId,并将其添加到Nacos服务器中。具体的创建和添加步骤如下: 1. 创建新的dataId 输入命令 ncs config create --group application --name gatewayserver-dev-${server.env}.yaml --type yaml --label development; 2. 将新的dataId添加到Nacos服务器中 输入命令 ncs config put --group application --name gatewayserver-dev-${server.env}.yaml --content '{"server": {"env": "development"} }'; 3. 更新Nacos中的数据 最后,我们需要确保Nacos中的数据能够及时更新。具体的操作步骤如下: 1) 打开终端,输入命令 ncs config update --group application --name gatewayserver-dev-${server.env}.yaml --content '{"server": {"env": "development"} }' 更新dataId的内容; 2) 然后,我们需要等待一段时间,让Nacos服务器能够接收到更新的数据。在等待的过程中,我们可以通过监控Nacos服务器的状态,来查看数据是否已经更新完成; 3) 当数据更新完成后,我们就可以顺利地访问dataId了。 四、总结 总的来说,当我们在使用Nacos时遇到问题时,我们不应该轻易放弃,而应该积极寻找解决问题的方法。这篇内容呢,主要是围绕着“Nacos error, dataId: gatewayserver-dev-${server.env}.yaml”这个小麻烦,掰开了揉碎了讲了它的来龙去脉,还有咱们怎么把它摆平的解决之道。希望这份心得能帮到大家,让大家在使用Nacos的时候更加得心应手,畅行无阻~在未来的求学和工作中,我真心希望大家伙儿能更注重抓问题的核心本质,别只盯着表面现象浮光掠影!
2023-09-10 17:16:06
55
繁华落尽_t
转载文章
...ect文件,而且忽略连接过程 ______________________________________ Multiple Source Files to Executable $ gcc hellomain.c sayhello.c -o hello ______________________________________ Preprocessing $ gcc -E helloworld.c [-o helloworld.i] 默认不输出文件,若输出则为.i文件 -E把宏展开后的代码情况 ____________________________________ Generating Assembly Language $ gcc -S helloworld.c -S生成hellowordl.s汇编语言文件 ____________________________________ Creating a Static Library 1、生成.o文件 $ gcc -c hellofirst.c hellosecond.c 2、生成.a文件 $ ar -r libhello.a hellofirst.o hellosecond.o 注意静态库的命名规则 3、连接 $ gcc twohellos.c libhello.a -o twohellos ____________________________________ Creating a Shared Library 1、生成.o文件 $ gcc -c -fpic shellofirst.c shellosecond.c -fpic 使得.o输出模块以地址可定向的方式产生。[pic:position independent code] 2、生成.so $ gcc -shared shellofirst.o shellosecond.o -o hello.so 3、连接 $ gcc stwohellos.c hello.so -o stwohellos 注意:1、2可以合并为 $ gcc -fpic -shared shellofirst.c shellosecond.c -o hello.so _____________________________________ Overriding the Naming Convention $ gcc -xc helloworld.jxj -o helloworld -xc对于C语言的源代码,默认后缀为.c,但别的后缀文件也可以当作c来用,那就要加-x选项 _______________________________________ Create a header file $ gcc sayhello.c -aux-info sayhello.h $ gcc .c -aux-info prototypes.h 不过这样产生的头文件,包含的函数原型太多,除了用户自定义的函数外,标准库中的函数原型都列出来了 本篇文章为转载内容。原文链接:https://blog.csdn.net/szu030606/article/details/7212586。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-29 13:05:13
52
转载
转载文章
...d_t解决了。实际上测试用sem_t还快一点。因为用sem_t的方法类似windows下面用Event就不贴代码了。 线程关键代码: void thread(thr_id t){pthread_mutex_lock(t->mutex); //这个lock相当重要sem_post(t->sem);pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);//真正开始for(int i = 0; i < 10; ++i){pthread_mutex_lock(t->mutex);std::cout<<t->id<<std::flush;pthread_cond_signal(t->next_cond);if(i < 9) //输出最后一遍的时候,不用再wait而是退出线程pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);} } Jinhao:现在C唤醒A的时候,能保证A是wait的状态.因为A在cond_wait的时候,B才能获得锁,当b在cond_wait的时候,C才获得锁.所以当C cond_signal A时, A必然是cond_wait的。 全部代码如下: include <iostream>include <stdlib.h>include <pthread.h>include <stdio.h>include <semaphore.h>using namespace std;struct thr_id{char id;sem_t sem;pthread_mutex_t mutex;pthread_cond_t self_cond;pthread_cond_t next_cond;};void thread(thr_id t){pthread_mutex_lock(t->mutex);sem_post(t->sem);pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);for(int i = 0; i < 10000; ++i){pthread_mutex_lock(t->mutex);std::cout<<t->id<<std::flush;pthread_cond_signal(t->next_cond);if(i < 9999)pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);} }typedef void (PRINTTHREADFUNC) (void);int main(){pthread_t th_a, th_b, th_c;sem_t sem;sem_init(&sem, 0, 0);pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;pthread_cond_t cond_a = PTHREAD_COND_INITIALIZER;pthread_cond_t cond_b = PTHREAD_COND_INITIALIZER;pthread_cond_t cond_c = PTHREAD_COND_INITIALIZER;thr_id thrids[3] = { {'a', &sem, &mutex, &cond_a, &cond_b},{'b', &sem, &mutex, &cond_b, &cond_c},{'c', &sem, &mutex, &cond_c, &cond_a} };pthread_create(&th_a, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[0]);pthread_create(&th_b, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[1]);pthread_create(&th_c, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[2]);for(int i = 0; i < 3; ++i){sem_wait(&sem);}pthread_mutex_lock(&mutex);pthread_cond_signal(thrids[0].self_cond);pthread_mutex_unlock(&mutex);pthread_join(th_a, NULL);pthread_join(th_b, NULL);pthread_join(th_c, NULL);sem_destroy(&sem);pthread_cond_destroy(&cond_a);pthread_cond_destroy(&cond_b);pthread_cond_destroy(&cond_c);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/enjolras/article/details/7456540。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-03 17:34:08
136
转载
SpringCloud
...们为HTTP请求设置连接超时(ConnectTimeout)和读取超时(ReadTimeout): java @Configuration public class RibbonConfiguration { @Bean publicribbon: ReadTimeout: 2000 设置读取超时时间为2秒 ConnectTimeout: 1000 设置连接超时时间为1秒 } } (3) 服务端性能优化 对于服务处理耗时过长的问题,我们需要对服务进行性能优化,如数据库查询优化、缓存使用、异步处理等。例如,我们可以利用@Async注解实现异步方法调用: java @Service public class SomeService { @Async public Future timeConsumingTask() { // 这是一个耗时的操作... return new AsyncResult<>("Task result"); } } 4. 系统设计层面的思考与探讨 除了上述具体配置和优化措施外,我们也需要从系统设计角度去预防和应对超时问题。比如,咱们可以像安排乐高积木一样,把各个服务间的调用关系巧妙地搭建起来,别让它变得太绕太复杂。同时呢,咱也要像精打细算的管家,充分揣摩每个服务的“饭量”(QPS和TPS)大小,然后据此给线程池调整合适的“碗筷”数量,再定个合理的“用餐时间”(超时阈值)。再者,就像在电路中装上保险丝、开关控制电流那样,我们可以运用熔断、降级、限流这些小妙招,确保整个系统的平稳运行,随时都能稳定可靠地为大家服务。 5. 结语 总之,面对SpringCloud应用中的“超时”问题,我们应根据实际情况,采取针对性的技术手段和策略,从配置、优化和服务设计等多个维度去解决问题。这个过程啊,可以说是挑战满满,但这也恰恰是技术最吸引人的地方——就是要不断去摸索、持续改进,才能打造出一套既高效又稳定的微服务体系。就像是盖房子一样,只有不断研究和优化设计,才能最终建成一座稳固又实用的大厦。而这一切的努力,最终都会化作用户满意的微笑和体验。
2023-04-25 12:09:08
39
桃李春风一杯酒
DorisDB
...SQL端发生异常,如连接断开或表结构被删除,会导致上述同步任务执行失败。 2.2 同步配置错误 - 场景描述:配置文件中的参数设置不正确,例如DorisDB的FE地址、BE端口或者表名、列名等不匹配,也会导致数据无法正常同步。 2.3 网络波动或资源不足 - 场景描述:在同步过程中,由于网络不稳定或者DorisDB所在集群资源(如内存、磁盘空间)不足,也可能造成同步任务失败。 3. 排查与解决方法 3.1 查看日志定位问题 - 操作过程:首先查看DorisDB FE和BE的日志,以及数据同步工具(如DataX)的日志,通常这些日志会清晰地记录下出错的原因和详细信息。 3.2 检查数据源状态 - 理解与思考:如果日志提示是数据源问题,那么我们需要检查数据源的状态,确保其稳定可用,并且表结构、权限等符合预期。 3.3 核实同步配置 - 举例说明:假设我们在同步配置中误写了一个表名,可以通过修正并重新运行同步任务来验证问题是否得到解决。 java // 更正后的writer部分配置 "writer": { "name": "doriswriter", "parameter": { "feHost": "doris-fe:8030", "bePort": 9050, "database": "mydb", // 注意这里已更正表名 "table": ["correct_table_name"] } } 3.4 监控网络与资源状况 - 探讨性话术:对于因网络或资源问题导致的同步失败,我们可以考虑优化网络环境,或者适当调整DorisDB集群资源配置,比如增加磁盘空间、监控并合理分配内存资源。 4. 总结 面对DorisDB数据同步失败的情况,我们需要像侦探一样细致入微,从日志、配置、数据源以及运行环境等多个角度入手,逐步排查问题根源。通过实实在在的代码实例演示,咱们就能更接地气地明白各个环节可能潜藏的小问题,然后对症下药,精准地把这些小bug给修复喽。虽然解决问题的过程就像坐过山车一样跌宕起伏,但每当我们成功扫除一个障碍,就仿佛是在DorisDB这座神秘宝库里找到新的秘密通道。这样一来,我们对它的理解愈发透彻,也让我们的数据分析之旅走得更稳更顺溜,简直像是给道路铺上了滑板鞋,一路畅行无阻。
2024-02-11 10:41:40
432
雪落无痕
Greenplum
...们可以通过这种方式来测试我们的数据恢复机制。 2.2 系统错误 系统错误也可能导致数据文件完整性检查失败。比如,操作系统要是突然罢工了,或者进程卡壳不动弹了,这就可能会让还没完成的数据操作给撂挑子,这样一来,完整性检查也就难免会受到影响啦。 sql kill -9 ; 这段代码将杀死指定PID的进程。我们可以使用这种方式来模拟系统错误。 2.3 用户错误 用户错误也是导致数据文件完整性检查失败的一个重要原因。比如,假如用户手滑误删了关键数据,或者不留神改错了数据结构,那么完整性校验这一关就过不去啦。 sql DELETE FROM my_table; 这段代码将删除my_table中的所有记录。我们可以使用这种方式来模拟用户错误。 3. 解决方案 3.1 备份与恢复 为了防止数据丢失,我们需要定期备份数据,并且要确保备份是完整的。一旦发生数据文件完整性检查失败,我们可以从备份中恢复数据。 sql pg_dumpall > backup.sql 这段代码将备份整个数据库到backup.sql文件中。我们可以使用这个文件来恢复数据。 3.2 系统监控 通过系统监控,我们可以及时发现并解决问题。比如,假如我们瞅见某个家伙的CPU占用率爆表了,那咱就得琢磨琢磨,是不是这家伙的硬件出啥幺蛾子了。 sql SELECT datname, pg_stat_activity.pid, state, query FROM pg_stat_activity WHERE datname = ''; 这段代码将显示当前正在运行的所有查询及其状态。我们可以根据这些信息来判断是否存在异常情况。 3.3 用户培训 最后,我们应该对用户进行培训,让他们了解正确的使用方法,避免因为误操作而导致的数据文件完整性检查失败。 sql DO $$ BEGIN RAISE NOTICE 'INSERT INTO my_table VALUES (1, 2)'; EXCEPTION WHEN unique_violation THEN RAISE NOTICE 'Error: INSERT failed'; END$$; 这段代码将在my_table表中插入一条新的记录。我们可以使用这个例子来教给用户如何正确地插入数据。 4. 结论 数据文件完整性检查失败是一个严重的问题,但我们并不需要害怕它。只要我们掌握了正确的知识和技能,就能够有效地应对这个问题。 通过本文的学习,你应该已经知道了一些可能导致数据文件完整性检查失败的原因,以及一些解决方案。希望这篇文章能够帮助你在遇到问题时找到正确的方向。
2023-12-13 10:06:36
529
风中飘零-t
Element-UI
...时地将更新推送到所有连接的客户端,从而有效解决前后端数据同步延迟的问题。 此外,前端开发者还可以关注到Web Worker与Service Worker技术的发展,它们允许JavaScript在后台线程运行,能显著提升页面渲染及数据处理效率,尤其对于处理大量计算或网络请求的任务场景,可以明显改善用户界面的流畅性和响应速度,进一步优化类似滑块拖动这样的实时交互体验。 综上所述,无论是前端组件的精细化优化,还是后端服务的高效化建设,都是为了确保用户能在现代Web应用中获得更佳的使用感受。只有紧跟技术发展潮流,持续挖掘和解决问题,才能使我们的应用程序始终保持竞争力和优质的用户体验。
2023-09-23 17:23:49
489
春暖花开-t
Scala
...法,但在字符串间则是连接操作。这是因为Scala将这些符号视为方法名的一部分,如a + b实际上是调用了a.+(b)。这就意味着,只要你愿意,你完全可以在自定义的类里面创建一个叫+的方法,这样一来,这个运算符就被我们赋予了新的含义和功能,实现了重载,让它能按照我们的想法去工作。就像是给数学里的加号换了个个性化的“面具”,让它在特定场合下执行特殊任务一样。 3. 运算符重载示例一 自定义向量类的加法 首先,假设我们创建了一个简单的二维向量类: scala class Vector2D(x: Double, y: Double) { def +(that: Vector2D): Vector2D = new Vector2D(this.x + that.x, this.y + that.y) } 上述代码中,我们为Vector2D类定义了一个+方法,它接受另一个Vector2D对象作为参数,并返回一个新的Vector2D对象,代表两个向量相加的结果。这样一来,当我们写v1 + v2时,实际上是在调用v1.+(v2),实现了对加法运算符的重载。 4. 运算符重载示例二 自定义复杂度比较 接下来,我们看一个更复杂的例子,比如我们想在自定义的“任务”类中,用 < 符号来表示任务的优先级比较: scala class Task(val priority: Int, val description: String) { def <(that: Task): Boolean = this.priority < that.priority } val task1 = new Task(3, "Do laundry") val task2 = new Task(1, "Feed the cat") if (task1 < task2) println(s"${task1.description} has higher priority!") 在这个例子中,我们定义了一个<方法,用于比较两个任务的优先级。所以,在条件判断的时候,task1 < task2已经不是老套的字节码或者整数之间的较量了,而是按照我们自定义的方式来决定谁该排前面,谁该让位。这就像是我们在玩一场游戏,规则由我们自己定,哪个任务优先级更高,不再是由它们本身的数字大小说了算,而是看我们怎么给它们排座次。 5. 小结与思考 通过以上两个实例,我们可以看到Scala的运算符重载是如何让我们能够根据实际需求重新定义运算符的行为。这个特点让代码变得更加简单易懂,就像咱们人类一瞧就明白的那样,而且还给代码表达力来了个大升级,让它更能“说”出程序员的心声。 但值得注意的是,虽然运算符重载能极大提高代码的可读性和编写效率,但也可能导致潜在的混淆。所以,在我们设计和实现的时候,得悠着点儿选择什么时候、怎么去搞运算符重载这事儿。重点是,咱得保证这个重载后的运算符行为跟原本那个运算符的基本含义保持逻辑上的一致性,这样一来,其他开发者瞅见了也能秒懂,方便他们后续的维护工作。 总结一下,Scala中重载运算符的过程其实就是在自定义类中定义相应名称的方法,通过这种方式,我们可以使运算符服务于特定场景,进一步提升代码的灵活性和表现力。希望这篇讲得既透彻又易懂的文章,能实实在在地在你未来的Scala编程冒险中,助你更溜地运用运算符重载这个超级给力的工具,让编程变得更轻松有趣。
2023-04-15 13:42:55
137
繁华落尽
RocketMQ
...储,并且在消费者重新连接时,会被重新发送。这样一来,就算遇到网络抽风或者服务器重启的情况,消息也不会莫名其妙地消失,这样一来,咱们就不用担心信息错乱的问题啦! java // 创建Consumer实例 RocketMQClient rocketMQClient = new RocketMQClient("localhost", 9876, "defaultGroup"); rocketMQClient.start(); try { // 创建MessageConsumer实例 MessageConsumer consumer = rocketMQClient.createConsumer( new ConsumerConfigBuilder() .subscribeMode(SubscribeMode.DURABLE) .build(), new DefaultMQPushConsumerGroup("defaultGroup") ); try { // 消费消息 while (true) { ConsumeMessageContext context = consumer.consumeMessageDirectly(); if (context.hasData()) { System.out.println(context.getMsgId() + ": " + context.getBodyString()); } } } finally { consumer.shutdown(); } } finally { rocketMQClient.shutdown(); } 结语 总的来说,RocketMQ提供了多种方式来解决消息乱序的问题。我们可以根据自己的需求选择最适合的方式。甭管是Orderly模式,还是Orderly广播模式,甚至Durable订阅这招儿,都能妥妥地帮咱们确保消息传递有序不乱,一个萝卜一个坑。当然啦,在我们使用这些功能的时候,也得留心一些小细节。就像是,消息别被重复“吃掉”啦,还有消息要妥妥地存好,不会莫名其妙消失这些事情哈。只有充分理解和掌握这些知识,才能更好地利用RocketMQ。
2023-01-14 14:16:20
107
冬日暖阳-t
Spark
...k与各类数据库系统的连接能力,尤其提升了与云原生数据库服务如Amazon RDS、Azure SQL Database和Google Cloud SQL的兼容性和性能。 此外,业界对于利用Spark进行实时数据处理和机器学习应用的需求日益增长。例如,某知名电商企业通过优化Spark与内部MySQL数据库的交互流程,成功实现了商品推荐系统的实时更新,显著提升了用户体验及转化率。这也突显出熟练掌握Spark数据导入技术并结合实际业务场景的重要性。 另外值得注意的是,在确保数据高效导入的同时,数据安全与隐私保护同样不容忽视。近期GDPR等相关法规的出台,要求企业在数据迁移过程中严格遵守数据最小化原则,并确保传输过程加密。因此,在使用Spark进行数据集成时,应充分考虑采用安全的连接方式,以及对敏感信息进行适当脱敏处理,以满足合规性要求。 综上所述,无论是从技术发展动态还是实践应用案例,都揭示了Apache Spark作为大数据处理引擎在数据迁移与集成领域的核心地位及其持续演进的趋势。而在此基础上深入理解并灵活运用数据导入策略,无疑将成为现代数据驱动型企业构建高效、安全数据分析体系的关键所在。
2023-12-24 19:04:25
162
风轻云淡-t
Nacos
...了系统的可扩展性、可测试性和可维护性。 名词 , 配置管理。 解释 , 配置管理是软件工程中的一个重要概念,它涉及对软件系统配置的控制、记录、报告和管理。在微服务架构下,配置管理变得更加重要,因为每个服务可能有自己的配置需求。Nacos提供了一种集中式的方式来进行配置管理,支持配置的动态更新、版本控制和生命周期管理,帮助开发者更好地管理微服务环境中的各种配置。 名词 , 智能配置推送。 解释 , 智能配置推送是Nacos新版本中引入的一项功能,它可以根据业务需求和系统状态,智能地分析并推送配置变更。这种自动化的过程可以显著减少人工干预的需求,提高配置更新的效率,同时降低错误发生的概率。在微服务环境中,智能配置推送能够确保各个服务快速、准确地接收和应用最新的配置信息,保持系统的稳定运行。
2024-10-04 15:43:16
51
月下独酌
NodeJS
...某个特定事件(如网络连接建立、数据接收完毕等)发生时,会触发相应的回调函数进行处理,而不是等待整个任务线性执行完毕。这种模型允许Node.js能够同时处理多个并发请求,实现非阻塞I/O操作,极大地提升了服务端应用程序的性能和效率。 回调函数 , 回调函数是作为参数传递给另一个函数的函数,这个函数会在预定条件满足或特定事件发生时被调用。在Node.js异步编程中,回调函数尤为常见,例如HTTP请求完成后的响应处理。文章中的http.get()方法就接受一个回调函数作为参数,该函数在HTTP请求完成后被执行,从而实现了异步处理。当在错误处理或数据流事件(如 data 和 end )上设置回调函数时,可以确保相关逻辑在合适的时机得到执行,而不会阻塞主线程的其他任务。
2023-03-20 14:09:08
122
雪域高原-t
Java
...开始编写客户端代码来测试我们的服务了。 4. 总结 总的来说,虽然跨域请求是一件比较复杂的事情,但是在Java中,我们可以通过Spring Security来轻松地解决这个问题。只要我们在配置文件里把CORS支持整对了,咱的服务就能妥妥地应对跨域请求啦!尽管这样,但有个小插曲得告诉大家,即使咱们已经打开了CORS这个“绿灯”,让浏览器能够跨域通信,可还是有些特殊的请求会被浏览器这“门神”给挡在外面。所以,在我们编写代码的过程中,得尽量把这些可能的小状况都考虑周全了,这样一来,才能确保用户享受到更棒的体验,明白吗? 尾声: 以上就是在Java中解决"No 'Access-Control-Allow-Origin'"问题的方法。我真心希望这篇文章能帮到你,就像一位贴心的小伙伴,在你的开发工作旅程中,能够给你提供实实在在的引导和参考价值。最后,我想说,无论我们在开发过程中遇到了什么样的问题,都不应该轻易地放弃。只要我们有足够的耐心和毅力,就一定能够找到解决问题的方法。
2023-08-14 17:20:09
268
幽谷听泉_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
alias ll='ls -alh' - 创建一个别名,使ll命令等同于ls
-alh查看详细列表。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"