前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[美食博客]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
483
转载
转载文章
...sinternals博客定期发布技术文章,如“如何使用Process Explorer检测恶意进程”等实用教程,为IT专业人员提供即时、详尽的操作指导。 同时,在安全研究领域,Sysinternals工具被广泛应用于Rootkit检测和高级威胁分析中。例如,知名网络安全专家在最近的一次行业研讨会上分享了如何结合使用诸如Autoruns、Process Explorer和TCPView等Sysinternals工具来发现并应对新型网络攻击手段。 对于希望深入学习Sysinternals工具的用户,Mark Russinovich撰写的《Windows Internals》系列书籍是不可多得的权威资料,它不仅详细解析了Windows操作系统的内部工作原理,还包含许多关于如何有效利用Sysinternals工具进行问题排查的实际案例。 综上所述, Sysinternals作为Windows系统管理员和开发者的重要武器库,其价值和影响力随着技术进步和安全挑战的升级而不断提升。关注Sysinternals工具集的最新进展和应用实践,将有助于提升个人技能,更好地应对复杂的信息技术挑战。
2024-01-22 15:44:41
102
转载
转载文章
...来源:MySQL官网博客)。 在云服务和镜像源方面,阿里云、腾讯云等国内服务商也推出了针对deepin系统的加速镜像源服务,用户可根据自身网络状况选择合适的镜像源以提高软件安装和更新的速度(参考来源:阿里云、腾讯云官方文档)。此外,随着Web开发技术的发展,Vue.js、React等前端框架持续火爆,配合Webpack、Vite等现代构建工具,可以更高效地搭建和维护前端项目结构(参考来源:Vue.js、React官网及技术社区文章)。 在办公领域,WPS Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
54
转载
Beego
...社区最近也发布了一篇博客,探讨了如何优化配置文件的加载机制,以应对大规模分布式系统的挑战。这表明,随着技术的发展,配置管理正变得越来越复杂,同时也更加关键。 从现实案例来看,某知名电商企业在一次系统升级过程中,由于配置文件格式错误导致服务中断长达数小时。事后调查发现,问题的根本原因并非技术难度,而是团队缺乏对配置管理的重视。这一事件引发了行业内对于配置文件规范化管理的反思。一些专家指出,现代开发团队应当建立完善的 CI/CD 流程,将配置文件的检查纳入自动化测试环节,从而最大限度地减少人为失误。 此外,近年来 DevOps 思维的兴起也为配置管理带来了新的视角。传统的配置管理往往被视为运维人员的职责,但在 DevOps 文化中,开发与运维之间的界限逐渐模糊。这意味着开发者也需要具备一定的配置管理知识,以便更好地支持持续交付流程。例如,GitHub Actions 等工具集成了丰富的配置模板,帮助开发者快速搭建自动化工作流。这种趋势不仅提升了效率,还促进了跨部门协作。 回到 Beego 框架本身,其核心开发者也在积极迭代版本,引入更多智能化特性。例如,新版 Beego 支持基于环境变量的动态配置加载,允许用户在不同环境中灵活切换设置。这一改进既体现了技术的进步,也反映了社区对用户体验的关注。未来,随着 Go 语言生态的不断完善,配置管理工具可能会进一步集成到语言标准库中,形成更加统一的解决方案。 综上所述,无论是从技术趋势还是实际应用的角度看,配置文件管理始终是软件工程中的重要一环。希望本文能够激发读者对这一领域的兴趣,并鼓励大家在日常工作中投入更多精力去优化配置流程。毕竟,正如一句古话所言:“千里之堤,溃于蚁穴”,细微之处往往决定成败。
2025-04-13 15:33:12
24
桃李春风一杯酒
转载文章
...资料出处 资料来源于博客园一位博主的资料,连接如下: https://www.cnblogs.com/chrischen98/p/10659336.html 第一阶段:静态画面 html <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><title>Title</title><link rel="stylesheet" href="index.css"><script src="index.js"></script></head><body><div id="pop_star"><div id="targetScore">Target Score : 2000</div><div id="nowScore">Current Score : 0</div><div id="selectScore">0 blocks 0 scores</div></div></body></html> css / 常用页面初始化 /{margin:0;padding:0;}html,body{height: 100%;width: 100%;}pop_star{height: 100%;width: 500px;margin: 0 auto;background: url("./pic/background.png");position: relative; /父元素,为了使之后的子元素都相对于他进行定位,此处设为relative/color:white;background-size: cover; /使背景图片保持比例覆盖整个背景区域/}/ 以下三个元素为现实面板,其样式相同 /targetScore{width: 100%;height: 50px;position: relative;line-height: 50px;text-align: center;font-size: 20px;background-size: cover;}nowScore{width: 100%;height: 50px;position: relative;line-height: 50px;text-align: center;font-size: 20px;background-size: cover;}selectScore{width: 100%;height: 50px;position: relative;line-height: 50px;text-align: center;font-size: 20px;background-size: cover;opacity:0;/不透明度/} js var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function refresh(){ //重绘画板,每次鼠标点击后刷新for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.backgroundImage = "url(./pic/" + squareSet[i][j].num + ".png)"squareSet[i][j].style.left = squareSet[i][j].col squareWidth + "px"; // 别忘了加"px"squareSet[i][j].style.bottom = squareSet[i][j].row squareWidth + "px";} }}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面for(var i = 0 ; i < boardWidth; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果 第二阶段:鼠标选中后,闪烁 只有JavaScript需要修改 var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果2.1 加入这段代码,便会计算闪烁方块得分 function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);} 完整代码为: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果2.2 第三阶段:消灭星星(只消灭一次) 只消除选中的星星,但是不会掉下来。 在function init(){}里面添加以下代码: // 鼠标点击事件square.onclick = function(){//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);} } 效果 使得星星移动(原作者这里出现错误) function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }} 完整代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ //必须注意循环结束条件的判断if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数},choose.length 100);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果(下降成功,但是有点小bug只有部分下降了) 解决方案:只需要在function refresh(){}的双循环里面增加以下代码: if(squareSet[i][j] == null) continue; 完整代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ //必须注意循环结束条件的判断if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数},choose.length 100);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 第四阶段:消灭全部星星,返回结果 最终完整版代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){ //重绘画板,每次鼠标点击后刷新for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].row = i; //更新当前的行列数squareSet[i][j].col = j;squareSet[i][j].style.backgroundImage = "url(./pic/" + squareSet[i][j].num + ".png)"squareSet[i][j].style.backgroundSize = "cover"; //占满范围squareSet[i][j].style.transform = "scale(0.95)"; //美观效果让不同星星之间留出空隙(缩小至0.95倍大小)squareSet[i][j].style.left = squareSet[i][j].col squareWidth + "px"; // 别忘了加"px"squareSet[i][j].style.bottom = squareSet[i][j].row squareWidth + "px";squareSet[i][j].style.transition = "left 0.3s, bottom 0.3s";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.display = "inline-block"; //需要让对象元素能排列一排temp.style.position = "absolute"; //相对于背景绝对定位temp.style.boxSizing = "border-box"; //重要:不会使增加的边框溢出覆盖到旁边的元素temp.style.borderRadius = "12px";temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue;squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法if(square == null) return; // 递归边界arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1] && //左侧有块squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1] &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col] &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col] &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}if(score == 0) return;document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;document.getElementById('selectScore').style.transition = null;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 加锁,点击事件过程中不允许其他点击事件与移入事件if(!flag){tempSquare = obj;return;}// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);if(choose.length <= 1){choose = [];return;}// 闪烁flicker(choose);// 显示分数selectScore();}function move(){ //下落移动控制//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ // 注意循环终止条件的判断!!!因为数组长度会更新if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function isFinish(){ //判断游戏结束flag = true; //重要:需要先解锁,保证后续鼠标事件可以被响应for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; //遍历每一元素判断连通var temp = [];checkLinked(squareSet[i][j] , temp);if(temp.length > 1) return false; //若有某一元素仍有多块连通,则游戏未结束} }return flag;}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 50);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数setTimeout(function(){var judge = isFinish();if(judge){ //游戏达到结束条件if(totalScore > targetScore){alert('Congratulations! You win!');}else{alert('Mission Failed!');} }else{flag = true;choose = [];mouseOver(tempSquare); //处理可能存在的冲突} },300 + choose.length 75); //需要一个判断延迟},choose.length 50);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_56471396/article/details/128681321。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 15:26:34
516
转载
转载文章
...年,Oracle官方博客分享了一篇题为《Oracle AQ的新特性及其在微服务架构中的应用》的文章,详细解读了Oracle 19C及更高版本中AQ的改进之处,如支持JSON格式的消息负载、更灵活的多租户管理和跨数据库的分布式队列功能等。这些新特性使得AQ能够更好地适应当前流行的微服务架构,实现不同服务间高效可靠的数据传输与同步。 此外,在开源社区层面,Apache ActiveMQ Artemis作为一款广泛采用的消息中间件,也在持续演进以满足不断变化的企业需求。其与Oracle AQ的兼容性有所提升,用户现在可以在多种场景下根据实际业务需求选择适合的消息队列解决方案。 同时,对于Java开发者而言,《Java Message Service (JMS)实战》一书提供了大量关于利用JMS进行消息传递的实战案例和最佳实践,有助于读者在实际项目中更加熟练地运用JMS与Oracle AQ结合,构建高性能、高可用的消息驱动系统。 综上所述,无论是紧跟Oracle AQ的最新发展动态,还是探究开源替代方案与相关技术书籍的学习,都将帮助开发者更好地掌握消息队列技术,并将其应用于实际工作中,以提升系统的整体性能与稳定性。
2023-12-17 14:22:22
138
转载
转载文章
...s官方文档和相关技术博客文章来深入了解如何在实际项目中运用Proxy实现复杂的数据绑定与更新逻辑。 此外,浏览器对ES6新特性的支持也在不断推进,当前所有现代浏览器均支持Proxy和Reflect。Mozilla开发者网络(MDN)提供了详尽的API文档和技术指南,帮助开发者更好地掌握这两个特性,并应用于日常开发工作中。 同时,在前端框架领域,除了Vue之外,React Hooks的useState和useEffect也从另一个角度实现了数据响应式,它们通过函数组件状态管理和副作用钩子机制,间接实现了对数据变化的监听。读者可以对比研究两种不同的响应式实现方式,理解它们各自的优势与应用场景。 最近,一些前沿的JavaScript库如MobX、RxJS等也在响应式编程上做出了新的探索,通过更高级的抽象和流处理思想,将响应式理念扩展到了异步编程和大规模应用架构层面。深入学习这些库的设计原理和实践案例,有助于我们拓宽视野,更好地适应未来JavaScript生态的发展趋势。 综上所述,无论是紧跟最新的JavaScript语言特性发展动态,还是深入探究各类前端框架的响应式实现原理,都有助于我们提升代码质量和开发效率,为构建高性能、易于维护的现代Web应用奠定坚实基础。
2023-01-11 12:37:47
679
转载
转载文章
...动态,通过阅读最新的博客文章、官方文档或参与开发者论坛讨论,能让我们更好地理解和掌握上述技术工具的最新进展,从而在实际项目开发中更加游刃有余。
2023-05-26 23:30:52
268
转载
转载文章
...uly大神的csdn博客文章 => 海量处理面试题 海量数据处理概述 所谓海量数据处理,就是数据量太大,无法在较短时间内迅速解决,无法一次性装入内存。本文在前人的基础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
转载文章
... 7更新错误方法,本博客亲测有效。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(通过单击“开始”按钮,再依次单击“控制面板”,然后单击“管理工具”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“停止”。 1.打开“计算机”。 2.双击安装Windows的本地硬盘(通常是驱动器C)。 3.双击Windows文件夹,然后双击SoftwareDistribution文件夹。 4.双击打开DataStore文件夹,然后删除该文件夹中的所有文件。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 5.单击“后退”按钮。在SoftwareDistribution文件夹中,双击打开Download文件夹,删除该文件夹中的所有文件,然后关闭窗口。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 必须以管理员身份进行登录,才能执行这些步骤。 1.单击打开“管理工具(方法同上)”。 2.双击“服务”。如果系统提示您输入管理员密码或进行确认,请键入该密码或提供确认。 3.单击“名称”列标题以逆序排列名称。找到“Windows Update”服务,右键单击该服务,然后单击“启动”。 4.关闭“服务”窗口和“管理工具”窗口。 完成上面操作,你需要重新更新看看可以成功更新了吗,一般因为我们删除了自动更新的一些文件,如果你仔细观察的话,那些文件大小并不是很小,所以我们再更新的时候等待的时间可能会长一些! 【三】:Win10系统提示“无法完成更新正在撤销更改” 更新win10系统补丁之后,系统会提示“window10无法更新,正在撤销”,需要重启好几次,这该怎么办呢?下面小编就向大家介绍一下windows10系统无法完成更新正在撤销更改的解决方法,欢迎大家参考和学习。 系统更新失败,反复重启还是不行,那是不是下载下来的补丁没用了呢??所以我们先要删除Windows更新的缓存文件!在做以下操作之前,首先我们要确认系统内的windows update & BITS服务设置是否开启。 检查方法: 1、按“Win+R”组合键打开运行,输入“services.msc”,点击确定(如果弹出用户账户控制窗口,我们点击“继续”)。 2、双击打开“Background Intelligent Transfer Services”服务。 3、在选项卡点击“常规”,要保证“启动类型”是“自动”或者“手动”。然后点击“服务状态”“启用”按钮。 4. 重复步骤3分别对“Windows Installer”,“Cryptographic Services”, “software licensing service” 以及“Windows Update”这四项服务进行检查。 解决办法: 1、按“Windows+X”打开“命令提示符(管理员)”。 2、输入“net stop wuauserv”回车(我们先把更新服务停止)。 3、输入”%windir%\SoftwareDistribution“回车(删除Download和DataStore文件夹中的所有文件)。 4、最后输入“net start wuauserv”回车(重新开启系统更新服务)。 完成以上的步骤之后,我们就可以在“Windows Update”中再次尝试检查更新即可。 以上就是windows10系统无法完成更新正在撤销更改的解决方法介绍了。遇到同样问题的用户,可以尝试一下这个方法,如果不行,可以留言,小编会继续寻找其他的解决办法。 【四】:Windows更新失败提示错误码80070003怎么办 Windows7,Windows8.1,Windows10在更新过程中,所更新的程序无法安装,导致更新失败,提示错误码80070003。遇到这种情况,无论再试一次,或重启电脑,更新程序仍无法安装,出现错误码80070003提示。关于这个故障,下面小编就为大家介绍一下具体的解决方法吧,欢迎大家参考和学习。 具体解决方法步骤: 1、在电脑更新过程中,更新失败,程序无法安装,出现错误码80070003的提示。如图1 2、打开控制面板,点击“系统和安全”,打开对话框。如图2 3、在打开的对话框中,点击“管理工具”-双击“服务”,在打开的对话框的下方找到“Windows Update"。(如图3),选择Windows Update,点击界面左上角的”停止“按键,或是单击右键选择”停止“。(如图4),以管理员身份进入,如果提示需要输入秘码,则输入秘码。 4、在C盘,打开”Windows"文件夹,-双击打开“SoftwareDistribution"文件夹,找到下面的2个文件夹。打开”DataStore"文件夹,删除里面所有的文件。反回上一步。如图5.1,再打开"Download"文件夹,删除里面所有的文件。(如图5.2) 5、返回第三步的操作,选择Windows Update,右键单击,选择“启动”。 6、做完上面操作后,安装更新文件就会顺利了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42620202/article/details/119158423。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-16 16:18:33
136
转载
转载文章
...应内容。 1,背景 博客停了好久,主要是最近工作太忙了,还有就是身体状况没有以前那么好了,乘着国庆长假的空档,写下这篇一直想写的文章。 运营平台是我主要致力的一个项目,这个项目分为四个大部分,个人中心,充值中心,客服中心,家长监护,最近主要忙着个人中心的重写和丰富,关于个人中心,无非就是对平台用户信息的自我管理,以及一些对用户帐号的安全保护措施,下图的菜单非常简要的说明了个人中心的功能。个人觉得最值得关注的就是密保设置和修改头像,因为之前没有处理过类似的问题,本文主要记录对头像的处理过程以及思考,希望给碰到类似问题的苦逼程序员一点借鉴。 个人中心整体功能一览 2,头像处理xmind 叽歪一句,个人碰到问题的时候,首先会分析问题,在分析问题的基础上,得到整体的解决方案,然后一步步分解步骤,去实现,首先奉上我的解决方案,也许不是最优的,但是按照个人的知识和技能水平,绝对是可以实现的。 修改头像mind 3,实现步骤 按照我的mind,首先是上传图片,先上效果图,然后给出实现的代码。首先是整体的结构图,做的比较丑,别喷哥··· 修改头像整体效果图 下面按照mind一步步实现, 首先:点击修改头像,弹出一个层, 第一步:弹出上传图片的层,上传图片到服务器 对实现细节不感冒的屌丝可以看看代码(结合哥的mind看可以事半功倍): 分层实现细节 Html结构层这个可以免了,一般都可以弄出来 Js连接层 首先是弹出一个上传图片的层,然后上传图片到服务器端。 $("editHead").bind("click", function () { showUploadDiv(); }); function showUploadDiv() { $("uploadMsg").empty(); $.fancybox({ type:'inline', width:400, href:'uploadUserHead' }); }//fancybox弹出层 上传的处理代码 Servlet服务端处理层(commonupload实现)服务器端处理代码 上传的处理代码 $(function () { $("uploadFrom").ajaxForm({ beforeSubmit:checkImg, error:function(data,status){ alert(status+' , '+data); $("uploadMsg").html('上传文件超过1M!'); }, success:function (data,status) { try{ var msg = $.parseJSON(data); if (msg.code == 200) { //如果成功提交 javascript:$.fancybox.close(); $("uploadUserHead").hide(); var data = msg.object; $("editImg").attr("src", data.path).show(); $("preview1").attr("src", data.path).show(); $(".zoom").show(); $("width").val(data.width); $("height").val(data.height); $("oldImgPath").val(data.realPath); $("imgFileExt").val(data.fileExt); var api, jcrop_api, boundx, boundy; $('editImg').Jcrop({ onChange:updatePreview, onSelect:updatePreview, aspectRatio:1, bgOpacity:0.5, bgColor:'white', addClass:'jcrop-light' }, function () { api = this; api.setSelect([130, 65, 130 + 350, 65 + 285]); api.setOptions({ bgFade:true }); api.ui.selection.addClass('jcrop-selection'); var bounds = this.getBounds(); boundx = bounds[0]; boundy = bounds[1]; jcrop_api = this; }); function updatePreview(c) { if (parseInt(c.w) > 0) { var rx = 80 / c.w; var ry = 80 / c.h; $('preview1').css({ width:Math.round(rx boundx) + 'px', height:Math.round(ry boundy) + 'px', marginLeft:'-' + Math.round(rx c.x) + 'px', marginTop:'-' + Math.round(ry c.y) + 'px' }); } jQuery('x').val(c.x); jQuery('y').val(c.y); jQuery('x2').val(c.x2); jQuery('y2').val(c.y2); jQuery('w').val(c.w); jQuery('h').val(c.h); } } if (msg.code == 204) { $("uploadMsg").html(msg.msg); } }catch (e){ $("uploadMsg").html('上传文件超过1M!'); } } }); }); //服务器端处理代码 String tempSavePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片零时保存路径 String tempShowPath = ConfigurationUtils.get("user.resource.url"); //用户保存的头像路径 if(tempSavePath.equals("/img")) { tempSavePath=sc.getRealPath("/")+tempSavePath; } Msg msg = new Msg(); msg.setCode(204); msg.setMsg("上传头像失败!"); String type = request.getParameter("type"); if (!Strings.isNullOrEmpty(type) && type.equals("first")) { request.setCharacterEncoding("utf-8"); DiskFileItemFactory factory = new DiskFileItemFactory(); ServletFileUpload servletFileUpload = new ServletFileUpload(factory); try { List items = servletFileUpload.parseRequest(request); Iterator iterator = items.iterator(); while (iterator.hasNext()) { FileItem item = (FileItem) iterator.next(); if (!item.isFormField()) { { File tempFile = new File(item.getName()); File saveTemp = new File(tempSavePath+"/tempImg/"); String getItemName=tempFile.getName(); String fileName = UUID.randomUUID()+"." +getItemName.substring(getItemName.lastIndexOf(".") + 1, getItemName.length()); File saveDir = new File(tempSavePath+"/tempImg/", fileName); //如果目录不存在,创建。 if (saveTemp.exists() == false) { if (!saveTemp.mkdir()) { // 创建失败 saveTemp.getParentFile().mkdir(); saveTemp.mkdir(); } else { } } if (saveDir.exists()) { log.info("存在同名文件···"); saveDir.delete(); } item.write(saveDir); log.info("上传头像成功!"+saveDir.getName()); msg.setCode(200); msg.setMsg("上传头像成功!"); Image image = new Image(); BufferedImage bufferedImage = null; try { bufferedImage = ImageIO.read(saveDir); } catch (IOException e) { e.printStackTrace(); } image.setHeight(bufferedImage.getHeight()); image.setWidth(bufferedImage.getWidth()); image.setPath(tempShowPath+ "/tempImg/" + fileName); log.info(image.getPath()); image.setRealPath(tempSavePath+"/tempImg/"+ fileName); image.setFileExt(fileName.substring(fileName.lastIndexOf(".") + 1, fileName.length())); msg.setObject(image); } } else { log.info("" + item.getFieldName()); } } } catch (Exception ex) { log.error("上传用户头像图片异常!"); ex.printStackTrace(); } finally { AppHelper.returnJsonAjaxForm(response, msg); } } 上传成功后,可以看到照片和照片的预览效果。看图: 上传头像之后的效果 Friday, October 05, 2012 第二步:编辑和保存头像 选中图中的区域,保存头像,就完成头像的修改。 修改之后的效果入下: 修改之后的头像(因为传了一张动态图片,得到的跟上图有些不同) 实现细节: 首先用了一个js控件:Jcrop,有兴趣的屌丝可以去搜一下,然后,利用上传之后的图片和之前的选定区域,完成了一个截图,保存为用户的头像。 连接层的js: $("saveHead").bind("click", function () { var width = $("width").val(); var height = $("height").val(); var oldImgPath = $("oldImgPath").val(); var imgFileExt = $("imgFileExt").val(); var x = $('x').val(); var y = $('y').val(); var w = $('w').val(); var h = $('h').val(); $.ajax({ url:'/imgCrop', type:'post', data:{x:x, y:y, w:w, h:h, width:width, height:height, oldImgPath:oldImgPath, fileExt:imgFileExt}, datatype:'json', success:function (msg) { if (msg.code == 200) { $("avatar").attr("src", msg.object); forword('/nav', 'index'); } else { alert(msg.msg); } } }); }); function checkImg() { //限制上传文件的大小和后缀名 var filePath = $("input[name='uploadImg']").val(); if (!filePath) { $("uploadMsg").html("请选择上传文件!").show(); return false; } else { var extStart = filePath.lastIndexOf("."); var ext = filePath.substring(extStart, filePath.length).toUpperCase(); if (ext != ".PNG" && ext != ".GIF" && ext != ".JPG") { $("uploadMsg").html("图片限于png,gif,jpg格式!").show(); return false; } } return true; } 服务器端处理代码: String savePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片保存路径 String showPath = ConfigurationUtils.get("user.resource.url"); //显示图片的路径 if(savePath.equals("/img")) { savePath=sc.getRealPath("/")+savePath; } int userId = AppHelper.getUserId(request); String userName=AppHelper.getUserName(request); Msg msg = new Msg(); msg.setCode(204); msg.setMsg("剪切图片失败!"); if (userId <= 0) { msg.setMsg("请先登录"); return; } // 用户经过剪辑后的图片的大小 Integer x = (int)Float.parseFloat(request.getParameter("x")); Integer y = (int)Float.parseFloat(request.getParameter("y")); Integer w = (int)Float.parseFloat(request.getParameter("w")); Integer h = (int)Float.parseFloat(request.getParameter("h")); //获取原显示图片路径 和大小 String oldImgPath = request.getParameter("oldImgPath"); Integer width = (int)Float.parseFloat(request.getParameter("width")); Integer height = (int)Float.parseFloat(request.getParameter("height")); //图片后缀 String imgFileExt = request.getParameter("fileExt"); String foldName="/"+ DateUtils.nowDatetoStrToMonth()+"/"; String imgName = foldName + UUID.randomUUID()+userName + "." + imgFileExt; //组装图片真实名称 String createImgPath = savePath + imgName; //进行剪切图片操作 ImageCut.abscut(oldImgPath,createImgPath, xwidth/300, yheight/300, wwidth/300, hheight/300); File f = new File(createImgPath); if (f.exists()) { msg.setObject(imgName); //把显示路径保存到用户信息下面。 UserService userService = userServiceProvider.get(); int rel = userService.updateUserAvatar(userId, showPath+imgName); if (rel >= 1) { msg.setCode(200); msg.setMsg("剪切图片成功!"); log.info("剪切图片成功!"); //记录日志,更新session log(showPath+imgName,userName); UserObject userObject= userService.getUserObject(userName); request.getSession().setAttribute("userObject", userObject); if (userObject != null && Strings.isNullOrEmpty(userObject.getHeadDir())) userObject.setHeadDir("/images/geren_right_01.jpg"); } else { msg.setCode(204); msg.setMsg("剪切图片失败!"); log.info("剪切图片失败!"); } } AppHelper.returnJson(response, msg); File file=new File(oldImgPath); boolean deleteFile= file.delete(); if(deleteFile==true) { log.info("删除原来图片成功"); } / 图像切割(改) @param srcImageFile 源图像地址 @param dirImageFile 新图像地址 @param x 目标切片起点x坐标 @param y 目标切片起点y坐标 @param destWidth 目标切片宽度 @param destHeight 目标切片高度 / public static void abscut(String srcImageFile, String dirImageFile, int x, int y, int destWidth, int destHeight) { try { Image img; ImageFilter cropFilter; // 读取源图像 BufferedImage bi = ImageIO.read(new File(srcImageFile)); int srcWidth = bi.getWidth(); // 源图宽度 int srcHeight = bi.getHeight(); // 源图高度 if (srcWidth >= destWidth && srcHeight >= destHeight) { Image image = bi.getScaledInstance(srcWidth, srcHeight, Image.SCALE_DEFAULT); // 改进的想法:是否可用多线程加快切割速度 // 四个参数分别为图像起点坐标和宽高 // 即: CropImageFilter(int x,int y,int width,int height) cropFilter = new CropImageFilter(x, y, destWidth, destHeight); img = Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(image.getSource(), cropFilter)); BufferedImage tag = new BufferedImage(destWidth, destHeight, BufferedImage.TYPE_INT_RGB); Graphics g = tag.getGraphics(); g.drawImage(img, 0, 0, null); // 绘制缩小后的图 g.dispose(); // 输出为文件 ImageIO.write(tag, "JPEG", new File(dirImageFile)); } } catch (Exception e) { e.printStackTrace(); } } 最后一个处理的比较好的地方就是图片的存储路径问题: 我在服务器端的nginx中做了一个图片的地址映射,把图片放到了跟程序不同的路径中,每次存储图片都是存到图片路径中,客户端拿到图片的地址确实经过nginx映射过的地址。 还有就是关于限制上传图片的大小的问题: 我在服务器端显示了资源的最大大小为1M,当上传的资源超过1M,服务器自动报错413,通过异常处理,可以在客户端得到正确的提示信息。 4,总结优点和不足。 关于修改头像,这么做下来确实达到了目的,用户可以从容的修改头像,性能也还可以。但是,上传图片的大小判断是依靠服务器端来判断的,等待的时间比较久,改进的方向是使用flash控件来限制,使用flash来上传,也不会出现弹出层,这样比较大众化,更容易为用户接受一点。我会不断改进。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39849287/article/details/111489534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-18 10:58:17
268
转载
转载文章
...好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
转载文章
...享:查阅最新的开发者博客和论坛讨论,可以发现众多关于如何优化Swing组件性能、处理并发问题以及改善用户体验的实际案例和建议,这些都能帮助你更好地运用Swing进行复杂GUI的设计与实现。 综上所述,不断跟进最新的GUI开发趋势和技术发展,结合实际项目需求,灵活运用和扩展Swing或其他相关框架,将有助于打造更为出色和易用的桌面应用程序。
2023-01-18 08:36:23
525
转载
转载文章
...者关注官方文档、技术博客以及GitHub上的最新动态,紧跟社区步伐,不断提升自身的技能树,以应对未来日益复杂的前端开发挑战。
2023-10-05 12:27:41
116
转载
转载文章
转载文章
...和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...以查阅一些近期开发者博客或技术文章,了解他们在表单验证、URL解析、文本搜索替换等方面的实战案例。例如,一篇名为“利用正则表达式优化用户输入验证策略”的文章详尽探讨了如何结合现代浏览器特性,如约束验证API,配合正则表达式进行高效的数据校验。 此外,对于正则表达式的性能优化也是值得关注的话题。有研究指出,在处理大量数据时,某些复杂的正则可能导致性能瓶颈。阅读相关的性能分析报告和技术分享,可以帮助开发者掌握编写高性能正则表达式的技巧,并避免潜在的性能陷阱。 最后,关于UTC时间戳在跨时区开发中的重要性,可参考有关国际协作项目中如何妥善处理时间问题的文章,了解如何借助JavaScript Date对象正确转换和处理不同时区的时间信息,从而确保在全球范围内应用程序的正常运行。尤其在当前全球化的互联网环境下,理解和掌握这一技能愈发关键。
2023-01-24 13:01:25
529
转载
转载文章
...团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...日,蚂蚁集团在其技术博客上分享了关于SOFAJRaft在分布式事务中的应用案例,通过将分布式一致性协议应用于服务化架构中,实现了高并发、高性能的分布式事务处理,显著提升了系统的稳定性和效率。 同时,随着云原生和微服务架构的发展,像Seata这样的开源分布式事务解决方案也备受关注。Seata以灵活的Saga模式和AT模式支持分布式事务,尤其适用于跨多个数据库或服务边界的事务场景,解决了跨服务间的事务协调难题,并且具备良好的扩展性和容错性。 此外,在金融领域,许多银行和支付机构也开始采用TCC(Try-Confirm-Cancel)模型来处理分布式事务。这种补偿型事务方案可以更好地适应复杂业务场景,确保数据最终一致性的同时,兼顾性能表现。 综上所述,分布式事务问题在现代互联网系统构建中占据重要地位,而如何结合实际业务需求选择恰当的解决方案则显得尤为重要。从XA协议到消息队列,再到新型的一致性协议和TCC模型,都在为打造更加健壮、高效的分布式系统贡献力量。因此,深入学习并跟踪这些先进技术及其实战应用,无疑将对提升自身在分布式事务处理领域的专业素养大有裨益。
2023-04-16 22:34:52
499
转载
转载文章
...助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...。阅读官方文档或技术博客可以掌握这些更新对服务器配置的影响以及如何在my.cnf中启用它们。 2. 数据库性能调优实践:针对特定应用场景调整MySQL服务器配置参数至关重要。例如,通过优化innodb_buffer_pool_size以提升InnoDB存储引擎的性能,或者调整query_cache_size以缓存查询结果。实时案例分析和专家建议可以帮助您更好地理解如何根据服务器硬件资源和工作负载特征进行有效调优。 3. 日志管理与故障排查:MySQL服务器的日志记录功能对于问题诊断和审计有着重要作用。学习如何通过配置慢查询日志、错误日志以及二进制日志实现对系统运行状况的有效监控,并借助相关工具分析日志数据来发现并解决潜在问题。 4. 高可用性和复制策略:在生产环境中,MySQL往往需要部署为集群或采用主从复制模式以确保服务的高可用性。深入研究server-id、binlog_format等相关配置项如何影响复制行为,并结合GTID(全局事务标识符)等高级复制特性进行实战演练。 5. 操作系统级优化配合MySQL:除了直接修改MySQL配置文件外,系统级别的优化也相当重要,包括合理分配内存、磁盘I/O调度策略、网络参数调整等,这些都会间接影响到MySQL服务器的性能表现。及时跟踪Linux或Windows操作系统的最佳实践指南,以实现软硬件层面的协同优化。 综上所述,MySQL服务器配置文件只是数据库运维中的一个环节,后续的学习应结合当前的技术发展动态、行业最佳实践以及自身业务需求,不断深化对MySQL以及其他相关技术栈的理解与应用能力。
2023-10-08 09:56:02
129
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -s target link
- 创建符号链接。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"