前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MergeTree引擎并发写入问题]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Javascript
...理解和解决这个常见的问题。 1. 错误概述 “Script did not run”的含义 首先,“Script did not run”是一个相对宽泛的错误提示,它可能指向多种情况,比如脚本文件加载失败、语法错误导致脚本无法执行、或者是由于某些特定条件未满足,使得脚本逻辑跳过或中断执行等。下面我们将逐一分析并给出实例说明。 示例1:脚本加载失败 javascript // 假设我们在HTML中引用了一个不存在的JS文件 在此例中,当浏览器尝试加载non_existent_script.js但找不到该文件时,就会出现“Script did not run”的错误提示。 2. 语法错误导致脚本无法执行 语法错误是初学者最常见的问题之一,也是引发“Script did not run”报错的原因。 javascript // 一个带有语法错误的示例 function test() { console.log("Hello, world!" } test(); // 缺少闭合括号,因此脚本无法执行 在上述例子中,由于函数体内的字符串没有正确闭合,JavaScript引擎在解析阶段就会抛出错误,从而导致整个脚本停止执行。 3. 脚本逻辑错误与异常处理不当 有时,即使脚本文件成功加载且语法无误,也可能因为内部逻辑错误或者异常未被捕获而触发“Script did not run”。 javascript // 逻辑错误示例,试图访问null对象的属性 let obj = null; console.log(obj.property); // 抛出TypeError异常,脚本在此处终止执行 // 异常处理改进方案: try { console.log(obj.property); } catch (error) { console.error('An error occurred:', error); } 在这个案例中,当尝试访问null对象的属性时,JavaScript会抛出TypeError异常。要是不处理这种异常情况,脚本就可能会被迫“撂挑子”,然后闹出个“脚本没运行起来”的状况。 4. 解决策略与思考过程 面对“Script did not run”的问题,我们的解决步骤可以归纳为以下几点: - 检查资源加载:确保所有引用的JavaScript文件都能正常加载,路径是否正确,文件是否存在。 - 审查语法:使用文本编辑器的语法高亮功能或IDE的错误提示,快速定位并修复语法错误。 - 调试逻辑:利用浏览器的开发者工具(如Chrome DevTools),通过断点、步进、查看变量值等方式,逐步排查程序逻辑中的问题。 - 善用异常处理:在可能出现错误的地方使用try...catch结构,对异常进行妥善处理,避免脚本因未捕获的异常而终止执行。 总的来说,“Script did not run”虽是一个看似简单的错误提示,但它背后隐藏的问题却需要我们根据具体情况进行细致入微的排查和解决。希望以上的代码实例和讨论能真正帮到你,让你对这个问题有个更接地气的理解,然后在实际操作时,能够迅速找到解题的“灵丹妙药”。在寻找答案、解决难题的过程中,咱们得拿出十足的耐心和细致劲儿,就像那侦探查案一样,得像剥洋葱那样一层层揭开谜团,最后,真相总会大白于天下。
2023-03-26 16:40:33
375
柳暗花明又一村
转载文章
...近推出了开源语音识别引擎DeepSpeech,它利用深度学习技术提供高精度的实时语音转文本服务,可以与Snowboy结合使用,为树莓派构建更全面的语音交互系统。 此外,针对物联网设备的嵌入式语音助手解决方案也在不断发展。Raspberry Pi Foundation联手Mozilla及多家合作伙伴共同推进Project Things,旨在通过开源平台打造智能家居控制中心,其中就包括了对语音控制的支持。将Snowboy与这类项目结合,可使树莓派成为家庭自动化的核心枢纽。 深入技术层面,Google发布了适用于边缘计算场景的TensorFlow Lite,使得在资源有限的设备如树莓派上运行复杂的机器学习模型成为可能。开发者可以尝试将Snowboy与TensorFlow Lite相结合,实现低功耗、高效的本地语音唤醒及命令识别功能,进一步丰富树莓派在语音交互领域的应用场景。 同时,在隐私保护方面,随着GDPR等法规的实施,越来越多用户关注数据安全问题。自建基于树莓派的语音助手能够有效减少云端数据传输,确保敏感信息不被第三方获取。在此背景下,研究如何优化本地语音识别系统的性能并降低误报率,对于推广和普及此类技术具有重要意义。 综上所述,随着人工智能和物联网技术的不断进步,以及用户对隐私保护意识的增强,树莓派与Snowboy等工具相结合构建的本地化语音交互方案将拥有广阔的应用前景和发展潜力。读者可以通过持续关注相关领域的最新研究成果和技术动态,推动这一技术在实践中的不断创新和突破。
2023-03-05 08:57:02
124
转载
Hibernate
...隔离性 , 多个事务并发执行时,每个事务都好像在独立地、不受其他事务影响的环境下执行一样。 - 持久性 , 一旦事务提交,对数据库的修改将被永久保存,即使出现系统故障也不会丢失。 分布式事务 , 在分布式系统或微服务架构中,一个操作可能需要跨多个服务或数据库进行,这样的事务被称为分布式事务。分布式事务需要协调多个资源管理器(如不同的数据库),以确保在所有参与的服务或数据库上都能成功完成并保持一致性。例如,Seata项目提供的解决方案就是为了处理这类场景下的事务问题,确保即使在分布式环境里也能保证数据的一致性和完整性。
2023-05-10 14:05:31
575
星辰大海
Redis
...客户端连接数 过多的并发连接可能会导致Redis资源消耗过大,降低响应速度。因此,我们需要合理设置最大客户端连接数: bash maxclients 10000 请根据实际情况调整此数值。 2. 使用Pipeline和Multi-exec批量操作 Redis Pipeline功能允许客户端一次性发送多个命令并在服务器端一次性执行,从而减少网络往返延迟,显著提升性能。以下是一个Python示例: python import redis r = redis.Redis(host='localhost', port=6379, db=0) pipe = r.pipeline() for i in range(1000): pipe.set(f'key_{i}', 'value') pipe.execute() 另外,Redis的Multi-exec命令用于事务处理,也能实现批量操作,确保原子性的同时提高效率。 3. 数据结构与编码优化 Redis支持多种数据结构,选用合适的数据结构能极大提高查询效率。比如说,如果我们经常要做一些关于集合的操作,像是找出两个集合的交集啊、并集什么的,那这时候,我们就该琢磨着别再用那个简单的键值对(Key-Value)了,而是考虑选用Set或者Sorted Set,它们在这方面更管用。 python 使用Sorted Set进行范围查询 r.zadd('sorted_set', {'user1': 100, 'user2': 200, 'user3': 300}) r.zrangebyscore('sorted_set', 150, 350) 同时,Redis提供了多种数据编码方式,比如哈希表的ziplist编码能有效压缩存储空间,提高读写速度,可通过修改hash-max-ziplist-entries和hash-max-ziplist-value进行配置。 4. 精细化监控与问题排查 定期对Redis服务器进行性能监控和日志分析至关重要。Redis自带的INFO命令能提供丰富的运行时信息,包括内存使用情况、命中率、命令统计等,结合外部工具如RedisInsight、Grafana等进行可视化展示,以便及时发现潜在性能瓶颈。 当遇到性能问题时,我们要像侦探一样去思考和探索:是由于内存不足导致频繁淘汰数据?还是因为某个命令执行过于耗时?亦或是客户端并发过高引发的问题?通过针对性的优化措施,逐步改善Redis服务器的响应时间和性能表现。 总结来说,优化Redis服务器的关键在于深入了解其内部机制,合理配置参数,巧妙利用其特性,以及持续关注和调整系统状态。让我们一起携手,打造更为迅捷、稳定的Redis服务环境吧!
2023-11-29 11:08:17
237
初心未变
Material UI
...PI用于懒加载,以及并发模式下React Fiber架构对优先级调度的优化,都能从整体上提升用户界面的响应速度,确保Switch组件以及其他UI元素的状态更新更加即时且高效。 总而言之,解决状态更新延迟问题不仅限于理解和调整特定UI库的行为,更需要结合当前Web开发的最佳实践和技术趋势,进行全方位的性能优化考量。
2023-06-06 10:37:53
313
落叶归根-t
Netty
...间的通信效率与稳定性问题愈发凸显,SO_REUSEADDR等TCP/IP参数的合理配置成为优化服务性能的关键一环。 实际上,不仅Netty这样的高性能框架重视此类参数的应用,在Kubernetes等容器编排平台中,也出现了对SO_REUSEADDR的深度集成与优化。例如,有开发者在处理服务滚动更新或故障恢复时,发现由于端口占用导致新Pod无法启动的问题,通过调整kubelet启动容器时的网络参数,启用SO_REUSEADDR选项,有效解决了端口冲突并显著提升了集群内服务的重启速度和连续性。 此外,针对SO_REUSEADDR的安全性和适用场景,业界也在不断进行深入探讨和实践总结。部分专家指出,在特定安全策略下(如防火墙规则严格控制),过度依赖SO_REUSEADDR可能导致意外的数据包接收,因此强调在采用此选项的同时,应结合具体业务场景和安全性要求,做好风险评估和防控措施。 综上所述,SO_REUSEADDR在网络编程中的应用远不止于Netty框架,它已逐渐渗透到更广泛的云原生、微服务领域,并对现代系统架构的设计与优化产生深远影响。了解其原理并掌握灵活运用方法,将有助于我们在构建高并发、高可用的服务体系时取得事半功倍的效果。
2023-12-02 10:29:34
441
落叶归根
Nginx
...要是为了解决C10K问题而设计的,就是让一台机器能同时搞定超过10,000个连接请求。第一次跟Nginx打交道,那会儿我正忙着搞个项目,优化性能呢。我们的应用服务器都快累瘫了,响应速度慢得让人想砸电脑。于是,我们决定尝试一下Nginx,看看能不能解决问题。 2. Nginx的工作原理 如何让网站飞起来? 要理解Nginx的强大,首先得了解它是如何工作的。Nginx用了一种特别聪明的设计,叫做异步事件驱动。这就意味着它能轻松应对成千上万的连接,而且还不费劲儿。跟那些传统的Web服务器(比如Apache)不一样,Nginx可不会为了每个连接都新建一个进程或线程。它聪明地用少量的进程来搞定所有的请求,这样效率高多了。这个机制让Nginx在应对海量并发连接时,依然能保持“吃”不了多少内存和CPU,就像是个轻量级的小飞侠,既灵活又高效! 3. Nginx的实际运用 从配置到实践 接下来,让我们看看Nginx是如何在我的实际工作中大展身手的。想象一下,我们有个小网站,放在一台服务器上跑着。结果有一天,突然涌来了一大波访客,就像大家都同时跑来参加party一样,把我们的服务器给挤爆了,差点儿喘不过气来。为了不让服务器累趴下,咱们可以用Nginx这个神器当“交通指挥官”,把访问请求合理分配一下。下面是一个简单的Nginx配置文件示例: nginx http { upstream backend { server 192.168.1.1:8080; server 192.168.1.2:8080; } server { listen 80; location / { proxy_pass http://backend; } } } 在这个配置文件中,我们定义了一个名为backend的上游服务器组,它包含两个后端服务器。然后,在server块中,我们指定了监听80端口,并将所有请求转发到backend组。这样一来,当客户端的请求找到Nginx时,Nginx就会按照负载均衡的规则,把请求派给后端的服务器们去处理。 4. Nginx的高级功能 定制化与扩展性 Nginx不仅仅是一个基本的反向代理服务器,它还提供了许多高级功能,可以满足各种复杂的需求。比如说,你可以用Nginx来搞缓存,这样就能少给后端服务器添麻烦,减轻它的负担啦。以下是一个简单的缓存配置示例: nginx location /images/ { proxy_cache my_cache; proxy_cache_valid 200 1h; proxy_pass http://backend; } 在这个配置中,我们定义了一个名为my_cache的缓存区,并设置了对200状态码的响应缓存时间为1小时。这样一来,对于那些静态资源比如图片,Nginx会先看看缓存里有没有。如果有,就直接把缓存里的东西给用户,根本不需要去后台问东问西的。 5. 总结与展望 Nginx带给我的启示 通过这段时间的学习和实践,我对Nginx有了更深入的理解。这不仅仅是个能扛事儿的Web服务器和反向代理,还是应对高并发访问的超级神器呢!在未来的项目中,我相信Nginx还会继续陪伴着我,帮助我们应对各种挑战。希望这篇分享能对你有所帮助,如果你有任何问题或想法,欢迎随时交流! --- 希望这篇文章能够帮助你更好地理解和使用Nginx。如果你有任何疑问或想要了解更多细节,请随时提问!
2025-01-17 15:34:14
71
风轻云淡
DorisDB
...常会遇到这么个头疼的问题:分布式节点之间的数据老是出现对不上号的情况。 二、什么是分布式节点间数据不一致? 当我们有一个大型的分布式系统时,每个节点可能都有自己的数据副本。这些数据备份可能会由于网络卡顿、硬件出问题,或者其他一些乱七八糟的原因,造成它们和其它节点上的数据对不上号的情况。这种现象就是我们所说的分布式节点间数据不一致。 三、分布式节点间数据不一致的影响 分布式节点间数据不一致会给我们的业务带来很大的困扰。比如,假设我们在搞一个分布式的交易操作,可突然之间,在某个环节上出现了数据对不上号的情况,那这笔交易就没法顺利完成啦。而且,要是数据对不上号,那咱们就很可能算不出准确的结果,这样一来,咱的决策也会跟着遭殃,受到影响。 四、如何解决分布式节点间数据不一致? 针对这个问题,我们可以采取以下几种方法来解决: 1. 数据复制 我们可以将数据在多个节点上进行复制,这样即使其中一个节点出现故障,我们也能够从其他节点获取到最新的数据。不过呢,这种方法有个小问题,那就是需要超级多的存储空间,而且得确保每一个节点都像跳舞一样步调一致,始终保持同步状态。 2. 分布式锁 通过在所有节点上加锁,可以防止同一时间有两个节点同时修改同一条数据。但是,这种方法需要考虑锁的竞争问题,而且可能会导致系统的性能下降。 3. 乐观并发控制 在这种方法中,我们假设大多数的操作都不会冲突,因此我们可以在操作开始时不需要获取锁,而在操作完成后才检查是否发生了冲突。这个方法的好处就是贼简单、贼快,不过呢,遇到人多手杂、并发量贼高的时候,就可能冒出一大堆“冲突”来,就像大家伙儿一窝蜂挤地铁,难免会有磕磕碰碰的情况。 五、以DorisDB为例 接下来,我们将以DorisDB为例,来看看它是如何解决这个问题的。DorisDB采用了一种叫做ACID的模式来保证数据的一致性。具体来说,它实现了以下四个特性: - 原子性(Atomicity):一次操作要么全部执行,要么全部不执行。 - 一致性(Consistency):在任何时刻,数据库的状态都是合法的。 - 隔离性(Isolation):在同一时刻,不同的事务之间不能相互干扰。 - 持久性(Durability):一旦一个事务被提交,它的结果就会永久保存下来。 有了这些特性,DorisDB就能够保证分布式节点间的数据一致性了。 六、结论 总的来说,分布式节点间的数据不一致是一个非常严重的问题,我们需要找到合适的方法来解决它。而对于具体的解决方案,我们需要根据实际情况来进行选择。最后呢,咱们还要持续地给现有的解决方案“动手术”,精益求精,让整个系统的性能更上一层楼,稳定性也杠杠的。
2023-12-11 10:35:22
482
夜色朦胧-t
转载文章
...开发者能更容易地处理并发数据流,并确保线程安全。同时,为了解决复杂的并发问题,如死锁和竞态条件,Google研发出了一种名为"Swiss Table"的数据结构,它在内部使用了高效的无锁算法,大大提升了多线程环境下的性能表现。 此外,Linux内核社区也在持续优化pthread库以适应更广泛的多线程应用场景。例如,对futexes(快速用户空间互斥体)进行改进,通过减少系统调用次数来提高同步效率;以及对pthread_cond_t条件变量的增强,使其支持超时唤醒等高级特性。 深入到理论层面,计算机科学家们正积极探索新型的线程同步模型,比如基于CSP(Communicating Sequential Processes)理论的Go语言所采用的goroutine和channel机制,其简洁的设计理念与高效执行策略为解决多线程同步问题提供了新思路。 综上所述,在线程同步领域,无论是最新的技术发展还是深入的理论研究,都在为我们提供更强大且易用的工具,帮助开发者应对日益复杂的并发场景挑战,实现更加稳定、高效的应用程序。
2023-10-03 17:34:08
137
转载
NodeJS
...任务。 为了解决这个问题,Node.js 提供了一个基于事件驱动和非阻塞 I/O 的运行环境。在这种环境下,我们可以编写出高性能的网络应用。 然而,在 Node.js 中,如果不小心把同步函数用于异步上下文中,可能会出现一些意料之外的问题。本文将以一个具体的实例为例,探讨如何正确地避免这种问题。 二、实例分析 假设我们有一个需要向远程服务器发送请求并获取响应的任务。这其实就是一个超级依赖输入输出的操作,我们通常会把它丢到一个异步函数里去处理,让任务跑得更顺畅。 javascript function fetchData(url) { http.get(url, (res) => { let data = ''; res.on('data', (chunk) => { data += chunk; }); res.on('end', () => { console.log(data); }); }).on('error', (err) => { console.error(err); }); } 在这个例子中,http.get() 方法是一个异步方法,它会在完成 HTTP 请求后调用回调函数。要是我们在回调函数里直接使个 console.log(),这代码就没毛病。因为 console.log() 这家伙是个同步方法,它能一边输出结果,一边还不耽误其他任务的进行,特贴心、特靠谱。 但是,如果我们不小心在其他地方使用了同步方法,那么就可能引发问题。例如: javascript fetchData('https://example.com'); console.log('数据已经获取完毕'); // 这行代码会在 fetchData 完成之前执行 在这段代码中,我们在 fetchData 函数执行前就打印出了 '数据已经获取完毕'。这样就会造成一个问题:在这段代码执行时,fetchData 还没有开始执行。所以呢,实际情况是这样的:我们竟然会在屏幕上打出“数据已经获取完毕”的字样后,才真正开始发送请求,这明显有点儿不按常理出牌,跟咱们预想的套路不太一样哈。 三、解决方案 要解决这个问题,我们需要记住的一点是:在 Node.js 中,所有的回调函数都是异步的,我们不能在回调函数外部访问它们的局部变量。这是因为这些变量啊,它们就像个临时演员,只在回调函数这场戏里才有戏份。一旦这出戏——也就是回调函数执行完毕,它们的任务也就完成了,然后就会被系统毫不留情地“请”下舞台,说白了就是被销毁掉了。 所以,为了避免意外地在同步上下文中使用异步函数,我们应该遵循以下两个原则: 1. 不要在同步上下文中调用异步函数。 2. 不要在异步函数的回调函数外部引用它的局部变量。 四、总结 总的来说,虽然 Node.js 提供了一种非常强大的开发工具,但我们仍然需要注意一些常见的陷阱,以免在实际开发中出现问题。特别是在用到异步函数这玩意儿的时候,咱们千万得把这个“异步性”给惦记着,根据实际情况灵活应对,及时调整咱的代码。只有这样,才能更好地利用 Node.js 的优势,写出高质量的网络应用。
2023-03-20 14:09:08
124
雪域高原-t
Go Iris
...引言 在深入Go语言并发编程的世界中,我们常常会遇到一个核心问题:如何在多个goroutine之间安全、高效地共享和操作数据。尤其是在使用高性能的Web框架Go Iris时,这个问题尤为重要。本文将通过实例代码和探讨性话术,帮助你理解并掌握这一关键技能。 1. Goroutine与数据共享的挑战 首先,让我们明确一点,goroutine是Go语言轻量级的线程实现,它们在同一地址空间内并发运行。当我们在编程时,如果同时让多个小家伙(goroutine)去处理同一块数据,却又没给它们立规矩、做好同步的话,那可就乱套了。这些小家伙可能会争先恐后地修改数据,这就叫“数据竞争”。这样一来,程序的行为就会变得神神秘秘、难以预料,像是在跟我们玩捉迷藏一样。 go var sharedData int // 假设这是需要在多个goroutine间共享的数据 func main() { for i := 0; i < 10; i++ { go func() { sharedData++ // 这里可能会出现竞态条件,导致结果不准确 }() } time.Sleep(time.Second) // 等待所有goroutine执行完毕 fmt.Println(sharedData) // 输出的结果可能并不是预期的10 } 2. Go Iris中的数据共享策略 在Go Iris框架中,我们同样会面临多goroutine间的共享数据问题,比如在处理HTTP请求时,我们需要确保全局或上下文级别的变量在并发环境下正确更新。为了搞定这个问题,我们可以灵活运用Go语言自带的标准库里的sync小工具,再搭配上Iris框架的独特功能特性,双管齐下,轻松解决。 2.1 使用sync.Mutex进行互斥锁保护 go import ( "fmt" "sync" ) var sharedData int var mutex sync.Mutex // 创建一个互斥锁 func handleRequest(ctx iris.Context) { mutex.Lock() defer mutex.Unlock() sharedData++ fmt.Fprintf(ctx, "Current shared data: %d", sharedData) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这个例子中,我们引入了sync.Mutex来保护对sharedData的访问。每次只有一个goroutine能获取到锁并修改数据,从而避免了竞态条件的发生。 2.2 利用Iris的Context进行数据传递 另一种在Go Iris中安全共享数据的方式是利用其内置的Context对象。你知道吗,每次发送一个HTTP请求时,就像开启一个新的宝藏盒子——我们叫它“Context”。这个盒子里呢,你可以存放这次请求相关的所有小秘密。重点是,这些小秘密只对发起这次请求的那个家伙可见,其他同时在跑的请求啊,都甭想偷瞄一眼,保证互不影响,安全又独立。 go func handleRequest(ctx iris.Context) { ctx.Values().Set("requestCount", ctx.Values().GetIntDefault("requestCount", 0)+1) fmt.Fprintf(ctx, "This is request number: %d", ctx.Values().GetInt("requestCount")) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这段代码中,我们通过Context的Values方法在一个请求生命周期内共享和累加计数器,无需担心与其他请求冲突。 3. 结论与思考 在Go Iris框架中解决多goroutine间共享数据的问题,既可以通过标准库提供的互斥锁进行同步控制,也可以利用Iris Context本身的特性进行数据隔离。在实际项目中,应根据业务场景选择合适的解决方案,同时时刻牢记并发编程中的“共享即意味着同步”原则,以确保程序的正确性和健壮性。这不仅对Go Iris生效,更是我们在捣鼓Go语言,甚至任何能玩转并发编程的语言时,都得好好领悟并灵活运用的重要招数。
2023-11-28 22:49:41
541
笑傲江湖
RocketMQ
...布式系统中的消息乱序问题之后,我们可以进一步关注消息中间件领域的最新动态和发展趋势。近日,Apache Pulsar作为一款高性能、云原生且可扩展的消息流平台,在保证消息有序性方面也展现出了强大的能力。Pulsar采用了多租户、持久化存储以及分层架构设计,其独特的分层队列模型能在确保消息严格有序的同时,实现高并发和水平扩展。 另外,Kafka作为广泛应用的消息队列系统,也在持续优化其对有序消息处理的支持。Kafka通过Partition机制来保证同一个分区内的消息顺序,结合新版Kafka Connect的幂等性和事务性特性,能够在更复杂的分布式场景下有效避免消息乱序和丢失问题。 同时,对于分布式系统消息传递的研究和实践并未止步,学术界与工业界正在积极探索新型消息传递协议和一致性算法以应对更加严苛的低延迟、高吞吐量及强一致性要求。例如,Raft协议在分布式共识方面的应用,使得诸如etcd、Consul等服务发现组件能够提供更为可靠和有序的数据更新服务。 总之,在消息中间件技术不断演进的过程中,保障消息有序传递始终是其中的重要课题。无论是RocketMQ、Kafka还是Pulsar,都在这一领域贡献了自己的解决方案,并为构建高效稳定的分布式系统提供了有力支撑。随着5G、物联网、大数据等新技术的发展,消息中间件将面临更多挑战,而其解决消息乱序问题的方法也将持续创新和完善。
2023-01-14 14:16:20
108
冬日暖阳-t
Go Gin
...TPS强制跳转相关的问题探索 引言(1) 当你在使用Go Gin框架构建Web应用时,你可能会遇到一个常见的需求:如何确保用户始终通过HTTPS访问你的服务。毕竟现在这个时代,大家都把数据安全看得跟命根子似的,HTTPs加密传输早就是网站标配啦,没它可不行!本文我们将深入探讨如何利用Go Gin框架实现这一功能,让我们一起走进这场技术之旅吧! 一、理解HTTPS与重定向(2) 首先,我们来简单回顾一下HTTPS的工作原理。你知道HTTPS吗?它其实就像是HTTP的大哥,是个安全升级版。具体来说呢,就是在HTTP的基础上,套上了一层SSL/TLS的“防护罩”,这个“防护罩”会对传输的数据进行加密处理。这样一来,就像有个忠诚的保镖在保护我们的数据,能够有效挡下那些想在中间搞小动作的坏家伙,避免我们的信息被偷窥或者泄露出去的风险。当有用户不走“安全通道”,试图通过HTTP来访问我们家的网站时,咱们得像个贴心的小助手那样,帮他们自动拐个弯儿,转跳到更安全的HTTPS地址上去。 二、Go Gin框架中的中间件设计(3) Go Gin的设计理念之一就是“中间件”,这是一种可以插入请求处理流程中执行额外操作的组件。想要实现HTTPS强制跳转这个需求,咱们完全可以动手写一个定制版的中间件来轻松搞定这件事儿。 go package main import ( "github.com/gin-gonic/gin" ) func ForceHTTPSMiddleware() gin.HandlerFunc { return func(c gin.Context) { if c.Request.TLS == nil { // 检查当前请求是否为HTTPS url := "https://" + c.Request.Host + c.Request.URL.String() c.Redirect(301, url) // 若不是HTTPS,则重定向至HTTPS版本 c.Abort() // 中止后续的处理流程 } else { c.Next() // 如果已经是HTTPS请求,继续执行下一个中间件或路由处理函数 } } } 上述代码创建了一个名为ForceHTTPSMiddleware的中间件,该中间件会在每次请求到达时检查其是否为HTTPS请求。如果不是,它将生成对应的HTTPS URL并以301状态码(永久重定向)引导客户端跳转。 三、中间件的使用与部署(4) 接下来,我们要将这个中间件添加到Go Gin引擎中,确保所有HTTP请求都会先经过这个中间件: go func main() { r := gin.Default() // 使用自定义的HTTPS强制跳转中间件 r.Use(ForceHTTPSMiddleware()) // 添加其他路由规则... r.GET("/", func(c gin.Context) { c.JSON(200, gin.H{"message": "Welcome to the secure zone!"}) }) // 启动HTTPS服务器 err := r.RunTLS(":443", "path/to/cert.pem", "path/to/key.pem") if err != nil { panic(err) } } 注意,在运行HTTPS服务器时,你需要提供相应的证书文件路径(如cert.pem和key.pem)。这样,你的Go Gin应用就成功实现了HTTPS强制跳转。 结语(5) 在解决Go Gin框架下的HTTPS强制跳转问题时,我们不仅了解了如何根据实际需求编写自定义中间件,还加深了对HTTPS工作原理的认识。这种带着情感化和技术思考的过程,正是编程的魅力所在。面对每一个技术挑战,只要我们保持探索精神,总能找到合适的解决方案。而Go Gin这个框架,它的灵活性和强大的功能简直就像个超级英雄,在我们实现各种需求的时候,总能给力地助我们一臂之力。
2023-01-14 15:57:07
518
秋水共长天一色
RabbitMQ
...列服务器,以其强大的并发处理能力和灵活性,成为许多应用中的首选。这篇东西会手把手带你摸透,怎么在RabbitMQ里头玩转发布者/订阅者模式(Producer-Consumer Model),特别是当你面对那复杂的并发环境时,怎样才能稳稳地保证消息传输和处理的万无一失。我们将结合代码示例,探讨并发访问的设计策略和潜在问题。 二、发布者/订阅者模式简介 1.1 发布者(Producer)与订阅者(Consumer)的角色 - 发布者:负责创建和发送消息到队列,通常是一个服务或者应用,如订单创建系统。 - 订阅者:从队列中接收并处理消息,可能是订单处理服务、库存更新服务等。 2.2 并发访问的挑战 - 在高并发环境下,多个发布者同时向同一个队列发送消息可能导致消息堆积,影响性能。 - 订阅者也需要处理多个消息同时到达的情况,保证处理的线程安全。 三、消息确认与并发控制 1.3 使用publisher confirms 为了确保消息的可靠传递,我们可以启用publisher confirms机制。当消息被交换机确认接收后,消费者才会真正消费该消息。Spring RabbitMQ配置示例: java @Configuration public class RabbitConfig { @Value("${rabbitmq.host}") private String host; @Value("${rabbitmq.port}") private int port; @Bean public ConnectionFactory connectionFactory() { CachingConnectionFactory factory = new CachingConnectionFactory(); factory.setHost(host); factory.setPort(port); factory.setUsername("your_username"); factory.setPassword("your_password"); factory.setPublisherConfirmations(true); // 开启publisher confirms return factory; } } 四、并发处理与消息分发 1.4 哨兵模式与任务分发 - 哨兵模式:一个特殊的消费者用于监控队列,处理来自其他消费者的错误响应(nacks),避免消息丢失。 - 任务分发:使用fanout交换机可以一次将消息广播给所有订阅者,但要确保处理并发的负载均衡和消息顺序。 java @Autowired private TaskConsumer taskConsumer; // 发布者方法 public void sendMessage(String message) { channel.basicPublish("task_queue", "", null, message.getBytes()); } 五、事务与消息重试 1.5 事务与幂等性 - 如果订阅者处理消息的业务操作支持事务,可以利用事务回滚来处理nack后的消息重试。 - 幂等性保证即使消息多次被处理,结果保持一致。 六、结论与最佳实践 2.6 总结与注意事项 - 监控和日志:密切关注队列的消费速率、延迟和确认率,确保系统稳定。 - 负载均衡:通过轮询、随机选择或者其他策略,分摊消费者之间的消息处理压力。 - 异步处理:对于耗时操作,考虑异步处理以避免阻塞队列。 在实际项目中,理解并应用这些技巧将有助于我们构建健壮、高效的发布者/订阅者架构,有效应对并发访问带来的挑战。记住了啊,每一个设计决定,其实都是为了让你用起来更顺手、系统扩展性更强。这就是RabbitMQ最吸引人的地方啦,就像是给机器装上灵活的弹簧和无限延伸的轨道,让信息传输变得轻松自如。
2024-03-03 10:52:21
90
醉卧沙场-t
Apache Lucene
...为一款强大的全文搜索引擎库,其核心功能之一就是通过计算文档与查询之间的相似度来确定搜索结果的排序。然而,当我们动手去定制相似度算法时,一不留神就可能让搜索结果的相关性排序跑偏,这样一来,用户体验可就要打折扣喽。本文将深入探讨这一主题,通过实例代码展示自定义相似度算法的实践过程以及可能出现的问题。 2. 相似度算法与搜索排序的关系 Lucene中的相似度算法是决定搜索结果质量的关键因素。默认情况下,Lucene使用TF-IDF(词频-逆文档频率)算法来衡量查询和文档的相关性。这个算法在大部分情况下都能妥妥地应对各种搜索需求,不过遇到某些特殊业务场景时,可能需要我们动手微调一下,甚至从头开始定制化打造。 3. 自定义相似度算法的实践 为了更好地说明问题,我们先来看一个简单的自定义相似度算法示例: java import org.apache.lucene.search.similarities.Similarity; public class CustomSimilarity extends Similarity { @Override public SimScorer scorer(TermStatistics termStats, DocStatistics docStats, Norms norms) { // 这里假设我们仅简单地以词频作为相关性评分依据 return new CustomSimScorer(termStats.totalTermFreq()); } static class CustomSimScorer extends SimScorer { private final long freq; CustomSimScorer(long freq) { this.freq = freq; } @Override public float score(int doc, float freq) { // 相关性得分只依赖于词频 return (float) this.freq; } // 其他重写方法... } } 这段代码展示了如何创建一个仅基于词频的自定义相似度算法。然而,在真实世界的应用场景里,如果我们不小心忽略了逆文档频率、长度归一化这些重要因素,就很可能出现这么个情况:那些超长的文章或者满篇重复关键词的文档,会在搜索结果中“唰”地一下跑到前面去,这样一来,搜出来的东西跟你想找的相关性可就大打折扣啦。 4. 错误自定义相似度算法的影响 想象一下,如果你在一个技术问答社区部署了这样的搜索引擎。当有人搜索“Java编程入门”时,如果我们光盯着关键词出现的次数,而忽略了其他重要因素,那么可能会有这样的情况:一些满篇幅堆砌着“Java”、“编程”、“入门”这些词的又臭又长的教程或者广告内容,反而会挤到那些真正言简意赅、价值满满的干货答案前面去。这种情况下,尽管搜索结果看似相关,但实际的用户体验却大打折扣。 5. 探讨与思考 在设计自定义相似度算法时,我们需要充分理解业务场景,权衡各项指标对搜索结果排序的影响,并进行适当的调整。就像刚才举的例子那样,为了更精准地摸清文档和查询之间的语义匹配程度,咱们可以考虑把逆文档频率这个小家伙,还有长度归一化这些要素都给它加进去,让计算结果更贴近实际情况。 总结来说,Apache Lucene为我们提供了丰富的API以供自定义相似度算法,但这也意味着我们必须谨慎对待每一次改动。如果算法优化脱离了实际需求,那就像是在做菜时乱加调料,结果很可能就是搜索结果的相关性排序一团糟。所以在实际操作中,我们得像磨刀石一样反复打磨、不断尝试更新优化,确保搜索结果既能让业务目标吃得饱饱的,也能让用户体验尝起来美滋滋的。
2023-05-29 21:39:32
519
寂静森林
SeaTunnel
...,能够高效地处理大量并发的数据发布与订阅请求。SeaTunnel通过配置与Kafka的连接,实现从Kafka读取(Source)和写入(Sink)数据。 SeaTunnel(前身为Waterdrop) , SeaTunnel是一个功能强大的开源数据集成工具,专注于提供灵活且易于扩展的数据抽取、转换和加载解决方案。在文章中,SeaTunnel以其插件化设计和轻量级架构,无缝对接Apache Kafka,使得用户可以根据业务需求定制从各类数据源抽取数据并进行复杂处理后,再将结果加载到目标存储中的全流程。 数据摄入与输出 , 在大数据处理领域,“数据摄入”指的是从外部数据源获取数据的过程,如从Kafka主题读取实时数据流;“数据输出”则是指经过处理后的数据写回至指定的目标存储或系统,例如在本文中,将经SeaTunnel处理后的数据写入到另一个Kafka主题中。SeaTunnel支持配置Kafka Source和Sink插件以高效地完成这一数据摄入与输出流程,并在过程中允许执行一系列数据转换操作,如过滤、映射等,极大地提升了数据处理的灵活性和效率。
2023-07-13 13:57:20
167
星河万里
ReactJS
...是一团乱麻,想要找到问题的源头,简直就是大海捞针,难度系数直接爆表。这事儿,真能折腾人!本文将带你深入理解这个错误的原因,以及如何有效解决它,让你在面对此类问题时不再手足无措。 理解错误原因 在React中,组件接受的属性(props)都有其预期的类型。想象一下,你给一个叫做 的小玩具添加了一件新衣服,这件衣服的特别之处在于,它有一个名字叫 src。React 告诉你,这件衣服的名字必须是一个长长的地址(我们通常叫它 URL),就像是你在网络上找照片或者视频时看到的那种链接。所以,当你告诉 小玩具穿哪件衣服时,你得确保那个名字是正确的网络地址!如果传递的不是字符串,而是数字或其他类型,就会触发“Invalid prop type”错误。 javascript class Image extends React.Component { render() { return ; } } function App() { return ; // 错误示例 } 在这个例子中,App组件尝试将一个数字传递给Image组件作为src属性,这违反了Image组件的类型约束,从而引发错误。 解决方案与最佳实践 1. 明确组件的类型约束 在创建组件时,通过propTypes或React.memo的type属性来定义组件接收的属性类型。这样可以确保在组件首次渲染时就对传入的属性进行验证。 javascript class Image extends React.Component { static propTypes = { src: PropTypes.string.isRequired, alt: PropTypes.string }; render() { return ; } } 2. 使用prop-types库 prop-types库提供了更强大的类型检查功能,可以帮助开发者在运行时捕获错误,并提供更详细的错误信息。 javascript import PropTypes from 'prop-types'; class Image extends React.Component { static propTypes = { src: PropTypes.string.isRequired, alt: PropTypes.string }; render() { return ; } } 3. 动态类型检查 对于更复杂的情况,你可能需要在运行时动态地检查传入的属性类型。这种情况下,可以使用JavaScript的内置函数或第三方库如is-type-of来进行类型检测。 javascript const isUrl = require('is-type-of/url'); class Image extends React.Component { constructor(props) { super(props); if (!isUrl(this.props.src)) { throw new Error(Invalid prop type for src: ${this.props.src}); } } render() { return ; } } 4. 错误处理与日志记录 当错误发生时,通过适当的错误处理机制捕获并记录错误信息,可以帮助开发者快速定位问题。哎呀,兄弟!在实际操作的时候,得记得把那些烦人的警告都关掉。咱们可不想因为一堆没必要的错误提示,让用户体验变得糟糕了吧?对吧?这样子,用户就能愉快地玩耍,咱们也能省心不少! javascript try { // 尝试执行可能引发错误的操作 } catch (error) { console.error(error); } 总结 “Invalid prop type”错误是React开发过程中常见且易处理的问题。通过明确组件的类型约束、利用prop-types库、进行动态类型检查以及妥善处理错误,我们可以有效地避免这类问题,提升应用的稳定性和用户体验。记得,在日常开发中保持代码的健壮性,不仅可以减少错误的发生,还能让团队成员间的协作更加顺畅。希望这篇文章能帮助你在面对类似问题时,更加游刃有余。
2024-09-10 15:47:38
27
幽谷听泉
Apache Solr
...物节期间,数据暴增的问题尤为突出。例如,今年的“双十一”,某知名电商平台的订单量再次刷新历史纪录,达到了惊人的数十亿级别。这种大规模的数据涌入,不仅考验着电商平台自身的系统稳定性,也对后端的搜索引擎提出了更高的要求。 以Solr为例,许多企业都在使用Solr作为其搜索服务的核心组件。然而,在面对如此巨大的数据流量时,Solr同样面临存储空间不足的问题。因此,对于Solr管理员而言,如何有效管理和优化存储空间,避免因数据暴涨而导致系统崩溃,成为了亟待解决的难题。 在实际应用中,不少公司已经开始探索更为高效的解决方案。例如,阿里云团队提出了一种基于Solr的分布式搜索架构,通过增加分片数量和优化索引配置,有效提升了系统的处理能力。此外,他们还引入了智能预测算法,提前识别并预警潜在的数据增长风险,从而在问题发生前采取预防措施。 与此同时,行业内也在不断推动技术创新。例如,谷歌最近发布了一款名为“Colossal”的开源项目,旨在通过深度学习技术优化大规模数据处理流程。这一项目不仅适用于搜索引擎领域,还可以广泛应用于其他大数据场景,有望为Solr等传统搜索引擎带来新的突破。 综上所述,面对数据暴涨带来的挑战,Solr管理员需要持续关注行业动态和技术趋势,不断优化现有方案,才能确保系统在高负载下依然保持稳定高效。未来,随着技术的不断进步,我们有理由相信Solr将变得更加智能和强大,更好地服务于各类应用场景。
2025-01-31 16:22:58
80
红尘漫步
Hadoop
...常会碰上这么个头疼的问题——JobTracker和TaskTracker之间的通信时不时会掉链子。这种情况就像是一场交响乐,指挥和乐手突然听不清彼此的节奏了,整个乐队演奏起来自然就乱套了,效率大打折扣,严重时甚至会让整个系统直接罢工,没法正常运转起来。 二、 问题原因分析 那么,为什么会出现这样的问题呢? 首先,可能是由于网络连接不稳定或者存在故障所导致的。如果TaskTracker和JobTracker这两个家伙之间的网络连线出了岔子,那就意味着它们没法好好交流了,这样一来,任务自然也就没法顺利完成啦。 其次,也有可能是因为系统的硬件设备出现故障所导致的。比如,假如TaskTracker所在的那台服务器闹罢工了,硬盘挂了或者内存不够用啥的,那它就没法好好干活儿,这样一来,整个系统的正常运行也就跟着遭殃了。 最后,还有一种可能是因为系统的软件配置存在问题所导致的。比如说,就好比JobTracker和TaskTracker是两个搭档,如果它们各自的“版本语言”对不上号,或者说是它们共同的“行动指南”——配置文件里的一些参数被设置错了,那这俩家伙就没法好好交流、协同工作。这样一来,任务自然也就没法顺利完成啦。 三、 解决方案 那么,如何解决这个问题呢? 首先,我们可以尝试修复或替换出现故障的硬件设备。比如,假如我们发现某个TaskTracker运行的服务器硬盘挂了,那我们就得赶紧换个新的硬盘,再把TaskTracker重启一下,这样一来它就能重新满血工作啦。 其次,我们也可以尝试调整网络环境,以确保JobTracker和TaskTracker之间的网络连接稳定。比如说,我们可以考虑给网络“加加油”,提升一下带宽;再者呢,可以精心设计一下网络的“行车路线”,优化路由;还有啊,换个更靠谱、更稳当的网络服务供应商也是个不错的选择。 最后,我们还可以尝试更新或重置系统的软件配置,以解决配置文件中的参数设置错误问题。比如,咱们可以瞅瞅JobTracker和TaskTracker这两个家伙的版本信息,看看它们俩是不是能和平共处,如果发现有兼容问题,那就该升级就升级,该降级就降级;除此之外,咱还得像查账本一样仔细核对配置文件里的每一个参数值,确保这些小细节都设定得恰到好处,一步到位。 四、 结论 总的来说,JobTracker和TaskTracker之间的通信失败问题是由于多种因素所引起的,包括网络连接不稳定、硬件设备故障、软件配置错误等。所以呢,咱们得把各种因素都综合起来掂量一下,然后找准方向,采取一些对症下药的措施,这样才有可能真正把这个难题给妥妥地解决掉。只有这样,我们才能够保证Hadoop系统的正常运行,充分发挥其高效、可靠的特点。
2023-07-16 19:40:02
501
春暖花开-t
RabbitMQ
...生架构下的微服务安全问题频发,企业在使用RabbitMQ时,除了关注其运行状态外,还需要强化对其访问权限、消息加密传输等方面的监控与管理。Erlang OTP(RabbitMQ基于此构建)社区已发布关于提升AMQP协议安全性的重要更新,企业应密切关注并及时应用这些安全补丁,以防止潜在的数据泄露风险。 同时,各大云服务商如AWS、Azure等也为托管版RabbitMQ提供了更为完善的监控与日志服务,用户可以借助这些服务快速定位问题,提高运维效率,并确保系统的高可用性与安全性。 总之,在面对大规模、高并发的业务场景时,全面且精细地监控RabbitMQ是保障业务连续性的基石,结合最新的技术和最佳实践,持续优化和完善监控策略,才能使我们的分布式系统在瞬息万变的技术环境中稳健运行。
2023-03-01 15:48:46
446
人生如戏-t
Spark
...关重要。事实上,这一问题的解决思路与当前业界对Apache Spark性能调优的实践紧密相连,并且时刻受到最新技术动态的影响。 近期,随着Apache Spark 3.x版本的发布,其对内存管理和执行引擎进行了显著改进,引入了动态资源分配等新特性,能够更精细地控制Executor资源使用,从而降低因资源超限导致的Executor被杀概率。例如,"Dynamic Resource Allocation"功能允许Spark根据作业的实际需求自动调整Executor的数量和资源,提高了集群资源利用率并减少了无效或过度分配的情况。 同时,对于心跳丢失等问题,Hadoop社区也在不断优化YARN的稳定性与容错性,通过改进ResourceManager与NodeManager间的心跳机制,减少误判和异常终止的可能性。此外,采用最新的网络协议和技术(如RDMA)优化集群间的通信效率,也是防止因网络问题引发Executor被杀的有效手段。 总之,在实际应用中,除了遵循上述策略进行资源配置和监控调优外,持续关注Spark和YARN的最新发展动态,结合最新特性与最佳实践,将有助于进一步提升Spark在YARN上运行的稳定性和效率,确保大数据处理任务顺利完成。
2023-07-08 15:42:34
190
断桥残雪
Tornado
...、难以避免的连接关闭问题。本文将深入探讨Tornado中如何优雅地处理WebSocket的连接关闭事件。 1. WebSocket连接关闭的基本理解 首先,我们需要明确一点:WebSocket连接可能由于多种原因被关闭,如客户端主动断开、服务器端主动断开、网络问题导致的意外断开等。对于这些状况,作为开发者我们呢,就得在WebSocket这个协议的层面上竖起耳朵监听着,一旦有啥动静,就立马给出相应的反馈和处理。 2. Tornado中的WebSocket实现 在Tornado中,WebSocket通过tornado.websocket.WebSocketHandler类来处理。当一个WebSocket连接建立时,Tornado会自动调用open()方法;同样地,当连接关闭时,Tornado则会触发on_close()方法。 python import tornado.websocket class MyWebSocketHandler(tornado.websocket.WebSocketHandler): def open(self): print("WebSocket connection opened!") def on_message(self, message): 处理接收到的消息... pass def on_close(self): print("WebSocket connection closed.") 在这里,我们可以执行一些清理操作或者记录日志 3. 处理WebSocket连接关闭事件 3.1 on_close()方法的应用 on_close()方法会在WebSocket连接关闭时被调用,传入的参数为空。在使用这个方法的时候,我们完全可以做那些必不可少的扫尾工作,比如说,可以释放掉占用的资源啦,更新一下用户的状态信息啊,甚至发送个离线通知啥的,这些操作通通都可以搞定。 python class MyWebSocketHandler(tornado.websocket.WebSocketHandler): ...其他代码... def on_close(self): print(f"WebSocket connection from {self.request.remote_ip} has been closed.") self.application.clients.remove(self) 假设我们在全局保存了所有活动连接 这里还可以发送一条消息到其他在线用户,告知他们某个用户已离线 3.2 获取关闭原因与码 Tornado还允许我们获取连接关闭的原因及其对应的关闭码。WebSocket呢,它专门设定了一个标准关闭码的系列,如果碰到非标准的那种关闭情况,咱们就可以自己定义个码来表示。就像是给每种“再见”的方式编了个号码,如果遇到特殊的告别方式,咱也能临时造个新号码来用,是不是挺灵活哒?在on_close()方法中,可以访问self.close_code和self.close_reason属性来获取这些信息。 python class MyWebSocketHandler(tornado.websocket.WebSocketHandler): ...其他代码... def on_close(self): close_code = self.close_code close_reason = self.close_reason print(f"WebSocket connection closed with code {close_code} and reason: {close_reason}") 根据不同的关闭原因或码,执行特定的逻辑处理 4. 探讨性话术及思考过程 处理WebSocket连接关闭事件时,我们需要像对待生活中的告别一样,既要有礼貌地“告别”(清理资源),也要了解“为何告别”(关闭原因)。这样,我们才能在下次“相遇”时提供更好的服务。比方说,假如我们发现一大波用户突然间因为网络问题集体掉线了,那很可能意味着我们的服务器网络配置有待改进和优化;而如果用户是主动切断连接的,那咱就得琢磨琢磨是不是得提升一下用户体验,尽可能减少那些不必要的断开情况。 总结来说,利用Tornado提供的WebSocket接口,我们能轻松捕获连接关闭事件,并据此执行相应的处理逻辑。这就像是那个超级给力的服务员小哥,总是在客人满意离开后,立马手脚麻利地收拾桌面,一眨眼功夫就让桌面焕然一新,随时迎接下一位客人的大驾光临。同时,他还超级细心地关注着每一位顾客为啥要离开,这样就能持续优化服务体验,确保每个来这儿的人都能像在自己家里那样感到温馨舒适,宾至如归。
2023-05-15 16:23:22
111
青山绿水
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
env
- 列出当前环境变量及其值。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"