前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[压缩包]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...,老年代需要使用标记压缩算法进行回收。 4. CMS支持并发的垃圾回收,能够减少大型堆面临的暂停时间。 综上所述,G1和CMS在很多方面都有差异。大型、低延迟的应用需要使用CMS算法进行垃圾回收,而大型应用软件和并行处理系统需要使用G1算法进行垃圾回收。对于系统管理员来说,选择合适的垃圾回收算法非常重要,能够有效提高应用软件的性能和稳定性。
2023-11-22 10:36:57
339
逻辑鬼才
转载文章
...。 Uglifyjs压缩js的的时候,要求不能有es6语法 解决方法: vue-cli默认是检测src和test目录下的js文件。将dom7的文件加入无include中就可以了 test: /\.js$/,loader: 'babel-loader',options: { presets: ['env', 'stage-2']},include: [resolve('src'), resolve('test'),resolve('node_modules/dom7')]复制代码 转载于:https://juejin.im/post/5a338bf651882549a7464477 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33910137/article/details/91429581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:10:34
49
转载
JSON
...发现,通过特定的数据压缩算法,可以进一步减小JSON在网络传输中的体积,从而提升移动端应用的数据加载速度。而在前端开发领域,ECMAScript(JavaScript)新版本持续加强对JSON的支持,如引入JSON.stringify()的可配置选项,使得开发者能更灵活地控制序列化结果,提高资源利用率。 此外,尽管JSON在便捷性和效率上有显著优势,但XML在特定场景下仍不可替代,特别是在处理具有复杂结构、需要严格语义约束以及跨平台兼容性要求高的系统中。例如,SOAP协议在企业级服务间的通信中依然广泛采用XML,以实现严格的类型定义和命名空间管理。 综上所述,JSON凭借其简洁易用的特性,在当前主流Web服务和移动应用开发中占据主导地位;然而,XML在特定应用场景下的价值仍然值得重视,两种格式各有优劣,实际选用应根据具体需求来决定。未来,我们期待看到更多关于JSON及其他新型数据交换格式的研究与发展,以适应日新月异的技术变革和市场需求。
2023-10-22 23:34:21
516
程序媛
MySQL
...工具及特性,如动态列压缩技术和更完善的资源组管理,旨在帮助企业用户更好地监控和调整数据库操作,降低SQL执行时间(链接:[实际链接])。 总之,在数据库性能优化领域,无论是开源的MySQL还是其分支MariaDB,都在不断演进和创新,以满足日益增长的数据处理需求。持续跟进相关领域的最新研究和技术动态,对于提高数据库系统效能、保障业务稳定运行具有不可忽视的意义。
2023-03-20 17:28:08
51
数据库专家
VUE
...能填满显示器而不会被压缩。因为需要达成全屏成效,所以需要增加fullscreen类,并在鼠标点击事件中借助于document.documentElement.requestFullscreen()来达成全屏,并在离开全屏状态时采用document.exitFullscreen()。 上面的代码中采用了一个可用的图像,可以采用自己的图像替换。只需把imageUrl的值更改为你的图像链接即可。此外,当鼠标移上去时,采用了鼠标指针来给用户明确的反馈。
2023-04-27 22:56:48
119
码农
JSON
...优化,如通过HTTP压缩头部节省带宽,提升响应速度。 此外,现代浏览器对JSON原生支持的强化也为前端开发者提供了更多便利。如最新的Fetch API可以直接处理JSON数据,无需手动调用JSON.parse方法解析。而在数据库领域,NoSQL数据库(如MongoDB)更是充分利用了JSON文档型数据模型的优势,能够直接存储和查询JSON格式数据,简化了数据操作流程。 不仅如此,对于大数据和实时应用,诸如Apache Kafka等消息中间件也支持以JSON格式进行消息传递,便于系统间的数据交换和集成。在未来,随着JSON在物联网(IoT)、微服务架构等领域的深入应用,其无索引序列特性将更好地服务于复杂数据流的高效处理与传输。 总之,理解并掌握JSON的特性和使用方式,是当今软件开发工程师必备技能之一。不断跟进JSON相关的最新技术和应用场景,将有助于我们构建更高效、更具扩展性的现代Web应用。
2023-01-19 19:48:00
519
代码侠
JSON
...考虑到性能优化和数据压缩的问题,业界也出现了对JSON的改进方案。比如,Facebook推出的Msgpack是一种二进制序列化格式,它在保持类似JSON语法简洁性的同时,显著提高了数据传输效率。另外,JSONB(Binary JSON)是PostgreSQL数据库为存储和检索JSON数据而提供的高效二进制格式。 不仅如此,针对JSON的安全性问题,开发者需关注如何有效验证和过滤JSON数据,防止注入攻击等安全风险。为此,一些库如ajv、 Joi等提供了严谨的数据模式验证功能,确保接收到的JSON数据符合预期结构和类型。 综上所述,深入理解和掌握JSON相关的最新技术和最佳实践,对于提升应用程序的数据处理能力、保障数据交互安全以及优化系统性能等方面具有重要价值。建议读者持续关注JSON及相关领域的发展趋势,并结合具体项目需求灵活运用各种解决方案。
2023-05-11 17:44:41
267
代码侠
Java
...通过创新的并发标记和压缩算法,极大地降低了因内存回收导致的应用暂停时间,从而提升了系统的整体响应速度和稳定性。 综上所述,了解并掌握JVM内存区域的原理及最新发展动态,不仅有助于我们编写高效稳定的Java程序,更能适应现代软件开发中的复杂场景和高性能需求。建议读者继续跟踪阅读相关技术博客、官方文档更新以及行业会议分享,以便及时把握JVM内存管理领域的前沿技术和最佳实践。
2023-11-07 12:05:21
358
逻辑鬼才
MySQL
...分配控制以及智能内存压缩技术等,使得MySQL能够更高效地在物理内存与虚拟内存之间进行切换,极大提升了大容量数据处理时的性能表现。 同时,业界专家建议,在系统层面合理配置交换空间大小以支持MySQL虚拟内存需求,并结合监控工具实时分析MySQL及其所在服务器的内存使用状况,以便及时发现并调整潜在的内存瓶颈。例如,通过定期审查query_cache_size等关键参数,根据实际业务负载动态调整其值,避免无谓的内存浪费或过度依赖虚拟内存导致性能下滑。 此外,对于大型分布式数据库系统而言,采用内存计算、混合存储架构以及先进的内存池技术也是提升数据库整体性能的有效手段。比如,阿里云自主研发的PolarDB-X数据库产品,就借助了智能内存管理和分布式缓存技术,实现了对大规模数据访问场景下虚拟内存使用的深度优化,从而确保了服务端的稳定高效运行。 综上所述,掌握MySQL虚拟内存查看方法仅仅是性能调优的第一步,了解并运用最新的内存管理技术、紧跟数据库发展趋势,才能更好地应对大数据时代带来的挑战,确保数据库系统的高性能、高可用与可扩展性。
2023-03-15 10:31:00
95
程序媛
Python
...结构。 例如,在数据压缩领域,有研究人员利用变种的正负交替编码策略优化了哈夫曼编码等算法,有效提高了数据压缩率和解压速度。此外,在高性能计算中,正负交替数列的性质被应用于负载均衡算法设计,以提升大规模并行计算任务的效率和稳定性。 对于初学者来说,理解Python中的迭代器协议和生成器表达式也是扩展数列生成知识的重要途径。通过运用生成器,可以实现更加高效且节省内存的无限数列生成方案,这对于处理大数据集或者进行数学分析具有实际意义。 同时,莫比乌斯函数作为数论中的经典概念,在密码学、图论等领域也有着广泛应用。在最新的科研进展中,就有学者尝试将莫比乌斯函数和其他数学工具结合,利用Python实现了一系列高级算法,用于解决复杂问题如素数分布预测、网络最大流最小割问题等。 总之,Python语言在数列生成上的灵活性及其与数学理论的紧密结合,为各个领域的研究与应用提供了强大支持。从基础的正负交替数列开始,逐步深入到更广泛的编程实践与理论探索,无疑将帮助我们更好地应对各类复杂计算挑战。
2023-01-27 13:46:53
343
电脑达人
转载文章
...必要时对上传图片进行压缩或加密处理,降低因图片过大导致的性能瓶颈,同时也避免了潜在的数据泄露风险。 深入解读uni-app的图片上传机制,不难发现其与Web开发中的FormData、Blob对象以及移动端特有的临时文件路径管理有诸多相似之处。开发者可借鉴Web前端领域成熟的解决方案,结合uni-app生态内丰富的插件资源,实现更高效、安全且用户体验良好的图片上传功能。 综上所述,uni-app图片上传功能的完善既依赖于开发者对框架本身特性的掌握,也离不开对行业规范、技术趋势的敏锐洞察与灵活运用。通过持续学习与实践,开发者能够更好地应对各种场景下可能出现的问题,并打造出体验优良、适应多端环境的应用产品。
2023-03-05 15:38:13
59
转载
转载文章
...十分广泛,例如在数据压缩、编码理论、资源分配等领域都有所体现。在当前大数据和人工智能技术蓬勃发展的时代背景下,这类算法的设计与优化显得尤为重要。 总之,对于全国大学生算法设计与编程挑战赛中的自然数拆分问题,无论是从学术研究深度还是现实应用场景广度来看,都值得我们进一步探索和学习。不断跟进最新的科研进展,结合经典理论进行实战演练,无疑会提升我们在算法设计与编程领域的综合能力。
2023-10-17 08:23:11
544
转载
HTML
...加载技术和合理的图片压缩策略以减少初始加载时的数据量。 此外,针对不同设备屏幕大小的自适应布局也是现今Web开发中的热门话题。CSS3引入的object-fit属性能够帮助开发者更灵活地控制元素在容器中的填充方式,确保图片在任何尺寸下都能得到合适且不失真的展示。 对于SEO优化而言,为标签添加具有描述性和关键词丰富的alt属性同样关键,这不仅有助于搜索引擎理解图片内容,还有利于视觉障碍用户借助读屏软件了解网页信息,符合无障碍网页设计规范(WCAG)的要求。 综上所述,在实际的Web开发工作中,对HTML中标签的理解和运用需不断跟进最新的技术和最佳实践,通过合理配置及优化策略,实现快速、高效、美观且友好的图片展示效果。
2023-10-13 11:52:48
468
逻辑鬼才
NodeJS
...验证、日志记录、内容压缩等任务。在本文中,我们通过引入并配置cors中间件,使得服务器能够正确处理并允许跨域请求,从而解决跨域问题。
2023-06-11 14:13:21
96
飞鸟与鱼-t
HBase
...列族名称、版本控制、压缩方式等信息。 3. 数据块(Data Block)元数据 包括数据块大小、校验和等信息。 三、如何使用HBase中的元数据? HBase提供了多种方法来操作和查询元数据。以下是几个常见的例子: 1. 获取表元数据 java Configuration conf = new Configuration(); Admin admin = new HBaseAdmin(conf); List tables = admin.listTables(); for (HTableDescriptor table : tables) { System.out.println("Table Name: " + table.getNameAsString()); System.out.println("Row Key Type: " + table.getRowKeySchema().toString()); System.out.println("Column Families: "); for (HColumnDescriptor family : table.getColumnFamilies()) { System.out.println("Family Name: " + family.getNameAsString()); System.out.println("Version Control: " + family.isAutoFlush()); System.out.println("Compression: " + family.getCompressionType()); } } 2. 获取列族元数据 java Configuration conf = new Configuration(); Admin admin = new HBaseAdmin(conf); TableName tableName = TableName.valueOf("my_table"); HTableDescriptor tableDesc = admin.getTableDescriptor(tableName); System.out.println("Family Name: " + tableDesc.getValue(HConstants.TABLE_NAME_STR_KEY)); System.out.println("Version Control: " + tableDesc.getValue(HConstants.VERSIONS_KEY)); System.out.println("Compression: " + tableDesc.getValue(HConstants.COMPRESSION_KEY)); 四、如何管理HBase中的元数据? 管理HBase中的元数据主要涉及到创建、修改和删除表和列族。以下是几个常见的例子: 1. 创建表 java Configuration conf = new Configuration(); Admin admin = new HBaseAdmin(conf); admin.createTable(new HTableDescriptor(TableName.valueOf("my_table")) .addFamily(new HColumnDescriptor("cf1").setVersioningEnabled(true)) .addFamily(new HColumnDescriptor("cf2").setInMemory(true))); 2. 修改表 java Configuration conf = new Configuration(); Admin admin = new HBaseAdmin(conf); admin.modifyTable(TableName.valueOf("my_table"), new HTableDescriptor(TableName.valueOf("my_table")) .removeFamily(Bytes.toBytes("cf1")) .addFamily(new HColumnDescriptor("cf3"))); 3. 删除表 java Configuration conf = new Configuration(); Admin admin = new HBaseAdmin(conf); admin.disableTable(TableName.valueOf("my_table")); admin.deleteTable(TableName.valueOf("my_table")); 五、结论 HBase中的元数据对于管理和优化数据非常重要。当你真正摸清楚怎么在HBase中运用和管理元数据这个窍门后,那就像是解锁了一个新技能,能够让你更充分地榨取HBase的精华,从而让我们的工作效率噌噌上涨,数据处理能力也如虎添翼。同时,咱也要明白一点,管理维护元数据这事儿也是要花费一定精力和资源的。所以呢,咱们得机智地设计和运用元数据,这样才能让它发挥出最大的效果,达到事半功倍的理想状态。
2023-11-14 11:58:02
434
风中飘零-t
HessianRPC
...它们在性能优化、数据压缩、API设计等方面提供了更多选择。因此,在实际项目选型时,开发者应结合具体业务场景和技术栈特点,综合评估各种通信框架的优势和适用性,以实现最优的系统设计和开发效率。
2023-04-06 14:52:47
479
半夏微凉-t
转载文章
.../可以指定是原图还是压缩图,默认二者都有sourceType: ['album', 'camera'], //从相册选择success: function (res) {console.log(JSON.stringify(res.tempFilePaths));} }); 2. app权限配置要勾选上对应的权限,如图: <uses-feature android:name=“android.hardware.camera” /> <uses-feature android:name=“android.hardware.camera.autofocus” /> <!-- 摄像头权限 --> <uses-permission android:name=“android.permission.CAMERA” /> <!-- 开启闪光灯权限 --> <uses-permission android:name=“android.permission.FLASHLIGHT”/> app模块配置勾选相机相册 以上三点都没问题了,打包之后的app应该就可以调用原生相机功能了。我出现无法调起来的原因是第三不,没有配置模块。 本篇文章为转载内容。原文链接:https://blog.csdn.net/jieyucx/article/details/130319786。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-01 22:36:09
32
转载
转载文章
...将rarlinux解压缩在/opt目录下 然后执行:ln -s /opt/rar/unrar /usr/bin/unrar 可以当我运行 iFile:/bin unrar -bash: /bin/unrar: No such file or directory 当执行:ln -s /opt/rar/unrar /bin/unrar时则可以正常运行 请详细的解释一下path和/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin这几个目录有什么区别 | 请详细的解释一下path和/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin这几个目录有什么区别 -------------------------- 没必然关系 PATH(非path,linux下严格区分大小写)是环境变量 当你输入一个命令是 回去PATH变量的那些路径下去找该命令 既然说了PATH是一个变量 你为什么要执行$PATH?! 从你的内容里可以看出你的PATH的值是/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/sharescm/jdk1.6/bin 当你输入一个命令时 就会默认去这些目录下找 -bash: /bin/unrar: No such file or directory -------- 没有/bin/unrar 你执行 当然会报No such file or directory 这句英语的意思很明显了吧 你ln -s /opt/rar/unrar /bin/unrar时则可以正常运行 已经创建了一个链接/bin/unrar 那么/bin/unrar就是存在的了 当然可以执行 | 学linux 看鸟哥http://linux.vbird.org/ | 用这么多目录是为了满足不同用户的,另外PATH本身就是为了不同程序的使用而存在的 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39886172/article/details/116808425。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 18:58:56
39
转载
ActiveMQ
...,通过批次处理、日志压缩以及更智能的flush策略,在保证数据一致性的前提下显著提升了磁盘同步性能。 此外,RabbitMQ作为另一个广泛应用的消息中间件,也提供了多种磁盘持久化策略,如使用确认模式(acknowledgement modes)来控制消息何时被确认为已写入磁盘,以适应不同场景下的数据持久化需求。 同时,云原生时代的来临,诸如Amazon SQS、Google Cloud Pub/Sub等云服务提供的消息队列服务,在磁盘同步方面有着独特的优势,它们利用分布式存储和云平台的高可用特性,提供了数据持久化的可靠保障,同时也减轻了用户在运维层面的负担。 综上所述,了解并合理运用各种消息中间件的磁盘同步机制,是构建高并发、高可靠应用的关键环节。不断跟踪相关领域的最新进展和技术动态,有助于我们更好地应对大数据时代带来的挑战,确保信息系统的稳健运行。
2023-12-08 11:06:07
463
清风徐来-t
Hadoop
...要进行一些预处理,如压缩、格式转换等。Hadoop的Pig或Hive可以方便地编写SQL-like查询来操作这些数据,如下所示: sql A = LOAD '/user/hadoop/images' USING PigStorage(':'); B = FILTER A BY size(A) > 1000; // 过滤出大于1MB的图像 STORE B INTO '/user/hadoop/preprocessed'; 3. 特征提取与分析 使用Hadoop的MapReduce,我们可以并行计算每个图像的特征,如颜色直方图、纹理特征等。以下是一个简单的MapReduce任务示例: java public class ImageFeatureMapper extends Mapper { @Override protected void map(LongWritable key, Text value, Context context) { // 图像处理逻辑,生成特征值 int[] feature = processImage(value.toString()); context.write(new Text(featureToString(feature)), new IntWritable(1)); } } public class ImageFeatureReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } 4. 结果聚合与可视化 最后,我们将所有图像的特征值汇总,进行统计分析,甚至可以进一步使用Hadoop的Mahout库进行聚类或分类。例如,计算平均颜色直方图: java final ReduceTask reducer = job.getReducer(); reducer.setNumReduceTasks(1); 然后,用Matplotlib这样的可视化库,将结果呈现出来,便于理解和解读。 四、总结与展望 Hadoop凭借其出色的性能和易用性,为我们处理大量图像数据提供了有力支持。你知道吗,随着深度学习这家伙越来越火,Hadoop这老伙计可能得找个新拍档,比如Spark,才能一起搞定那些高难度的图片数据分析任务,毕竟单打独斗有点力不从心了。不过呢,Hadoop这家伙绝对是咱们面对海量数据时的首选英雄,特别是在刚开始那会儿,简直就是数据难题的救星,让咱们在信息的汪洋大海里也能轻松应对,游得畅快。
2024-04-03 10:56:59
439
时光倒流
Impala
... 1. 使用HDFS压缩文件 如果你的数据文件很大,你可以考虑在上传到Impala之前对其进行压缩。这可以显著减少传输时间,并降低对网络带宽的需求。 bash hadoop fs -copyFromLocal -f /path/to/my_large_file.csv /tmp/ hadoop fs -distcp /tmp/my_large_file.csv /user/hive/warehouse/my_database.db/my_large_file.csv.gz 然后,你可以在Impala中使用以下命令来加载这个压缩文件: sql CREATE TABLE my_table (my_column string); LOAD DATA LOCAL INPATH '/user/hive/warehouse/my_database.db/my_large_file.csv.gz' INTO TABLE my_table; 2. 利用Impala的分区功能 如果可能的话,你可以考虑使用Impala的分区功能。这样一来,你就可以把那个超大的表格拆分成几个小块儿,这样就能嗖嗖地提升数据导入导出的速度啦! sql CREATE TABLE my_table ( my_column string, year int, month int, day int) PARTITIONED BY (year, month, day); INSERT OVERWRITE TABLE my_table PARTITION(year=2021, month=5, day=3) SELECT FROM my_old_table; 四、结论 通过上述方法,你应该能够更有效地进行Impala数据的导入和导出。甭管你是刚入门的小白,还是身经百战的老司机,只要肯花点时间学一学、练一练,这些技巧你都能轻轻松松拿下。记住,技术不是目的,而是手段。真正的价值在于如何利用这些工具来解决问题,提升工作效率。
2023-10-21 15:37:24
511
梦幻星空-t
Apache Lucene
...的支持以及增强的索引压缩算法,旨在进一步提高搜索性能,降低存储成本,并为企业用户提供了更为灵活高效的全文检索方案。因此,对于任何依赖于全文搜索功能的开发者或IT专业人员来说,跟进Apache Lucene的最新发展动态和技术实践,无疑将有助于其构建更为强大且适应未来需求的信息检索系统。
2023-10-23 22:21:09
467
断桥残雪-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 查看当前目录下所有文件及目录占用的空间大小(以人类可读格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"