前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Axios库在Vue项目中的集成与使用 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...生对象的成员可通过只使用类名作为限定符来调用: val instance = MyClass.create() 可以省略伴生对象的名称,在这种情况下将使用名称 Companion: class MyClass { 伴生对象的作用 类似于 Java 中使用类访问静态成员的语法。因为 Kotlin 取消了 static 关键字,所以 Kotlin 引入伴生对象来弥补没有静态成员的不足。可见,伴生对象的主要作用就是为其所在的外部类模拟静态成员。 在 Java 代码中调用伴生对象 如何在 Java 代码中调用 Kotlin 的伴生对象呢? public static void main(String[] args) { 如果声明伴生对象有名称,则使用: 类名.伴生对象名.方法名() 类名.半生对象名.属性的setter,getter方法 如果声明伴生对象无名称,则采用 Companion 关键字调用: .Companion.方法名() @JvmField 和 @JvmStatic 的使用 在上面的例子中,我们知道了可以在 Java 代码中调用 Kotlin 中伴生对象的成员,类似于 Java 类中的静态成员。但是看上去和 Java 中的还是略有区别,因为类名和方法名/属性setter,getter方法名之间多了个伴生对象的名称或者 Companion 关键字。如何使其在调用的时候与 Java 中的调用看上去一样呢? Kotlin 为我们提供了 @JvmField 和 @JvmStatic 两个注解。@JvmField 使用在属性上,@JvmStatic 使用在方法上。如: class Test { 这样我们在 Java 代码中调用的时候就和 Java 类调用静态成员的形式一致了,Kotlin 代码调用方式不变: System.out.println(Test.flag); System.out.println(Test.add(1, 2)); const 关键字 在伴生对象中,我们可能需要声明一个常量,目的是等同于 Java 中的静态常量。有两种方式,一种是上面所提到的使用 @JvmField 注解,另一种则是使用 const 关键字修饰。这两种声明方式都等同于 Java 中 static final 所修饰的变量。如下代码: companion 扩展属性和扩展方法 扩展函数 Kotlin的扩展函数可以让你作为一个类成员进行调用的函数,但是是定义在这个类的外部。这样可以很方便的扩展一个已经存在的类,为它添加额外的方法 下面我们为String添加一个toInt的方法 package com.binzi.kotlin 在这个扩展函数中,你可以直接访问你扩展的类的函数和属性,就像定义在这个类中的方法一样,但是扩展函数并不允许你打破封装。跟定义在类中方法不同,它不能访问那些私有的、受保护的方法和属性。 扩展函数的导入 我们直接在包里定义扩展函数。这样我们就可以在整个包里面使用这些扩展,如果我们要使用其他包的扩展,我们就需要导入它。导入扩展函数跟导入类是一样的方式。 import 有时候,可能你引入的第三方包都对同一个类型进行了相同函数名扩展,为了解决冲突问题,你可以使用下面的方式对扩展函数进行改名 import com.binzi.kotlin.toInt as toInteger 扩展函数不可覆盖 扩展方法的原理 Kotlin 中类的扩展方法并不是在原类的内部进行拓展,通过反编译为Java代码,可以发现,其原理是使用装饰模式,对源类实例的操作和包装,其实际相当于我们在 Java中定义的工具类方法,并且该工具类方法是使用调用者为第一个参数的,然后在工具方法中操作该调用者 如: fun String?.toInt(): 反编译为对应的Java代码: public 扩展属性 类的扩展属性原理其实与扩展方法是一样的,只是定义的形式不同,扩展属性必须定义get和set方法 为MutableList扩展一个firstElement属性: var 反编译后的java代码如下: public static final Object getFirstElement(@NotNull List $this$firstElement) { 内部类 kotlin的内部类与java的内部类有点不同java的内部类可以直接访问外部类的成员,kotlin的内部类不能直接访问外部类的成员,必须用inner标记之后才能访问外部类的成员 没有使用inner标记的内部类 class A{ 反编译后的java代码 public 用inner标记的内部类 class A{ 反编译后的java代码 public 从上面可以看出,没有使用inner标记的内部类最后生成的是静态内部类,而使用inner标记的生成的是非静态内部类 匿名内部类 匿名内部类主要是针对那些获取抽象类或者接口对象而来的。最常见的匿名内部类View点击事件: //java,匿名内部类的写法 上面这个是java匿名内部类的写法,kotlin没有new关键字,那么kotlin的匿名内部类该怎么写呢? object : View.OnClickListener{ 方法的参数是一个匿名内部类,先写object:,然后写你的参数类型View.OnClickListener{} kotlin还有一个写法lambda 表达式,非常之方便: print( 数据类 在Java中没有专门的数据类,常常是通过JavaBean来作为数据类,但在Kotlin中提供了专门的数据类。 Java public 从上面的例子中可以看到,如果要使用数据类,需要手动写相应的setter/getter方法(尽管IDE也可以批量生成),但是从代码阅读的角度来说,在属性较多的情况下,诸多的seeter/getter方法还是不利于代码的阅读和维护。 Kotlin 在Kotlin中,可以通过关键字data来生成数据类: data 即在class关键字之前添加data关键字即可。编译器会根据主构造函数中的参数生成相应的数据类。自动生成setter/getter、toString、hashCode等方法 要声明一个数据类,需要满足: 主构造函数中至少有一个参数 主构造函数中所有参数需要标记为val或var 数据类不能是抽象、开发、密封和内部的 枚举类 枚举类是一种特殊的类,kotlin可以通过enum class关键字定义枚举类。 枚举类可以实现0~N个接口; 枚举类默认继承于kotlin.Enum类(其他类最终父类都是Any),因此kotlin枚举类不能继承类; 非抽象枚举类不能用open修饰符修饰,因此非抽象枚举类不能派生子类; 抽象枚举类不能使用abstract关键字修饰enum class,抽象方法和抽象属性需要使用; 枚举类构造器只能使用private修饰符修饰,若不指定,则默认为private; 枚举类所有实例在第一行显式列出,每个实例之间用逗号隔开,整个声明以分号结尾; 枚举类是特殊的类,也可以定义属性、方法、构造器; 枚举类应该设置成不可变类,即属性值不允许改变,这样更安全; 枚举属性设置成只读属性后,最好在构造器中为枚举类指定初始值,如果在声明时为枚举指定初始值,会导致所有枚举值(或者说枚举对象)的该属性都一样。 定义枚举类 / 定义一个枚举类 / 枚举类实现接口 枚举值分别实现接口的抽象成员 enum 枚举类统一实现接口的抽象成员 enum 分别实现抽象枚举类抽象成员 enum 委托 委托模式 是软件设计模式中的一项基本技巧。在委托模式中,有两个对象参与处理同一个请求,接受请求的对象将请求委托给另一个对象来处理。委托模式是一项基本技巧,许多其他的模式,如状态模式、策略模式、访问者模式本质上是在更特殊的场合采用了委托模式。委托模式使得我们可以用聚合来替代继承。 Java中委托: interface Printer { Kotlin: interface Printer { by表示 p 将会在 PrintImpl 中内部存储, 并且编译器将自动生成转发给 p 的所有 Printer 的方法。 委托属性 有一些常见的属性类型,虽然我们可以在每次需要的时候手动实现它们, 但是如果能够为大家把他们只实现一次并放入一个库会更好。例如包括: 延迟属性(lazy properties): 其值只在首次访问时计算; 可观察属性(observable properties): 监听器会收到有关此属性变更的通知; 把多个属性储存在一个映射(map)中,而不是每个存在单独的字段中。 为了涵盖这些(以及其他)情况,Kotlin 支持 委托属性 。 委托属性的语法是: var : 在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。 标准委托: Kotlin 标准库为几种有用的委托提供了工厂方法。 延迟属性 Lazy lazy() 接受一个 lambda 并返回一个 Lazy 实例的函数,返回的实例可以作为实现延迟属性的委托:第一次调用 get() 会执行已传递给 lazy() 的 lambda 表达式并记录结果, 后续调用 get() 只是返回记录的结果。例如: val lazyValue: String 可观察属性 Observable Delegates.observable() 接受两个参数:初始值和修改时处理程序(handler)。每当我们给属性赋值时会调用该处理程序(在赋值后执行)。它有三个参数:被赋值的属性、旧值和新值: class User { 如果想拦截赋的新值,并根据你是不是想要这个值来决定是否给属性赋新值,可以使用 vetoable() 取代 observable(),接收的参数和 observable 一样,不过处理程序 返回值是 Boolean 来决定是否采用新值,即在属性被赋新值生效之前 会调用传递给 vetoable 的处理程序。例如: class User { 把属性存在map 中 一个常见的用例是在一个映射(map)里存储属性的值。这经常出现在像解析 JSON 或者做其他“动态”事情的应用中。在这种情况下,你可以使用映射实例自身作为委托来实现委托属性。 例如: class User(map: Map 在上例中,委托属性会从构造函数传入的map中取值(通过字符串键——属性的名称),如果遇到声明的属性名在map 中找不到对应的key 名,或者key 对应的value 值的类型与声明的属性的类型不一致,会抛出异常。 内联函数 当一个函数被声明为inline时,它的函数体是内联的,也就是说,函数体会被直接替换到函数被调用地方 inline函数(内联函数)从概念上讲是编译器使用函数实现的真实代码来替换每一次的函数调用,带来的最直接的好处就是节省了函数调用的开销,而缺点就是增加了所生成字节码的尺寸。基于此,在代码量不是很大的情况下,我们是否有必要将所有的函数定义为内联?让我们分两种情况进行说明: 将普通函数定义为内联:众所周知,JVM内部已经实现了内联优化,它会在任何可以通过内联来提升性能的地方将函数调用内联化,并且相对于手动将普通函数定义为内联,通过JVM内联优化所生成的字节码,每个函数的实现只会出现一次,这样在保证减少运行时开销的同时,也没有增加字节码的尺寸;所以我们可以得出结论,对于普通函数,我们没有必要将其声明为内联函数,而是交给JVM自行优化。 将带有lambda参数的函数定义为内联:是的,这种情况下确实可以提高性能;但在使用的过程中,我们会发现它是有诸多限制的,让我们从下面的例子开始展开说明: inline 假如我们这样调用doSomething: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { 从上面编译的结果可以看出,无论doSomething函数还是action参数都被内联了,很棒,那让我们换一种调用方式: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { doSomething函数被内联,而action参数没有被内联,这是因为以函数型变量的形式传递给doSomething的lambda在函数的调用点是不可用的,只有等到doSomething被内联后,该lambda才可以正常使用。 通过上面的例子,我们对lambda表达式何时被内联做一下简单的总结: 当lambda表达式以参数的形式直接传递给内联函数,那么lambda表达式的代码会被直接替换到最终生成的代码中。 当lambda表达式在某个地方被保存起来,然后以变量形式传递给内联函数,那么此时的lambda表达式的代码将不会被内联。 上面对lambda的内联时机进行了讨论,消化片刻后让我们再看最后一个例子: inline 上面的例子是否有问题?是的,编译器会抛出“Illegal usage of inline-parameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...些应用程序就可以直接使用输入输出的地址空间,从而提高读写的效率。Linux提供了mmap()函数,用来映射物理内存。在驱动程序中,应用程序以设备文件为对象,调用mmap()函数,内核进行内存映射的准备工作,生成vm_area_struct结构体,然后调用设备驱动程序中定义的mmap函数。 2.mmap系统调用 mmap将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。munmap执行相反的操作,删除特定地址区域的对象映射。 当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内存写时不会写入超过当前文件大小的内容. 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。 基于文件的映射,在mmap和munmap执行过程的任何时刻,被映射文件的st_atime可能被更新。如果st_atime字段在前述的情况下没有得到更新,首次对映射区的第一个页索引时会更新该字段的值。用PROT_WRITE 和 MAP_SHARED标志建立起来的文件映射,其st_ctime 和 st_mtime在对映射区写入之后,但在msync()通过MS_SYNC 和 MS_ASYNC两个标志调用之前会被更新。 用法: include <sys/mman.h> void mmap(void start, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void start, size_t length); 返回说明: 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void )-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错 EAGAIN:文件已被锁定,或者太多的内存已被锁定 EBADF:fd不是有效的文件描述词 EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制 ENODEV:指定文件所在的文件系统不支持内存映射 ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许 ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区 参数: start:映射区的开始地址。 length:映射区的长度。 prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 PROT_EXEC //页内容可以被执行 PROT_READ //页内容可以被读取 PROT_WRITE //页可以被写入 PROT_NONE //页不可访问 flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。 MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。 MAP_DENYWRITE //这个标志被忽略。 MAP_EXECUTABLE //同上 MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。 MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。 MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。 MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。 MAP_FILE //兼容标志,被忽略。 MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。 offset:被映射对象内容的起点。 3.munmap系统调用 include <sys/mman.h> int munmap( void addr, size_t len ) 该调用在进程地址空间中解除一个映射关系,addr是调用mmap()时返回的地址,len是映射区的大小。当映射关系解除后,对原来映射地址的访问将导致段错误发生。 4.msync系统调用 include <sys/mman.h> int msync ( void addr , size_t len, int flags) 一般说来,进程在映射空间的对共享内容的改变并不直接写回到磁盘文件中,往往在调用munmap()后才执行该操作。可以通过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...)为全球范围内的数据使用树立了高标准,这也促使企业在利用大数据进行业务决策时,必须更加注重合规与透明。 总结而言,以饿了么为代表的生活服务平台正在借力先进科技力量推动产业革新,而这一趋势将在更广泛的物流与配送领域持续发酵,未来的市场竞争将更多体现在智能化、个性化与高效化的服务能力上。在这个过程中,不仅需要企业积极探索技术创新应用,更需在法律法规框架下妥善处理数据安全与个人隐私问题,实现可持续的健康发展。
2023-01-31 14:48:26
343
转载
转载文章
... 2、支付宝和余额宝使用不同的数据库 如图: 2、分布式事务解决方案 1、基于数据库XA协议的两段提交 XA协议是数据库支持的一种协议,其核心是一个事务管理器用来统一管理两个分布式数据库,如图 事务管理器负责跟支付宝数据库和余额宝数据库打交道,一旦有一个数据库连接失败,另一个数据库的操作就不会进行,一个数据库操作失败就会导致另一个数据库回滚,只有他们全部成功两个数据库的事务才会提交。 基于XA协议的两段和三段提交是一种严格的安全确认机制,其安全性是非常高的,但是保证安全性的前提是牺牲了性能,这个就是分布式系统里面的CAP理论,做任何架构的前提需要有取舍。所以基于XA协议的分布式事务并发性不高,不适合高并发场景。 2、基于activemq的解决方案 如图: 1、支付宝扣款成功时往message表插入消息 2、message表有message_id(流水id,标识夸系统的一次转账操作),status(confirm,unconfirm) 3、timer扫描message表的unconfirm状态记录往activemq插入消息 4、余额宝收到消息消费消息时先查询message表如果有记录就不处理如果没记录就进行数据库增款操作 5、如果余额宝数据库操作成功往余额宝message表插入消息,表字段跟支付宝message一致 6、如果5操作成功,回调支付宝接口修改message表状态,把unconfirm状态转换成confirm状态 问题描述: 1、支付宝设计message表的目的 如果支付宝往activemq插入消息而余额宝消费消息异常,有可能是消费消息成功而事务操作异常,有可能是网络异常等等不确定因素。如果出现异常而activemq收到了确认消息的信号,这时候activemq中的消息是删除了的,消息丢失了。设置message表就是有一个消息存根,activemq中消息丢失了message表中的消息还在。解决了activemq消息丢失问题 2、余额宝设计message表的目的 当余额宝消费成功并且数据库操作成功时,回调支付宝的消息确认接口,如果回调接口时出现异常导致支付宝状态修改失败还是unconfirm状态,这时候还会被timer扫描到,又会往activemq插入消息,又会被余额宝消费一边,但是这条消息已经消费成功了的只是回调失败而已,所以就需要有一个这样的message表,当余额宝消费时先插入message表,如果message根据message_id能查询到记录就说明之前这条消息被消费过就不再消费只需要回调成功即可,如果查询不到消息就消费这条消息继续数据库操作,数据库操作成功就往message表插入消息。 这样就解决了消息重复消费问题,这也是消费端的幂等操作。 基于消息中间件的分布式事务是最理想的分布式事务解决方案,兼顾了安全性和并发性! 接下来贴代码: 支付宝代码: @Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws userID:转账的用户ID amount:转多少钱/@Autowired@Qualifier("activemq")OrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId,String messageId, int amount) {try {orderService.updateAmount(amount,messageId, userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";}@RequestMapping("/callback")public String callback(String param) {JSONObject parse = JSONObject.parseObject(param);String respCode = parse.getString("respCode");if(!"OK".equalsIgnoreCase(respCode)) {return null;}try {orderService.updateMessage(param);}catch (Exception e) {e.printStackTrace();return "fail";}return "ok";} } public interface OrderService {public void updateAmount(int amount, String userId,String messageId);public void updateMessage(String param);} @Service("activemq")@Transactional(rollbackFor = Exception.class)public class OrderServiceActivemqImpl implements OrderService {Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;@AutowiredJmsTemplate jmsTemplate;@Overridepublic void updateAmount(final int amount, final String messageId, final String userId) {String sql = "update account set amount = amount - ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[]{amount, userId});if (count == 1) {//插入到消息记录表sql = "insert into message(user_id,message_id,amount,status) values (?,?,?,?)";int row = jdbcTemplate.update(sql,new Object[]{userId,messageId,amount,"unconfirm"});if(row == 1) {//往activemq中插入消息jmsTemplate.send("zg.jack.queue", new MessageCreator() {@Overridepublic Message createMessage(Session session) throws JMSException {com.zhuguang.jack.bean.Message message = new com.zhuguang.jack.bean.Message();message.setAmount(Integer.valueOf(amount));message.setStatus("unconfirm");message.setUserId(userId);message.setMessageId(messageId);return session.createObjectMessage(message);} });} }}@Overridepublic void updateMessage(String param) {JSONObject parse = JSONObject.parseObject(param);String messageId = parse.getString("messageId");String sql = "update message set status = ? where message_id = ?";int count = jdbcTemplate.update(sql,new Object[]{"confirm",messageId});if(count == 1) {logger.info(messageId + " callback successfull");} }} activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> spring-dispatcher.xml <beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"xmlns:context="http://www.springframework.org/schema/context"xmlns:task="http://www.springframework.org/schema/task" xmlns:aop="http://www.springframework.org/schema/aop"xmlns:tx="http://www.springframework.org/schema/tx"xmlns:util="http://www.springframework.org/schema/util" xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/utilhttp://www.springframework.org/schema/util/spring-util-3.2.xsdhttp://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsdhttp://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-3.2.xsdhttp://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsdhttp://www.springframework.org/schema/txhttp://www.springframework.org/schema/tx/spring-tx-3.0.xsdhttp://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"><!-- 引入同文件夹下的redis属性配置文件 --><!-- 解决springMVC响应数据乱码 text/plain就是响应的时候原样返回数据--><import resource="../activemq/activemq.xml"/><!--<context:property-placeholder ignore-unresolvable="true" location="classpath:config/core/core.properties,classpath:config/redis/redis-config.properties" />--><bean id="propertyConfigurerForProject1" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"><property name="order" value="1" /><property name="ignoreUnresolvablePlaceholders" value="true" /><property name="location"><value>classpath:config/core/core.properties</value></property></bean><mvc:annotation-driven><mvc:message-converters register-defaults="true"><bean class="org.springframework.http.converter.StringHttpMessageConverter"><property name="supportedMediaTypes" value = "text/plain;charset=UTF-8" /></bean></mvc:message-converters></mvc:annotation-driven><!-- 避免IE执行AJAX时,返回JSON出现下载文件 --><bean id="mappingJacksonHttpMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"><property name="supportedMediaTypes"><list><value>text/html;charset=UTF-8</value></list></property></bean><!-- 开启controller注解支持 --><!-- 注:如果base-package=com.avicit 则注解事务不起作用 TODO 读源码 --><context:component-scan base-package="com.zhuguang"></context:component-scan><mvc:view-controller path="/" view-name="redirect:/index" /><beanclass="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /><bean id="handlerAdapter"class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"></bean><beanclass="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"><property name="mediaTypes"><map><entry key="json" value="application/json" /><entry key="xml" value="application/xml" /><entry key="html" value="text/html" /></map></property><property name="viewResolvers"><list><bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /><bean class="org.springframework.web.servlet.view.UrlBasedViewResolver"><property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /><property name="prefix" value="/" /><property name="suffix" value=".jsp" /></bean></list></property></bean><!-- 支持上传文件 --> <!-- 控制器异常处理 --><bean id="exceptionResolver"class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver"><property name="exceptionMappings"><props><prop key="java.lang.Exception">error</prop></props></property></bean><bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"><property name="driverClass"><value>${jdbc.driverClassName}</value></property><property name="jdbcUrl"><value>${jdbc.url}</value></property><property name="user"><value>${jdbc.username}</value></property><property name="password"><value>${jdbc.password}</value></property><property name="minPoolSize" value="10" /><property name="maxPoolSize" value="100" /><property name="maxIdleTime" value="1800" /><property name="acquireIncrement" value="3" /><property name="maxStatements" value="1000" /><property name="initialPoolSize" value="10" /><property name="idleConnectionTestPeriod" value="60" /><property name="acquireRetryAttempts" value="30" /><property name="breakAfterAcquireFailure" value="false" /><property name="testConnectionOnCheckout" value="false" /><property name="acquireRetryDelay"><value>100</value></property></bean><bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate"><property name="dataSource" ref="dataSource"></property></bean><bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"><property name="dataSource" ref="dataSource"/></bean><tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true" /><aop:aspectj-autoproxy expose-proxy="true"/></beans> logback.xml <?xml version="1.0" encoding="UTF-8"?><!--scan:当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。scanPeriod:设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒当scan为true时,此属性生效。默认的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
499
转载
转载文章
...解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...上所有的字符,但实际使用过程中会发现真正用的上的字符相对整个字库表来说比例非常低。例如中文地区的程序几乎不会需要日语字符,而一些英语国家甚至简单的ASCII字库表就能满足基本需求。而如果把每个字符都用字库表中的序号来存储的话,每个字符就需要3个字节(这里以Unicode字库为例),这样对于原本用仅占一个字符的ASCII编码的英语地区国家显然是一个额外成本(存储体积是原来的三倍)。算的直接一些,同样一块硬盘,用ASCII可以存1500篇文章,而用3字节Unicode序号存储只能存500篇。于是就出现了UTF-8这样的变长编码。在UTF-8编码中原本只需要一个字节的ASCII字符,仍然只占一个字节。而像中文及日语这样的复杂字符就需要2个到3个字节来存储。 关于字符编码知识的详细讲解请见:《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 7、UTF-8和Unicode的关系 看完上面两个概念解释,那么解释UTF-8和Unicode的关系就比较简单了。 Unicode就是上文中提到的编码字符集,而UTF-8就是字符编码,即Unicode规则字库的一种实现形式。 随着互联网的发展,对同一字库集的要求越来越迫切,Unicode标准也就自然而然的出现。它几乎涵盖了各个国家语言可能出现的符号和文字,并将为他们编号。详见:Unicode百科介绍。 Unicode的编号从 0000 开始一直到10FFFF 共分为17个Plane,每个Plane中有65536个字符。而UTF-8则只实现了第一个Plane,可见UTF-8虽然是一个当今接受度最广的字符集编码,但是它并没有涵盖整个Unicode的字库,这也造成了它在某些场景下对于特殊字符的处理困难(下文会有提到)。 8、UTF-8编码简介 为了更好的理解后面的实际应用,我们这里简单的介绍下UTF-8的编码实现方法。即UTF-8的物理存储和Unicode序号的转换关系。 UTF-8编码为变长编码,最小编码单位(code unit)为一个字节。一个字节的前1-3个bit为描述性部分,后面为实际序号部分: 1)如果一个字节的第一位为0,那么代表当前字符为单字节字符,占用一个字节的空间。0之后的所有部分(7个bit)代表在Unicode中的序号; 2)如果一个字节以110开头,那么代表当前字符为双字节字符,占用2个字节的空间。110之后的所有部分(5个bit)加上后一个字节的除10外的部分(6个bit)代表在Unicode中的序号。且第二个字节以10开头; 3)如果一个字节以1110开头,那么代表当前字符为三字节字符,占用3个字节的空间。110之后的所有部分(5个bit)加上后两个字节的除10外的部分(12个bit)代表在Unicode中的序号。且第二、第三个字节以10开头; 4)如果一个字节以10开头,那么代表当前字节为多字节字符的第二个字节。10之后的所有部分(6个bit)和之前的部分一同组成在Unicode中的序号。 具体每个字节的特征可见下表,其中“x”代表序号部分,把各个字节中的所有x部分拼接在一起就组成了在Unicode字库中的序号。如下图所示。 我们分别看三个从一个字节到三个字节的UTF-8编码例子: 细心的读者不难从以上的简单介绍中得出以下规律: 1)3个字节的UTF-8十六进制编码一定是以E开头的; 2)2个字节的UTF-8十六进制编码一定是以C或D开头的; 3)1个字节的UTF-8十六进制编码一定是以比8小的数字开头的。 9、为什么会出现乱码 乱码也就是英文常说的mojibake(由日语的文字化け音译)。 简单的说乱码的出现是因为:编码和解码时用了不同或者不兼容的字符集。 对应到真实生活中:就好比是一个英国人为了表示祝福在纸上写了bless(编码过程)。而一个法国人拿到了这张纸,由于在法语中bless表示受伤的意思,所以认为他想表达的是受伤(解码过程)。这个就是一个现实生活中的乱码情况。 在计算机科学中一样:一个用UTF-8编码后的字符,用GBK去解码。由于两个字符集的字库表不一样,同一个汉字在两个字符表的位置也不同,最终就会出现乱码。 我们来看一个例子,假设我们用UTF-8编码存储“很屌”两个字,会有如下转换: 于是我们得到了E5BE88E5B18C这么一串数值,而显示时我们用GBK解码进行展示,通过查表我们获得以下信息: 解码后我们就得到了“寰堝睂”这么一个错误的结果,更要命的是连字符个数都变了。 10、如何识别乱码的本来想要表达的文字 要从乱码字符中反解出原来的正确文字需要对各个字符集编码规则有较为深刻的掌握。但是原理很简单,这里用以MySQL数据库中的数据操纵中最常见的UTF-8被错误用GBK展示时的乱码为例,来说明具体反解和识别过程。 10.1 第1步:编码 假设我们在页面上看到“寰堝睂”这样的乱码,而又得知我们的浏览器当前使用GBK编码。那么第一步我们就能先通过GBK把乱码编码成二进制表达式。 当然查表编码效率很低,我们也可以用以下SQL语句直接通过MySQL客户端来做编码工作: mysql [localhost] {msandbox} > selecthex(convert('寰堝睂'using gbk)); +-------------------------------------+ | hex(convert('寰堝睂'using gbk)) | +-------------------------------------+ | E5BE88E5B18C | +-------------------------------------+ 1 row inset(0.01 sec) 10.2 第2步:识别 现在我们得到了解码后的二进制字符串E5BE88E5B18C。然后我们将它按字节拆开。 然后套用之前UTF-8编码介绍章节中总结出的规律,就不难发现这6个字节的数据符合UTF-8编码规则。如果整个数据流都符合这个规则的话,我们就能大胆假设乱码之前的编码字符集是UTF-8。 10.3 第3步:解码 然后我们就能拿着 E5BE88E5B18C 用UTF-8解码,查看乱码前的文字了。 当然我们可以不查表直接通过SQL获得结果: mysql [localhost] {msandbox} ((none)) > selectconvert(0xE5BE88E5B18C using utf8); +------------------------------------+ | convert(0xE5BE88E5B18C using utf8) | +------------------------------------+ | 很屌 | +------------------------------------+ 1 row inset(0.00 sec) 11、常见的IM乱码问题处理之MySQL中的Emoji字符 所谓Emoji就是一种在Unicode位于 \u1F601-\u1F64F 区段的字符。这个显然超过了目前常用的UTF-8字符集的编码范围 \u0000-\uFFFF。Emoji表情随着IOS的普及和微信的支持越来越常见。 下面就是几个常见的Emoji(IM聊天软件中经常会被用到): 那么Emoji字符表情会对我们平时的开发运维带来什么影响呢? 最常见的问题就在于将他存入MySQL数据库的时候。一般来说MySQL数据库的默认字符集都会配置成UTF-8(三字节),而utf8mb4在5.5以后才被支持,也很少会有DBA主动将系统默认字符集改成utf8mb4。 那么问题就来了,当我们把一个需要4字节UTF-8编码才能表示的字符存入数据库的时候就会报错:ERROR 1366: Incorrect string value: '\xF0\x9D\x8C\x86' for column 。 如果认真阅读了上面的解释,那么这个报错也就不难看懂了:我们试图将一串Bytes插入到一列中,而这串Bytes的第一个字节是 \xF0 意味着这是一个四字节的UTF-8编码。但是当MySQL表和列字符集配置为UTF-8的时候是无法存储这样的字符的,所以报了错。 那么遇到这种情况我们如何解决呢? 有两种方式: 1)升级MySQL到5.6或更高版本,并且将表字符集切换至utf8mb4; 2)在把内容存入到数据库之前做一次过滤,将Emoji字符替换成一段特殊的文字编码,然后再存入数据库中。之后从数据库获取或者前端展示时再将这段特殊文字编码转换成Emoji显示。 第二种方法我们假设用 --1F601-- 来替代4字节的Emoji,那么具体实现python代码可以参见Stackoverflow上的回答。 12、参考文献 [1] 如何配置Python默认字符集 [2] 字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8 [3] Unicode中文编码表 [4] Emoji Unicode Table [5] Every Developer Should Know About The Encoding 附录:更多IM开发方面的文章 [1] IM开发综合文章: 《新手入门一篇就够:从零开发移动端IM》 《移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”》 《移动端IM开发者必读(二):史上最全移动弱网络优化方法总结》 《从客户端的角度来谈谈移动端IM的消息可靠性和送达机制》 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《小白必读:闲话HTTP短连接中的Session和Token》 《IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理》 《移动端IM开发需要面对的技术问题》 《开发IM是自己设计协议用字节流好还是字符流好?》 《请问有人知道语音留言聊天的主流实现方式吗?》 《一个低成本确保IM消息时序的方法探讨》 《完全自已开发的IM该如何设计“失败重试”机制?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《微信对网络影响的技术试验及分析(论文全文)》 《即时通讯系统的原理、技术和应用(技术论文)》 《开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》 《全面掌握移动端主流图片格式的特点、性能、调优等》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》 《融云技术分享:解密融云IM产品的聊天消息ID生成策略》 《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》 《拿起键盘就是干:跟我一起徒手开发一套分布式IM系统》 >> 更多同类文章 …… [2] 有关IM架构设计的文章: 《浅谈IM系统的架构设计》 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》 《一套原创分布式即时通讯(IM)系统理论架构方案》 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》 《蘑菇街即时通讯/IM服务器开发之架构选择》 《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《17年的实践:腾讯海量产品的技术方法论》 《移动端IM中大规模群消息的推送如何保证效率、实时性?》 《现代IM系统中聊天消息的同步和存储方案探讨》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《WhatsApp技术实践分享:32人工程团队创造的技术神话》 《微信朋友圈千亿访问量背后的技术挑战和实践总结》 《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》 《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《以微博类应用场景为例,总结海量社交系统的架构设计步骤》 《快速理解高性能HTTP服务端的负载均衡技术原理》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》 《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》 《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》 《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》 《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》 《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》 《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》 《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》 《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》 《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》 《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》 《社交软件红包技术解密(八):全面解密微博红包技术方案》 《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》 《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》 《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》 《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》 《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》 《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》 《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》 >> 更多同类文章 …… (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 本篇文章为转载内容。原文链接:https://blog.csdn.net/hellojackjiang2011/article/details/103586305。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-04-29 12:29:21
522
转载
转载文章
...头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...务器读取配置文件,请使用启动选项“——default -file”。 To run the server from the command line, execute this in a command line shell, e.g. mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要从命令行运行服务器,请在命令行shell中执行,例如mysqld——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" To install the server as a Windows service manually, execute this in a command line shell, e.g. mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要手动将服务器安装为Windows服务,请在命令行shell中执行此操作,例如mysqld——install MySQLXY——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" And then execute this in a command line shell to start the server, e.g. net start MySQLXY 然后在命令行shell中执行这个命令来启动服务器,例如net start MySQLXY Guidelines for editing this file编辑此文件的指南 ---------------------------------------------------------------------- In this file, you can use all long options that the program supports. If you want to know the options a program supports, start the program with the "--help" option. 在这个文件中,您可以使用程序支持的所有长选项。如果您想知道程序支持的选项,请使用“——help”选项启动程序。 More detailed information about the individual options can also be found in the manual. For advice on how to change settings please see https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html 有关各个选项的更详细信息也可以在手册中找到。有关如何更改设置的建议,请参见https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html CLIENT SECTION 客户端部分 ---------------------------------------------------------------------- The following options will be read by MySQL client applications. Note that only client applications shipped by MySQL are guaranteed to read this section. If you want your own MySQL client program to honor these values, you need to specify it as an option during the MySQL client library initialization. MySQL客户机应用程序将读取以下选项。注意,只有MySQL提供的客户端应用程序才能阅读本节。如果您希望自己的MySQL客户机程序遵守这些值,您需要在初始化MySQL客户机库时将其指定为一个选项。 [client] pipe= socket=MYSQL port=3306 [mysql] no-beep default-character-set= SERVER SECTION 服务器部分 ---------------------------------------------------------------------- The following options will be read by the MySQL Server. Make sure that you have installed the server correctly (see above) so it reads this file. MySQL服务器将读取以下选项。确保您已经正确安装了服务器(参见上面),以便它读取这个文件。 server_type=3 [mysqld] The next three options are mutually exclusive to SERVER_PORT below. 下面的三个选项对SERVER_PORT是互斥的。skip-networking enable-named-pipe 共享内存 skip-networking enable-named-pipe shared-memory shared-memory-base-name=MYSQL The Pipe the MySQL Server will use socket=MYSQL The TCP/IP Port the MySQL Server will listen on port=3306 Path to installation directory. All paths are usually resolved relative to this. basedir="C:/Program Files/MySQL/MySQL Server 8.0/" Path to the database root datadir=C:/ProgramData/MySQL/MySQL Server 8.0/Data The default character set that will be used when a new schema or table is created and no character set is defined 创建新模式或表时使用的默认字符集,并且没有定义字符集 character-set-server= The default authentication plugin to be used when connecting to the server 连接到服务器时使用的默认身份验证插件 default_authentication_plugin=caching_sha2_password The default storage engine that will be used when create new tables when 当创建新表时将使用的默认存储引擎 default-storage-engine=INNODB Set the SQL mode to strict 将SQL模式设置为strict sql-mode="STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION" General and Slow logging. 一般和缓慢的日志。 log-output=NONE general-log=0 general_log_file="DESKTOP-NF9QETB.log" slow-query-log=0 slow_query_log_file="DESKTOP-NF9QETB-slow.log" long_query_time=10 Binary Logging. 二进制日志。 log-bin Error Logging. 错误日志记录。 log-error="DESKTOP-NF9QETB.err" Server Id. server-id=1 Indicates how table and database names are stored on disk and used in MySQL. 指示表名和数据库名如何存储在磁盘上并在MySQL中使用。 Value = 0: Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or macOS). Value = 0:表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上。名称比较区分大小写。如果您在一个具有不区分大小写文件名(如Windows或macOS)的系统上运行MySQL,则不应将该变量设置为0。 Value = 1: Table names are stored in lowercase on disk and name comparisons are not case-sensitive. MySQL converts all table names to lowercase on storage and lookup. This behavior also applies to database names and table aliases. 表名以小写存储在磁盘上,并且名称比较不区分大小写。MySQL在存储和查找时将所有表名转换为小写。此行为也适用于数据库名称和表别名。 Value = 3, Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This works only on file systems that are not case-sensitive! InnoDB table names and view names are stored in lowercase, as for Value = 1.表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上,但是MySQL在查找时将它们转换为小写。名称比较不区分大小写。这只适用于不区分大小写的文件系统!InnoDB表名和视图名以小写存储,Value = 1。 NOTE: lower_case_table_names can only be configured when initializing the server. Changing the lower_case_table_names setting after the server is initialized is prohibited. lower_case_table_names=1 Secure File Priv. 权限安全文件 secure-file-priv="C:/ProgramData/MySQL/MySQL Server 8.0/Uploads" The maximum amount of concurrent sessions the MySQL server will allow. One of these connections will be reserved for a user with SUPER privileges to allow the administrator to login even if the connection limit has been reached. MySQL服务器允许的最大并发会话量。这些连接中的一个将保留给具有超级特权的用户,以便允许管理员登录,即使已经达到连接限制。 max_connections=151 The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. Therefore you have to make sure to set the amount of open files allowed to at least 4096 in the variable "open-files-limit" in 为所有线程打开的表的数量。增加这个值会增加mysqld需要的文件描述符的数量。因此,您必须确保在[mysqld_safe]节中的变量“open-files-limit”中将允许打开的文件数量至少设置为4096 section [mysqld_safe] table_open_cache=2000 Maximum size for internal (in-memory) temporary tables. If a table grows larger than this value, it is automatically converted to disk based table This limitation is for a single table. There can be many of them. 内部(内存)临时表的最大大小。如果一个表比这个值大,那么它将自动转换为基于磁盘的表。可以有很多。 tmp_table_size=94M How many threads we should keep in a cache for reuse. When a client disconnects, the client's threads are put in the cache if there aren't more than thread_cache_size threads from before. This greatly reduces the amount of thread creations needed if you have a lot of new connections. (Normally this doesn't give a notable performance improvement if you have a good thread implementation.) 我们应该在缓存中保留多少线程以供重用。当客户机断开连接时,如果之前的线程数不超过thread_cache_size,则将客户机的线程放入缓存。如果您有很多新连接,这将大大减少所需的线程创建量(通常,如果您有一个良好的线程实现,这不会带来显著的性能改进)。 thread_cache_size=10 MyISAM Specific options The maximum size of the temporary file MySQL is allowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. If the file-size would be bigger than this, the index will be created through the key cache (which is slower). MySQL允许在重新创建索引时(在修复、修改表或加载数据时)使用临时文件的最大大小。如果文件大小大于这个值,那么索引将通过键缓存创建(这比较慢)。 myisam_max_sort_file_size=100G If the temporary file used for fast index creation would be bigger than using the key cache by the amount specified here, then prefer the key cache method. This is mainly used to force long character keys in large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=179M Size of the Key Buffer, used to cache index blocks for MyISAM tables. Do not set it larger than 30% of your available memory, as some memory is also required by the OS to cache rows. Even if you're not using MyISAM tables, you should still set it to 8-64M as it will also be used for internal temporary disk tables. 如果用于快速创建索引的临时文件比这里指定的使用键缓存的文件大,则首选键缓存方法。这主要用于强制大型表中的长字符键使用较慢的键缓存方法来创建索引。 key_buffer_size=8M Size of the buffer used for doing full table scans of MyISAM tables. Allocated per thread, if a full scan is needed. 用于对MyISAM表执行全表扫描的缓冲区的大小。如果需要完整的扫描,则为每个线程分配。 read_buffer_size=256K read_rnd_buffer_size=512K INNODB Specific options INNODB特定选项 innodb_data_home_dir= Use this option if you have a MySQL server with InnoDB support enabled but you do not plan to use it. This will save memory and disk space and speed up some things. 如果您启用了一个支持InnoDB的MySQL服务器,但是您不打算使用它,那么可以使用这个选项。这将节省内存和磁盘空间,并加快一些事情。skip-innodb skip-innodb If set to 1, InnoDB will flush (fsync) the transaction logs to the disk at each commit, which offers full ACID behavior. If you are willing to compromise this safety, and you are running small transactions, you may set this to 0 or 2 to reduce disk I/O to the logs. Value 0 means that the log is only written to the log file and the log file flushed to disk approximately once per second. Value 2 means the log is written to the log file at each commit, but the log file is only flushed to disk approximately once per second. 如果设置为1,InnoDB将在每次提交时将事务日志刷新(fsync)到磁盘,这将提供完整的ACID行为。如果您愿意牺牲这种安全性,并且正在运行小型事务,您可以将其设置为0或2,以将磁盘I/O减少到日志。值0表示日志仅写入日志文件,日志文件大约每秒刷新一次磁盘。值2表示日志在每次提交时写入日志文件,但是日志文件大约每秒只刷新一次磁盘。 innodb_flush_log_at_trx_commit=1 The size of the buffer InnoDB uses for buffering log data. As soon as it is full, InnoDB will have to flush it to disk. As it is flushed once per second anyway, it does not make sense to have it very large (even with long transactions).InnoDB用于缓冲日志数据的缓冲区大小。一旦它满了,InnoDB就必须将它刷新到磁盘。由于它无论如何每秒刷新一次,所以将它设置为非常大的值是没有意义的(即使是长事务)。 innodb_log_buffer_size=5M InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and row data. The bigger you set this the less disk I/O is needed to access data in tables. On a dedicated database server you may set this parameter up to 80% of the machine physical memory size. Do not set it too large, though, because competition of the physical memory may cause paging in the operating system. Note that on 32bit systems you might be limited to 2-3.5G of user level memory per process, so do not set it too high. 与MyISAM不同,InnoDB使用缓冲池来缓存索引和行数据。设置的值越大,访问表中的数据所需的磁盘I/O就越少。在专用数据库服务器上,可以将该参数设置为机器物理内存大小的80%。但是,不要将它设置得太大,因为物理内存的竞争可能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...壤监测和水质监测往往使用元素分析的方法。传统的实验室检测方式虽然精度高、准确性好,但是耗时长、流程复杂,无法实现原位检测或远程快速检测。使用激光诱导击穿光谱(LIBS)可以有效改善上述问题,但是其准确率低,存在相邻特征谱线干扰。激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF)则是对LIBS技术的进一步强化升级,满足了检测需求。文章首先介绍了LIBS技术以及LIBS-LIF技术的基本原理;接着简要介绍LIBS-LIF技术在土壤监测的应用情况,介绍了技术的应用起源和研究进展;然后介绍LIBS技术和LIBS-LIF技术在水质监测方面的应用,由于液体检测中对于预处理的方式最为重要,因此此处简要归纳了液体检测样品预处理的方法,最后对LIBS-LIF技术在环境方面的应用做出总结和展望。LIBS-LIF技术具有着传统实验室检测无法比拟的优势,也正处于热门研究方向,未来潜力无限。 关键词: 激光诱导击穿光谱(LIBS);激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF);环境监测;土壤监测;水质监测 Elemental Analysis Application of Laser Induced Breakdown Spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF) Technology in Environmental Monitoring Abstract: The importance of environmental monitoring is becoming more and more significant under the background of increasingly prominent environmental problems. Among the environmental problems, soil problem and water quality problem is one of the very important topics. Element analysis is often used for soil monitoring and water quality monitoring. Although the traditional laboratory detection method has high accuracy and good accuracy, it takes a long time and the process is complex, so it is impossible to realize in-situ detection or remote rapid detection. Laser induced breakdown spectroscopy (LIBS) can effectively improve the above problems, but its accuracy is low and there is interference between adjacent characteristic lines. Laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF) is a further enhancement and upgrade of LIBS technology to meet the detection needs. This paper first introduces the basic principles of LIBS technology and LIBS-LIF technology, then briefly introduces the application of LIBS-LIF technology in soil monitoring, and introduces the application origin and research progress of LIBS-LIF technology. Then it introduces the application of LIBS technology and LIBS-LIF technology in water quality monitoring. Because the way of pretreatment is the most important in liquid detection, the pretreatment methods of liquid testing samples are briefly summarized here. Finally, the application of LIBS-LIF technology in the environment is summarized and prospected. LIBS-LIF technology has incomparable advantages over traditional laboratory testing, and it is also in a hot research direction, with unlimited potential in the future. Keywords: Laser induced breakdown spectroscopy(LIBS); Laser induced breakdown spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF); Environmental monitoring; Soil monitoring; Water quality monitoring Completion time: 2021-11 目录 0. 引言 1. 技术简介 1.1 LIBS技术简介 1.1.1 LIBS技术的基本原理 1.1.2 LIBS技术的定量分析 1.1.3 LIBS技术的优缺点 1.2 LIBS-LIF技术 1.2.1 LIF技术的基本原理 1.2.2 Co原子的LIBS-LIF增强原理 2. LIBS-LIF技术用于土壤监测 2.1 早期研究 2.2 近期研究现状 3. LIBS及LIBS-LIF技术用于水质监测 3.1液体直接检测 3.2液固转换检测 3.2.1吸附法 3.2.2成膜法 3.2.3微萃取法 3.2.4冷冻法 3.2.5电沉积法 3.3液气转换检测 4. 总结与展望 参考文献 0. 引言 随着经济的发展,人们物质生活水平提高的同时,环境的问题也愈发突出,其中,土壤问题和水体问题十分突出。 土壤是包括人类在内的一切生物体生存的载体,土壤的质量与农作物的生长息息相关,而农作物的收成则是人类发展的基石。在工业化发展的影响下,土壤重金属污染和积累成为了一个世界性的问题,尤其在中国特别是长三角地区尤为严重[1]。 水是生命之源,水体问题直接关系到所有生物体的生存。环境中的水体问题,主要集中在工业废水的治理与监测上。工业废水中含有大量重金属元素,其难以生物降解,重金属元素会随着水体流动而扩散。 物质元素分析在土壤分析和水质分析上是常用的方式。传统的分析方法是基于实验室的元素光谱分析法,其具有高精度、高稳定的特点,如:原子吸收光谱法(Atomic absorption spectrometry, AAS)、电感耦合等离子体质谱法(Inductively coupled plasma mass spectrometry, ICP-MS)、电感耦合等离子体原子发射光谱法(Inductively coupled plasma atomic emission spectrometry, ICP-AES)等,但是此类光谱的检测样品预处理复杂、检测操作难度高、需要庞大复杂的实验设备,且对样品造成损坏,有所不便[2,3]。 激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)是一种基于原子光谱分析技术,与传统的光谱分析技术相比,其实验装置简单便携、操作简便、应用广泛、可远程测量,同时有在简单预处理样品或根本不预处理的情况下进行现场测量的潜力。因此,其满足在环境监测中,特别是土壤监测和水质监测此类希望可以在现场检测、快速便捷检测,同时精度较高的需求。LIBS技术很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,进一步提高了 LIBS技术的检测准确度和竞争力[4]。 1. 技术简介 1.1 LIBS技术简介 LIBS技术最早可以追溯到20世纪60年代Brech, F.和Cross, L.所做的激光诱导火花散射实验,其中的一项实验使用红宝石激光器产生的激光照射材料后产生等离子体羽流。经过了几十年的发展,LIBS技术得到了显著发展,其在环境检测、文物保护鉴定、岩石检测、宇宙探索等领域中被广泛应用。 1.1.1 LIBS技术的基本原理 LIBS技术的装置主要由脉冲激光器、光谱仪、样品装载平台和计算机组成,光谱仪和计算机之间常常由光电倍增管或CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义,对它们的编译代码也做了讨论。 1.1 理解委托 1.1.1 将方法作为方法的参数 我们先不管这个标题如何的绕口,也不管委托究竟是个什么东西,来看下面这两个最简单的方法,它们不过是在屏幕上输出一句问候的话语: public void GreetPeople(string name){EnglishGreeting(name);}public void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);} 暂且不管这两个方法有没有什么实际意义。GreetPeople 用于向某人问好,当我们传递代表某人姓名的 name 参数,比如说“Liker”进去的时候,在这个方法中,将调用 EnglishGreeting 方法,再次传递 name 参数,EnglishGreeting 则用于向屏幕输出 “Good Morning, Liker”。 现在假设这个程序需要进行全球化,哎呀,不好了,我是中国人,我不明白“Good Morning”是什么意思,怎么办呢?好吧,我们再加个中文版的问候方法: public void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);} 这时候,GreetPeople 也需要改一改了,不然如何判断到底用哪个版本的 Greeting 问候方法合适呢?在进行这个之前,我们最好再定义一个枚举作为判断的依据: public enum Language{English, Chinese}public void GreetPeople(string name, Language lang){switch (lang){case Language.English:EnglishGreeting(name);break;case Language.Chinese:ChineseGreeting(name);break;} } OK,尽管这样解决了问题,但我不说大家也很容易想到,这个解决方案的可扩展性很差,如果日后我们需要再添加韩文版、日文版,就不得不反复修改枚举和GreetPeople() 方法,以适应新的需求。 在考虑新的解决方案之前,我们先看看 GreetPeople 的方法签名: public void GreetPeople(string name, Language lang); 我们仅看 string name,在这里,string 是参数类型,name 是参数变量,当我们赋给 name 字符串“Liker”时,它就代表“Liker”这个值;当我们赋给它“李志中”时,它又代表着“李志中”这个值。然后,我们可以在方法体内对这个 name 进行其他操作。哎,这简直是废话么,刚学程序就知道了。 如果你再仔细想想,假如 GreetPeople() 方法可以接受一个参数变量,这个变量可以代表另一个方法,当我们给这个变量赋值 EnglishGreeting 的时候,它代表着 EnglsihGreeting() 这个方法;当我们给它赋值ChineseGreeting 的时候,它又代表着 ChineseGreeting() 法。我们将这个参数变量命名为 MakeGreeting,那么不是可以如同给 name 赋值时一样,在调用 GreetPeople()方法的时候,给这个MakeGreeting 参数也赋上值么(ChineseGreeting 或者EnglsihGreeting 等)?然后,我们在方法体内,也可以像使用别的参数一样使用MakeGreeting。但是,由于 MakeGreeting 代表着一个方法,它的使用方式应该和它被赋的方法(比如ChineseGreeting)是一样的,比如:MakeGreeting(name); 好了,有了思路了,我们现在就来改改GreetPeople()方法,那么它应该是这个样子了: public void GreetPeople(string name, MakeGreeting) { MakeGreeting(name); } 注意到 ,这个位置通常放置的应该是参数的类型,但到目前为止,我们仅仅是想到应该有个可以代表方法的参数,并按这个思路去改写 GreetPeople 方法,现在就出现了一个大问题:这个代表着方法的 MakeGreeting 参数应该是什么类型的? 说明:这里已不再需要枚举了,因为在给MakeGreeting 赋值的时候动态地决定使用哪个方法,是 ChineseGreeting 还是 EnglishGreeting,而在这个两个方法内部,已经对使用“Good Morning”还是“早上好”作了区分。 聪明的你应该已经想到了,现在是委托该出场的时候了,但讲述委托之前,我们再看看MakeGreeting 参数所能代表的 ChineseGreeting()和EnglishGreeting()方法的签名: public void EnglishGreeting(string name) public void ChineseGreeting(string name) 如同 name 可以接受 String 类型的“true”和“1”,但不能接受bool 类型的true 和int 类型的1 一样。MakeGreeting 的参数类型定义应该能够确定 MakeGreeting 可以代表的方法种类,再进一步讲,就是 MakeGreeting 可以代表的方法的参数类型和返回类型。 于是,委托出现了:它定义了 MakeGreeting 参数所能代表的方法的种类,也就是 MakeGreeting 参数的类型。 本例中委托的定义: public delegate void GreetingDelegate(string name); 与上面 EnglishGreeting() 方法的签名对比一下,除了加入了delegate 关键字以外,其余的是不是完全一样?现在,让我们再次改动GreetPeople()方法,如下所示: public delegate void GreetingDelegate(string name);public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} 如你所见,委托 GreetingDelegate 出现的位置与 string 相同,string 是一个类型,那么 GreetingDelegate 应该也是一个类型,或者叫类(Class)。但是委托的声明方式和类却完全不同,这是怎么一回事?实际上,委托在编译的时候确实会编译成类。因为 Delegate 是一个类,所以在任何可以声明类的地方都可以声明委托。更多的内容将在下面讲述,现在,请看看这个范例的完整代码: public delegate void GreetingDelegate(string name);class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}private static void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);}static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} } 我们现在对委托做一个总结:委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If … Else(Switch)语句,同时使得程序具有更好的可扩展性。 1.1.2 将方法绑定到委托 看到这里,是不是有那么点如梦初醒的感觉?于是,你是不是在想:在上面的例子中,我不一定要直接在 GreetPeople() 方法中给 name 参数赋值,我可以像这样使用变量: static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} 而既然委托 GreetingDelegate 和类型 string 的地位一样,都是定义了一种参数类型,那么,我是不是也可以这么使用委托? static void Main(string[] args){GreetingDelegate delegate1, delegate2;delegate1 = EnglishGreeting;delegate2 = ChineseGreeting;GreetPeople("Liker", delegate1);GreetPeople("李志中", delegate2);Console.ReadLine();} 如你所料,这样是没有问题的,程序一如预料的那样输出。这里,我想说的是委托不同于 string 的一个特性:可以将多个方法赋给同一个委托,或者叫将多个方法绑定到同一个委托,当调用这个委托的时候,将依次调用其所绑定的方法。在这个例子中,语法如下: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting; delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.ReadLine();} 实际上,我们可以也可以绕过GreetPeople 方法,通过委托来直接调用EnglishGreeting 和ChineseGreeting: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting; delegate1("Liker");Console.ReadLine();} 说明:这在本例中是没有问题的,但回头看下上面 GreetPeople() 的定义,在它之中可以做一些对于 EnglshihGreeting 和 ChineseGreeting 来说都需要进行的工作,为了简便我做了省略。 注意这里,第一次用的“=”,是赋值的语法;第二次,用的是“+=”,是绑定的语法。如果第一次就使用“+=”,将出现“使用了未赋值的局部变量”的编译错误。我们也可以使用下面的代码来这样简化这一过程: GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting; 既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”: static void Main(string[] args){GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.WriteLine();delegate1 -= EnglishGreeting;GreetPeople("李志中", delegate1);Console.ReadLine();} 让我们再次对委托作个总结: 使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。 1.2 事件的由来 1.2.1 更好的封装性 我们继续思考上面的程序:上面的三个方法都定义在 Programe 类中,这样做是为了理解的方便,实际应用中,通常都是 GreetPeople 在一个类中,ChineseGreeting 和 EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将 GreetingPeople() 放在一个叫 GreetingManager 的类中,那么新程序应该是这个样子的: namespace Delegate{public delegate void GreetingDelegate(string name);public class GreetingManager{public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} }class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.GreetPeople("Liker", EnglishGreeting);gm.GreetPeople("李志中", ChineseGreeting);} }} 我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了: // Good Morning, Liker 早上好, 李志中 // 现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码: static void Main(string[] args){GreetingManager gm = new GreetingManager();GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting;gm.GreetPeople("Liker", delegate1);} 输出: Good Morning, Liker 早上好, Liker 到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到 GreetManager 类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager 类,像这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} } 现在,我们可以这样使用这个委托变量: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker", gm.delegate1);} 输出为: Good Morning, Liker 早上好, Liker 尽管这样做没有任何问题,但我们发现这条语句很奇怪。在调用gm.GreetPeople 方法的时候,再次传递了gm 的delegate1 字段, 既然如此,我们何不修改 GreetingManager 类成这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name){if (delegate1 != null) // 如果有方法注册委托变量{ delegate1(name); // 通过委托调用方法} }} 在客户端,调用看上去更简洁一些: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker"); //注意,这次不需要再传递 delegate1 变量} 尽管这样达到了我们要的效果,但是还是存在着问题:在这里,delegate1 和我们平时用的string 类型的变量没有什么分别,而我们知道,并不是所有的字段都应该声明成public,合适的做法是应该public 的时候public,应该private 的时候private。 我们先看看如果把 delegate1 声明为 private 会怎样?结果就是:这简直就是在搞笑。因为声明委托的目的就是为了把它暴露在类的客户端进行方法的注册,你把它声明为 private 了,客户端对它根本就不可见,那它还有什么用? 再看看把delegate1 声明为 public 会怎样?结果就是:在客户端可以对它进行随意的赋值等操作,严重破坏对象的封装性。 最后,第一个方法注册用“=”,是赋值语法,因为要进行实例化,第二个方法注册则用的是“+=”。但是,不管是赋值还是注册,都是将方法绑定到委托上,除了调用时先后顺序不同,再没有任何的分别,这样不是让人觉得很别扭么? 现在我们想想,如果delegate1 不是一个委托类型,而是一个string 类型,你会怎么做?答案是使用属性对字段进行封装。 于是,Event 出场了,它封装了委托类型的变量,使得:在类的内部,不管你声明它是public还是protected,它总是private 的。在类的外部,注册“+=”和注销“-=”的访问限定符与你在声明事件时使用的访问符相同。我们改写GreetingManager 类,它变成了这个样子: public class GreetingManager{//这一次我们在这里声明一个事件public event GreetingDelegate MakeGreet;public void GreetPeople(string name){MakeGreet(name);} } 很容易注意到:MakeGreet 事件的声明与之前委托变量 delegate1 的声明唯一的区别是多了一个 event 关键字。看到这里,在结合上面的讲解,你应该明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个进行了封装的委托类型的变量而已。 为了证明上面的推论,如果我们像下面这样改写Main 方法: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.MakeGreet = EnglishGreeting; // 编译错误1gm.MakeGreet += ChineseGreeting;gm.GreetPeople("Liker");} 会得到编译错误: 1.2.2 限制类型能力 使用事件不仅能获得比委托更好的封装性以外,还能限制含有事件的类型的能力。这是什么意思呢?它的意思是说:事件应该由事件发布者触发,而不应该由事件的客户端(客户程序)来触发。请看下面的范例: using System;class Program{static void Main(string[] args){Publishser pub = new Publishser();Subscriber sub = new Subscriber();pub.NumberChanged += new NumberChangedEventHandler(sub.OnNumberChanged);pub.DoSomething(); // 应该通过DoSomething()来触发事件pub.NumberChanged(100); // 但可以被这样直接调用,对委托变量的不恰当使用} }/// <summary>/// 定义委托/// </summary>/// <param name="count"></param>public delegate void NumberChangedEventHandler(int count);/// <summary>/// 定义事件发布者/// </summary>public class Publishser{private int count;public NumberChangedEventHandler NumberChanged; // 声明委托变量//public event NumberChangedEventHandler NumberChanged; // 声明一个事件public void DoSomething(){// 在这里完成一些工作 ...if (NumberChanged != null) // 触发事件{ count++;NumberChanged(count);} }}/// <summary>/// 定义事件订阅者/// </summary>public class Subscriber{public void OnNumberChanged(int count){Console.WriteLine("Subscriber notified: count = {0}", count);} } 上面代码定义了一个NumberChangedEventHandler 委托,然后我们创建了事件的发布者Publisher 和订阅者Subscriber。当使用委托变量时,客户端可以直接通过委托变量触发事件,也就是直接调用pub.NumberChanged(100),这将会影响到所有注册了该委托的订阅者。而事件的本意应该为在事件发布者在其本身的某个行为中触发,比如说在方法DoSomething()中满足某个条件后触发。通过添加event 关键字来发布事件,事件发布者的封装性会更好,事件仅仅是供其他类型订阅,而客户端不能直接触发事件(语句pub.NumberChanged(100)无法通过编译),事件只能在事件发布者Publisher 类的内部触发(比如在方法pub.DoSomething()中),换言之,就是NumberChanged(100)语句只能在Publisher 内部被调用。大家可以尝试一下,将委托变量的声明那行代码注释掉,然后取消下面事件声明的注释。此时程序是无法编译的,当你使用了event 关键字之后,直接在客户端触发事件这种行为,也就是直接调用pub.NumberChanged(100),是被禁止的。事件只能通过调用DoSomething() 来触发。这样才是事件的本意,事件发布者的封装才会更好。 就好像如果我们要定义一个数字类型,我们会使用int 而不是使用object 一样,给予对象过多的能力并不见得是一件好事,应该是越合适越好。尽管直接使用委托变量通常不会有什么问题,但它给了客户端不应具有的能力,而使用事件,可以限制这一能力,更精确地对类型进行封装。 说 明:这里还有一个约定俗称的规定,就是订阅事件的方法的命名,通常为“On 事件名”,比如这里的OnNumberChanged。 1.3 委托的编译代码 这时候,我们注释掉编译错误的行,然后重新进行编译,再借助 Reflactor 来对 event 的声明语句做一探究,看看为什么会发生这样的错误: 可以看到,实际上尽管我们在GreetingManager 里将 MakeGreet 声明为public,但是,实际上MakeGreet 会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager 类的外面以赋值的方式访问,从而验证了我们上面所做的推论。 我们再进一步看下MakeGreet 所产生的代码: // private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量 [MethodImpl(MethodImplOptions.Synchronized)] public void add_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value); } [MethodImpl(MethodImplOptions.Synchronized)] public void remove_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value); } // 现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate 类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册。实际上也就是:“+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。 在add_MakeGreet()方法内部,实际上调用了System.Delegate 的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。 我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候: // public delegate void GreetingDelegate(string name); // 当编译器遇到这段代码的时候,会生成下面这样一个完整的类: // public class GreetingDelegate:System.MulticastDelegate { public GreetingDelegate(object @object, IntPtr method); public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result); public virtual void Invoke(string name); } // 1.4 .NET 框架中的委托和事件 1.4.1 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些! 假设我们有个高档的热水器,我们给它通上电,当水温超过95 度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。 现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做 temperature;当然,还有必不可少的给水加热方法 BoilWater(),一个发出语音警报的方法 MakeAlert(),一个显示水温的方法,ShowMsg()。 namespace Delegate{/// <summary>/// 热水器/// </summary>public class Heater{/// <summary>/// 水温/// </summary>private int temperature;/// <summary>/// 烧水/// </summary>public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){MakeAlert(temperature);ShowMsg(temperature);} }}/// <summary>/// 发出语音警报/// </summary>/// <param name="param"></param>private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);}/// <summary>/// 显示水温/// </summary>/// <param name="param"></param>private void ShowMsg(int param){Console.WriteLine("Display:水快开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater ht = new Heater();ht.BoilWater();} }} 1.4.2 Observer 设计模式简介 上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。 这时候,上面的例子就应该变成这个样子: /// <summary>/// 热水器/// </summary>public class Heater{private int temperature; private void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;} }}/// <summary>/// 警报器/// </summary>public class Alarm{private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }/// <summary>/// 显示器/// </summary>public class Display{private void ShowMsg(int param){Console.WriteLine("Display:水已烧开,当前温度:{0}度。", param);} } 这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器? 在继续进行之前,我们先了解一下Observer 设计模式,Observer 设计模式中主要包括如下两类对象: Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是 temprature 字段,当这个字段的值快到100 时,会不断把数据发给监视它的对象。 Observer:监视者,它监视Subject,当 Subject 中的某件事发生的时候,会告知Observer,而Observer 则会采取相应的行动。在本范例中,Observer 有警报器和显示器,它们采取的行动分别是发出警报和显示水温。 在本例中,事情发生的顺序应该是这样的: 1. 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。 2. 热水器知道后保留对警报器和显示器的引用。 3. 热水器进行烧水这一动作,当水温超过 95 度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。 类似这样的例子是很多的,GOF 对它进行了抽象,称为 Observer 设计模式:Observer 设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer 模式是一种松耦合的设计模式。 1.4.3 实现范例的Observer 设计模式 我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。 namespace Delegate{public class Heater{private int temperature;public delegate void BoilHandler(int param);public event BoilHandler BoilEvent;public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){if (BoilEvent != null){ BoilEvent(temperature); // 调用所有注册对象的方法} }} }}public class Alarm{public void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }public class Display{public static void ShowMsg(int param) // 静态方法{ Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.BoilEvent += alarm.MakeAlert; // 注册方法heater.BoilEvent += (new Alarm()).MakeAlert; // 给匿名对象注册方法heater.BoilEvent += Display.ShowMsg; // 注册静态方法heater.BoilWater(); // 烧水,会自动调用注册过对象的方法} }} 输出为: // Alarm:嘀嘀嘀,水已经 96 度了: Alarm:嘀嘀嘀,水已经 96 度了: Display:水快烧开了,当前温度:96 度。 // 省略... // 1.4.4 .NET 框架中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.NET Framework 中的事件模型和上面的不同?为什么有很多的EventArgs 参数? 在回答上面的问题之前,我们先搞懂 .NET Framework 的编码规范: 1. 委托类型的名称都应该以 EventHandler 结束。 2. 委托的原型定义:有一个void 返回值,并接受两个输入参数:一个Object 类型,一个EventArgs 类型(或继承自EventArgs)。 3. 事件的命名为委托去掉 EventHandler 之后剩余的部分。 4. 继承自 EventArgs 的类型应该以EventArgs 结尾。 再做一下说明: 1. 委托声明原型中的Object 类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm 的MakeAlert)可以通过它访问触发事件的对象(Heater)。 2. EventArgs 对象包含了Observer 所感兴趣的数据,在本例中是temperature。 上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer 端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。 现在我们改写之前的范例,让它符合.NET Framework的规范: using System;using System.Collections.Generic;using System.Text;namespace Delegate{public class Heater{private int temperature;public string type = "RealFire 001"; // 添加型号作为演示public string area = "China Xian"; // 添加产地作为演示public delegate void BoiledEventHandler(Object sender, BoiledEventArgs e);public event BoiledEventHandler Boiled; // 声明事件// 定义 BoiledEventArgs 类,传递给 Observer 所感兴趣的信息public class BoiledEventArgs : EventArgs{public readonly int temperature;public BoiledEventArgs(int temperature){this.temperature = temperature;} }// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBoiled(BoiledEventArgs e){if (Boiled != null){Boiled(this, e); // 调用所有注册对象的方法} }public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){// 建立BoiledEventArgs 对象。BoiledEventArgs e = new BoiledEventArgs(temperature);OnBoiled(e); // 调用 OnBolied 方法} }}public class Alarm{public void MakeAlert(Object sender, Heater.BoiledEventArgs e){Heater heater = (Heater)sender; // 这里是不是很熟悉呢?// 访问 sender 中的公共字段Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);Console.WriteLine();} }public class Display{public static void ShowMsg(Object sender, Heater.BoiledEventArgs e) // 静态方法{Heater heater = (Heater)sender;Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);Console.WriteLine();} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.Boiled += alarm.MakeAlert; //注册方法heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法heater.BoilWater(); //烧水,会自动调用注册过对象的方法} }} } 输出为: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Display:China Xian - RealFire 001: Display:水快烧开了,当前温度:96 度。 // 省略 ... 1.5 委托进阶 1.5.1 为什么委托定义的返回值通常都为 void ? 尽管并非必需,但是我们发现很多的委托定义返回值都为 void,为什么呢?这是因为委托变量可以供多个订阅者注册,如果定义了返回值,那么多个订阅者的方法都会向发布者返回数值,结果就是后面一个返回的方法值将前面的返回值覆盖掉了,因此,实际上只能获得最后一个方法调用的返回值。可以运行下面的代码测试一下。除此以外,发布者和订阅者是松耦合的,发布者根本不关心谁订阅了它的事件、为什么要订阅,更别说订阅者的返回值了,所以返回订阅者的方法返回值大多数情况下根本没有必要。 1.5.2 如何让事件只允许一个客户订阅? 少数情况下,比如像上面,为了避免发生“值覆盖”的情况(更多是在异步调用方法时,后面会讨论),我们可能想限制只允许一个客户端注册。此时怎么做呢?我们可以向下面这样,将事件声明为private 的,然后提供两个方法来进行注册和取消注册: public class Publishser{private event GeneralEventHandler NumberChanged; // 声明一个私有事件// 注册事件public void Register(GeneralEventHandler method){NumberChanged = method;}// 取消注册public void UnRegister(GeneralEventHandler method){NumberChanged -= method;}public void DoSomething(){// 做某些其余的事情if (NumberChanged != null){ // 触发事件string rtn = NumberChanged();Console.WriteLine("Return: {0}", rtn); // 打印返回的字符串,输出为Subscriber3} }} 注意上面,在UnRegister()中,没有进行任何判断就使用了NumberChanged -= method 语句。这是因为即使method 方法没有进行过注册,此行语句也不会有任何问题,不会抛出异常,仅仅是不会产生任何效果而已。 注意在Register()方法中,我们使用了赋值操作符“=”,而非“+=”,通过这种方式就避免了多个方法注册。 1.7 委托和方法的异步调用 通常情况下,如果需要异步执行一个耗时的操作,我们会新起一个线程,然后让这个线程去执行代码。但是对于每一个异步调用都通过创建线程来进行操作显然会对性能产生一定的影响,同时操作也相对繁琐一些。.NET 中可以通过委托进行方法的异步调用,就是说客户端在异步调用方法时,本身并不会因为方法的调用而中断,而是从线程池中抓取一个线程去执行该方法,自身线程(主线程)在完成抓取线程这一过程之后,继续执行下面的代码,这样就实现了代码的并行执行。使用线程池的好处就是避免了频繁进行异步调用时创建、销毁线程的开销。当我们在委托对象上调用BeginInvoke()时,便进行了一个异步的方法调用。 事件发布者和订阅者之间往往是松耦合的,发布者通常不需要获得订阅者方法执行的情况;而当使用异步调用时,更多情况下是为了提升系统的性能,而并非专用于事件的发布和订阅这一编程模型。而在这种情况下使用异步编程时,就需要进行更多的控制,比如当异步执行方法的方法结束时通知客户端、返回异步执行方法的返回值等。本节就对 BeginInvoke() 方法、EndInvoke() 方法和其相关的 IAysncResult 做一个简单的介绍。 我们先看这样一段代码,它演示了不使用异步调用的通常情况: class Program7{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();int result = cal.Add(2, 5);Console.WriteLine("Result: {0}\n", result);// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 上面代码有几个关于对于线程的操作,如果不了解可以看一下下面的说明,如果你已经了解可以直接跳过: 1. Thread.Sleep(),它会让执行当前代码的线程暂停一段时间(如果你对线程的概念比较陌生,可以理解为使程序的执行暂停一段时间),以毫秒为单位,比如Thread.Sleep(1000),将会使线程暂停1 秒钟。在上面我使用了它的重载方法,个人觉得使用TimeSpan.FromSeconds(1),可读性更好一些。 2. Thread.CurrentThread.Name,通过这个属性可以设置、获取执行当前代码的线程的名称,值得注意的是这个属性只可以设置一次,如果设置两次,会抛出异常。 3. Thread.IsThreadPoolThread,可以判断执行当前代码的线程是否为线程池中的线程。 通过这几个方法和属性,有助于我们更好地调试异步调用方法。上面代码中除了加入了一些对线程的操作以外再没有什么特别之处。我们建了一个Calculator 类,它只有一个Add 方法,我们模拟了这个方法需要执行2 秒钟时间,并且每隔一秒进行一次输出。而在客户端程序中,我们使用result 变量保存了方法的返回值并进行了打印。随后,我们再次模拟了客户端程序接下来的操作需要执行2 秒钟时间。运行这段程序,会产生下面的输出: // Client application started! Method invoked! Main Thread: Add executed 1 second(s). Main Thread: Add executed 2 second(s). Method complete! Result: 7 Main Thread: Client executed 1 second(s). Main Thread: Client executed 2 second(s). Main Thread: Client executed 3 second(s). Press any key to exit... // 如果你确实执行了这段代码,会看到这些输出并不是一瞬间输出的,而是执行了大概5 秒钟的时间,因为线程是串行执行的,所以在执行完 Add() 方法之后才会继续客户端剩下的代码。 接下来我们定义一个AddDelegate 委托,并使用BeginInvoke()方法来异步地调用它。在上面已经介绍过,BeginInvoke()除了最后两个参数为AsyncCallback 类型和Object 类型以外,前面的参数类型和个数与委托定义相同。另外BeginInvoke()方法返回了一个实现了IAsyncResult 接口的对象(实际上就是一个AsyncResult 类型实例,注意这里IAsyncResult 和AysncResult 是不同的,它们均包含在.NET Framework 中)。 AsyncResult 的用途有这么几个:传递参数,它包含了对调用了BeginInvoke()的委托的引用;它还包含了BeginInvoke()的最后一个Object 类型的参数;它可以鉴别出是哪个方法的哪一次调用,因为通过同一个委托变量可以对同一个方法调用多次。 EndInvoke()方法接受IAsyncResult 类型的对象(以及ref 和out 类型参数,这里不讨论了,对它们的处理和返回值类似),所以在调用BeginInvoke()之后,我们需要保留IAsyncResult,以便在调用EndInvoke()时进行传递。这里最重要的就是EndInvoke()方法的返回值,它就是方法的返回值。除此以外,当客户端调用EndInvoke()时,如果异步调用的方法没有执行完毕,则会中断当前线程而去等待该方法,只有当异步方法执行完毕后才会继续执行后面的代码。所以在调用完BeginInvoke()后立即执行EndInvoke()是没有任何意义的。我们通常在尽可能早的时候调用BeginInvoke(),然后在需要方法的返回值的时候再去调用EndInvoke(),或者是根据情况在晚些时候调用。说了这么多,我们现在看一下使用异步调用改写后上面的代码吧: using System.Threading;using System;public delegate int AddDelegate(int x, int y);class Program8{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);IAsyncResult asyncResult = del.BeginInvoke(2, 5, null, null); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}int rtn = del.EndInvoke(asyncResult);Console.WriteLine("Result: {0}\n", rtn);Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 此时的输出为: // Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Main Thread: Client executed 3 second(s). Result: 7 Press any key to exit... // 现在执行完这段代码只需要3 秒钟时间,两个for 循环所产生的输出交替进行,这也说明了这两段代码并行执行的情况。可以看到Add() 方法是由线程池中的线程在执行, 因为Thread.CurrentThread.IsThreadPoolThread 返回了True,同时我们对该线程命名为了Pool Thread。另外我们可以看到通过EndInvoke()方法得到了返回值。有时候,我们可能会将获得返回值的操作放到另一段代码或者客户端去执行,而不是向上面那样直接写在BeginInvoke()的后面。比如说我们在Program 中新建一个方法GetReturn(),此时可以通过AsyncResult 的AsyncDelegate 获得del 委托对象,然后再在其上调用EndInvoke()方法,这也说明了AsyncResult 可以唯一的获取到与它相关的调用了的方法(或者也可以理解成委托对象)。所以上面获取返回值的代码也可以改写成这样: private static int GetReturn(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;int rtn = del.EndInvoke(asyncResult);return rtn;} 然后再将int rtn = del.EndInvoke(asyncResult);语句改为int rtn = GetReturn(asyncResult);。注意上面IAsyncResult 要转换为实际的类型AsyncResult 才能访问AsyncDelegate 属性,因为它没有包含在IAsyncResult 接口的定义中。 BeginInvoke 的另外两个参数分别是AsyncCallback 和Object 类型,其中AsyncCallback 是一个委托类型,它用于方法的回调,即是说当异步方法执行完毕时自动进行调用的方法。它的定义为: // public delegate void AsyncCallback(IAsyncResult ar); // Object 类型用于传递任何你想要的数值,它可以通过IAsyncResult 的AsyncState 属性获得。下面我们将获取方法返回值、打印返回值的操作放到了OnAddComplete()回调方法中: using System.Threading;using System;using System.Runtime.Remoting.Messaging;public delegate int AddDelegate(int x, int y);class Program9{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);string data = "Any data you want to pass.";AsyncCallback callBack = new AsyncCallback(OnAddComplete);del.BeginInvoke(2, 5, callBack, data); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();}static void OnAddComplete(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;string data = (string)asyncResult.AsyncState;int rtn = del.EndInvoke(asyncResult);Console.WriteLine("{0}: Result, {1}; Data: {2}\n", Thread.CurrentThread.Name, rtn, data);} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 它产生的输出为: Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Pool Thread: Result, 7; Data: Any data you want to pass. Main Thread: Client executed 3 second(s). Press any key to exit... 这里有几个值得注意的地方: 1、我们在调用BeginInvoke()后不再需要保存IAysncResult 了,因为AysncCallback 委托将该对象定义在了回调方法的参数列表中; 2、我们在OnAddComplete()方法中获得了调用BeginInvoke()时最后一个参数传递的值,字符串“Any data you want to pass”; 3、执行回调方法的线程并非客户端线程Main Thread,而是来自线程池中的线程Pool Thread。另外如前面所说,在调用EndInvoke()时有可能会抛出异常,所以在应该将它放到try/catch 块中,这里就不再示范了。 1.8 总结 我们详细地讨论了C中的委托和事件,包括什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义。拥有了本章的知识,相信你以后遇到委托和事件时,将不会再有所畏惧。 本篇文章为转载内容。原文链接:https://blog.csdn.net/beyonddeg/article/details/53528482。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:02:19
80
转载
转载文章
...管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
转载文章
...存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
... 使用说明 (ver 1.3.7.0) 一、概述: B/S应用系统的报表打印一直以来都是一个难题,以前常规的思路是通过在浏览器中安装ActiveX插件以获得直接驱动打印机的能力。 但是,随着浏览器的发展,越来越多的浏览器厂商禁止安装ActiveX,以避免因ActiveX组件导致的各种安全问题。 为解决B/S打印中的痛点,我工作室开发了本报表服务器,完美地解决了在浏览器端不用ActiveX而获得与C/S系统一样的打印能力。 本报表系统不需要在浏览器安装任何插件,只需通过JavaScript即可实现报表精确打印以及打印过程免人工介入。 ------------- 二、特点: 1、高兼容:不需要在浏览器端和服务端安装任何插件,在浏览器插件被各大浏览器纷纷禁用的今天,无插件设计兼容绝大多数浏览器; 2、免安装:软件即拷即用,不安装,不污染操作系统,让操作系统历久弥新; 3、可视化:可视化的模板设计器,通过拖拽即可完成模板设计; 4、高精度:实现精确到毫米的打印精度,对于一些格式复杂,要求精确打印的场合,可以很容易达到毫米级精度; 5、易套打:可视化的模板设计器,在模板中加入一个票据格式的底图,可以很方便地实现套打,对于实现发票、快递面单、支票等打印毫无压力; 6、功能强:从简单报表、主从报表到嵌套报表甚至交叉报表,均能轻松应对。还有一维二维条形码,甚至,还有逆天的脚本功能,只有想不到,没有做不到; 7、自动化: 打印过程中全部自动化,无需象生成PDF、Word、Excel那样还需要人工再点打印; 8、易部署:打印模板既可以部署在客户端(与 cfprint.exe 程序放在同一目录下),也支持部署在服务端随报表数据一起传到客户端; 9、目标活:支持在数据文件中或模板中指定要输出的打印机,发票用针打、报表用激光打、小票用小票机,专机专打; 三、使用前提条件: 1、IE6以上版本、Chrome(谷歌浏览器)4.0以上版本、Firefox 4.0以上版本、Opera 11以上版本、Safari 5.0.2以上版本、iOS 4.2以上版本 或使用Chrome内核、Firefox内核的浏览器均可直接使用本打印系统; 2、在进行打印前,需要先设计好打印模板(模板设计器请见第五节); 3、打印数据必须Json的格式发送给打印服务器,并且数据必须满足指定的格式(见下文); 四、数据格式说明: 下面以一个跨境电商快递面单数据为例解释一下数据各项的含义; { "template": "waybill.fr3", /打印模板文件名。除了指定模板文件以外,还支持把模板嵌入到数据文件中,以实现在服务器端灵活使用打印模板,格式如下:/ /"template": "base64:QTBBRTNEQTE3MkFFQjIzNEFERD<后面省略>" / "ver": 4, /数据模板文件版本/ "Copies": 3, /打印份数,支持指定打印份数/ "Duplex": 1, /是否双面打印,0:默认,不双面,1:垂直,2:水平,3:单面打印(simplex)/ "Printer": "priPrinter", /指定打印机,本系统支持在数据文件中指定打印机,也支持在打印模板中指定打印机/ "PageNumbers": "", /要打印的页码范围,同打印机的打印设置里的格式相同,例如:"1,2,3"表示打印前3页, “2-5”:表示打印第2到5页,“1,2,4-8”表示打印第1、2、4到8页/ "Preview": 1, /是否预览,跟主界面上选择“预览”效果相同,取值为0:不预览,1:预览/ "Tables":[ /数据表数组/ { "Name": "Table1", /表名/ "Cols": [ /字段定义/ { "type": "str", /字段类型,可选值:String,Str,Integer,Int,Smallint,Float,Long, Blob,/ /对于图片、PDF等使用Blob类型,并把值进行Base64编码,并加前缀:/ / "base64/pdf:" 字段值是PDF; "base64/jpg:" 字段值是jpg; "base64/png:" 字段值是png; "base64/gif:" 字段值是gif; / "size": 255, /字段长度/ "name": "HAWB", /字段名称,必须与打印模板中的打印项名称相同/ "required": false /字段是否必填/ }, { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "报关公司面单号", "required": false }, { "type": "integer", "size": 0, "name": "公司内部单号", "required": false }, { "type": "str", "size": 255, "name": "发件人", "required": false }, { "type": "str", "size": 255, "name": "发件人地址", "required": false }, { "type": "str", "size": 255, "name": "发件人电话", "required": false }, { "type": "str", "size": 255, "name": "发货国家", "required": false }, { "type": "str", "size": 255, "name": "收件人", "required": false }, { "type": "str", "size": 255, "name": "收件人地址", "required": false }, { "type": "str", "size": 255, "name": "收件人电话", "required": false }, { "type": "str", "size": 255, "name": "收货人证件号码", "required": false }, { "type": "str", "size": 255, "name": "收货省份", "required": false }, { "type": "float", "size": 0, "name": "总计费重量", "required": false }, { "type": "int", "size": 0, "name": "总件数", "required": false }, { "type": "float", "size": 0, "name": "申报总价(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数1", "required": false }, { "type": "str", "size": 255, "name": "品名1", "required": false }, { "type": "float", "size": 0, "name": "单价1(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位1", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数2", "required": false }, { "type": "str", "size": 255, "name": "品名2", "required": false }, { "type": "float", "size": 0, "name": "单价2(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位2", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(JPY)", "required": false }, { "type": "AutoInc", "size": 0, "name": "ID", "required": false }, { "type": "blob", "size": 0, "name": "附件", "required": false } ], "Data": [ /数据行定义,每一行含义见上面的字段定义/ { "HAWB": "860014010055", "NO": 1, "报关公司面单号": 200303900791, "公司内部单号": 730293, "发件人": "NAKAGAWA SUMIRE 2", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张三丰", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村99号9999室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 1, "附件": "base64/pdf:JVBERi0xLjQKJcDIzNINCjEgMCBvYmoKPDwKL1RpdGxlICh3YXliaWxsLmZyMykKL0F1dGhvciAoc2hlbmcpCi9DcmVhdG9yIChwZGZGYWN0b3J5IFBybyB3d3cucGRmZmFjdG9yeS5jb20pCi9Qcm9kdWNlciAocGRmRmFjdG9yeSBQcm8gNS4zNSBcKFdpbmRvd3MgNyBVbHRpbWF0ZSB4ODYgQ2hpbmVzZSBcKFNpbXBsaWZpZWRcKVwpKQovQ3JlYXRpb25EYXRlIChEOjIwMTcwMjI3MTIyODM2KzA4JzAwJykKPj4KZW5kb2JqCjUgMCBvYmoKPDwKL0ZpbHRlci9GbGF0ZURlY29kZQovTGVuZ3RoIDQwNAo+PnN0cmVhbQ0KSImVVMlOw0AMvecrTLkUoZqxZ80VhR44gTQSH4CKEKJIhQO/j2cS0skGrRo1cWy/97xkDvAIByC4B4We4Rso5EvZZLLxaAx87uAVnuCjIg5o5bULqBn2FVmk3nzvTNKYjTZ2aPWhX1XivY3VzZauCWqsHcSXqhCyIVDykxspSbQOa4a4F7dwxGdYw8UVxDcB4D79mBMIgymyNgqV0brNfMiJKj832w6llHHEcZQAZthXlznvLlZSRBve/kuQIfROkqTy2MwKZcFxKbg5UxnVSUhOnJEyniVxiiZSaKSLGEB4ORznOem/FIC1d1S37SfmpDMB2K587WywphzAMq+WNNcTC9CQmAtaGhJKpgtLc5O6Qwhlj5YlWAFaVnBC6TYDjksftvyvNW43WG6yDkmQFy25sjV0sx76XdKa3NOlGYf20vq1GfqNyRsi/mbWr11HNbdok+DfiaxXs2CcGp3c5XchApUn5aF/2ExfWYtKThw5KMx/3/dJeK5GlnVnf9YKjao/hSgkxWTySZMbUyzFD6PnEr4KZW5kc3RyZWFtCmVuZG9iago0IDAgb2JqCjw8Ci9UeXBlL1BhZ2UKL1BhcmVudCAzIDAgUgovTWVkaWFCb3hbMCAwIDE0MiAyODNdCi9SZXNvdXJjZXMKPDwKL1Byb2NTZXRbL1BERi9UZXh0XQovRm9udAo8PAovRjErMSA2IDAgUgovRjIgNyAwIFIKPj4KPj4KL0NvbnRlbnRzIDUgMCBSCj4+CmVuZG9iago2IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BSEpTV1orTlNpbVN1bgovTmFtZS9GMSsxCi9Ub1VuaWNvZGUgOCAwIFIKL0ZpcnN0Q2hhciAzMgovTGFzdENoYXIgMzUKL1dpZHRocyBbMTAwMCAxMDAwIDEwMDAgMTAwMF0KL0ZvbnREZXNjcmlwdG9yIDkgMCBSCj4+CmVuZG9iago5IDAgb2JqCjw8Ci9UeXBlL0ZvbnREZXNjcmlwdG9yCi9Gb250TmFtZSAvQUhKU1daK05TaW1TdW4KL0ZsYWdzIDcKL0ZvbnRCQm94Wy04IC0xNDUgMTAwMCA4NTldCi9TdGVtViA1MDAKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA4NTkKL0FzY2VudCA4NTkKL0Rlc2NlbnQgLTE0MQovRm9udEZpbGUyIDEwIDAgUgo+PgplbmRvYmoKOCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMjQ2Cj4+c3RyZWFtDQpIiW1QwUrEMBS85yve0cVDtnGtK5SA7Fqs4CpGELxlk9caMGlI00P/3qRbVhQPecxj3gyTobtm3zgTgb6EXgmM0BqnAw79GBTCETvjoGCgjYrLNk9lpSc0icU0RLSNa3tSVYS+JnKIYYILevfwKN4/Lg/CWDG6FdDnoDEY1/3HidH7L7ToIqwJ56CxTfZP0h+kRfhz/8O+TR6BzXuxBOs1Dl4qDNJ1CBVb8zSuOKDTvzmyOSmOrfqUgZwut/X+lidcJFyWrM6YZXy9vck4GVWb+7rkJPktyuyc6oBzXDWGkH4ydzbHzAGNw3Otvvc5T37kGxjtexEKZW5kc3RyZWFtCmVuZG9iagoxMCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMTI3OAovTGVuZ3RoMSAyNjc2Cj4+c3RyZWFtDQpIie1WXWwUVRQ+997ZmZ2d353dmdku3R+26+7SrSUtdBdWWlpaCP4UkEIKUaObsm3R3XapxVCfeJAXjcbwYDSYIG8kRm3ExAqJERMeTAgPhjdrNDExijHxJ8QXw3ju7tAEjEEfjd7Jvff7zjn33nPu7wABABVOAoPhqUa1KYjMQclVAGJNPbeYljawnxB/DUA/nm7ONB46d/o7AOEttNFm6kvTy9dfOIZ8GfXnZ2vVI6F6igJIh1BfmkUBkm+Qv4o8O9tYPCEA9CL/AHmsPj9VpR1kDjmOB3qjeqJJPt0+iXwVeXqu2qi9d+7FN5H/jj6ca84/u+j9CBqAzMdPNxdqzcDqXmwrf4L8fcwEeDw8IiAi3DNRJgTubfVvTt7/6T+d4G2g0MQseLe8r5CLEIQQng8dTLAgCg7EIA6dkOSSv9Sjxd8YK4nfZ7jpOvGj3g04CJtgC1zG/oahDIPQD9tg1fsSJmEcFEi18mnUPI8e1mEe0vjFcUTuA88GwHKh5+H9h3aOrVu//vD9fEMLoHg/w024hhZd0A27ALaTJNFJTtpUdrtEieNekhelfKmcy5cdt1Tuykj5csvGTdJS2RbtTC9rGQxwFbaTTlEnJITEoSXDKsrhuBMQlQ45XaQbo7EOmrXMwGhQGaKWQTUxKqeHSo7dszVnh2KCEXFlTZELUli+ShVVk2NJ08kmo45NI53BbJglE67FbD3ZySo0pJtK52shi1EqBFTBsJkbNDR5gsmKFuSx6d4P8CvGxnDuHagAlO1NA3mXexh1pYEuWypt5qJWrHarSBIMSOql7YhdnUiOy8M6ODltHpBNmRiTBtEnz3xk2LXNWuSANWpb9IG+lBq5j/YojigK4dSDmnImmeyXQ5q0xQxqstjRpyYSVcPOaJENAcICgkqNmNltsfWjmhBSbG2coY+q9z38gt4GIAEZ9DVJxFzeXwbHRa9yt5cB/WmtxDE9HBaVxy+azpCWKoxE2GBq4ygZ6U6o6zRlq56IK9fkqJMO95nOSDEbEJhqZYoaixSLw4xV8vkK7mTZ+xbX/3PI4t6C8ua8K9lrs4GTVGqv6QD6kB8iOHGiQUqDhDPKmYT2Ufcsickp1RrsVq3dxCQ9uITjRdVgiibYQSGwg8QNFrTjITsYEbUgeSWXVKR+1aqo1iOG1NfH5EpnlLq96xRRMc+nwk/nsWlmS1oXM4oszVqx1jsUkN7t+e3R608a226C0n6YPnx9x0leX7k0thtP5Bco5W+dinG1Ezdb9VYhS8C71aLkrit97V1DBe9Vx6xiln3xHFzBZ/CA35dI6tC31vNG2ICgOnjJtzXgot8/AQluj0URSz4WEOk+FhHbPmbg4ilnQAQZJTqe9DamiEd8jPsZ9vpYRPyEjxn+AzzDcVDAtiK84WPe9qyPBZS/42Pe9oKPGeTg8p6Jo42J43P7azPH69UFn/lV88j0rurU4vzCUnrfwnwl7YthD0zAUWhgeRynaD/UYAZRHaqwcJfuTtaEIzCN10wVpmARL6kFWMJrah/W83hA03da15Yfe2nvxJ29+7J/1KvfpjXP7Xf8Bv+n+dNegJE4CRMTb9YC7mIdClgbfq0SDQcoEM3nOvJYW35hV2EfWSHeqZchsdyPF+zyycThFSLunMWia2yFCBwJHAVaaOdTiDila5RyyjilnDJOYU0LnBJOgVPSNUaK7QTwBzD6P0QKZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BcmlhbE1UCi9OYW1lL0YyCi9GaXJzdENoYXIgMzIKL0xhc3RDaGFyIDI1NQovV2lkdGhzIFsyNzggMjc4IDM1NSA1NTYgNTU2IDg4OSA2NjcgMTkxIDMzMyAzMzMgMzg5IDU4NCAyNzggMzMzIDI3OCAyNzgKNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDI3OCAyNzggNTg0IDU4NCA1ODQgNTU2CjEwMTUgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgNzc4IDcyMiAyNzggNTAwIDY2NyA1NTYgODMzIDcyMiA3NzgKNjY3IDc3OCA3MjIgNjY3IDYxMSA3MjIgNjY3IDk0NCA2NjcgNjY3IDYxMSAyNzggMjc4IDI3OCA0NjkgNTU2CjMzMyA1NTYgNTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAyMjIgNTAwIDIyMiA4MzMgNTU2IDU1Ngo1NTYgNTU2IDMzMyA1MDAgMjc4IDU1NiA1MDAgNzIyIDUwMCA1MDAgNTAwIDMzNCAyNjAgMzM0IDU4NCAyNzgKNTU2IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCAyNzggMjc4IDI3OCA5MjMgMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OAoyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzgKMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCA1NTYgNTU2IDMzMyA1NTYgNTU2IDU1NiA1NTYgMjc4IDY2NyAyNzggMjc4IDI3OCAyNzggMjc4IDY2NwoyNzggNjY3IDI3OCAyNzggMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCAyNzgKMjc4IDY2NyAyNzggNjY3IDU1MiAyNzggMjc4IDI3OCAyNzggNTU2IDI3OCA1NTYgMjc4IDI3OCAyNzggNjY3CjI3OCA2NjcgMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCA2NjcgMjc4IDI3OF0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZwovRm9udERlc2NyaXB0b3IgMTEgMCBSCj4+CmVuZG9iagoxMSAwIG9iago8PAovVHlwZS9Gb250RGVzY3JpcHRvcgovRm9udE5hbWUgL0FyaWFsTVQKL0ZsYWdzIDMyCi9Gb250QkJveFstNjY1IC0zMjUgMjAwMCAxMDA2XQovU3RlbVYgOTUKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA5MDUKL0FzY2VudCA5MDUKL0Rlc2NlbnQgLTIxMgo+PgplbmRvYmoKMyAwIG9iago8PAovVHlwZS9QYWdlcwovQ291bnQgMQovS2lkc1s0IDAgUl0KPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUvQ2F0YWxvZwovUGFnZXMgMyAwIFIKL1BhZ2VMYXlvdXQvU2luZ2xlUGFnZQovVmlld2VyUHJlZmVyZW5jZXMgMTIgMCBSCj4+CmVuZG9iagoxMiAwIG9iago8PAovVHlwZS9WaWV3ZXJQcmVmZXJlbmNlcwo+PgplbmRvYmoKeHJlZgowIDEzCjAwMDAwMDAwMDAgNjU1MzUgZg0KMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDA0MjEzIDAwMDAwIG4NCjAwMDAwMDQxNTggMDAwMDAgbg0KMDAwMDAwMDcxNiAwMDAwMCBuDQowMDAwMDAwMjQxIDAwMDAwIG4NCjAwMDAwMDA4NzIgMDAwMDAgbg0KMDAwMDAwMjkyNyAwMDAwMCBuDQowMDAwMDAxMjQ1IDAwMDAwIG4NCjAwMDAwMDEwNTUgMDAwMDAgbg0KMDAwMDAwMTU2MiAwMDAwMCBuDQowMDAwMDAzOTg5IDAwMDAwIG4NCjAwMDAwMDQzMTAgMDAwMDAgbg0KdHJhaWxlcgo8PAovU2l6ZSAxMwovSW5mbyAxIDAgUgovUm9vdCAyIDAgUgovSURbPDVBMkU0QzkzOTdENEU0RDE3NkIwOTBDRUU3OTMxMzRGPjw1QTJFNEM5Mzk3RDRFNEQxNzZCMDkwQ0VFNzkzMTM0Rj5dCj4+CnN0YXJ0eHJlZgo0MzU2CiUlRU9GCg==", }, { "HAWB": "860014010035", "NO": 2, "报关公司面单号": 200303900789, "公司内部单号": 730291, "发件人": "NAKAGAWA SUMIRE", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张无忌", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村88号8888室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 2, "附件":"base64/gif:R0lGODlhrgCuAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4ODg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEhISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdHR0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpaWltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1tbW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CAgIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOTk5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaampqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zMzM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAArgCuAAAI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhzhgTAs6fOnzJ7CuUJtOjKoUgBGF1a0mdBoUyjgiR60KnUqxqpVtWKtStFrgatev2ZtOxCsWHBjqVZtm3StEoVql37si1DswLRbo1LdyPUh0gr2r07t+9EvHKHIiQQOLFehI8NR3SbUHFBxm4bP+XbsLBkh3/z6rU8MLNpzhIjfz47Wmxo0adjH/a8unJhqK//xd6t2jbq2qx/E3xbOjNm2rpzg0YOvDgAAsG5UnYunCPz5rA7o0Y8XHn06t2xa/8H79jzbsjE94onPPs279eD1a/3ndr9+6HQp8Od79ivWe/FJRffZuTN1xtg6QlY4D/HURXZgQYypxl1rUkIIFwLindgg65deCF1k2WI3YHTWWhifSI2R5tpDXE4YXbsOccfeuAp5mJ5LAY4HlEQjmgeWqQR5CJ3Ou4Y5IwyLlZdbkhBtxORSCp4XZKwpYjRgFFKGWJ4KbXlZJYwSqXYhxoeyVKPClZppWEvqpQgjVqRuVqbXXIGIXxysmkmSjw1mNx4GK6J1Z58vnVioIIyRWihgZm4JJqD5imST40CuleiSy3aHaTLUfhnZQLCKZuYeTrVp3+e/hjqpe9lqqloavr/p1SjNZqJ331G4bcQY1JyiuOYXyJK4HY/StoSnZul6euvlH63aVo76kSphGnCmpWhBZLWGoJTujlttrNahaZqxC2orVrdVsuWqcjxiBu5+m3qoLmhMbnmsiPVG+dv7kKp5mmrfhrdsFxyu6508woXrr9g3dejd2Pem+6kyjVZVa8VKtxmZnB2PDG+HgGIbL/n4sqsviu6GyKm1sHrIcaxUvjmychW+/HEH/VWc8I7z8zti4jdzLKsztJXM4HoQQQx0FaC3DK4JB4tb8O+Fqux0jjnrPOdDxLLF5YZVdx01lp33a7L/WIosKz8jj10R0SiDbWcZPt2tcE1Tbj0lN3W/93xVj/fJDa7xgqcI9u2Lef0k/b5/N3hYXuYodTepky5qPJdS+iH3+Z9XeGAJx45yRrr5WfAMS0+m1wZna7u1AOqDjfoF7l3pb1zIZy732VfbpHtFbk+NbSK4+T7720jbza6IsreFO+WWoui5UBOfipZzhOm8vT04nko9tlrn67F4n+7aPgkHa/8z+NTdiOIB/MWlPr/Zuz4UQ7rWuf9J/ef+mAOoxjYjNSTYAVnJkIxIOxM1h7jsEp+XqEbaTiEsfxxTCFDipdXjqM43THPgq8algbpAqkjBQl6KMqS0LzGMxTibUZVwx3p0JeYSA3wWQLhlfhEuDB/oSoqENyP9P8cY0AKyox+2gHi3h4jLuuVzn433FKujmaruPBtd4PbF+1CB5QoVilZa6uhQd5XQR2FUIzgi5nd7GTFoZ2nVe1JI/zWOK+8BA9y9fNif3KSsTDmUUtfodwIF2g6F5ZtjBesYA8F47bzBdGP82vbaW6UNkZiTTUZBBgkYdJHUaGsbpyK2tcCaJPqLWhIMusUlVRZu0QikGopMuEZtbgy9j3xjPvb18okGTU1EnCJm0Ni+vSYuQV6soSaBGR2OrRFAfpwj0hjIENcZMABcqeAniNmMYs0qg7K7VEkGwhmStlEspmShVYZhi27Jzpxdi6blzEnV4zItnHVSljk5GIK//X/NGOpCp8HQ5oltVk8ZNLIk/DEYSBdycg2vlCg0GrmVGDZykHWEnWsUWBpLrXKl4yzYMr7i+poGb05yktI1/ufQkPqtYZ6qjyIeg5Iw8RJ/l0UopcUIn0eeLa39VOiOsVp8YRKVMwpyac/DRkWJaa2v3XwoPxhYuFg2bjpbbNM6LwiOjkayKBGlY3PLBI/CeZSk361h3qk6O5u5ySgRlA/smRmuBj3OhXGDY/vcqYhu+Iza+aVcXt96/J2uMnRIVUyCeQqTAtb0cPOqZOLDewXwcQ+s35SNBq9Iw2BY8FeYZSllG3oBWf42QZKNkofjahlRorL0FYUZk6zqWtvR7iwwNLRsbPlISFBJ9vc7lKqFo0pbl3rRTwKd7iUte1+gmk+316Eno1lkVt929pL/me6ucVuAzPr3IeepLrdvSptzxNezbI0f+V9rWhJmd71aQ657dUnbeP7vKfRd5hQHep9KZZf7e13mCwM3H/1qr7NDpiHUz3tgU+KM2wumL9JPOmDBTgws05YqbWS64UBnFUJb5jAb9Luhx8HXPiOWLGBOvF3S2ZgFdNMxC7+bYtjTOMa2/jGOM6xjnfM4x772MYBAQA7" } ] }, { "Name": "Table2", "Cols": [ { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "订单编号", "required": false }, { "type": "integer", "size": 0, "name": "下单日期", "required": false }, { "type": "str", "size": 255, "name": "下单平台", "required": false } ], "Data": [ { "NO": 1, "订单编号": 200303900791, "下单日期": "2017-01-20", "下单平台": "天猫" }, { "NO": 2, "订单编号": 200303900792, "下单日期": "2017-01-20", "下单平台": "京东" } ] } ] } 五、调用示例: <!-- ★★★ 模式1 ★★★ --> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统</h2> <h3>打印测试(模式1)</h3> <div> <input type="button" id="btnPrint" value="打印" onClick="doSend(_reportData);" /> </div> </div> <div id="output"></div> </body> <script type="text/javascript"> //定义数据脚本 var _reportData = '{"template":"waybill.fr3","Cols":[{"type":"str","size":255,"name":"HAWB","required":false},<这里省略1000字> ]}'; //在浏览器控制台输出调试信息 console.log("reportData = " + _reportData); </script> <script language="javascript" type="text/javascript" src="cfprint.min.js"></script> <script language="javascript" type="text/javascript" src="cfprint_ext.js"></script> <script language="javascript" type="text/javascript"> /下面四个参数必须放在myreport.js脚本后面,以覆盖myreport.js中的默认值/ var _delay_send = 1000; //发送打印服务器前延时时长,-1则表示不自动打印 var _delay_close = 1000; //打印完成后关闭窗口的延时时长, -1则表示不关闭 var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 </script> </html> <!-- ★★★ 模式2 ★★★ --> <?php //如果有php运行环境,只需把该文件扩展名改成 .php,然后上传到web目录即可在真实服务器上测试 header("Access-Control-Allow-Origin: "); ?> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> <style type="text/css"> output {font-size: 12px; background-color:F0FFF0;} </style> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统(Ver 1.3.0)</h2> <h3>打印测试(模式2)</h3> <div style="line-height: 1.5;"> <div style="width: 70%; text-align: left;"> <b>一、首先按下列步骤设置:</b><br/> 1、运行打印服务器;<br/> 2、按“停止”按钮停止服务;<br/> 3、打开“设置”区;<br/> 4、在“常用参数-->服务模式”中,选择“模式2”;<br/> 5、按“启动”按钮启动服务。 </div> <div style="width: 70%; text-align: left;"> <b>二、按本页的“打印”按钮开始打印。</b><br/> </div><br/> <input type="button" id="btnPrint" value="打印" /><br/><br/> <div style="width: 70%; text-align: left; font-size: 12px;"> 由于JavaScript在不同域名下访问会出现由来已久的跨域问题,所以正式部署到服务器使用时,要解决跨域问题。<br/> 对于IE8以上版本浏览器,只需增加一个reponse头:Access-Control-Allow-Origin即可,而对于php、jsp、asp/aspx等动态语言而言,增加一个response头是非常简单的事,例如:<br/> <b>在php:</b><br/><span style="color: red;"> <?php <br/> header("Access-Control-Allow-Origin: ");<br/> ?><br/> </span> <b>在jsp:</b><br/><span style="color: red;"> <% <br/> response.setHeader("Access-Control-Allow-Origin", ""); <br/> %><br/> </span> <b>在asp.net中:</b><br/><span style="color: red;"> Response.AppendHeader("Access-Control-Allow-Origin", ""); </span>,<br/>其他语言里,大家请自行搜索“ajax跨域”。而对于IE8以下的浏览器,大家可以自行搜索“IE6+Ajax+跨域”寻找解决办法吧,也可以联系我们帮助。 </div> </div> </div> <div id="output"></div> </body> <!-- 引入模式2所需的javascript支持库 --> <script type="text/javascript" src="cfprint_mode2.min.js" charset="UTF-8"></script> <!-- 构造报表数据 --> <script type="text/javascript"> var _reportData = '{"template":"waybill.fr3","ver":3, "Tables":[ {"Name":"Table1", "Cols":[{"type":"str","size":255,"name":"HAWB","required":false},{"type":"int","size":0,"name":"NO","required":false},{"type":"float","size":0,"name":"报关公司面单号","required":false},{"type":"integer","size":0,"name":"公司内部单号","required":false},{"type":"str","size":255,"name":"发件人","required":false},{"type":"str","size":255,"name":"发件人地址","required":false},{"type":"str","size":255,"name":"发件人电话","required":false},{"type":"str","size":255,"name":"发货国家","required":false},{"type":"str","size":255,"name":"收件人","required":false},{"type":"str","size":255,"name":"收件人地址","required":false},{"type":"str","size":255,"name":"收件人电话","required":false},{"type":"str","size":255,"name":"收货人证件号码","required":false},{"type":"str","size":255,"name":"收货省份","required":false},{"type":"float","size":0,"name":"总计费重量","required":false},{"type":"int","size":0,"name":"总件数","required":false},{"type":"float","size":0,"name":"申报总价(CNY)","required":false},{"type":"float","size":0,"name":"申报总价(JPY)","required":false},{"type":"int","size":0,"name":"件数1","required":false},{"type":"str","size":255,"name":"品名1","required":false},{"type":"float","size":0,"name":"单价1(JPY)","required":false},{"type":"str","size":255,"name":"单位1","required":false},{"type":"float","size":0,"name":"申报总价1(CNY)","required":false},{"type":"float","size":0,"name":"申报总价1(JPY)","required":false},{"type":"int","size":0,"name":"件数2","required":false},{"type":"str","size":255,"name":"品名2","required":false},{"type":"float","size":0,"name":"单价2(JPY)","required":false},{"type":"str","size":255,"name":"单位2","required":false},{"type":"float","size":0,"name":"申报总价2(CNY)","required":false},{"type":"float","size":0,"name":"申报总价2(JPY)","required":false},{"type":"int","size":0,"name":"件数3","required":false},{"type":"str","size":255,"name":"品名3","required":false},{"type":"float","size":0,"name":"单价3(JPY)","required":false},{"type":"str","size":255,"name":"单位3","required":false},{"type":"float","size":0,"name":"申报总价3(CNY)","required":false},{"type":"float","size":0,"name":"申报总价3(JPY)","required":false},{"type":"int","size":0,"name":"件数4","required":false},{"type":"str","size":255,"name":"品名4","required":false},{"type":"float","size":0,"name":"单价4(JPY)","required":false},{"type":"str","size":255,"name":"单位4","required":false},{"type":"float","size":0,"name":"申报总价4(CNY)","required":false},{"type":"float","size":0,"name":"申报总价4(JPY)","required":false},{"type":"int","size":0,"name":"件数5","required":false},{"type":"str","size":255,"name":"品名5","required":false},{"type":"float","size":0,"name":"单价5(JPY)","required":false},{"type":"str","size":255,"name":"单位5","required":false},{"type":"float","size":0,"name":"申报总价5(CNY)","required":false},{"type":"float","size":0,"name":"申报总价5(JPY)","required":false},{"type":"str","size":255,"name":"参考号","required":false},{"type":"AutoInc","size":0,"name":"ID","required":false}],"Data":[{"公司内部单号":730293,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900791,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010055","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":3,"ID":3,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰2","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 2","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730291,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900789,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010035","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":1,"ID":1,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730292,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900790,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010045","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":2,"ID":2,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张无忌","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 1","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10}]}]}'; if(window.console) console.log("reportData = " + _reportData); </script> <!-- 设置服务器参数 --> <script language="javascript" type="text/javascript"> var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 var _url = "http://"+cfprint_addr+":"+cfprint_port; </script> <!-- 编写回调函数用以处理服务器返回的数据 --> <script type="text/javascript"> / 参数: readyState: XMLHttpRequest的状态 httpStatus: 服务端返回的http状态 responseText: 服务端返回的内容 / var callbackSuccess = function(readyState, httpStatus, responseText){ if (httpStatus === 200) { //{"result": 1, "message": "打印完成"} var response = CFPrint.parseJSON(responseText); alert(response.message+", 状态码["+response.result+"]"); }else{ alert('打印失败,HTTP状态代码是:'+httpStatus); } } / 参数: message: 错误信息 / var callbackFailed = function(message){ alert('发送打印任务出错: ' + message); } </script> <!-- 调用发送打印请求功能 --> <script type="text/javascript"> (function(){ document.getElementById("btnPrint").onclick = function() { CFPrint.outputid = "output"; //指定调试信息输出div的id CFPrint.SendRequest(_url, _reportData, callbackSuccess, callbackFailed); //发送打印请求 }; })(); </script> </html> 六、模板设计器(重要!重要!!,好多朋友都找不到设计器入口) 在主界面上,双击右下角的“设计”两个字,即可打开模板设计工具箱,在工具箱有三个按钮和一个大文本框。三个按钮的作用分别是: 设计:以大文本框中的json数据为数据源,打开模板设计器窗口; 预览:以大文本框中的json数据为数据源,预览当前所用模板的打印效果; 打印:以大文本框中的json数据为数据源,向打印机输出当前所用模板生成的报表; 以后将会有详细的模板设计教程发布,如果您遇到紧急的难题,请向作者咨询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/chensongmol/article/details/76087600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-01 18:34:12
234
转载
转载文章
...直接渲染。 尽量不要使用 eval, new Function(),document.write(),document.writeln(),window.setInterval(),window.setTimeout(),innerHTML,document.creteElement() 等可执行字符串的方法。 如果做不到以上几点,也必须对涉及 DOM 渲染的方法传入的字符串参数做 escape 转义。 前端渲染的时候对任何的字段都需要做 escape 转义编码。 escape 转义的目的是将一些构成 HTML 标签的元素转义,比如 <,>,空格 等,转义成 <,>, 等显示转义字符。有很多开源的工具可以协助我们做 escape 转义。 持久型 XSS 持久型 XSS 漏洞,也被称为存储型 XSS 漏洞,一般存在于 Form 表单提交等交互功能,如发帖留言,提交文本信息等,黑客利用的 XSS 漏洞,将内容经正常功能提交进入数据库持久保存,当前端页面获得后端从数据库中读出的注入代码时,恰好将其渲染执行。 主要注入页面方式和非持久型 XSS 漏洞类似,只不过持久型的不是来源于 URL,refferer,forms 等,而是来源于后端从数据库中读出来的数据。持久型 XSS 攻击不需要诱骗点击,黑客只需要在提交表单的地方完成注入即可,但是这种 XSS 攻击的成本相对还是很高。攻击成功需要同时满足以下几个条件: POST 请求提交表单后端没做转义直接入库。 后端从数据库中取出数据没做转义直接输出给前端。 前端拿到后端数据没做转义直接渲染成 DOM。 持久型 XSS 有以下几个特点: 持久性,植入在数据库中 危害面广,甚至可以让用户机器变成 DDoS 攻击的肉鸡。 盗取用户敏感私密信息 为了防止持久型 XSS 漏洞,需要前后端共同努力: 后端在入库前应该选择不相信任何前端数据,将所有的字段统一进行转义处理。 后端在输出给前端数据统一进行转义处理。 前端在渲染页面 DOM 的时候应该选择不相信任何后端数据,任何字段都需要做转义处理。 基于字符集的 XSS 其实现在很多的浏览器以及各种开源的库都专门针对了 XSS 进行转义处理,尽量默认抵御绝大多数 XSS 攻击,但是还是有很多方式可以绕过转义规则,让人防不胜防。比如「基于字符集的 XSS 攻击」就是绕过这些转义处理的一种攻击方式,比如有些 Web 页面字符集不固定,用户输入非期望字符集的字符,有时会绕过转义过滤规则。 以基于 utf-7 的 XSS 为例 utf-7 是可以将所有的 unicode 通过 7bit 来表示的一种字符集 (但现在已经从 Unicode 规格中移除)。 这个字符集为了通过 7bit 来表示所有的文字, 除去数字和一部分的符号,其它的部分将都以 base64 编码为基础的方式呈现。 <script>alert("xss")</script>可以被解释为:+ADw-script+AD4-alert(+ACI-xss+ACI-)+ADw-/script+AD4- 可以形成「基于字符集的 XSS 攻击」的原因是由于浏览器在 meta 没有指定 charset 的时候有自动识别编码的机制,所以这类攻击通常就是发生在没有指定或者没来得及指定 meta 标签的 charset 的情况下。 所以我们有什么办法避免这种 XSS 呢? 记住指定 XML 中不仅要指定字符集为 utf-8,而且标签要闭合 牛文推荐:http://drops.wooyun.org/papers/1327 (这个讲的很详细) 基于 Flash 的跨站 XSS 基于 Flash 的跨站 XSS 也是属于反射型 XSS 的一种,虽然现在开发 ActionScript 的产品线几乎没有了,但还是提一句吧,AS 脚本可以接受用户输入并操作 cookie,攻击者可以配合其他 XSS(持久型或者非持久型)方法将恶意 swf 文件嵌入页面中。主要是因为 AS 有时候需要和 JS 传参交互,攻击者会通过恶意的 XSS 注入篡改参数,窃取并操作cookie。 避免方法: 严格管理 cookie 的读写权限 对 Flash 能接受用户输入的参数进行过滤 escape 转义处理 未经验证的跳转 XSS 有一些场景是后端需要对一个传进来的待跳转的 URL 参数进行一个 302 跳转,可能其中会带有一些用户的敏感(cookie)信息。如果服务器端做302 跳转,跳转的地址来自用户的输入,攻击者可以输入一个恶意的跳转地址来执行脚本。 这时候需要通过以下方式来防止这类漏洞: 对待跳转的 URL 参数做白名单或者某种规则过滤 后端注意对敏感信息的保护, 比如 cookie 使用来源验证。 CSRF CSRF(Cross-Site Request Forgery),中文名称:跨站请求伪造攻击 那么 CSRF 到底能够干嘛呢?你可以这样简单的理解:攻击者可以盗用你的登陆信息,以你的身份模拟发送各种请求。攻击者只要借助少许的社会工程学的诡计,例如通过 QQ 等聊天软件发送的链接(有些还伪装成短域名,用户无法分辨),攻击者就能迫使 Web 应用的用户去执行攻击者预设的操作。例如,当用户登录网络银行去查看其存款余额,在他没有退出时,就点击了一个 QQ 好友发来的链接,那么该用户银行帐户中的资金就有可能被转移到攻击者指定的帐户中。 所以遇到 CSRF 攻击时,将对终端用户的数据和操作指令构成严重的威胁。当受攻击的终端用户具有管理员帐户的时候,CSRF 攻击将危及整个 Web 应用程序。 CSRF 原理 下图大概描述了 CSRF 攻击的原理,可以理解为有一个小偷在你配钥匙的地方得到了你家的钥匙,然后拿着要是去你家想偷什么偷什么。 csrf原理 完成 CSRF 攻击必须要有三个条件: 用户已经登录了站点 A,并在本地记录了 cookie 在用户没有登出站点 A 的情况下(也就是 cookie 生效的情况下),访问了恶意攻击者提供的引诱危险站点 B (B 站点要求访问站点A)。 站点 A 没有做任何 CSRF 防御 你也许会问:「如果我不满足以上三个条件中的任意一个,就不会受到 CSRF 的攻击」。其实可以这么说的,但你不能保证以下情况不会发生: 你不能保证你登录了一个网站后,不再打开一个 tab 页面并访问另外的网站,特别现在浏览器都是支持多 tab 的。 你不能保证你关闭浏览器了后,你本地的 cookie 立刻过期,你上次的会话已经结束。 上图中所谓的攻击网站 B,可能是一个存在其他漏洞的可信任的经常被人访问的网站。 预防 CSRF CSRF 的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
转载文章
.../软引用非常适合缓存使用 2、弱引用 public class M {@Overrideprotected void finalize() throws Throwable {System.out.println("finalize");} } 上图中,tl对象强引用指向ThreadLocal,map中key弱引用指向ThreadLocal,当tl=null时,强引用消失,此时弱引用也将自动被回收,但是此时key=null,value指向10M这个就永远访问不到,既内存泄露 下图中,18行到20行为解决内存泄露问题的,那就是通过remove()将它消除了 / 弱引用遭到gc就会回收/import java.lang.ref.WeakReference;public class T03_WeakReference {public static void main(String[] args) {WeakReference<M> m = new WeakReference<>(new M());System.out.println(m.get());System.gc();System.out.println(m.get());ThreadLocal<M> tl = new ThreadLocal<>();tl.set(new M());tl.remove();} } 3、虚引用 虚引用 虚引用不是给开发人员用的,一般是给写JVM(java虚拟机,没有它java程序运行不了),Netty等技术大牛用的 虚引用,对象当被回收时,会将其放在队列中,此时我们监听到队列中有新值了,就知道有虚引用被回收了 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
327
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -g file.txt
- 实时监控文件内容变化并刷新显示。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"