前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[参数分配与数据处理流程分析]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...改进GRUB2的引导流程以适应最新的安全规范。同时,针对新型存储设备如NVMe SSDs,开发者正在优化GRUB对新硬件的支持,并研究如何确保在不同启动环境下MBR与GPT分区表的有效兼容。 其次,在Windows安装与部署方面,微软于今年发布了Windows 11新版操作系统,不仅引入了全新的用户界面设计,还在安装流程中融入了智能化安装选项和更快捷的驱动识别机制。此外,随着云技术和虚拟化技术的发展,Windows To Go和Azure Sphere等新型安装方式为系统部署提供了更多可能。 在网络配置方面,IPv6在全球范围内的普及速度加快,许多网络设备厂商正致力于提升产品对IPv6协议栈的支持。与此同时,Windows操作系统也在不断更新其网络功能,包括DHCPv6客户端功能增强、DNS-over-HTTPS(DoH)支持以及更完善的组播服务管理工具。此外,Windows防火墙已新增多项高级策略设置,以满足日益复杂的网络安全需求。 最后,关于Office软件中的实用技巧,Microsoft Office 365定期发布更新,提供更丰富的协作工具和智能功能,例如Excel的数据预处理和分析能力得到显著提升,Outlook则集成了更多智能邮件管理和日程安排助手。这些实时更新和新增功能有助于用户提高工作效率,应对各种办公场景挑战。 总之,随着科技不断发展,无论是操作系统的基础架构、网络配置的复杂度还是办公应用的智能化程度都在持续演进,关注行业动态和技术前沿将帮助我们更好地理解和运用文中提及的相关知识。
2023-09-10 16:27:10
270
转载
转载文章
... 4.PAM安全认证流程 五.限制使用su命令的用户(pam-wheel认证模块) 1.su命令概述: 2. su命令的用途以及用法: 3.配置su的授权(加入wheel组)(pam_wheel认证模块:): 4.配置/etc/sudoers文件(授权用户较多的时候使用): 六.开关机安全控制 1.调整BIOS引导设置 2.GRUB限制 七.终端以及登录控制 1.限制root只在安全终端登录 2..禁止普通用户登录 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 2.安装弱口令账号 3.密码文件的暴力破解 九.网络端口扫描 1.NMAP 2.格式 总结: 一.账号安全基本措施 1.系统账号清理 1.将非登录用户的Shell设为/sbin/nologin (ps:在我们使用Linux系统时,除了用户创建的账号之外,还会产生系统或程序安装过程中产生的许多其他账号,除了超级用户root外,其他账号都是用来维护系统运作的,一般不允许登录,常见的非登录用户有bin、adm、mail、lp、nobody、ftp等。) 格式:usermod -s /sbin/nologin 用户名 2锁定长期不使用的账号: [root@hehe ~] usermod -L test2 锁定用户账号方法一[root@hehe ~] passwd -l test3 锁定用户账号方法二[root@hehe ~] usermod -U test2 解锁用户账号方法一[root@hehe~] passwd -u test3 解锁用户账号方法二查看账户有没有被锁:passwd -S [用户名] 3.删除无用的账号 [root@hehe ~] userdel test1[root@hehe~] userdel -r test2 4.锁定账号文件passwd,shadow [root@hehe ~] chattr +i /etc/passwd /etc/shadow 锁定文件,包括root也无法修改[root@hehe ~] chattr -i /etc/passwd /etc/shadow 解锁文件[root@hehe ~] lsattr /etc/passwd /etc/shadow查看文件状态属性 举个例子: 二.密码安全控制: 1.设置密码有效期: 1.[root@localhost ~] chage -M 60 test3 这种方法适合修改已经存在的用户12.[root@localhost ~] vim /etc/login.defs 这种适合以后添加新用户PASS_MAX_DAYS 30 1.这个方法适用于早就已经存在的用户: 2.这个方法适用于新用户 2.要求用户下次登录时改密码: [root@hehe ~] chage -d 0 [用户名] 强制要求用户下次登陆时修改密码 三.命令历史限制与自动注销 1.命令历史限制: 1.减少记录的命令条数 减少记录命令的条数:1.[root@hehe ~] vim /etc/profile 进入配置文件修改限制命令条数。适合新用户HISTSIZE=200 修改限制命令为200条,系统默认是1000条profile [root@lhehe ~] source /etc/ 刷新配置文件,使文件立即生效2.[root@hehe~] export HISTSIZE=200 适用于当前(之后)用户[root@hehe~] source /etc/profile [root@hehe ~] source /etc/profile 刷新配置文件,使文件立即生效 1.减少记录命令的条数(适用之前的用户): 2.注销时自动清空命令历史 3. 注销时自动清空命令:[root@hehe ~] vim ~/.bash_logout(临时清除,重启缓存的话还在)echo "" > ~/.bash_history(永久删除)history是查你使用过的命令 2.终端自动注销: 1.闲置600秒后自动注销 闲置600秒后自动注销:[root@hehe ~]vim .bash_profile 进入配置文件export TMOUT=600 全局声明超过60秒闲置后自动注销终端[root@hehe ~] source .bash_profile [root@hehe ~] echo $TMOUT[root@hehe ~] export TMOUT=600 如果不在配置文件输入这条命令,那么是对当前用户生效[root@hehe ~]vim .bash_profile export TMOUT=600 注释掉这条命令,就不会自动注销了 四.PAM安全认证 1.su的命令的安全隐患 1.,默认情况下,任何用户都允许使用su命令,有机会反复尝试其他用户(如root) 的登录密码,带来安全风险; 2.为了加强su命令的使用控制,可借助于PAM认证模块,只允许极个别用户使用su命令进行切换。 2.什么是PAM 1.PAM(Pluggable Authentication Modules)可插拔式认证模块 2.是一种高效而且灵活便利的用户级别的认证方式; 3.也是当前Linux服务器普遍使用的认证方式。 4.PAM提供了对所有服务进行认证的中央机制,适用于login,远程登陆,su等应用 5.系统管理员通过PAM配置文件来制定不同的应用程序的不同认证策略 3.PAM认证原理 1.PAM认证一般遵循的顺序: Service (服务) --> PAM (配置文件) --> pam_.so;, 2.PAM认证首先要确定哪一项应用服务,然后加载相应的PAM的配置文件(位于/etc/pam.d下),最后调用认 模块(位于/lib64/security/下)进行安全认证。 3.用户访问服务器的时候,服务器的某一个服务程序把用户的请求发送到PAM模块进行认证。不同的应用程序所对应的PAM模块也是不同的。 4.如果想查看某个程序是否支持PAM认证,可以用ls命令进行查看/etc/pam.d/。 ls /etc/pam.d/ | grep su 5.PAM的配置文件中的每一行都是一个独立的认证过程,它们按从上往下的顺序依次由PAM模块调用。 4.PAM安全认证流程 控制类型也称做Control Flags,用于PAM验证类型的返回结果 用户1 用户2 用户3 用户4 auth required 模块1 pass fail pass pass auth sufficient 模块2 pass pass fail pass auth required 模块3 pass pass pass fail 结果 pass fail pass pass 4 五.限制使用su命令的用户(pam-wheel认证模块) 1.su命令概述: 通过su命令可以非常方便切换到另一个用户,但前提条件是必须知道用户登录密码。对于生产环境中的Linux服务器,每多一个人知道特权密码,安全风险就多一分。于是就多了一种折中的办法,使用sudo命令提升执行权限,不过需要由管理员预先进行授权, 指定用户使用某些命令: 2. su命令的用途以及用法: 用途:以其他用户身份(如root)执行授权命令用法:sudo 授权命令 3.配置su的授权(加入wheel组)(pam_wheel认证模块:): 进入授权命令:1.visudo 或者 vim /etc/sudoers语法格式:1.用户 主机名=命令程序列表2.用户 主机名=(用户)命令程序列表-l:列出用户在主机上可用的和被禁止的命令;一般配置好/etc/sudoers后,要用这个命令来查看和测试是不是配置正确的;-v:验证用户的时间戳;如果用户运行sudo后,输入用户的密码后,在短时间内可以不用输入口令来直接进行sudo操作;用-v可以跟踪最新的时间戳;-u:指定以以某个用户执行特定操作;-k:删除时间戳,下一个sudo命令要求用求提供密码; 1.首先创建3个组 2.vim /etc/pam.d/su把第六行注释去掉保存退出 1. 以上两行是默认状态(即开启第一行,注释第二行),这种状态下是允许所有用户间使用su命令进行切换的 2.两行都注释也是运行所有用户都能使用su命令,但root下使用su切换到其他普通用户需要输入密码: 3.如果第–行不注释,则root 使用su切换普通用户就不需要输入密码( pam_ rootok. so模块的主要作用是使uid为0的用户,即root用户能够直接通过认证而不用输入密码。) 4.如果开启第二行,表示只有root用户和wheel1组内的用户才可以使用su命令。 5.如果注释第一行,开启第二行,表示只有whee1组内的用户才能使用su命令,root用户也被禁用su命令。 3.将liunan加入到wheel之后,hehe就有了使用su命令的权限 4.使用pam_wheel认证后,没有在wheel里的用户都不能再用su 5.whoami命令确定当前用户是谁 4.配置/etc/sudoers文件(授权用户较多的时候使用): visudo单个授权visudo 或者 vim /etc/sudoers记录格式:user MACHINE=COMMANDS可以使用通配符“ ”号任意值和“ !”号进行取反操作。%组名代表一整个组权限生效后,输入密码后5分钟可以不用重新输入密码。例如:visudo命令下user kiro=(root)NOPASSWD:/usr/sbin/useradd,PASSWD:/usr/sbin/usermod代表 kiro主机里的user用户,可以无密码使用useradd命令,有密码使用usermod/etc/sudoers多个授权Host_Alias MYHOST= localhost 主机别名:主机名、IP、网络地址、其他主机别名!取反Host_Alias MAILSVRS=smtp,pop(主机名)User_Alias MYUSER = kiro,user1,lisi 用户别名:包含用户、用户组(%组名(使用引导))、还可以包含其他其他已经用户的别名User_Alias OPERATORS=zhangsan,tom,lisi(需要授权的用户)Cmnd_Alias MYCMD = /sbin/,/usr/bin/passwd 命令路劲、目录(此目录内的所有命令)、其他事先定义过的命令别名Cmnd_Alias PKGTOOLS=/bin/rpm,/usr/bin/yum(授权)MYUSER MYHOST = NOPASSWD : MYCMDDS 授权格式sudo -l 查询目前sudo操作查看sudo操作记录需启用Defaults logfile配置默认日志文件: /var/log/sudosudo -l 查看当前用户获得哪些sudo授权(启动日志文件后,sudo操作过程才会被记录) 1.首先用visudo 或者 vim /etc/sudoers进入,输入需要授权的命令 2.切换到taojian用户,因为设置了它不能使用创建用户的命令所以无法创建 六.开关机安全控制 1.调整BIOS引导设置 1.将第一引导设备设为当前系统所在硬盘2.禁止从其他设备(光盘、U盘、网络)引导系统3.将安全级别设为setup,并设置管理员密码 2.GRUB限制 1.使用grub2-mkpasswd-pbkdf2生成密钥2.修改/etclgrub.d/00_header文件中,添加密码记录3.生成新的grub.cfg配置文件 方法一: 通常情况下在系统开机进入GRUB菜单时,按e键可以查看并修改GRUB引导参数,这对服务器是一个极大的威胁。可以为GRUB菜单设置一个密码,只有提供正确的密码才被允许修改引导参数。grub2-mkpasswd-pbkdf2 根据提示设置GRUB菜单的密码PBKDF2 hash of your password is grub.pbkd..... 省略部分内容为经过加密生成的密码字符串cp /boot/grub2/grub.cfg /boot/grub2/grub.cfg.bak 8cp /etc/grub.d/00_header /etc/grub.d/00_header.bak 9vim /etc/grub.d/00_headercat << EOFset superusers="root" 设置用户名为rootpassword_pbkdf2 root grub.pbkd2..... 设置密码,省略部分内容为经过加密生成的密码字符串EOF16grub2-mkconfig -o /boot/grub2/grub.cfg 生成新的grub.cfg文件重启系统进入GRUB菜单时,按e键将需要输入账号密码才能修改引导参数。 方法二: 1.一步到位2.grub2-setpassword 七.终端以及登录控制 1.限制root只在安全终端登录 安全终端配置文件在 /etc/securetty 2..禁止普通用户登录 1.建立/etc/nologin文件 2.删除nologin文件或重启后即恢复正常 vim /etc/securetty在端口前加号拒绝访问touch /etc/nologin 禁止普通用户登录rm -rf /etc/nologin 取消禁止 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 1.一款密码分析工具,支持字典式的暴力破解2.通过对shadow文件的口令分析,可以检测密码强度3.官网网站:http://www.openwall.com/john/ 2.安装弱口令账号 1.获得Linux/Unix服务器的shadow文件2.执行john程序,讲shadow文件作为参数 3.密码文件的暴力破解 1.准备好密码字典文件,默认为password.lst2.执行john程序,结合--wordlist=字典文件 九.网络端口扫描 1.NMAP 1.—款强大的网络扫描、安全检测工具,支持ping扫描,多端口检测等多种技术。2.官方网站: http://nmap.orgl3.CentOS 7.3光盘中安装包,nmap-6.40-7.el7.x86_64.rpm 2.格式 NMAP [扫描类型] [选项] <扫描目标....> 安装NMAP软件包rpm -qa | grep nmapyum install -y nmapnmap命令常用的选项和扫描类型-p:指定扫描的端口。-n:禁用反向DNS 解析 (以加快扫描速度)。-sS:TCP的SYN扫描(半开扫描),只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
95
转载
Golang
...传统编程语言在多任务处理上那效率低下的样子,心里直冒火,于是下定决心要搞出一门“又快又稳还特高效”的编程语言,简直就像武侠小说里那种为了解决江湖大难题豁出去了的大侠一样! 记得我第一次接触Go时,简直被它的简洁震撼到了。不像Java那么啰嗦,也不像Python那样慢吞吞,Go简直就是为高并发而生的!每次看到它的协程(goroutine)和通道(channel),我就忍不住想:这不就是为我这种喜欢高效开发的人量身定制的语言嘛! 所以,今天咱们就来聊聊如何用Go语言构建一个高性能的服务器。嘿,别担心!我可不会整那些枯燥的理论大餐,咱们这就撸起袖子一起敲代码吧。来吧,跟着我,看看Go这小子到底是怎么一步步帮咱们搞定问题的,超有趣的! --- 2. 高性能服务器的核心要素 说到高性能服务器,其实核心无非就几个点:并发处理、内存管理、网络优化和代码结构。Go在这几个方面都有独到的优势,接下来咱们一个个拆解来看。 2.1 并发处理:协程的力量 先说并发处理吧。Go最大的特点之一就是协程(goroutine)。嘿,你知道为啥大家都说协程比线程“瘦”吗?就是因为它真的省空间啊!打个比方,一个协程的“小背包”(也就是栈内存)才不到2KB,可传统线程那背包大得吓人,动不动就几十KB起步,甚至能到上百KB。这差距,简直是一个小巧玲珑的手拿包和一个超大登山包的区别! 举个例子,假设我们要做一个聊天服务器,每秒钟需要处理上千个用户的请求。要是用那种老式的多线程方式,创建和销毁线程的代价大得会让你的服务器累得直不起腰,简直要崩溃了!但用Go的话,完全可以轻松应对: go package main import ( "fmt" "net/http" ) func handleRequest(w http.ResponseWriter, r http.Request) { fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:]) } func main() { http.HandleFunc("/", handleRequest) fmt.Println("Server started at :8080") err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } } 这段代码虽然简单,但它背后却隐藏着Go的魔力。嘿,你有没有试过访问这个地址:http://localhost:8080/username?当你这么做的时候,Go 这家伙就会偷偷摸摸地给你派来一个小帮手——一个协程,专门负责处理你的请求。而且更贴心的是,它完全不用你去管什么线程池那些听起来就头大的复杂玩意儿,简直是太省心了吧! 当然了,光靠协程还不够。为了确保程序的健壮性,我们需要合理地利用通道(channel)来进行通信。比如下面这个简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
...C10K 是单机同时处理 1 万个请求(并发连接 1 万)的问题 C1000K 是单机支持处理 100 万个请求(并发连接 100 万)的问题。 C10K C10K 问题最早由 Dan Kegel 在 1999 年提出。那时的服务器还只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...为我不仅仅只是把问题处理完了就完事,而是非得想把和它相关的周边业务逻辑都挖一遍才甘心。因此,班也没少加,好多个周末我都一个人在公司看代码,做测试。 不过这种方式的好处也是显而易见的,我花了大概一年的时间就熟悉了团队里的各种模块和业务。当有老员工离职的时候,我们领导很惆怅。我告诉他不用担心,这些模块我能顶住。有了前期看代码的积累,确实后来的各种事情处理起来都非常的得心应手。入职一年就顶起了团队里的大梁。 而且我还发现我们公司的客户端软件在启动的时候比较慢,通过主动调研和测试,最后给领导提交了一个客户端启动加速的方案。现在能想起来的方式其中一个技术方式是 DLL 的基地址重定位。 02 入职腾讯 在 2011 年下半年,工作了一年多的时候,感觉广播电视领域整体的盘子还是太小了,当时领头企业的营业额一年也就才十个亿左右。再通过和自己在腾讯的同学交流,还是觉得互联网的空间更大。所以也婉拒了领导给的副组长的提拔挽留,又毅然跳到了北京腾讯。 我是 2011 年 11 月加入腾讯的。在项目上,仍然保持和第一家公司时工作类似的风格,全力以赴。不仅仅局限于完成自己手头的工作,主动做一切可能有价值的事情。其中一件事情就是我发现在当时的项目中,存在很多运营后台的开发需求。每次开发一个后台都得有人力去投入。 后来我就在老大的所开发的一套 PHP 框架的基础上进行改进。实现了只要指定一张 Mysql 数据库中的表,就可以自动生成 bootstrap 样式的管理后台界面。支持列表展示、搜索、删除、批量删除、文本框、时间控件等等一切基础功能。再以后涉及管理后台的功能,只需要在这个基础上改造就行了,人力投入降低了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
转载文章
...le 表名(属性名 数据类型[约束条件],…); Paimary key 主键 auto_increment自增 foreign key 外键 references 另一表名(字段名).–>外键这个表连接着另外一个表的哪个键. 删除表: drop table 表名;–>表结构也删除了(也即是这个表没了) Truncate table 表名 --> 只删除表中数据,表结构不会删除. 2.In 与 not in 在或不在这个(1,3)里面,单个查询,只会查询(1或者3) 3.Between and 与 not … 和上面差不多,Between 1 and 3 但是这个是范围查询(1,3) 1-3 之间(包含1,3) 4.Like,模糊查询 “%” 代表任意字符,”_”代表单个字符. 5.Is Not null 与 is null 是否为空 6.And 与 or 一个是所有条件都要完成,or则是任何一个条件完成即可 7.Distinct 去重 8.Order by age asc 与 desc 排序,假如根据age排序,asc正序(升序默认),desc倒叙(降序) 9.Gruop by 分组查询,单独使用无意义,group_concat(字段),拼接,若是根据age group by 则会发现age一样的会出现在同一字段内 例如: : 最后要注意group by 后面的字段与所查字段的关系(一对一),当然还有having,having和where基本一样,只不过跟在group by后面. 10.Limit 分页查询 limit 0,5 .查询前5条数据,从0开始,5结束,但是5取不到,也即是取头不取尾. 11.聚合函数:count() 查询数据的总数据量 经常使用别名 例如:as total sum(字段)函数:求和…若字段为成绩,where条件或gruop by 为个人的id,那么查出的就是个人的成绩总分. AVG(字段),但是查的是平均分,min(字段)与max(字段) 查出最小或最大. 三者都类似sum(),当然max()与min()若是在最前面使用,就会当条件查询只会出来这一笔数据.例如: 12.Sql多表查询,内连接不只是inner join,平时写的from a表,b表 where 条件这也是内连接,意思就是两张表中数据都有才可以查询出来 13.而外连接分为左连接和右连接,意思是以左表或右表为主,假如两张表,左表数据多,右表数据少,且条件符合,则左连接的时候左表数据全部出来,右表没有的为null,反之也是一样. 14.Exist() 与 not exist() …()内的数据是否为空,若是为空则代表false,返回数据为空,若不为空,则代表true,正常查询. 15.Any 与 all 例如 age > any(age1,age2) 大于两者中的一个就可以,但是all的情况下则是全部大于.也就是相当于,any为大于最小的,all则是大于最大的就行了,当然若是小于号那就是另外一种情况了,另外分析. 16.Union,(也就是联合的意思,自带distinct,重复的去除)用法,例如两张表的id要全部查出来,则:select id from A union select id from B ,若Aid为1,2,3,Bid为1,2,4.则查出来的数据为1.2.3.4,若是union all,则不带distinct,用法一样,查出来以后为1.2.3.1.2.4. 17.给表取别名,表名 空格 别名 给字段取别名 字段名 as 别名. 18.Insert插入数据时若是使用insert into 表名 values();主键必须到写进去,当然与其他数据不相同即可,若是自增,可以写null.若是insert into 表名(字段)values(值),这时插入数据,字段不用写主键字段,写入其他数据字段名与值就可以完成数据的添加.(主键自己生成为前提,UUID,auto_increament都可以). 19.Insert into 插入多条数据时,其他与18一样,只不过由values()变成了values(),(),(); 20.索引是由数据库表中一列或多列组合而成,其作用提高对表数据的查询速度.像图书目录. 优缺点:优:提高了查询数据的效率.缺:创建和维护索引的时间增加了(内容改了,目录也要改). 21.索引分类:普通索引,唯一性索引UNIQUE(unique修饰,例如主键),全文索引FULLTEXT(创建在文本上,例如:char,varchar,varchar2等,mysql默认引擎不支持,),单列索引:单个字段建立索引,多列索引:多个字段创建一个索引,空间索引SPATIAL:不常用(mysql默认引擎不支持) 22.创建索引: index为关键字,或者key (1)可以index(字段名)–>普通索引 (2)Unique index(字段名)–>唯一索引 (3)Unique index 别名(字段名)–>取别名的唯一索引 (4)index 别名(字段名1,字段名2)–>取别名的多列索引 1.创建表的时候创建索引, 前三个为参数修饰,唯一性,全文,空间索引; 2.在已存在的表上创建索引,或者用ALTER TABLE 表名 ADD 索引,也就是用修改表的形式来创建索引 Create index 索引别名 on 表名(字段名) -->普通单列索引 Create index 索引别名 on 表名(字段名1,字段名2) -->多列索引 Create unique index 索引别名 on 表名(字段名) -->唯一单列索引 Alter table 表名 add +(1)|(2)|(3)|(4)即可. 23.删除索引: drop index 索引名 on 表名. 24.NOW(); mysql的函数,表示当前时间 25.视图:是一个虚拟的表,没有物理数据,是从其他表中导出的数据,当原表数据发生改变时,视图数据也会发生改变,反之也一样. (1)作用:操作简单化;增加数据安全性:不直接对表进行操作;提高表的逻辑性:原表修改字段对视图无影响. (2)创建视图:语法:create view 视图名 as 查询语句. 例如:create view vi as select id,name from user;–>这是把user中id,name字段的数据写入到vi视图中. 若是想自己定义字段名不用查出的字段名,可以如下面这样写. 例如:create view vi(vi_id,vi_name) as select id,name from user;–>这样的话id对应vi_id,name对应vi_name; 上面的都是单表的视图,多表的视图也是一样的,只不过后面的单表查询变成多表查询了. 建议创建视图后自己定义字段名,也即是定义别名. (3)查看视图: Describe(desc) 视图名–>查看视图基本信息 Show table status like ‘视图名’ --> 查看视图基本信息 Show create view 视图名 --> 视图详细信息,建表具体信息. 在view表中查看视图详细信息–>view 系统表 自带的. (4)修改视图:修改使徒的定义 Create or replace view 没有的话就创建,有的话就替换 例如:Create or replace view vi(id,name) as select语句. Alter view 只修改不能创建(也就是说视图必须存在的情况下才可修改) Alter view vi as select语句 (5)更新视图:视图是虚拟的,对视图进行的crud操作都会对原表的数据产生影响. 也就是说对视图的操作最后都会转换为对视图所连接那个表的操作. (6)删除视图:删除数据库中已存在的视图,视图为虚表,因此只会删除结构,不会删除数据. Drop view if exist 视图名. 26.触发器:由事件来触发某个操作,这些事件包括insert语句,update语句和delete语句.当数据库系统执行这些事件时,就会激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...获异常,捕获之后怎么处理异常?你可能已经使用异常一段时间了,但对 .NET/C 的异常机制依然有一些疑惑。那么,可以阅读本文。 本文适用于已经入门 .NET/C 开发,已经开始在实践中抛出和捕获异常,但是对 .NET 异常机制的用法以及原则比较模糊的小伙伴。通过阅读本文,小伙伴们可以迅速在项目中使用比较推荐的异常处理原则来处理异常。 本文内容 快速了解 .NET 的异常机制 Exception 类 捕捉异常 引发异常 创建自定义异常 finally 异常堆栈跟踪 异常处理原则 try-catch-finally 该不该引发异常? 该不该捕获异常? 应用程序全局处理异常 抛出哪些异常? 异常的分类 其他 一些常见异常的原因和解决方法 AccessViolationException 快速了解 .NET 的异常机制 Exception 类 我们大多数小伙伴可能更多的使用 Exception 的类型、Message 属性、StackTrace 以及内部异常来定位问题,但其实 Exception 类型还有更多的信息可以用于辅助定位问题。 Message 用来描述异常原因的详细信息 如果你捕捉到了异常,一般使用这段描述能知道发生的大致原因。 如果你准备抛出异常,在这个信息里面记录能帮助调试问题的详细文字信息。 StackTrace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...阶段。据比达咨询市场分析数据显示,2016年中国第三方餐饮外卖市场格局中,饿了么位居第一,市场份额为34.6%,美团外卖(33.6%)、百度外卖(18.5%)紧随其后,在“白领市场”、“社区市场”、“校园市场”的细分领域中,饿了么均占据榜首位置。截至2016年12月,饿了么业务覆盖1400多个城市,用户超过1亿,各地加盟餐厅超过100万家,日订单量突破900万,旗下“蜂鸟配送”日配送单量超过450万。 在 “独角兽”的成长道路上,饿了么面对人工成本高制约业务快速扩张、人工派单速度慢导致高峰期积压订单严重、人工派单随机性强引起订单配送时效性差等现实问题,而阿里云通过智能派单系统,基于海量历史订单数据、餐厅数据、骑手数据、用户数据等信息实现智能派单,逐步替代调度员的大部分工作。智能派单系统整体全面上线后将释放90%以上人工派单的人力,每年节省人力支出预计超过亿元。 饿了么的IT系统架构伴随业务量飙升,进行了三次重大升级。 1)起步期(2009至2013年):饿了么由上海交通大学创始团队起家,发展至35人规模,日订单量维持在十万量级,由“IDC+Python”技术组合支撑业务运营,但面临Python人才难觅等困扰。 2)成长期(2014年至2015年):14年8至9月短短2个月内日均订单量增长10倍,从10万迅猛飙升至100万,业务规模主攻全国200个城市,原有IT系统架构压力极大,依靠人肉运维举步维艰,故障波动影响业务,创始人与核心技术团队坚守机房运维一线,才勉强扛住100万量级业务订单。开始借鉴阿里淘宝架构模式,人员团队也涨至500人,技术生态从Python扩展至“Java+Python”开发体系,从“人肉”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...函数的作用 3.带形参数的构造函数 (1)含义 (2)【例3.2】 4.用参数初始化表对数据成员初始化 5.构造函数的重载 (1)含义 (2)【例3.3】 (3)说明 6.使用默认参数值的构造函数 (1)含义 (2)格式 (3)【例3.4】 (4)说明 二、析构函数 1.含义 2.执行析构函数的时机 3.特征 4.【例3.5】包含构造函数和析构函数的C++程序 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 2.全局范围内定义的对象 3.局部自动对象 4.静态局部对象 5.例 四、对象数组 1.含义 2.【例3.6】 五、对象指针 1.指向对象的指针 2.指向对象成员的指针 (1)含义 (2)指向对象公有数据成员的指针 (3)指向对象成员函数的指针 (4)【例3.7】有关对象指针的使用方法 3.this指针 六、共用数据的保护 1.常对象 2.常对象成员 (1)常数据成员 (2)常成员函数 3.指向对象的常指针 4.指向常对象的指针变量 5.对象的常引用 (1)含义 (2)格式 (3)【例3.8】对象的引用 6.const型数据小结 编辑 七、对象的动态建立与释放——动态建立对象 八、对象的赋值和复制 1.对象的赋值 (1)含义 (2)【例3.9】对象的赋值 (3)说明 2.对象的复制 (1)含义 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) (3)说明 九、静态成员 1.静态数据成员 (1)定义格式 (2)特性 (3)说明 (4)【例3.10】引用静态数据成员 2.静态成员函数 (1)含义 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 (3)【例】具有静态数据成员的point类 (4)静态成员函数举例 (5)具有静态数据、函数成员的Point类 (6)静态成员函数、静态数组及其初始化 十、友元 1.友元函数 (1)含义 (2)格式 (3)【例3.12】将普通函数声明为友元函数 (4)友元成员函数 2.友元类 十一、类模板 1.含义 2.定义类模板的格式 3.在类模板外定义成员函数的语法 4.使用类模板时,定义对象的格式 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 前言 通过第二章的学习,已经对类和对象有了初步了解。本章将对类和对象进行进一步讨论。 一、构造函数 如果定义一个变量,而程序未对其进行初始化的话,这个变量的值是不确定的,因为C和C++不会自觉地去为它赋值。与此相似,如果定义一个对象,而程序未对其数据成员进行初始化的话,这个对象的值也是不确定的。 1.对象的初始化 在定义一个类时,不能对其数据成员赋初值,因为类是一种类型,系统不会为它分配内存空间。在建立一个对象时,需要对其数据成员赋初值。如果一个数据成员未被赋初值,则它的值是不确定的。因为系统为对象分配内存时,保持了内存单元的原状,它就成为数据成员的初值。这个值是随机的。 C++提供了构造函数机制,用来为对象的数据成员进行初始化。在前面的学习中一直未讲这个概念,其实如果你未设计构造函数,系统在创建对象时,会自动提供一个默认的构造函数,而它只为对象分配内存空间其他什么也不做。 如果类中的所有数据成员是公有的,可以在定义对象时对其数据成员初始化。例如: class Time{public:int hour;int minute;int sec;};Time t1{15,36,26}; 在一个打括号内顺序列出各个公有数据成员的值,在两个值之间用逗号分隔。注意这只能用于数据成员都是共有的情况。 在前面的例子里,是用成员函数对对象的数据成员赋初值,如果一个类定义了多个对象,对每个对象都要调用成员函数对数据成员赋初值,那么程序就会变得繁琐,所以用成员函数为数据成员赋初值不是一个好办法。 2.构造函数的作用 构造函数用于为对象分配空间和进行初始化,它属于某一个类,可以由系统自动生成。也可以由程序员编写,程序员根据初始化的要求设计构造函数及函数参数。 构造函数是一种特殊的成员函数,在程序中不需要写调用语句,在系统建立对象时由系统自觉调用执行。 构造函数的特点: 构造函数的名字与它的类名必须相同 它没有类型,也不返回值 它可以带参数,也可以不带参数 include <iostream>using namespace std;class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};int main() {Time t1;t1.set_time();t1.show_time();Time t2;t2.show_time();return 0;}void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在类Time中定义了构造函数Time,它与所在的类同名。在建立对象时自动执行构造函数,该函数的作用是为对象中的每个数据成员赋初值0。注意只有执行构造函数时才能为数据成员赋初值。 程序运行时首先建立对象t1,并对t1中的数据成员赋初值0,然后执行t1.set_time函数,从键盘输入新值给对象t1的数据成员,再输出t1的数据成员的值。接着建立对象t2,同时对t2中的数据成员赋初值0,最后输出t2的数据成员的初值。程序运行情况如下: 也可以在类内声明构造函数然后在类外定义构造函数。将程序修改为Time();然后在类外定义构造函数: Time::Time() {hour = 0;minute = 0;sec = 0;} 关于构造函数的使用,说明如下: 什么时候调用构造函数?当函数执行到对象定义语句时建立对象,此时就要调用构造函数,对象就有了自己的作用域,对象的生命周期开始了。 构造函数没有返回值,因此不需要在定义中声明类型。 构造函数不需要显式地调用,构造函数是在建立对象时由系统自动执行的,且只执行以此。构造函数一般定义为public。 在构造函数中除了可以对数据成员赋初值,还可以使用其他语句。 如果用户没有定义构造函数,C++系统会自动生成一个构造函数,而这个函数体是空的,不执行初始化操作。 3.带形参数的构造函数 (1)含义 可以采用带形参数的构造函数,在调用不同对象的构造函数时,从外边将不同的数据传递给构造函数,实现不同对象的初始化。 构造函数的首部的一般格式为:构造函数名(类型 形参1,类型 形参2,……)。在定义对象时指定实参,定义对象的格式为:类名 对象名(实参1,实参2,……)。 (2)【例3.2】 有两个长方柱,其长、宽、高分别为:(1)12,25,30(2)15,30,21编写程序,在类中用带参数的构造函数,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...任什么角色,平时开发流程 之类的,然后J哥 就说大概在公司开发了有5款APP,自己私下接过一款私活,然后自己没事也做了两款应用,然后J哥 把应用展示给他看,他看了连连称赞不错啊。。。(lalala,其实都是J哥网上巴拉的项目啦。) (然后大体给他介绍了 项目基本框架,是 v4包里的 SlidingPaneLayout 嵌套了实现了轮询效果 自定义的viewpager 。然后 具体界面是用的瀑布流,项目的关键就是 对 图片的处理,因为有N张 图片,但是并没有卡顿,所以就说了 自己用 了开源的imagedownloader 和 volley 以及自己定义的 lrucache 缓存 bitmap 对象,这里大家一定要把图片的三级缓存 自己了解清楚,基本面试会问到。) 其实 当面试问你如何避免oom,内存泄露导致的原因,以及如何处理大图片等等,其实都是 如何优化内存。 可以按照我自己总结的回答,你可以说,这个问题 ,跟 oom以及 内存泄露,其实是一样的,关键 就是 如何 优化内存,避免不必要的 内存泄露, 而 内存泄露 的原因 ,我总结了 4点, 1. 匿名内部类,和非静态内部类, 举个栗子:我们用handler 进行线程间 假如 我们在activity中这样定义 handler : [java] view plain copy print ? Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { mImageView.setImageBitmap(mBitmap); } } 然后,我们用 右键 选中工程 运行 lint工具 , android tools---run lint ,就会提示我们这样一个warning: In Android, Handler classes should be static or leaks might occur.。 就是 ,推荐我们 把handler 定义成static,具体 看这里解释的很详细:http://www.linuxidc.com/Linux/2013-12/94065.htm 类似的还有 匿名子线程。 2.还是 拿网上的 栗子来说, [java] view plain copy print ? Vector v = new Vector( 10 ); for ( int i = 1 ;i < 100 ; i ++ ){ Object o = new Object(); v.add(o); o = null ; } 即便是 我们把 o 对象 置为 null,但是 vector 集合中还有有o的引用,所以 集合 没有被清空,这一部分内存 还是不能被释放,这就导致了内存泄露。 3, 当我们操作数据库的时候,我们在执行完 相应的crud 方法后,我们没有关闭 cursor .close()或者 db.close(),也同样会占用内存、因为只有关闭连接后,才会被GC 回收。 4.继续举个栗子 [java] view plain copy print ? Set<Person> set = new HashSet<Person>(); Person p1 = new Person("唐僧","pwd1",25); Person p2 = new Person("孙悟空","pwd2",26); Person p3 = new Person("猪八戒","pwd3",27); set.add(p1); set.add(p2); set.add(p3); System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素! p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变 set.remove(p3); //此时remove不掉,造成内存泄漏 set.add(p3); //重新添加,居然添加成功 System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
336
转载
转载文章
...,探索如何用熊猫准备数据,使用scikit-learn拟合和评估模型,以及更多内容。 让我们开始吧。 2016年10月更新:更新了sklearn v0.18的示例。 2018年2月更新:更新Python和库版本。 2018年3月更新:增加了备用链接以下载一些数据集,因为原始文件似乎已被删除。 2019年5月更新:修复了scikit-learn最新版本的警告消息。 Dave Young的 Python机器学习迷你课程 照片,保留一些权利。 迷你课程面向谁? 在开始之前,请确保您在正确的位置。 下面的列表提供了有关本课程针对谁的一些一般指导。 如果您没有完全匹配这些点,请不要惊慌,您可能只需要在一个或另一个区域刷牙以跟上。 知道如何编写一些代码的开发人员。这意味着,一旦您了解基本语法,就可以选择像Python这样的新编程语言,这对您来说并不重要。这并不意味着您是一名向导编码员,而是可以毫不费力地遵循基本的类似于C的语言。 懂一点机器学习的开发人员。这意味着您了解机器学习的基础知识,例如交叉验证,一些算法和偏差方差折衷。这并不意味着您是机器学习博士,而是您知道地标或知道在哪里查找。 这门迷你课程既不是Python的教科书,也不是机器学习的教科书。 从一个懂一点机器学习的开发人员到一个可以使用Python生态系统获得结果的开发人员,Python生态系统是专业机器学习的新兴平台。 在Python机器学习方面需要帮助吗? 参加我为期2周的免费电子邮件课程,发现数据准备,算法等(包括代码)。 单击立即注册,并获得该课程的免费PDF电子书版本。 立即开始免费的迷你课程! 迷你课程概述 该微型课程分为14节课。 您可以每天完成一堂课(推荐),也可以在一天内完成所有课程(核心!)。这实际上取决于您有空的时间和您的热情水平。 以下是14个课程,可帮助您入门并提高使用Python进行机器学习的效率: 第1课:下载并安装Python和SciPy生态系统。 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 第3课:从CSV加载数据。 第4课:了解具有描述性统计信息的数据。 第5课:通过可视化了解数据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...软件的开发和发布标准流程的最重要的部分 作为一个开发实践,在C中可以通过自动化等手段高频地去获取产品反馈并响应反馈的过程 简单的来说,持续集成就是持续不断地(一天多次)将代码合并(集成)到主干源码仓库,让产品可以快速迭代,同时保持高质量 代码每次通过集成到主干之前,必须通过自动化测试,以便快速发现和定位错误 持续集成并不能消除错误,而是让它们非常容易发现和改正 优点 缩减开发的周期,快速迭代版本 (尽早的持续集成,尽早进入迭代之中,尽早的暴露出问题,尽早解决,尽量在规定的时间内完成任务)(四尽早一尽量) 自动化流水线操作带来的高效 (CI的精髓在于持续,持续意味着自动化) (自动化验证代码变更的过程,可以在软件开发的早期发现缺陷和与其他代码、组件的集成问题) 随时可部署 (高频率的集成可以尽可能地保证随时部署上线,缩短开发复杂软件的市场交付时间) 极大程度避免低级错误 (减少大量内容合并到主干分支的请看看,避免代码合并冲突和无法预料的行为) 低级错误:编译错误,安装问题,接口问题,性能问题等 难点 迁移遗留代码到现有CI系统,需要的投入通常爱预料之外 在文化和组织上如果没有采用敏捷原则或DecOps的工作方式,那么很可能没有持续不断的提交,那么CI的存在意义不大 随着业务增长、工具的更替、技术的演进。CI系统也必然随之改动,往往会导致阶段性的不稳定和人力物力的耗费 如果CI的基本设定不到位,开发流程将会增加特别的开销 注意点 CI流程的触发方式 跟踪触发式:在每次提交到源码版本管理系统时触发 计划任务:预配置好的计划 手动:无论是通过CI服务器的管理界面还是脚本,用户可以手工执行CI工作流 代码审核 可在持续集成服务器里使用代码分析工具(例如Sonar)来执行自动代码审查 自动代码审查通过后,可发起一个人工代码审查,揪出那些自动审查无法找出的问题,即验证业务需求,架构问题,代码是否可读,以及是否易于扩展。 可灵活配置代码审核策略,例如:如果某些人没有审查代码便阻止对主干分支的任何提交。 最常用的工具是Gerrit 持续交付 简述 持续交付简称CD或CDE,是一种能够使得软件在较短的循环中可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...精确地切开,适合文本分析; 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。PaddlePaddle官网 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 通过 import jieba 来引用 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。 算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 主要功能 分词 jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...中启用它们。 2. 数据库性能调优实践:针对特定应用场景调整MySQL服务器配置参数至关重要。例如,通过优化innodb_buffer_pool_size以提升InnoDB存储引擎的性能,或者调整query_cache_size以缓存查询结果。实时案例分析和专家建议可以帮助您更好地理解如何根据服务器硬件资源和工作负载特征进行有效调优。 3. 日志管理与故障排查:MySQL服务器的日志记录功能对于问题诊断和审计有着重要作用。学习如何通过配置慢查询日志、错误日志以及二进制日志实现对系统运行状况的有效监控,并借助相关工具分析日志数据来发现并解决潜在问题。 4. 高可用性和复制策略:在生产环境中,MySQL往往需要部署为集群或采用主从复制模式以确保服务的高可用性。深入研究server-id、binlog_format等相关配置项如何影响复制行为,并结合GTID(全局事务标识符)等高级复制特性进行实战演练。 5. 操作系统级优化配合MySQL:除了直接修改MySQL配置文件外,系统级别的优化也相当重要,包括合理分配内存、磁盘I/O调度策略、网络参数调整等,这些都会间接影响到MySQL服务器的性能表现。及时跟踪Linux或Windows操作系统的最佳实践指南,以实现软硬件层面的协同优化。 综上所述,MySQL服务器配置文件只是数据库运维中的一个环节,后续的学习应结合当前的技术发展动态、行业最佳实践以及自身业务需求,不断深化对MySQL以及其他相关技术栈的理解与应用能力。
2023-10-08 09:56:02
129
转载
转载文章
...心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...tice公司及其收购数据库技术公司–StormDB的产品。Postgres-XL是一个横向扩展的开源数据库集群,具有足够的灵活性来处理不同的数据库任务。 Postgres-XL功能特性 开放源代码:(源协议使用宽松的“Mozilla Public License”许可,允许将开源代码与闭源代码混在一起使用。) 完全的ACID支持 可横向扩展的关系型数据库(RDBMS) 支持OLAP应用,采用MPP(Massively Parallel Processing:大规模并行处理系统)架构模式 支持OLTP应用,读写性能可扩展 集群级别的ACID特性 多租户安全 也可被用作分布式Key-Value存储 事务处理与数据分析处理混合型数据库 支持丰富的SQL语句类型,比如:关联子查询 支持绝大部分PostgreSQL的SQL语句 分布式多版本并发控制(MVCC:Multi-version Concurrency Control) 支持JSON和XML格式 Postgres-XL缺少的功能 内建的高可用机制 使用外部机制实现高可能,如:Corosync/Pacemaker 有未来功能提升的空间 增加节点/重新分片数据(re-shard)的简便性 数据重分布(redistribution)期间会锁表 可采用预分片(pre-shard)方式解决,在同台物理服务器上建立多个数据节点,每个节点存储一个数据分片。数据重分布时,将一些数据节点迁出即可 某些外键、唯一性约束功能 Postgres-XL架构 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M9lFuEIP-1640133702200)(./assets/postgre-xl.jpg)] 基于开源项目Postgres-XC XL增加了MPP,允许数据节点间直接通讯,交换复杂跨节点关联查询相关数据信息,减少协调器负载。 多个协调器(Coordinator) 应用程序的数据库连入点 分析查询语句,生成执行计划 多个数据节点(DataNode) 实际的数据存储 数据自动打散分布到集群中各数据节点 本地执行查询 一个查询在所有相关节点上并行查询 全局事务管理器(GTM:Global Transaction Manager) 提供事务间一致性视图 部署GTM Proxy实例,以提高性能 Postgre-XL主要组件 GTM (Global Transaction Manager) - 全局事务管理器 GTM是Postgres-XL的一个关键组件,用于提供一致的事务管理和元组可见性控制。 GTM Standby GTM的备节点,在pgxc,pgxl中,GTM控制所有的全局事务分配,如果出现问题,就会导致整个集群不可用,为了增加可用性,增加该备用节点。当GTM出现问题时,GTM Standby可以升级为GTM,保证集群正常工作。 GTM-Proxy GTM需要与所有的Coordinators通信,为了降低压力,可以在每个Coordinator机器上部署一个GTM-Proxy。 Coordinator --协调器 协调器是应用程序到数据库的接口。它的作用类似于传统的PostgreSQL后台进程,但是协调器不存储任何实际数据。实际数据由数据节点存储。协调器接收SQL语句,根据需要获取全局事务Id和全局快照,确定涉及哪些数据节点,并要求它们执行(部分)语句。当向数据节点发出语句时,它与GXID和全局快照相关联,以便多版本并发控制(MVCC)属性扩展到集群范围。 Datanode --数据节点 用于实际存储数据。表可以分布在各个数据节点之间,也可以复制到所有数据节点。数据节点没有整个数据库的全局视图,它只负责本地存储的数据。接下来,协调器将检查传入语句,并制定子计划。然后,根据需要将这些数据连同GXID和全局快照一起传输到涉及的每个数据节点。数据节点可以在不同的会话中接收来自各个协调器的请求。但是,由于每个事务都是惟一标识的,并且与一致的(全局)快照相关联,所以每个数据节点都可以在其事务和快照上下文中正确执行。 Postgres-XL继承了PostgreSQL Postgres-XL是PostgreSQL的扩展并继承了其很多特性: 复杂查询 外键 触发器 视图 事务 MVCC(多版本控制) 此外,类似于PostgreSQL,用户可以通过多种方式扩展Postgres-XL,例如添加新的 数据类型 函数 操作 聚合函数 索引类型 过程语言 安装 环境说明 由于资源有限,gtm一台、另外两台身兼数职。 主机名 IP 角色 端口 nodename 数据目录 gtm 192.168.20.132 GTM 6666 gtm /nodes/gtm 协调器 5432 coord1 /nodes/coordinator xl1 192.168.20.133 数据节点 5433 node1 /nodes/pgdata gtm代理 6666 gtmpoxy01 /nodes/gtm_pxy1 协调器 5432 coord2 /nodes/coordinator xl2 192.168.20.134 数据节点 5433 node2 /nodes/pgdata gtm代理 6666 gtmpoxy02 /nodes/gtm_pxy2 要求 GNU make版本 3.8及以上版本 [root@pg ~] make --versionGNU Make 3.82Built for x86_64-redhat-linux-gnuCopyright (C) 2010 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. 需安装GCC包 需安装tar包 用于解压缩文件 默认需要GNU Readline library 其作用是可以让psql命令行记住执行过的命令,并且可以通过键盘上下键切换命令。但是可以通过--without-readline禁用这个特性,或者可以指定--withlibedit-preferred选项来使用libedit 默认使用zlib压缩库 可通过--without-zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...持部署在服务端随报表数据一起传到客户端; 9、目标活:支持在数据文件中或模板中指定要输出的打印机,发票用针打、报表用激光打、小票用小票机,专机专打; 三、使用前提条件: 1、IE6以上版本、Chrome(谷歌浏览器)4.0以上版本、Firefox 4.0以上版本、Opera 11以上版本、Safari 5.0.2以上版本、iOS 4.2以上版本 或使用Chrome内核、Firefox内核的浏览器均可直接使用本打印系统; 2、在进行打印前,需要先设计好打印模板(模板设计器请见第五节); 3、打印数据必须Json的格式发送给打印服务器,并且数据必须满足指定的格式(见下文); 四、数据格式说明: 下面以一个跨境电商快递面单数据为例解释一下数据各项的含义; { "template": "waybill.fr3", /打印模板文件名。除了指定模板文件以外,还支持把模板嵌入到数据文件中,以实现在服务器端灵活使用打印模板,格式如下:/ /"template": "base64:QTBBRTNEQTE3MkFFQjIzNEFERD<后面省略>" / "ver": 4, /数据模板文件版本/ "Copies": 3, /打印份数,支持指定打印份数/ "Duplex": 1, /是否双面打印,0:默认,不双面,1:垂直,2:水平,3:单面打印(simplex)/ "Printer": "priPrinter", /指定打印机,本系统支持在数据文件中指定打印机,也支持在打印模板中指定打印机/ "PageNumbers": "", /要打印的页码范围,同打印机的打印设置里的格式相同,例如:"1,2,3"表示打印前3页, “2-5”:表示打印第2到5页,“1,2,4-8”表示打印第1、2、4到8页/ "Preview": 1, /是否预览,跟主界面上选择“预览”效果相同,取值为0:不预览,1:预览/ "Tables":[ /数据表数组/ { "Name": "Table1", /表名/ "Cols": [ /字段定义/ { "type": "str", /字段类型,可选值:String,Str,Integer,Int,Smallint,Float,Long, Blob,/ /对于图片、PDF等使用Blob类型,并把值进行Base64编码,并加前缀:/ / "base64/pdf:" 字段值是PDF; "base64/jpg:" 字段值是jpg; "base64/png:" 字段值是png; "base64/gif:" 字段值是gif; / "size": 255, /字段长度/ "name": "HAWB", /字段名称,必须与打印模板中的打印项名称相同/ "required": false /字段是否必填/ }, { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "报关公司面单号", "required": false }, { "type": "integer", "size": 0, "name": "公司内部单号", "required": false }, { "type": "str", "size": 255, "name": "发件人", "required": false }, { "type": "str", "size": 255, "name": "发件人地址", "required": false }, { "type": "str", "size": 255, "name": "发件人电话", "required": false }, { "type": "str", "size": 255, "name": "发货国家", "required": false }, { "type": "str", "size": 255, "name": "收件人", "required": false }, { "type": "str", "size": 255, "name": "收件人地址", "required": false }, { "type": "str", "size": 255, "name": "收件人电话", "required": false }, { "type": "str", "size": 255, "name": "收货人证件号码", "required": false }, { "type": "str", "size": 255, "name": "收货省份", "required": false }, { "type": "float", "size": 0, "name": "总计费重量", "required": false }, { "type": "int", "size": 0, "name": "总件数", "required": false }, { "type": "float", "size": 0, "name": "申报总价(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数1", "required": false }, { "type": "str", "size": 255, "name": "品名1", "required": false }, { "type": "float", "size": 0, "name": "单价1(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位1", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数2", "required": false }, { "type": "str", "size": 255, "name": "品名2", "required": false }, { "type": "float", "size": 0, "name": "单价2(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位2", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(JPY)", "required": false }, { "type": "AutoInc", "size": 0, "name": "ID", "required": false }, { "type": "blob", "size": 0, "name": "附件", "required": false } ], "Data": [ /数据行定义,每一行含义见上面的字段定义/ { "HAWB": "860014010055", "NO": 1, "报关公司面单号": 200303900791, "公司内部单号": 730293, "发件人": "NAKAGAWA SUMIRE 2", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张三丰", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村99号9999室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 1, "附件": "base64/pdf:JVBERi0xLjQKJcDIzNINCjEgMCBvYmoKPDwKL1RpdGxlICh3YXliaWxsLmZyMykKL0F1dGhvciAoc2hlbmcpCi9DcmVhdG9yIChwZGZGYWN0b3J5IFBybyB3d3cucGRmZmFjdG9yeS5jb20pCi9Qcm9kdWNlciAocGRmRmFjdG9yeSBQcm8gNS4zNSBcKFdpbmRvd3MgNyBVbHRpbWF0ZSB4ODYgQ2hpbmVzZSBcKFNpbXBsaWZpZWRcKVwpKQovQ3JlYXRpb25EYXRlIChEOjIwMTcwMjI3MTIyODM2KzA4JzAwJykKPj4KZW5kb2JqCjUgMCBvYmoKPDwKL0ZpbHRlci9GbGF0ZURlY29kZQovTGVuZ3RoIDQwNAo+PnN0cmVhbQ0KSImVVMlOw0AMvecrTLkUoZqxZ80VhR44gTQSH4CKEKJIhQO/j2cS0skGrRo1cWy/97xkDvAIByC4B4We4Rso5EvZZLLxaAx87uAVnuCjIg5o5bULqBn2FVmk3nzvTNKYjTZ2aPWhX1XivY3VzZauCWqsHcSXqhCyIVDykxspSbQOa4a4F7dwxGdYw8UVxDcB4D79mBMIgymyNgqV0brNfMiJKj832w6llHHEcZQAZthXlznvLlZSRBve/kuQIfROkqTy2MwKZcFxKbg5UxnVSUhOnJEyniVxiiZSaKSLGEB4ORznOem/FIC1d1S37SfmpDMB2K587WywphzAMq+WNNcTC9CQmAtaGhJKpgtLc5O6Qwhlj5YlWAFaVnBC6TYDjksftvyvNW43WG6yDkmQFy25sjV0sx76XdKa3NOlGYf20vq1GfqNyRsi/mbWr11HNbdok+DfiaxXs2CcGp3c5XchApUn5aF/2ExfWYtKThw5KMx/3/dJeK5GlnVnf9YKjao/hSgkxWTySZMbUyzFD6PnEr4KZW5kc3RyZWFtCmVuZG9iago0IDAgb2JqCjw8Ci9UeXBlL1BhZ2UKL1BhcmVudCAzIDAgUgovTWVkaWFCb3hbMCAwIDE0MiAyODNdCi9SZXNvdXJjZXMKPDwKL1Byb2NTZXRbL1BERi9UZXh0XQovRm9udAo8PAovRjErMSA2IDAgUgovRjIgNyAwIFIKPj4KPj4KL0NvbnRlbnRzIDUgMCBSCj4+CmVuZG9iago2IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BSEpTV1orTlNpbVN1bgovTmFtZS9GMSsxCi9Ub1VuaWNvZGUgOCAwIFIKL0ZpcnN0Q2hhciAzMgovTGFzdENoYXIgMzUKL1dpZHRocyBbMTAwMCAxMDAwIDEwMDAgMTAwMF0KL0ZvbnREZXNjcmlwdG9yIDkgMCBSCj4+CmVuZG9iago5IDAgb2JqCjw8Ci9UeXBlL0ZvbnREZXNjcmlwdG9yCi9Gb250TmFtZSAvQUhKU1daK05TaW1TdW4KL0ZsYWdzIDcKL0ZvbnRCQm94Wy04IC0xNDUgMTAwMCA4NTldCi9TdGVtViA1MDAKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA4NTkKL0FzY2VudCA4NTkKL0Rlc2NlbnQgLTE0MQovRm9udEZpbGUyIDEwIDAgUgo+PgplbmRvYmoKOCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMjQ2Cj4+c3RyZWFtDQpIiW1QwUrEMBS85yve0cVDtnGtK5SA7Fqs4CpGELxlk9caMGlI00P/3qRbVhQPecxj3gyTobtm3zgTgb6EXgmM0BqnAw79GBTCETvjoGCgjYrLNk9lpSc0icU0RLSNa3tSVYS+JnKIYYILevfwKN4/Lg/CWDG6FdDnoDEY1/3HidH7L7ToIqwJ56CxTfZP0h+kRfhz/8O+TR6BzXuxBOs1Dl4qDNJ1CBVb8zSuOKDTvzmyOSmOrfqUgZwut/X+lidcJFyWrM6YZXy9vck4GVWb+7rkJPktyuyc6oBzXDWGkH4ydzbHzAGNw3Otvvc5T37kGxjtexEKZW5kc3RyZWFtCmVuZG9iagoxMCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMTI3OAovTGVuZ3RoMSAyNjc2Cj4+c3RyZWFtDQpIie1WXWwUVRQ+997ZmZ2d353dmdku3R+26+7SrSUtdBdWWlpaCP4UkEIKUaObsm3R3XapxVCfeJAXjcbwYDSYIG8kRm3ExAqJERMeTAgPhjdrNDExijHxJ8QXw3ju7tAEjEEfjd7Jvff7zjn33nPu7wABABVOAoPhqUa1KYjMQclVAGJNPbeYljawnxB/DUA/nm7ONB46d/o7AOEttNFm6kvTy9dfOIZ8GfXnZ2vVI6F6igJIh1BfmkUBkm+Qv4o8O9tYPCEA9CL/AHmsPj9VpR1kDjmOB3qjeqJJPt0+iXwVeXqu2qi9d+7FN5H/jj6ca84/u+j9CBqAzMdPNxdqzcDqXmwrf4L8fcwEeDw8IiAi3DNRJgTubfVvTt7/6T+d4G2g0MQseLe8r5CLEIQQng8dTLAgCg7EIA6dkOSSv9Sjxd8YK4nfZ7jpOvGj3g04CJtgC1zG/oahDIPQD9tg1fsSJmEcFEi18mnUPI8e1mEe0vjFcUTuA88GwHKh5+H9h3aOrVu//vD9fEMLoHg/w024hhZd0A27ALaTJNFJTtpUdrtEieNekhelfKmcy5cdt1Tuykj5csvGTdJS2RbtTC9rGQxwFbaTTlEnJITEoSXDKsrhuBMQlQ45XaQbo7EOmrXMwGhQGaKWQTUxKqeHSo7dszVnh2KCEXFlTZELUli+ShVVk2NJ08kmo45NI53BbJglE67FbD3ZySo0pJtK52shi1EqBFTBsJkbNDR5gsmKFuSx6d4P8CvGxnDuHagAlO1NA3mXexh1pYEuWypt5qJWrHarSBIMSOql7YhdnUiOy8M6ODltHpBNmRiTBtEnz3xk2LXNWuSANWpb9IG+lBq5j/YojigK4dSDmnImmeyXQ5q0xQxqstjRpyYSVcPOaJENAcICgkqNmNltsfWjmhBSbG2coY+q9z38gt4GIAEZ9DVJxFzeXwbHRa9yt5cB/WmtxDE9HBaVxy+azpCWKoxE2GBq4ygZ6U6o6zRlq56IK9fkqJMO95nOSDEbEJhqZYoaixSLw4xV8vkK7mTZ+xbX/3PI4t6C8ua8K9lrs4GTVGqv6QD6kB8iOHGiQUqDhDPKmYT2Ufcsickp1RrsVq3dxCQ9uITjRdVgiibYQSGwg8QNFrTjITsYEbUgeSWXVKR+1aqo1iOG1NfH5EpnlLq96xRRMc+nwk/nsWlmS1oXM4oszVqx1jsUkN7t+e3R608a226C0n6YPnx9x0leX7k0thtP5Bco5W+dinG1Ezdb9VYhS8C71aLkrit97V1DBe9Vx6xiln3xHFzBZ/CA35dI6tC31vNG2ICgOnjJtzXgot8/AQluj0URSz4WEOk+FhHbPmbg4ilnQAQZJTqe9DamiEd8jPsZ9vpYRPyEjxn+AzzDcVDAtiK84WPe9qyPBZS/42Pe9oKPGeTg8p6Jo42J43P7azPH69UFn/lV88j0rurU4vzCUnrfwnwl7YthD0zAUWhgeRynaD/UYAZRHaqwcJfuTtaEIzCN10wVpmARL6kFWMJrah/W83hA03da15Yfe2nvxJ29+7J/1KvfpjXP7Xf8Bv+n+dNegJE4CRMTb9YC7mIdClgbfq0SDQcoEM3nOvJYW35hV2EfWSHeqZchsdyPF+zyycThFSLunMWia2yFCBwJHAVaaOdTiDila5RyyjilnDJOYU0LnBJOgVPSNUaK7QTwBzD6P0QKZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BcmlhbE1UCi9OYW1lL0YyCi9GaXJzdENoYXIgMzIKL0xhc3RDaGFyIDI1NQovV2lkdGhzIFsyNzggMjc4IDM1NSA1NTYgNTU2IDg4OSA2NjcgMTkxIDMzMyAzMzMgMzg5IDU4NCAyNzggMzMzIDI3OCAyNzgKNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDI3OCAyNzggNTg0IDU4NCA1ODQgNTU2CjEwMTUgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgNzc4IDcyMiAyNzggNTAwIDY2NyA1NTYgODMzIDcyMiA3NzgKNjY3IDc3OCA3MjIgNjY3IDYxMSA3MjIgNjY3IDk0NCA2NjcgNjY3IDYxMSAyNzggMjc4IDI3OCA0NjkgNTU2CjMzMyA1NTYgNTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAyMjIgNTAwIDIyMiA4MzMgNTU2IDU1Ngo1NTYgNTU2IDMzMyA1MDAgMjc4IDU1NiA1MDAgNzIyIDUwMCA1MDAgNTAwIDMzNCAyNjAgMzM0IDU4NCAyNzgKNTU2IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCAyNzggMjc4IDI3OCA5MjMgMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OAoyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzgKMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCA1NTYgNTU2IDMzMyA1NTYgNTU2IDU1NiA1NTYgMjc4IDY2NyAyNzggMjc4IDI3OCAyNzggMjc4IDY2NwoyNzggNjY3IDI3OCAyNzggMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCAyNzgKMjc4IDY2NyAyNzggNjY3IDU1MiAyNzggMjc4IDI3OCAyNzggNTU2IDI3OCA1NTYgMjc4IDI3OCAyNzggNjY3CjI3OCA2NjcgMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCA2NjcgMjc4IDI3OF0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZwovRm9udERlc2NyaXB0b3IgMTEgMCBSCj4+CmVuZG9iagoxMSAwIG9iago8PAovVHlwZS9Gb250RGVzY3JpcHRvcgovRm9udE5hbWUgL0FyaWFsTVQKL0ZsYWdzIDMyCi9Gb250QkJveFstNjY1IC0zMjUgMjAwMCAxMDA2XQovU3RlbVYgOTUKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA5MDUKL0FzY2VudCA5MDUKL0Rlc2NlbnQgLTIxMgo+PgplbmRvYmoKMyAwIG9iago8PAovVHlwZS9QYWdlcwovQ291bnQgMQovS2lkc1s0IDAgUl0KPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUvQ2F0YWxvZwovUGFnZXMgMyAwIFIKL1BhZ2VMYXlvdXQvU2luZ2xlUGFnZQovVmlld2VyUHJlZmVyZW5jZXMgMTIgMCBSCj4+CmVuZG9iagoxMiAwIG9iago8PAovVHlwZS9WaWV3ZXJQcmVmZXJlbmNlcwo+PgplbmRvYmoKeHJlZgowIDEzCjAwMDAwMDAwMDAgNjU1MzUgZg0KMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDA0MjEzIDAwMDAwIG4NCjAwMDAwMDQxNTggMDAwMDAgbg0KMDAwMDAwMDcxNiAwMDAwMCBuDQowMDAwMDAwMjQxIDAwMDAwIG4NCjAwMDAwMDA4NzIgMDAwMDAgbg0KMDAwMDAwMjkyNyAwMDAwMCBuDQowMDAwMDAxMjQ1IDAwMDAwIG4NCjAwMDAwMDEwNTUgMDAwMDAgbg0KMDAwMDAwMTU2MiAwMDAwMCBuDQowMDAwMDAzOTg5IDAwMDAwIG4NCjAwMDAwMDQzMTAgMDAwMDAgbg0KdHJhaWxlcgo8PAovU2l6ZSAxMwovSW5mbyAxIDAgUgovUm9vdCAyIDAgUgovSURbPDVBMkU0QzkzOTdENEU0RDE3NkIwOTBDRUU3OTMxMzRGPjw1QTJFNEM5Mzk3RDRFNEQxNzZCMDkwQ0VFNzkzMTM0Rj5dCj4+CnN0YXJ0eHJlZgo0MzU2CiUlRU9GCg==", }, { "HAWB": "860014010035", "NO": 2, "报关公司面单号": 200303900789, "公司内部单号": 730291, "发件人": "NAKAGAWA SUMIRE", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张无忌", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村88号8888室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 2, "附件":"base64/gif:R0lGODlhrgCuAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4ODg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEhISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdHR0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpaWltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1tbW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CAgIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOTk5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaampqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zMzM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAArgCuAAAI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhzhgTAs6fOnzJ7CuUJtOjKoUgBGF1a0mdBoUyjgiR60KnUqxqpVtWKtStFrgatev2ZtOxCsWHBjqVZtm3StEoVql37si1DswLRbo1LdyPUh0gr2r07t+9EvHKHIiQQOLFehI8NR3SbUHFBxm4bP+XbsLBkh3/z6rU8MLNpzhIjfz47Wmxo0adjH/a8unJhqK//xd6t2jbq2qx/E3xbOjNm2rpzg0YOvDgAAsG5UnYunCPz5rA7o0Y8XHn06t2xa/8H79jzbsjE94onPPs279eD1a/3ndr9+6HQp8Od79ivWe/FJRffZuTN1xtg6QlY4D/HURXZgQYypxl1rUkIIFwLindgg65deCF1k2WI3YHTWWhifSI2R5tpDXE4YXbsOccfeuAp5mJ5LAY4HlEQjmgeWqQR5CJ3Ou4Y5IwyLlZdbkhBtxORSCp4XZKwpYjRgFFKGWJ4KbXlZJYwSqXYhxoeyVKPClZppWEvqpQgjVqRuVqbXXIGIXxysmkmSjw1mNx4GK6J1Z58vnVioIIyRWihgZm4JJqD5imST40CuleiSy3aHaTLUfhnZQLCKZuYeTrVp3+e/hjqpe9lqqloavr/p1SjNZqJ331G4bcQY1JyiuOYXyJK4HY/StoSnZul6euvlH63aVo76kSphGnCmpWhBZLWGoJTujlttrNahaZqxC2orVrdVsuWqcjxiBu5+m3qoLmhMbnmsiPVG+dv7kKp5mmrfhrdsFxyu6508woXrr9g3dejd2Pem+6kyjVZVa8VKtxmZnB2PDG+HgGIbL/n4sqsviu6GyKm1sHrIcaxUvjmychW+/HEH/VWc8I7z8zti4jdzLKsztJXM4HoQQQx0FaC3DK4JB4tb8O+Fqux0jjnrPOdDxLLF5YZVdx01lp33a7L/WIosKz8jj10R0SiDbWcZPt2tcE1Tbj0lN3W/93xVj/fJDa7xgqcI9u2Lef0k/b5/N3hYXuYodTepky5qPJdS+iH3+Z9XeGAJx45yRrr5WfAMS0+m1wZna7u1AOqDjfoF7l3pb1zIZy732VfbpHtFbk+NbSK4+T7720jbza6IsreFO+WWoui5UBOfipZzhOm8vT04nko9tlrn67F4n+7aPgkHa/8z+NTdiOIB/MWlPr/Zuz4UQ7rWuf9J/ef+mAOoxjYjNSTYAVnJkIxIOxM1h7jsEp+XqEbaTiEsfxxTCFDipdXjqM43THPgq8algbpAqkjBQl6KMqS0LzGMxTibUZVwx3p0JeYSA3wWQLhlfhEuDB/oSoqENyP9P8cY0AKyox+2gHi3h4jLuuVzn433FKujmaruPBtd4PbF+1CB5QoVilZa6uhQd5XQR2FUIzgi5nd7GTFoZ2nVe1JI/zWOK+8BA9y9fNif3KSsTDmUUtfodwIF2g6F5ZtjBesYA8F47bzBdGP82vbaW6UNkZiTTUZBBgkYdJHUaGsbpyK2tcCaJPqLWhIMusUlVRZu0QikGopMuEZtbgy9j3xjPvb18okGTU1EnCJm0Ni+vSYuQV6soSaBGR2OrRFAfpwj0hjIENcZMABcqeAniNmMYs0qg7K7VEkGwhmStlEspmShVYZhi27Jzpxdi6blzEnV4zItnHVSljk5GIK//X/NGOpCp8HQ5oltVk8ZNLIk/DEYSBdycg2vlCg0GrmVGDZykHWEnWsUWBpLrXKl4yzYMr7i+poGb05yktI1/ufQkPqtYZ6qjyIeg5Iw8RJ/l0UopcUIn0eeLa39VOiOsVp8YRKVMwpyac/DRkWJaa2v3XwoPxhYuFg2bjpbbNM6LwiOjkayKBGlY3PLBI/CeZSk361h3qk6O5u5ySgRlA/smRmuBj3OhXGDY/vcqYhu+Iza+aVcXt96/J2uMnRIVUyCeQqTAtb0cPOqZOLDewXwcQ+s35SNBq9Iw2BY8FeYZSllG3oBWf42QZKNkofjahlRorL0FYUZk6zqWtvR7iwwNLRsbPlISFBJ9vc7lKqFo0pbl3rRTwKd7iUte1+gmk+316Eno1lkVt929pL/me6ucVuAzPr3IeepLrdvSptzxNezbI0f+V9rWhJmd71aQ657dUnbeP7vKfRd5hQHep9KZZf7e13mCwM3H/1qr7NDpiHUz3tgU+KM2wumL9JPOmDBTgws05YqbWS64UBnFUJb5jAb9Luhx8HXPiOWLGBOvF3S2ZgFdNMxC7+bYtjTOMa2/jGOM6xjnfM4x772MYBAQA7" } ] }, { "Name": "Table2", "Cols": [ { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "订单编号", "required": false }, { "type": "integer", "size": 0, "name": "下单日期", "required": false }, { "type": "str", "size": 255, "name": "下单平台", "required": false } ], "Data": [ { "NO": 1, "订单编号": 200303900791, "下单日期": "2017-01-20", "下单平台": "天猫" }, { "NO": 2, "订单编号": 200303900792, "下单日期": "2017-01-20", "下单平台": "京东" } ] } ] } 五、调用示例: <!-- ★★★ 模式1 ★★★ --> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统</h2> <h3>打印测试(模式1)</h3> <div> <input type="button" id="btnPrint" value="打印" onClick="doSend(_reportData);" /> </div> </div> <div id="output"></div> </body> <script type="text/javascript"> //定义数据脚本 var _reportData = '{"template":"waybill.fr3","Cols":[{"type":"str","size":255,"name":"HAWB","required":false},<这里省略1000字> ]}'; //在浏览器控制台输出调试信息 console.log("reportData = " + _reportData); </script> <script language="javascript" type="text/javascript" src="cfprint.min.js"></script> <script language="javascript" type="text/javascript" src="cfprint_ext.js"></script> <script language="javascript" type="text/javascript"> /下面四个参数必须放在myreport.js脚本后面,以覆盖myreport.js中的默认值/ var _delay_send = 1000; //发送打印服务器前延时时长,-1则表示不自动打印 var _delay_close = 1000; //打印完成后关闭窗口的延时时长, -1则表示不关闭 var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 </script> </html> <!-- ★★★ 模式2 ★★★ --> <?php //如果有php运行环境,只需把该文件扩展名改成 .php,然后上传到web目录即可在真实服务器上测试 header("Access-Control-Allow-Origin: "); ?> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> <style type="text/css"> output {font-size: 12px; background-color:F0FFF0;} </style> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统(Ver 1.3.0)</h2> <h3>打印测试(模式2)</h3> <div style="line-height: 1.5;"> <div style="width: 70%; text-align: left;"> <b>一、首先按下列步骤设置:</b><br/> 1、运行打印服务器;<br/> 2、按“停止”按钮停止服务;<br/> 3、打开“设置”区;<br/> 4、在“常用参数-->服务模式”中,选择“模式2”;<br/> 5、按“启动”按钮启动服务。 </div> <div style="width: 70%; text-align: left;"> <b>二、按本页的“打印”按钮开始打印。</b><br/> </div><br/> <input type="button" id="btnPrint" value="打印" /><br/><br/> <div style="width: 70%; text-align: left; font-size: 12px;"> 由于JavaScript在不同域名下访问会出现由来已久的跨域问题,所以正式部署到服务器使用时,要解决跨域问题。<br/> 对于IE8以上版本浏览器,只需增加一个reponse头:Access-Control-Allow-Origin即可,而对于php、jsp、asp/aspx等动态语言而言,增加一个response头是非常简单的事,例如:<br/> <b>在php:</b><br/><span style="color: red;"> <?php <br/> header("Access-Control-Allow-Origin: ");<br/> ?><br/> </span> <b>在jsp:</b><br/><span style="color: red;"> <% <br/> response.setHeader("Access-Control-Allow-Origin", ""); <br/> %><br/> </span> <b>在asp.net中:</b><br/><span style="color: red;"> Response.AppendHeader("Access-Control-Allow-Origin", ""); </span>,<br/>其他语言里,大家请自行搜索“ajax跨域”。而对于IE8以下的浏览器,大家可以自行搜索“IE6+Ajax+跨域”寻找解决办法吧,也可以联系我们帮助。 </div> </div> </div> <div id="output"></div> </body> <!-- 引入模式2所需的javascript支持库 --> <script type="text/javascript" src="cfprint_mode2.min.js" charset="UTF-8"></script> <!-- 构造报表数据 --> <script type="text/javascript"> var _reportData = '{"template":"waybill.fr3","ver":3, "Tables":[ {"Name":"Table1", "Cols":[{"type":"str","size":255,"name":"HAWB","required":false},{"type":"int","size":0,"name":"NO","required":false},{"type":"float","size":0,"name":"报关公司面单号","required":false},{"type":"integer","size":0,"name":"公司内部单号","required":false},{"type":"str","size":255,"name":"发件人","required":false},{"type":"str","size":255,"name":"发件人地址","required":false},{"type":"str","size":255,"name":"发件人电话","required":false},{"type":"str","size":255,"name":"发货国家","required":false},{"type":"str","size":255,"name":"收件人","required":false},{"type":"str","size":255,"name":"收件人地址","required":false},{"type":"str","size":255,"name":"收件人电话","required":false},{"type":"str","size":255,"name":"收货人证件号码","required":false},{"type":"str","size":255,"name":"收货省份","required":false},{"type":"float","size":0,"name":"总计费重量","required":false},{"type":"int","size":0,"name":"总件数","required":false},{"type":"float","size":0,"name":"申报总价(CNY)","required":false},{"type":"float","size":0,"name":"申报总价(JPY)","required":false},{"type":"int","size":0,"name":"件数1","required":false},{"type":"str","size":255,"name":"品名1","required":false},{"type":"float","size":0,"name":"单价1(JPY)","required":false},{"type":"str","size":255,"name":"单位1","required":false},{"type":"float","size":0,"name":"申报总价1(CNY)","required":false},{"type":"float","size":0,"name":"申报总价1(JPY)","required":false},{"type":"int","size":0,"name":"件数2","required":false},{"type":"str","size":255,"name":"品名2","required":false},{"type":"float","size":0,"name":"单价2(JPY)","required":false},{"type":"str","size":255,"name":"单位2","required":false},{"type":"float","size":0,"name":"申报总价2(CNY)","required":false},{"type":"float","size":0,"name":"申报总价2(JPY)","required":false},{"type":"int","size":0,"name":"件数3","required":false},{"type":"str","size":255,"name":"品名3","required":false},{"type":"float","size":0,"name":"单价3(JPY)","required":false},{"type":"str","size":255,"name":"单位3","required":false},{"type":"float","size":0,"name":"申报总价3(CNY)","required":false},{"type":"float","size":0,"name":"申报总价3(JPY)","required":false},{"type":"int","size":0,"name":"件数4","required":false},{"type":"str","size":255,"name":"品名4","required":false},{"type":"float","size":0,"name":"单价4(JPY)","required":false},{"type":"str","size":255,"name":"单位4","required":false},{"type":"float","size":0,"name":"申报总价4(CNY)","required":false},{"type":"float","size":0,"name":"申报总价4(JPY)","required":false},{"type":"int","size":0,"name":"件数5","required":false},{"type":"str","size":255,"name":"品名5","required":false},{"type":"float","size":0,"name":"单价5(JPY)","required":false},{"type":"str","size":255,"name":"单位5","required":false},{"type":"float","size":0,"name":"申报总价5(CNY)","required":false},{"type":"float","size":0,"name":"申报总价5(JPY)","required":false},{"type":"str","size":255,"name":"参考号","required":false},{"type":"AutoInc","size":0,"name":"ID","required":false}],"Data":[{"公司内部单号":730293,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900791,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010055","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":3,"ID":3,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰2","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 2","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730291,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900789,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010035","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":1,"ID":1,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730292,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900790,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010045","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":2,"ID":2,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张无忌","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 1","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10}]}]}'; if(window.console) console.log("reportData = " + _reportData); </script> <!-- 设置服务器参数 --> <script language="javascript" type="text/javascript"> var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 var _url = "http://"+cfprint_addr+":"+cfprint_port; </script> <!-- 编写回调函数用以处理服务器返回的数据 --> <script type="text/javascript"> / 参数: readyState: XMLHttpRequest的状态 httpStatus: 服务端返回的http状态 responseText: 服务端返回的内容 / var callbackSuccess = function(readyState, httpStatus, responseText){ if (httpStatus === 200) { //{"result": 1, "message": "打印完成"} var response = CFPrint.parseJSON(responseText); alert(response.message+", 状态码["+response.result+"]"); }else{ alert('打印失败,HTTP状态代码是:'+httpStatus); } } / 参数: message: 错误信息 / var callbackFailed = function(message){ alert('发送打印任务出错: ' + message); } </script> <!-- 调用发送打印请求功能 --> <script type="text/javascript"> (function(){ document.getElementById("btnPrint").onclick = function() { CFPrint.outputid = "output"; //指定调试信息输出div的id CFPrint.SendRequest(_url, _reportData, callbackSuccess, callbackFailed); //发送打印请求 }; })(); </script> </html> 六、模板设计器(重要!重要!!,好多朋友都找不到设计器入口) 在主界面上,双击右下角的“设计”两个字,即可打开模板设计工具箱,在工具箱有三个按钮和一个大文本框。三个按钮的作用分别是: 设计:以大文本框中的json数据为数据源,打开模板设计器窗口; 预览:以大文本框中的json数据为数据源,预览当前所用模板的打印效果; 打印:以大文本框中的json数据为数据源,向打印机输出当前所用模板生成的报表; 以后将会有详细的模板设计教程发布,如果您遇到紧急的难题,请向作者咨询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/chensongmol/article/details/76087600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-01 18:34:12
234
转载
转载文章
...);//创建软引用,分配10M//m = null;System.out.println(m.get());//获取System.gc();//垃圾回收try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(m.get());//再分配一个数组,heap将装不下,这时候系统会垃圾回收,先回收一次,如果不够,会把软引用干掉byte[] b = new byte[1024102415];System.out.println(m.get());} }//软引用非常适合缓存使用 2、弱引用 public class M {@Overrideprotected void finalize() throws Throwable {System.out.println("finalize");} } 上图中,tl对象强引用指向ThreadLocal,map中key弱引用指向ThreadLocal,当tl=null时,强引用消失,此时弱引用也将自动被回收,但是此时key=null,value指向10M这个就永远访问不到,既内存泄露 下图中,18行到20行为解决内存泄露问题的,那就是通过remove()将它消除了 / 弱引用遭到gc就会回收/import java.lang.ref.WeakReference;public class T03_WeakReference {public static void main(String[] args) {WeakReference<M> m = new WeakReference<>(new M());System.out.println(m.get());System.gc();System.out.println(m.get());ThreadLocal<M> tl = new ThreadLocal<>();tl.set(new M());tl.remove();} } 3、虚引用 虚引用 虚引用不是给开发人员用的,一般是给写JVM(java虚拟机,没有它java程序运行不了),Netty等技术大牛用的 虚引用,对象当被回收时,会将其放在队列中,此时我们监听到队列中有新值了,就知道有虚引用被回收了 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
... 多平台游戏引擎 多处理器环境下的游戏编程 工作管道及游戏资产数据库 作者/译者简介 作者介绍:Jason Gregory在1994年开始任职专业软件工程师,自1999年3月开始在游戏产业中任职软件工程师。在圣迭哥Midway Home Entertainment公司开始游戏编程的他,为《疯狂飞行员(Freaky Flyers)》及《Crank the Weasel》开发PlayStation 2/Xbox上的动画系统。在2003年,他转到洛杉矶艺电,为《荣誉勋章:血战太平洋(Medal of Honor: Pacific Assault)》开发游戏引擎及游戏性技术,并在《荣誉勋章:空降神兵(Medal of Honor: Airborne)》中担任首席工程师。他现时是顽皮狗公司的通才程序员,为《神秘海域:德雷克船长的宝藏(Uncharted: Drake's Fortune)》及《神秘海域:纵横四海(Uncharted: Among Thieves)》开发引擎及游戏性软件。他也在南加州大学教授游戏技术的课程。 译者简介:叶劲峰(Milo Yip)从小自习编程,并爱好计算机图形学。上中学时兼职开发策略RPG《王子传奇》,该游戏在1995年于台湾发行。其后他获取了香港大学认知科学学士、香港中文大学系统工程及工程管理哲学硕士。毕业后在香港理工大学设计学院从事游戏引擎及相关技术的研发,职至项目主任。除发表学术文章外,也曾合著《DirectX9游戏编程实务》。2008年往上海育碧担任引擎工程师开发《美食从天而降(Cloudy with a Chance of Meatballs)》Xbox360/PS3/Wii/PC,2009年起于麻辣马开发《爱丽丝:疯狂回归(Alice: Madness Returns)》Xbox360/PS3/PC,2011年加入腾讯互动娱乐引擎技术中心担任专家工程师,所研发的技术已用于《斗战神》、《天涯明月刀》、《众神争霸》等项目中。 推荐序1 最初拿到《Game Engine Architecture》一书的英文版,是编辑侠少邮寄给我的打印版。他建议我接下翻译此书的合同。当时我正在杭州带领一个团队开发3D游戏引擎,我和我的同事都对这本书的内容颇有兴趣,两大本打印的英文书立刻在同事间传开。可惜那段时间个人精力顾及不来,把近千页的英文读物精读而后翻译成中文对个人的业余时间是个极大的挑战,不能担此翻译任务颇为遗憾。 不久以后听说Milo Yip(叶劲峰)已开始着手翻译,甚为欣喜。翻译此巨著,他一定是比我更合适的人选。我和Milo虽未曾蒙面,但神交已久。在网络上读过一些他的成长经历,和我颇为相似,心有戚戚。他对游戏3D实时渲染技术研究精深为我所不及,我们曾通过Google Talk讨论过许多技术问题,他都有独到的见解。翻译工作开始后,Milo是香港人,英文技术术语在香港的中文译法和大陆的有许多不同。但此书由大陆出版社出版,考虑到面对的读者主要是大陆程序员,Milo希望能更符合大陆程序员的用词习惯,所以在翻译一开始就通过Google Docs创建了协作页面,邀请大家共同探讨书中技术名词的中译名。从中我们可以一窥他作为译者的慎重。 三年之后,有幸在出版之前就拿到了完整的译本。这是一本用LaTeX精心排版的800页的电子书,我只花了一周时间,几乎是一口气读完。流畅的阅读享受,绝对不仅仅是因为原著精彩的内容,精美的版面和翔实的译注也加了不少分。 在阅读本书的过程中,我不只一次地获得共鸣。例如在第5章的内存管理系统的介绍中,作者介绍的几种游戏特有的内存管理方法我都曾在项目中用过,而这是第一次有书籍专门将这些方法详尽记录;又如第11章动画系统的介绍,我们也同样在3D引擎开发过程中改进原有动画片段混合方法的经历。虽然书中介绍的每个技术点,都可能可以在某篇论文,某本其他的书的章节,某篇网络blog上见过,但之前却无一本书可以把这些东西放在一起相互参照。对于从事游戏引擎开发的程序员来说,了解各种引擎在处理每个具体问题时的方案是相当重要的。而每种方案又各有利弊,即使不做引擎开发工作而是在某一特定游戏引擎上做游戏开发,从中也可以理解引擎的局限性以及可能的改进方法。尤其是第14章介绍的对游戏性相关系统的设计,各个开发人员几乎都是凭经验设计,很少见有书籍对这些做总结。对于基于渲染引擎做开发的游戏程序员,这是必须面对的工作,这一章会有很大的借鉴意义。 本书作者是业内资深的游戏引擎开发人,他所参于的《神秘海域》和《最后生还者》都是我的个人最爱。在玩游戏的过程中,作为游戏程序员的天性,自然会不断地猜想各个技术点是如何实现的,背后需要怎样的工具支持。能在书中一一得到印证是件特别开心的事情。作者反复强调代码实践的重要性,在书中遍布着C++代码。我不认为这些代码有直接取来使用的价值,但它们极大地帮助了读者理解书中的技术点。书中列出的顽皮狗工作室用lisp方言作为游戏配置脚本的范例也给我很大的启发,有了这些具体的代码示例以及作者本身的一线工程师背景,也让我确信书中那些关于主机游戏开发相关等,我所没有接触过的内容都也绝非泛泛而谈。 国内的游戏开发社区的壮大,主要是随最近十年的MMO风潮而生。而就在大型网络游戏在中国有些畸形发展,让这类游戏偏离电子游戏游戏性的趋势时,我们有幸迎来了为移动设备开发游戏的大潮。游戏开发的重心重新回到游戏性本身。我们更需要去借鉴单机游戏是如何为玩家带来更纯粹的游戏体验,我相信书中记录的各种技术点会变的更有帮助。 资深游戏开发及创业者 云风 @简悦云风 推荐序2 在我认识的许多游戏业开发同仁中,只有少数香港同胞,Milo Yip(叶劲峰)却正是这样一位给我印象非常深刻的优秀香港游戏开发者。我俩认识,是在Milo加入腾讯互动娱乐研发部引擎技术中心后,说来到现在也只是两年多时间。其间,他为人的谦逊务实,对待技术问题的严谨求真态度,对算法设计和性能优化的娴熟技术,都为人所称道。Milo一丝不苟的工作风格,甚至表现在对待技术文档排版这类事情上(Milo常执著地用LaTeX将技术文档排到完美),我想这一定是他在香港读大学、硕士及在香港理工大学的多媒体创新中心从事研究员,一贯沿袭至今的好作风。 我很高兴腾讯游戏有实力吸引到这样优秀的技术专家;即使在其已从上海迁回香港家中,依然选择到深圳腾讯互动娱乐总部工作。叶兄从此工作日每天早晚过关,来往香港和深圳两地,虽有舟车劳顿,但是兼顾了对家庭的照顾和在游戏引擎方面的专业研究,希望这样的状况是令他满意的。 认识叶兄当时,我便知道他在进行Jason Gregory所著《游戏引擎架构》一书的中译工作。因为自己从前也有业余翻译游戏开发有关书籍的经历,所以我能理解其中的辛苦和责任重大,对叶兄也更多一分钦佩。我以为,本书以及本书的中文读者最大的幸运便是,遇到叶兄这位对游戏有着如同对家对国般强烈责任感,犹如“游戏科学工作者”般的专业译者! 现在(2013年年末)无疑是游戏史上对独立游戏制作者最友好的年代。开发设备方便获得(相对过往仅由主机厂商授权才能获得专利开发设备,现在有一台智能手机和一台个人电脑就可以开发)、技术工具友好、调试过程简单方便,且互联网上有丰富的例程和开源代码参考,也有网上社区便于交流。很多爱好者能够很快地制作出可运行的游戏原型,其中一些也能发布到应用商店。 但是不全面掌握各方面知识,尤其是游戏引擎架构知识,往往只能停留在勉强修改、凑合重用别人提供的资源的应用程度上,难以做极限的性能改进,更妄谈革命式的架构创新。这样的程度是很难在成千上万的游戏中脱颖而出的。我们所认可的真正的游戏大作,必定是在某方面大幅超越用户期待的产品。为了打造这样的产品,游戏内容创作者(策划、美术等)需要“戴着镣铐跳舞”(在当前的机能下争取更多的创作自由度),而引擎架构合理的游戏可以经得起──也值得进行──反复优化,最终可以提供更多的自由度,这是大作出现的技术前提。 书的作者、译者、出版社的编者,加上读者,大家是因书而结缘的有缘人。因叶兄这本《游戏引擎架构》译著而在线上线下相识的读者们,你们是不是因“了解游戏引擎架构,从而制作/优化好游戏”这样的理想而结了缘呢? 亲爱的读者,愿你的游戏有一天因谜题巧妙绝伦、趣味超凡、虚拟世界气势磅礴、视觉效果逼真精美等专业因素取得业界褒奖,并得到玩家真诚的赞美。希望届时曾读叶兄这本《游戏引擎架构》译作的你,也可以回馈社会,回馈游戏开发的学习社区,帮助新人。希望你也可以建立微信公众号、博客等,或翻译游戏开发书籍,造福外语不好的读者,所以如果你的外语(英语、日语、韩语之于游戏行业比较重要)水平仍需精进,现在也可以同步加油了! 腾讯《天天爱消除》游戏团队Leader 沙鹰 @也是沙鹰 译序 数千年以来,艺术家们通过文学、绘画、雕塑、建筑、音乐、舞蹈、戏剧等传统艺术形式充实人类的精神层面。自20世纪中叶,计算机的普及派生出另一种艺术形式──电子游戏。游戏结合了上述传统艺术以及近代科技派生的其他艺术(如摄影、电影、动画),并且完全脱离了艺术欣赏这种单向传递的方式──游戏必然是互动的,“玩家”并不是“读者”、“观众”或“听众”,而是进入游戏世界、感知并对世界做出反应的参与者。 基于游戏的互动本质,游戏的制作通常比其他大众艺术复杂。商业游戏的制作通常需要各种人才的参与,而他们则需要依赖各种工具及科技。游戏引擎便是专门为游戏而设计的工具及科技集成。之所以称为引擎,如同交通工具中的引擎,提供了最核心的技术部分。因为复杂,研发成本高,人们不希望制作每款游戏(或车款)时都重新设计引擎,重用性是游戏引擎的一个重要设计目标。 然而,各游戏本身的性质以及平台的差异,使研发完全通用的游戏引擎变得极困难,甚至不可能。市面上出售的游戏引擎,有一些虽然已经达到很高的技术水平,但在商业应用中,很多时候还是需要因应个别游戏项目对引擎改造、整合、扩展及优化。因此,即使能使用市面上最好的商用引擎或自研引擎,我们仍需要理解当中的架构、各种机制和技术,并且分析及解决在制作中遇到的问题。这些也是译者曾任于上海两家工作室时的主要工作范畴。 选择翻译此著作,主要原因是在阅读中得到共鸣,并且能知悉一些知名游戏作品实际上所采用的方案。有感坊间大部分游戏开发书籍并不是由业内人士执笔,内容只足够应付一些最简单的游戏开发,欠缺宏观比较各种方案,技术与当今实际情况也有很大差距。而一些Gems类丛书虽然偶有好文章,但受形式所限欠缺系统性、全面性。难得本书原作者身为世界一流游戏工作室的资深游戏开发者(注1),在繁重的游戏开发工作外,还在大学教授游戏开发课程以至编写本著作。此外,从与内地同事的交流中,了解到许多从业者不愿意阅读外文书籍。为了普及知识及反馈业界社会,希望能尽绵力。 或许有些人以为本著作是针对单机/游戏机游戏的,并不适合国内以网游为主的环境。但译者认为这是一种误解,许多游戏本身所涉及的技术是具通用性的。例如游戏性相关的游戏性系统、场景管理、人工智能、物理模拟等部分,许多时候也会同时用于网游的前台和后台。现时,一些动作为主、非MMO的国内端游甚至会直接在后台运行传统意义上的游戏引擎。至于前台相关的技术,单机和端游的区别更少。此外,随着近年移动终端的兴起,其硬件性能已超越传统掌上游戏机,开发手游所需的技术与传统掌上游戏机并无太大差异。还可预料,现时单机/游戏机的一些较高级的架构及技术,将在不远的未来着陆移动终端平台。 译者认为,本书涵括游戏开发技术的方方面面,同时适合入门及经验丰富的游戏程序员。书名中的架构二字,并不单是给出一个系统结构图,而是描述每个子系统的需求、相关技术及与其他子系统的关系。对译者本人而言,本书的第11章(动画系统)及第14章(运行时游戏性基础系统)是本书特別精彩之处,含有许多少见于其他书籍的内容。而第10章(渲染引擎)由于是游戏引擎中的一个极大的部分,有限的篇幅可能未能覆盖广度及深度,推荐读者参考[1](注2),人工智能方面也需参考其他专著。 本译作采用LaTeX排版(注3),以Inkscape编译矢量图片。为了令阅读更流畅,内文中的网址都统一改以脚注标示。另外,由于现时游戏开发相关的文献以英文为主,而且游戏开发涉及的知识面很广,本译作尽量以括号形式保留英文术语。为了方便读者查找内容,在附录中增设中英文双向索引(索引条目与原著的不同)。 本人在香港成长学习及工作,至2008年才赴内地游戏工作室工作,不黯内地的中文写作及用字习惯,翻译中曾遇到不少困难。有幸得到出版社人员以及良师益友的帮助,才能完成本译作。特别感谢周筠老师支持本作的提案,并耐心地给予协助及鼓励。编辑张春雨老师和卢鸫翔老师,以及好友余晟给予了大量翻译上的知识及指导。也感谢游戏业界专家云风、大宝和Dave给予了许多宝贵意见。此书的翻译及排版工作比预期更花时间,感谢妻子及儿女们的体谅。此次翻译工作历时三年半,因工作及家庭事宜导致严重延误,唯有在翻译及排版工作上更尽心尽力,希望求得等待此译作的读者们谅解。无论是批评或建议,诚希阁下通过电邮miloyip@gmail.com、新浪微博、豆瓣等渠道不吝赐教。 叶劲峰(Milo Yip) 2013年10月 原作者是顽皮狗(Naughty Dog)《神秘海域(Uncharted)》系列的通才程序员、《最后生还者(The Last of Us)》的首席程序员,之前还曾在EA和Midway工作。 中括号表示引用附录中的参考文献。一些参考条目加入了其中译本的信息。 具体是使用CTEX套装,它是在MiKTeX的基础上增加中文的支持。 前言 最早的电子游戏完全由硬件构成,但微处理器(microprocessor)的高速发展完全改变了游戏的面貌。现在的游戏是在多用途的PC和专门的电子游戏主机(video game console)上玩的,凭借软件带来绝妙的游戏体验。从最初的游戏诞生至今已有半个世纪,但很多人仍然认为游戏是一个未成熟的产业。即使游戏可能是个年轻的产业,若仔细观察,也会发现它正在高速发展。 现时游戏已成为一个上百亿美元的产业,覆盖不同年龄、性别的广泛受众。 千变万化的游戏,可以分为从纸牌游戏到大型多人在线游戏(massively multiplayer online game,MMOG)等多个种类(category)和“类型(genre)”(注1),也可以运行在任何装有微芯片(microchip)的设备上 。你现在可以在PC、手机及多种特别为游戏而设计的手持/电视游戏主机上玩游戏。家用电视游戏通常代表最尖端的游戏科技,又由于它们是周期性地推出新版本,因此有游戏机“世代”(generation)的说法。最新一代(注2)的游戏机包括微软的Xbox 360和索尼的PlayStation 3,但一定不可忽视长盛不衰的PC,以及最近非常流行的任天堂Wii。 最近,剧增的下载式休闲游戏,使这个多样化的商业游戏世界变得更复杂。虽然如此,大型游戏仍然是一门大生意。今天的游戏平台非常复杂,有难以置信的运算能力,这使软件的复杂度得以进一步提升。所有这些先进的软件都需要由人创造出来,这导致团队人数增加,开发成本上涨。随着产业变得成熟,开发团队要寻求更好、更高效的方式去制作产品,可复用软件(reusable software)和中间件(middleware)便应运而生,以补偿软件复杂度的提升。 由于有这么多风格迥异的游戏及多种游戏平台,因此不可能存在单一理想的软件方案。然而,业界已经发展出一些模式 ,也有大量的潜在方案可供选择。现今的问题是如何找到一个合适的方案去迎合某个项目的需要。再进一步,开发团队必须考虑项目的方方面面,以及如何把各方面集成。对于一个崭新的游戏设计,鲜有可能找到一个完美搭配游戏设计各方面的软件包。 现时业界内的老手,入行时都是“开荒牛”。我们这代人很少是计算机科学专业出身(Matt的专业是航空工程、Jason的专业是系统设计工程),但现时很多学院已设有游戏开发的课程和学位。时至今日,为了获取有用的游戏开发信息,学生和开发者必须找到好的途径。对于高端的图形技术,从研究到实践都有大量高质量的信息。可是,这些信息经常不能直接应用到游戏的生产环境,或者没有一个生产级质量的实现。对于图形以外的游戏开发技术,市面上有一些所谓的入门书籍,没提及参考文献就描述很多内容细节,像自己发明的一样。这种做法根本没有用处,甚至经常带有不准确的内容。另一方面,市场上有一些高端的专门领域书籍,例如物理、碰撞、人工智能等。可是,这类书或者啰嗦到让你难以忍受,或者高深到让部分读者无法理解,又或者内容过于零散而难于融会贯通。有一些甚至会直接和某项技术挂钩,软硬件一旦改动,其内容就会迅速过时。 此外,互联网也是收集相关知识的绝佳工具。可是,除非你确实知道要找些什么,否则断链、不准确的资料、质量差的内容也会成为学习障碍。 好在,我们有Jason Gregory,他是一位拥有在顽皮狗(Naughty Dog)工作经验的业界老手,而顽皮狗是全球高度瞩目的游戏工作室之一。Jason在南加州大学教授游戏编程课程时,找不到概括游戏架构的教科书。值得庆幸的是,他承担了这个任务,填补了这个空白。 Jason把应用到实际发行游戏的生产级别知识,以及整个游戏开发的大局编集于本书。他凭经验,不仅融汇了游戏开发的概念和技巧,还用实际的代码示例及实现例子去说明怎样贯通知识来制作游戏。本书的引用及参考文献可以让读者更深入探索游戏开发过程的各方面。虽然例子经常是基于某些技术的,但是概念和技巧是用来实际创作游戏的,它们可以超越个别引擎或API的束缚。 本书是一本我们入行做游戏时想要的书。我们认为本书能让入门者增长知识,也能为有经验者开拓更大的视野。 Jeff Lander(注3) Matthew Whiting(注4) 译注:Genre一词在文学中为体裁。电影和游戏里通常译作类型。不同的游戏类型可见1.2节。 译注:按一般说法,2005年至今属于第7个游戏机世代。这3款游戏机的发行年份为Xbox 360(2005)、PlayStation 3(2006)、Wii(2006)。有关游戏机世代可参考维基百科。 译注:Jeff Lander现时为Darwin 3D公司的首席技术总监、Game Tech公司创始人,曾为艺电首席程序员、Luxoflux公司游戏性及动画技术程序员。 译注:Matthew Whiting现时为Wholesale Algorithms公司程序员,曾为Luxoflux公司首席软件工程师、Insomniac Games公司程序员。 序言 欢迎来到《游戏引擎架构》世界。本书旨在全面探讨典型商业游戏引擎的主要组件。游戏编程是一个庞大的主题,有许多内容需要讨论。不过相信你会发现,我们讨论的深度将足以使你充分理解本书所涵盖的工程理论及常用实践的方方面面。话虽如此,令人着迷的漫长游戏编程之旅其实才刚刚启程。与此相关的每项技术都包含丰富内容,本书将为你打下基础,并引领你进入更广阔的学习空间。 本书焦点在于游戏引擎的技术及架构。我们会探讨商业游戏引擎中,各个子系统的相关理论,以及实现这些理论所需要的典型数据结构、算法和软件接口。游戏引擎与游戏的界限颇为模糊。我们将把注意力集中在引擎本身,包括多个低阶基础系统(low-level foundation system)、渲染引擎(rendering engine)、碰撞系统(collision system)、物理模拟(physics simulation)、人物动画(character animation),及一个我称为游戏性基础层(gameplay foundation layer)的深入讨论。此层包括游戏对象模型(game object model)、世界编辑器(world editor)、事件系统(event system)及脚本系统(scripting system)。我们也将会接触游戏性编程(gameplay programming)的多个方面,包括玩家机制(player mechanics)、摄像机(camera)及人工智能(artificial intelligence,AI)。然而,这类讨论会被限制在游戏性系统和引擎接口范围。 本书可以作为大学中等级游戏程序设计中两到三门课程的教材。当然,本书也适合软件工程师、业余爱好者、自学的游戏程序员,以及游戏行业从业人员。通过阅读本书,资历较浅的游戏程序员可以巩固他们所学的游戏数学、引擎架构及游戏科技方面的知识。专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 为了更好地学习本书内容,你需要掌握基本的面向对象编程概念并至少拥有一些C++编程经验。尽管游戏行业已经开始尝试使用一些新的、令人兴奋的编程语言,然而工业级的3D游戏引擎仍然是用C或C++编写的,任何认真的游戏程序员都应该掌握C++。我们将在第3章重温一些面向对象编程的基本原则,毫无疑问,你还会从本书学到一些C++的小技巧,不过C++的基础最好还是通过阅读[39]、[31]及[32]来获得。如果你对C++已经有点生疏,建议你在阅读本书的同时,最好能重温这几本或者类似书籍。如果你完全没有C++经验,在看本书之前,可以考虑先阅读[39]的前几章,或者尝试学习一些C++的在线教程。 学习编程技能最好的方法就是写代码。在阅读本书时,强烈建议你选择一些特别感兴趣的主题付诸实践。举例来说,如果你觉得人物动画很有趣,那么可以首先安装OGRE,并测试一下它的蒙皮动画示范。接着还可以尝试用OGRE实现本书谈及的一些动画混合技巧。下一步你可能会打算用游戏手柄控制人物在平面上行走。等你能玩转一些简单的东西了,就应该以此为基础,继续前进!之后可以转移到另一个游戏技术范畴,周而复始。这些项目是什么并不重要,重要的是你在实践游戏编程的艺术,而不是纸上谈兵。 游戏科技是一个活生生、会呼吸的家伙 ,永远不可能将之束缚于书本之上 。因此,附加的资源、勘误、更新、示例代码、项目构思等已经发到本书的网站。 目录 推荐序1 iii推荐序2 v译序 vii序言 xvii前言 xix致谢 xxi第一部分 基础 1第1章 导论 31.1 典型游戏团队的结构 41.2 游戏是什么 71.3 游戏引擎是什么 101.4 不同游戏类型中的引擎差异 111.5 游戏引擎概观 221.6 运行时引擎架构 271.7 工具及资产管道 46第2章 专业工具 532.1 版本控制 532.2 微软Visual Studio 612.3 剖析工具 782.4 内存泄漏和损坏检测 792.5 其他工具 80第3章 游戏软件工程基础 833.1 重温C++及最佳实践 833.2 C/C++的数据、代码及内存 903.3 捕捉及处理错误 118第4章 游戏所需的三维数学 1254.1 在二维中解决三维问题 1254.2 点和矢量 1254.3 矩阵 1394.4 四元数 1564.5 比较各种旋转表达方式 1644.6 其他数学对象 1684.7 硬件加速的SIMD运算 1734.8 产生随机数 180第二部分 低阶引擎系统 183第5章 游戏支持系统 1855.1 子系统的启动和终止 1855.2 内存管理 1935.3 容器 2085.4 字符串 2255.5 引擎配置 234第6章 资源及文件系统 2416.1 文件系统 2416.2 资源管理器 251第7章 游戏循环及实时模拟 2777.1 渲染循环 2777.2 游戏循环 2787.3 游戏循环的架构风格 2807.4 抽象时间线 2837.5 测量及处理时间 2857.6 多处理器的游戏循环 2967.7 网络多人游戏循环 304第8章 人体学接口设备(HID) 3098.1 各种人体学接口设备 3098.2 人体学接口设备的接口技术 3118.3 输入类型 3128.4 输出类型 3168.5 游戏引擎的人体学接口设备系统 3188.6 人体学接口设备使用实践 332第9章 调试及开发工具 3339.1 日志及跟踪 3339.2 调试用的绘图功能 3379.3 游戏内置菜单 3449.4 游戏内置主控台 3479.5 调试用摄像机和游戏暂停 3489.6 作弊 3489.7 屏幕截图及录像 3499.8 游戏内置性能剖析 3499.9 游戏内置的内存统计和泄漏检测 356第三部分 图形及动画 359第10章 渲染引擎 36110.1 采用深度缓冲的三角形光栅化基础 36110.2 渲染管道 40410.3 高级光照及全局光照 42610.4 视觉效果和覆盖层 43810.5 延伸阅读 446第11章 动画系统 44711.1 角色动画的类型 44711.2 骨骼 45211.3 姿势 45411.4 动画片段 45911.5 蒙皮及生成矩阵调色板 47111.6 动画混合 47611.7 后期处理 49311.8 压缩技术 49611.9 动画系统架构 50111.10 动画管道 50211.11 动作状态机 51511.12 动画控制器 535第12章 碰撞及刚体动力学 53712.1 你想在游戏中加入物理吗 53712.2 碰撞/物理中间件 54212.3 碰撞检测系统 54412.4 刚体动力学 56912.5 整合物理引擎至游戏 60112.6 展望:高级物理功能 616第四部分 游戏性 617第13章 游戏性系统简介 61913.1 剖析游戏世界 61913.2 实现动态元素:游戏对象 62313.3 数据驱动游戏引擎 62613.4 游戏世界编辑器 627第14章 运行时游戏性基础系统 63714.1 游戏性基础系统的组件 63714.2 各种运行时对象模型架构 64014.3 世界组块的数据格式 65714.4 游戏世界的加载和串流 66314.5 对象引用与世界查询 67014.6 实时更新游戏对象 67614.7 事件与消息泵 69014.8 脚本 70714.9 高层次的游戏流程 726第五部分 总结 727第15章 还有更多内容吗 72915.1 一些未谈及的引擎系统 72915.2 游戏性系统 730参考文献 733中文索引 737英文索引 755 参考文献 Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering (3rd Edition). Wellesley, MA: A K Peters, 2008. 中译本:《实时计算机图形学(第2版)》,普建涛译,北京大学出版社,2004. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Resding, MA: Addison-Wesley, 2001. 中译本:《C++设计新思维:泛型编程与设计模式之应用》,侯捷/於春景译,华中科技大学出版社,2003. Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online Games: Understanding and Engineering Multiplayer Internet Games. New York, NY: John Wiley and Sons, 2006. James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press, 1991. Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Reading, MA: Addison-Wesley, 2007. 中译本:《面向对象分析与设计(第3版)》,王海鹏/潘加宇译,电子工业出版社,2012. Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles River Media, 2000. 中译本:《游戏编程精粹 1》, 王淑礼译,人民邮电出版社,2004. Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles River Media, 2001. 中译本:《游戏编程精粹 2》,袁国忠译,人民邮电出版社,2003. Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination (2nd Edition). Wellesley, MA: A K Peters, 2006. David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001. 国内英文版:《3D游戏引擎设计:实时计算机图形学的应用方法(第2版)》,人民邮电出版社,2009. David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005. David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann, 2003. Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan Kaufmann, 2005. 中译本:《实时碰撞检测算法技术》,刘天慧译,清华大学出版社,2010. Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004. 中译本:《GPU精粹:实时图形编程的技术、技巧和技艺》,姚勇译,人民邮电出版社,2006. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice in C (2nd Edition). Reading, MA: Addison-Wesley, 1995. 中译本:《计算机图形学原理及实践──C语言描述》,唐泽圣/董士海/李华/吴恩华/汪国平译,机械工业出版社,2004. Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition). Pacific Grove, CA: Brooks Cole, 2005. John David Funge. AI for Games and Animation: A Cognitive Modeling Approach. Wellesley, MA: A K Peters, 1999. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. 中译本:《设计模式:可复用面向对象软件的基础》,李英军/马晓星/蔡敏/刘建中译,机械工业出版社,2005. Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan Kaufmann, 1990. Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press, 1994. Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San Francisco, CA: Morgan Kaufmann, 2008. 中译本:《多处理器编程的艺术》,金海/胡侃译,机械工业出版社,2009. Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes. Lua 5.1 Reference Manual. Lua.org, 2006. Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006. 中译本:《Lua程序设计(第2版)》,周惟迪译,电子工业出版社,2008. Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (2nd Edition). New York, NY: John Wiley and Sons, 2000. David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann, 1994. Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham, MA: Charles River Media, 2005. Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph, 2004. 中译本:《快乐之道:游戏设计的黄金法则》,姜文斌等译,百家出版社,2005. John Lakos. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, 1995. 中译本:《大规模C++程序设计》,李师贤/明仲/曾新红/刘显明译,中国电力出版社,2003. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics (2nd Edition). Hingham, MA: Charles River Media, 2003. Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll. Internationalization: Developing Software for Global Markets. New York, NY: John Wiley & Sons, 1995. Steve Maguire. Writing Solid Code: Microsoft's Techniques for Developing Bug Free C Programs. Bellevue, WA: Microsoft Press, 1993. 国内英文版:《编程精粹:编写高质量C语言代码》,人民邮电出版社,2009. Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005. 中译本:《Effective C++:改善程序与设计的55个具体做法(第3版)》,侯捷译,电子工业出版社,2011. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley, 1996. 中译本:《More Effective C++:35个改善编程与设计的有效方法(中文版)》,侯捷译,电子工业出版社,2011. Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Reading, MA: Addison-Wesley, 2001. 中译本:《Effective STL:50条有效使用STL的经验》,潘爱民/陈铭/邹开红译,电子工业出版社,2013. Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan Kaufmann, 2007. Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007. 中译本:《GPU精粹3》,杨柏林/陈根浪/王聪译,清华大学出版社,2010. Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan Kaufmann, 1995. C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with Subversion (2nd Edition). Sebastopol , CA: O'Reilly Media, 2008. (常被称作“The Subversion Book”,线上版本.) 国内英文版:《使用Subversion进行版本控制》,开明出版社,2009. Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley, 2005. 中译本:《GPU精粹2:高性能图形芯片和通用计算编程技巧》,龚敏敏译,清华大学出版社,2007. Bjarne Stroustrup. The C++ Programming Language, Special Edition (3rd Edition). Reading, MA: Addison-Wesley, 2000. 中译本《C++程序设计语言(特别版)》,裘宗燕译,机械工业出版社,2010. Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles River Media, 2002. 中译本:《游戏编程精粹3》,张磊译,人民邮电出版社,2003. Gino van den Bergen. Collision Detection in Interactive 3D Environments. San Francisco, CA: Morgan Kaufmann, 2003. Alan Watt. 3D Computer Graphics (3rd Edition). Reading, MA: Addison Wesley, 1999. James Whitehead II, Bryan McLemore and Matthew Orlando. World of Warcraft Programming: A Guide and Reference for Creating WoW Addons. New York, NY: John Wiley & Sons, 2008. 中译本:《魔兽世界编程宝典:World of Warcraft Addons完全参考手册》,杨柏林/张卫星/王聪译,清华大学出版社,2010. Richard Williams. The Animator's Survival Kit. London, England: Faber & Faber, 2002. 中译本:《原动画基础教程:动画人的生存手册》,邓晓娥译,中国青年出版社,2006. 勘误 第1次印册(2014年2月) P.xviii: 译注中 Wholesale Algoithms -> Wholesale Algorithms P.10: 最后一段第一行 微软的媒体播放器 -> 微软的Windows Media Player (多谢读者OpenGPU来函指正) P.15: 1.4.3节第三点 按妞 -> 按钮 (多谢读者一个小小凡人来函指正) P.40: 正文最后一行 按扭 -> 按钮 P.50: 1.7.8节第二节第一行 同是 -> 同时 (多谢读者czfdd来函指正) P.98: 代码 writeExampleStruct(Example& ex, Stream& ex) 中 Stream& ex -> Stream& stream (多谢读者Snow来函指正) P.106: 第一段中有六处 BBS -> BSS,最后一段代码的注释也有同样错误 (多谢读者trout来函指正) P.119: 译注中 软体工程 -> 软件工程 (多谢读者Snow来函指正) P.214: 正文第一段有两处 虚内存 -> 虚拟内存 (多谢读者Snow来函指正) P.216: 脚注24应标明为译注 (多谢读者Snow来函指正) P.221: 第一段代码的第二个断言应为 ASSERT(link.m_pPrev != NULL); (多谢读者Snow来函指正) P.230: 5.4.4.1节 第二段 软体 -> 软件 P.286: 脚注4应标明为译注 (多谢读者Snow来函指正) P.322: 第二段 按扭事件字 -> 按钮事件 P.349: 9.8节第二段第二行两处 部析器 -> 剖析器 (多谢读者Snow来函指正) P.738-572: 双数页页眉 参考文献 -> 中文索引 P.755-772: 双数页页眉 参考文献 -> 英文索引 P.755: kd tree项应归入K而不是Symbols 以上的错误已于第2次印册中修正。 第2次印册及之前 P.11: 第四行 细致程度 -> 层次细节 (这是level-of-detail/LOD的内地通译,多谢读者OpenGPU来函指正) P.12: 正文第一段及图1.2标题 使命之唤 -> 使命召唤 (多谢读者OpenGPU来函指正) P.12: 正文第一段 战栗时空 -> 半条命 (多谢读者OpenGPU来函指正) P.16: 第一点 表面下散射 -> 次表面散射 (多谢读者OpenGPU来函指正) P.17: 1.4.4节第五行 次文化 -> 亚文化 (此译法在内地更常用。多谢读者OpenGPU来函提示) P.22: 战栗时空 -> 半条命 P.24: 战栗时空2 -> 半条命2 P.34: 1.6.8.2节第一行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.35: 第七行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.50: 战栗时空2 -> 半条命2 P.365: 第四段第二行: 细致程度 -> 层次细节 P.441: 10.4.3.2节第三行 细致程度 -> 层次细节 P.494: sinusiod -> sinusoid (多谢读者OpenGPU来函指正) P.511: 11.10.4节第一行 谈入 -> 淡入 (多谢读者Snow来函指正) P.541: 战栗时空2 -> 半条命2 P.627: 战栗时空2 -> 半条命2 P.654: 第二行 建康值 -> 血量 (原来是改正错别字,但译者发现应改作前后统一使用的“血量”。多谢读者Snow来函指正) P.692: 第二行 内部分式 -> 内部方式 (多谢读者Snow来函指正) P.696: 14.7.6节第四行 不设实际 -> 不切实际 (多谢读者Snow来函指正) 以上的错误已于第3次印册中修正。 其他意见 P.220: 正文第一段 m_root.m_pElement 和 P.218 第一段代码中的 m_pElem 不统一。原文有此问题,但因为它们是不同的struct,暂不列作错误。 (多谢读者Snow来函提示) P.331: 8.5.8节第二段中 “反覆”较常见的写法为“反复”,但前者也是正确的,暂不列作错误。 (多谢读者Snow来函提示) P.390: 10.1.3.3节静态光照第二段中“取而代之,我们会使用一张光照纹理贴到所有受光源影响范围内的物体上。这样做能令动态物体经过光源时得到正确的光照。” 后面的一句与前句好像难以一起理解。译者认为,作者应该是指,使用同一静态光源去为静态物件生成光照纹理,以及用于动态对象的光照,能使两者的效果维持一致性。译者会考虑对译文作出改善或加入译注解译。(多谢读者店残来函查询) P.689: 第五行 并行处理世代 -> 并行处理时代 是对era较准确的翻译。 (多谢读者Snow来函提示) 本篇文章为转载内容。原文链接:https://blog.csdn.net/mypongo/article/details/38388381。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 23:04:05
327
转载
JQuery插件下载
...上普通HTML表格的数据内容便捷地导出为多种常见格式。通过集成此插件,开发者能够赋予用户将表格数据一键转换成CSV、XLS(Excel)、TXT或SQL文件的功能。该插件基于jQuery库构建,易于集成到现有项目中,并且提供了高度的灵活性和可定制性。使用者无需复杂的编程操作,只需简单调用API,即可实现对表格数据的灵活导出配置,如设置分隔符、忽略特定列等。这一特性使得jQuery-tableExport成为报表生成、数据分析及数据迁移场景下不可或缺的工具,极大地提升了用户体验和数据处理效率。 点我下载 文件大小:47.78 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-01 20:21:15
133
本站
JQuery插件下载
...款专注于提升JSON数据可读性的强大工具,专为开发者设计。这款插件通过格式化JSON数据,使之更加清晰易懂,从而极大地提升了数据分析与调试的效率。它支持语法高亮功能,能针对不同数据类型(如字符串、数字、数组、对象)进行专门的色彩标记,使得数据结构一目了然,易于理解。jQueryJSONView不仅能够展示数据的完整结构,还提供了一键展开或折叠数据节点的功能,方便用户根据需要查看或隐藏详细信息。这在处理大型或嵌套结构的JSON数据时尤为有用,能够有效避免页面过于拥挤,提高阅读体验。此外,插件还具备强大的兼容性,能够在各种现代浏览器中流畅运行,无需额外安装或配置。其简洁的API接口使得集成到现有项目中变得简单快捷,无需复杂的配置步骤。总之,jQueryJSONView作为一款功能全面且易于使用的jQuery插件,对于任何需要处理、分析或展示JSON数据的场景来说都是一个不可或缺的工具。无论是前端开发、后端数据处理,还是日常的项目调试,jQueryJSONView都能提供高效、直观的解决方案,显著提升工作效率。 点我下载 文件大小:49.05 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-09-26 20:55:45
120
本站
JQuery插件下载
...cript插件,专为处理CSV格式文件而设计,能够轻松地将这些文件转换为直观的HTML表格形式,从而在网页上展示数据。该插件的核心优势在于其简洁性与易用性,无需依赖于复杂的库或框架,仅通过纯JavaScript代码实现,确保了高度的兼容性和灵活性。CsvToTable插件的使用过程非常直觉,开发者只需将目标CSV文件加载至插件中,即可自动解析文件内容并构建相应的HTML表格结构。这一过程不仅自动化程度高,而且效率显著,使得数据的可视化变得异常便捷。对于开发者而言,这意味着他们可以专注于业务逻辑的开发,而将数据处理的任务交给CsvToTable来完成,大大提升了开发效率和用户体验。此外,CsvToTable支持灵活的数据格式输入,无论是逗号分隔还是分号分隔的CSV文件,甚至包含特殊字符的文件,都可以被准确无误地解析并呈现为HTML表格。这种广泛的兼容性使得CsvToTable成为处理多种来源和格式数据的理想选择,适用于各种应用场景,从简单的数据分析到复杂的报表生成。总之,CsvToTable-CSV格式文件转HTML表格js插件以其简洁的API、高效的性能和出色的兼容性,为开发者提供了一个高效、可靠的工具,用于将CSV文件转换为HTML表格,极大地简化了数据展示的过程,提高了工作效率和用户体验。 点我下载 文件大小:10.69 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-23 10:42:51
98
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 显示所有活动的网络连接、监听端口以及关联的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"