前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JSON Web TokensJWT在N...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Lucene
...。 此外,针对企业级应用场景,业界专家建议结合云计算技术实现弹性扩展和负载均衡,进一步优化分布式索引结构,并倡导深入理解Lucene底层算法逻辑,合理调整参数设置以适应不同业务场景的需求。例如,Google近期公开的一项专利技术就展示了如何动态调整mergeFactor等关键参数,以实现在海量数据环境下保持高效稳定的索引性能。 总之,面对不断涌现的新技术和实际挑战,Apache Lucene及衍生产品的索引优化是一个持续演进的过程,需要开发者、研究者和实践者们共同努力,紧跟行业前沿,才能确保全文搜索引擎在各类复杂应用场景下都能发挥出卓越的效能。
2023-04-24 13:06:44
593
星河万里-t
c++
...4. 静态局部变量的应用场景 - 计数器:如上面的示例所示,静态局部变量非常适合用于实现无需全局污染的计数器功能。 - 缓存:在某些场合,我们可以利用静态局部变量保存计算结果,避免重复计算,提高效率。 cpp std::string getExpensiveString() { static std::string expensiveResult = calculateExpensiveValue(); return expensiveResult; } - 单例模式:在单例模式的实现中,也会用到静态局部变量来保证在整个程序运行期间,某个类只有一个实例。 5. 结语 静态局部变量这一特性是C++为我们提供的强大工具之一,它在提供局部作用域的同时,赋予了变量持久的生命力。知道怎么灵活运用静态局部变量,就像是给咱们编程时装上了一个秘密武器,可以让代码变得更加聪明、紧凑,从而让程序跑得更溜,写起来也更轻松愉快。不过,值得注意的是,这家伙因为有着独特的生命周期,如果我们跟它“走得太近”,比如过度依赖或者使用不当,就可能引发一些麻烦事儿,比如资源没法及时释放,或者数据竞争等问题。所以在实际开发的时候,咱们得悠着点,小心对待它。让我们带着对静态局部变量的理解,去挖掘更多的C++世界之美吧!
2023-08-05 23:30:09
445
秋水共长天一色
Sqoop
...效率。 因此,在实际应用中,了解并掌握Sqoop以及其他相关工具的最新进展,结合有效的日志管理策略,将有助于我们在应对大规模数据处理挑战时,更加从容不迫,高效解决问题。
2023-04-25 10:55:46
75
冬日暖阳-t
转载文章
...了解这些工具的优势和应用场景,结合实际需求选择合适的构建解决方案。 5. Linux进程间通信(IPC)机制详解:在Linux编程实战中,进程间的通信和同步往往是关键环节之一。深入理解管道、消息队列、共享内存、信号量等IPC机制,能够帮助您设计出更为复杂且高效的多进程应用程序。 通过以上延展阅读,读者不仅能够巩固已学知识,还能紧跟技术发展潮流,不断提升自身在Linux环境下的软件开发能力。
2023-12-26 19:04:57
100
转载
RabbitMQ
...领域的发展动态与实践应用。近期消息中间件技术的研究热点之一是提升消息传递的可靠性与容错性。例如,Apache Pulsar作为新一代云原生分布式消息系统,其设计中采用了一种多层持久化和复制机制,有效防止了类似消息丢失的问题,提升了系统的整体稳定性。 同时,随着Kubernetes等容器编排技术的广泛应用,如何在动态环境中优化部署与管理RabbitMQ集群以避免消息丢失也成为开发者关注的话题。一些云服务商如阿里云、AWS针对此场景提供了托管型的消息队列服务,通过整合底层基础设施资源,确保即使在网络波动或节点故障时,也能保证消息的高可靠传输。 此外,从架构设计层面出发,结合微服务架构的设计原则,专家们提倡采用异步处理、幂等操作以及事件溯源等策略来增强系统对消息丢失的容忍度与自我恢复能力。这些方法论与实践不仅适用于RabbitMQ,也对其他消息中间件平台具有普遍指导意义。 综上所述,在实际项目开发过程中,持续跟进消息中间件领域的最新研究成果和技术趋势,结合具体业务场景灵活运用多种策略,是解决消息丢失问题并构建高可用、高性能系统的关键所在。
2023-07-19 16:46:45
86
草原牧歌-t
RocketMQ
...TCP的主要功能是为应用程序提供可靠的数据传输服务。 三、RocketMQ中的TCP长连接 在RocketMQ中,为了提高消息的发送效率,我们通常会采用TCP长连接的方式进行通信。这种方式呢,就像是客户端和服务端之间拉起一条不会断的“热线”,不用像以前那样,每回需要传输数据都得重新接一次电话线,而是能够一直保持通话状态。 四、TCP连接断开的原因 那么,为什么TCP连接会出现断开的情况呢?主要有以下几种原因: 1. 服务器宕机 这是最常见的一种情况,当服务器突然停止工作时,连接自然就会断开。 2. 网络故障 如线路中断、路由器故障等,也可能导致TCP连接断开。 3. 超时重试机制 TCP协议中有一个超时重试机制,如果一段时间内没有收到对方的消息,就会尝试关闭连接并重新建立新的连接。 4. 流量控制 为了避免网络拥塞,TCP协议会对发送方的流量进行限制,如果超过了这个限制,可能会被断开连接。 五、如何处理TCP连接断开? 对于TCP连接断开的问题,我们需要做的是尽快检测到这种状况,并尽可能地恢复连接。在RocketMQ中,我们可以使用心跳机制来检测TCP连接的状态。 六、代码示例 下面是一个简单的TCP心跳机制的示例: java public class HeartbeatThread extends Thread { private final long heartbeatInterval = 60 1000; private volatile boolean isRunning = true; @Override public void run() { while (isRunning) { try { // 发送心跳包 sendHeartbeat(); // 暂停一段时间再发送下一个心跳包 TimeUnit.SECONDS.sleep(heartbeatInterval); } catch (InterruptedException e) { e.printStackTrace(); } } } private void sendHeartbeat() throws IOException { // 这里只是一个示例,实际的发送方式可能因环境而异 Socket socket = new Socket("localhost", 9876); OutputStream outputStream = socket.getOutputStream(); outputStream.write("HEARTBEAT".getBytes()); outputStream.flush(); socket.close(); } public void stop() { isRunning = false; } } 七、结论 总的来说,TCP连接断开是一种常见但不可忽视的问题。我们需要正确理解和处理这个问题,才能保证RocketMQ的稳定运行。同时,咱也要留意这么个事儿,虽然心跳机制是个好帮手,能让我们及时逮住问题、修补漏洞,但它也不是万能的保险,没法百分之百防止TCP连接突然断开的情况。所以在构建系统的时候,咱们也得把这种可能性考虑进来,提前做好充分的容错预案,别让系统一遇到意外就“罢工”。 八、结束语 在开发过程中,我们会遇到各种各样的问题,这些问题往往都是复杂多变的。但是,只要你我都有足够的耐心和坚定的决心,就铁定能挖出解决问题的锦囊妙计。嘿伙计们,我真心希望当你们遇到难啃的骨头时,都能保持那份打不死的小强精神,乐观积极地面对一切挑战。不断充实自己,就像每天都在升级打怪一样,持续进步,永不止步。
2023-08-30 18:14:53
133
幽谷听泉-t
PHP
...,它直接影响到我们的应用程序性能和用户体验。这个参数理解透彻并合理调整一下,就能像魔法一样帮助我们在复杂场景里游刃有余,让代码变得更加结实耐用、易于维护,效果绝对杠杠的!记住了啊,作为一个优秀的程序员,光会写那些飞快运行的代码还不够,你得知道怎么让这些代码在面对各种挑战时,还能保持那种酷炫又不失风度的姿态,就像一位翩翩起舞的剑客,面对困难也能挥洒自如。
2024-03-11 10:41:38
158
山涧溪流-t
Dubbo
...众多大型项目中的成功应用案例。 同时,在开源社区和学术研究领域,对服务治理、资源调度的探讨也在不断深化。例如,一篇发表于ACM Transactions on Internet Technology的最新论文《Dynamic Thread Pool Sizing for Scalable and Responsive Microservices》提出了一种动态调整线程池大小的方法,以确保微服务在高并发场景下既能保持响应能力又能实现水平扩展,这为未来改进Dubbo等框架的线程池策略提供了新的理论依据和技术思路。 此外,随着云原生时代的到来,Kubernetes等容器编排工具也对服务提供者的资源分配和管理提出了新的挑战与机遇。诸如Istio等服务网格解决方案正逐步支持更精细的服务流量控制与线程池资源调配,这也为解决类似服务提供者线程池阻塞的问题开辟了新的实战阵地。 综上所述,无论是基于现有框架如Dubbo的深入优化,还是借鉴前沿科研成果及云原生技术的发展趋势,持续探索并优化服务提供者的线程池管理策略,对于构建高性能、高可用的分布式系统都具有重要意义。
2023-09-01 14:12:23
483
林中小径-t
MemCache
...计理念也被越来越多地应用于现代缓存服务中,它假设并发访问一般情况下不会发生冲突,仅在更新数据时检查是否发生并发修改,从而降低锁带来的性能开销。 此外,云原生时代的容器化与微服务架构也对缓存系统的并发控制提出了新的挑战。Kubernetes等容器编排平台上的应用实例可能随时扩缩容,这要求缓存服务不仅要处理好内部的多线程同步问题,还要适应外部动态环境的变化。因此,诸如具有更强一致性保证的CRDT(Conflict-free Replicated Data Types)数据结构的研究与应用也在不断推进,旨在提供一种更为灵活且能应对网络分区的分布式锁方案。 综上所述,理解并妥善处理Memcache乃至更多现代缓存系统中的锁机制冲突,是构建高性能、高可用分布式系统的基石,而紧跟技术发展趋势,关注相关领域的最新研究成果与实践案例,将有助于我们在实际工作中更好地解决此类问题。
2024-01-06 22:54:25
78
岁月如歌-t
ClickHouse
...业界的广泛关注和广泛应用。然而,在实际使用过程中,我们可能会遇到“NodeNotReadyException:节点未准备好异常”这样的问题,这对于初次接触或深度使用ClickHouse的开发者来说,无疑是一次挑战。这篇文章会手把手地带你们钻进这个问题的本质里头,咱们一起通过实实在在的例子把它掰开揉碎了瞧,顺便还会送上解决之道! 2. NodeNotReadyException 现象与原因剖析 “NodeNotReadyException:节点未准备好异常”,顾名思义,是指在对ClickHouse集群中的某个节点进行操作时,该节点尚未达到可以接受请求的状态。这种状况可能是因为节点正在经历重启啊、恢复数据啦、同步副本这些阶段,或者也可能是配置出岔子了,又或者是网络闹脾气、出现问题啥的,给整出来的。 例如,当我们尝试从一个正在启动或者初始化中的节点查询数据时,可能会收到如下错误信息: java try { clickHouseClient.execute("SELECT FROM my_table"); } catch (Exception e) { if (e instanceof NodeNotReadyException) { System.out.println("Caught a NodeNotReadyException: " + e.getMessage()); } } 上述代码中,如果执行查询的ClickHouse节点恰好处于未就绪状态,就会抛出NodeNotReadyException异常。 3. 深入排查与应对措施 (1)检查节点状态 首先,我们需要登录到出现问题的节点,查看其运行状态。可以通过system.clusters表来获取集群节点状态信息: sql SELECT FROM system.clusters; 观察结果中对应节点的is_alive字段是否为1,如果不是,则表示该节点可能存在问题。 (2)日志分析 其次,查阅ClickHouse节点的日志文件(默认路径通常在 /var/log/clickhouse-server/),寻找可能导致节点未准备好的线索,如重启记录、同步失败等信息。 (3)配置核查 检查集群配置文件(如 config.xml 和 users.xml),确认节点间的网络通信、数据复制等相关设置是否正确无误。 (4)网络诊断 排除节点间网络连接的问题,确保各个节点之间的网络是通畅的。可以通过ping命令或telnet工具来测试。 (5)故障转移与恢复 针对分布式场景,合理利用ClickHouse的分布式表引擎特性,设计合理的故障转移策略,当出现节点未就绪时,能自动切换到其他可用节点。 4. 预防与优化策略 - 定期维护与监控:建立完善的监控系统,实时检测每个节点的运行状况,并对可能出现问题的节点提前预警。 - 合理规划集群规模与架构:根据业务需求,合理规划集群规模,避免单点故障,同时确保各节点负载均衡。 - 升级与补丁管理:及时关注ClickHouse的版本更新与安全补丁,确保所有节点保持最新稳定版本,降低因软件问题引发的NodeNotReadyException风险。 - 备份与恢复策略:制定有效的数据备份与恢复方案,以便在节点发生故障时,能够快速恢复服务。 总结起来,面对ClickHouse的NodeNotReadyException异常,我们不仅需要深入理解其背后的原因,更要在实践中掌握一套行之有效的排查方法和预防策略。这样子做,才能确保当我们的大数据处理平台碰上这类问题时,仍然能够坚如磐石地稳定运行,实实在在地保障业务的连贯性不受影响。这一切的一切,都离不开我们对技术细节的死磕和实战演练的过程,这正是我们在大数据这个领域不断进步、持续升级的秘密武器。
2024-02-20 10:58:16
494
月影清风
Superset
...MDX及其相关技术的应用场景正日益丰富多元。 近期,Apache Kylin团队宣布对MDX查询支持的重大升级,进一步增强了其多维数据处理能力,这意味着在诸如Superset这类BI工具上进行复杂 OLAP 分析将更为便捷高效。此外,随着现代云原生架构的发展,许多云端数据仓库服务(如Snowflake、Google BigQuery)也开始逐步引入或增强对MDX的支持,以满足用户对多维分析查询的需求。 同时,为了帮助更多数据分析人员掌握MDX这一强大的工具,业界专家和教育机构纷纷推出了一系列在线教程和实操课程,通过实例讲解如何结合实际业务场景编写正确的MDX查询语句,并解决可能出现的问题。 因此,在持续学习和实践MDX查询的过程中,建议读者关注行业动态和技术更新,适时参加专业培训,从而更好地利用诸如Superset等工具实现对企业海量数据的深度洞察与价值挖掘。同时,也应重视数据源配置的准确性,确保数据质量和分析结果的有效性,真正发挥出MDX查询在提升决策效率和优化业务流程中的关键作用。
2023-12-18 18:07:56
97
烟雨江南
Kubernetes
...够帮助我们管理容器化应用的部署、扩展和维护,还提供了一系列高级特性来优化应用的运维流程。其中,滚动更新策略是Kubernetes中的一项关键功能,它允许我们以最小的系统停机时间来更新应用的部署版本,从而提高系统的稳定性和可用性。 为什么需要滚动更新策略? 在传统的应用更新过程中,通常需要将所有服务实例一次性全部更新,这会导致短暂的服务中断,对用户体验和系统稳定性产生负面影响。而滚动更新则通过逐步替换旧版本的实例为新版本,确保在任何时刻都有一个稳定运行的副本可用,极大地降低了服务中断的风险。 滚动更新策略的基本概念 在Kubernetes中,滚动更新策略通过Deployment资源对象来实现。当创建或更新一个Deployment时,Kubernetes会自动管理整个更新过程,确保在任何时间点都至少有一个可用的旧版本实例和一个或多个新版本实例。 实现滚动更新的步骤 1. 创建或更新Deployment 首先,你需要定义一个Deployment资源,其中包含你应用的所有详细信息,包括镜像版本、副本数量、更新策略等。以下是一个简单的Deployment YAML配置示例: yaml apiVersion: apps/v1 kind: Deployment metadata: name: my-app-deployment spec: replicas: 3 selector: matchLabels: app: my-app template: metadata: labels: app: my-app spec: containers: - name: my-app-container image: my-image:v1 ports: - containerPort: 80 在上述配置中,我们定义了一个名为my-app-deployment的Deployment,它包含3个副本,并指定了应用的镜像版本为v1。 2. 更新镜像版本 当你想要更新应用的镜像版本时,只需要将Deployment中的image字段改为新的镜像版本即可。例如,从v1更新到v2: yaml spec: template: spec: containers: - name: my-app-container image: my-image:v2 然后,使用kubectl命令更新Deployment: bash kubectl apply -f my-app-deployment.yaml Kubernetes会自动触发滚动更新过程,逐步替换旧版本的实例为新版本。 3. 监控更新过程 在更新过程中,你可以使用kubectl rollout status命令来监控更新的状态。如果一切正常,更新最终会完成,你可以看到状态变为Complete。 bash kubectl rollout status deployment/my-app-deployment 如果发现有任何问题,Kubernetes的日志和监控工具可以帮助你快速定位并解决问题。 结语 通过使用Kubernetes的滚动更新策略,开发者和运维人员能够更安全、高效地进行应用更新,从而提升系统的稳定性和响应速度。哎呀,这种自动又流畅的更新方法,简直不要太棒!它不仅让咱们不再需要天天盯着屏幕,手忙脚乱地做各种调整,还大大降低了服务突然断掉的可能性。这就意味着,咱们能构建出超级快、超级稳的应用程序,让用户体验更上一层楼!嘿,兄弟!随着你在这个领域越走越深,你会发现玩转Kubernetes自动化运维的各种小窍门和高招,就像解锁了一个又一个秘密武器。你能够不断打磨你的部署流程,让这一切变得像魔术一样流畅。这样,不仅能让你的代码如行云流水般快速部署,还能让系统的稳定性跟上了火箭的速度。这不仅仅是一场技术的升级,更是一次创造力的大爆发,让你在编程的世界里,成为那个最会变戏法的魔法师!
2024-07-25 01:00:27
117
冬日暖阳
转载文章
...n 3.7,但在实际应用中,最终目标往往是全面迁移到Python 3。阅读关于代码迁移、兼容性问题解决、以及利用2to3工具进行自动化转换的教程和案例,将有助于您的项目平滑过渡。 综上所述,随着Python生态的不断演进,理解和掌握Python版本管理、虚拟环境运用以及服务依赖关系,将成为现代开发运维工程师必备技能之一。同时,密切关注Python社区发布的最新资源和指南,能帮助您紧跟技术潮流,确保系统和应用始终保持最佳状态。
2023-03-23 10:44:41
284
转载
SpringCloud
在实际应用中,熔断器设计模式已经成为了现代微服务架构中的关键组件。近期,随着云原生技术的快速发展和普及,熔断器的重要性日益凸显。Netflix 的Hystrix虽然为开发者提供了强大的熔断机制,但随着其进入维护模式,社区逐渐转向了其他替代方案,例如Google的Resilience4j和阿里巴巴开源的Sentinel。 Resilience4j是一个轻量级的库,它在Java 8的函数式编程模型基础上提供了容错能力,包括熔断器、重试、降级和限流等功能。其设计更加模块化,易于集成到现有系统,尤其是与Spring Boot等框架结合使用时表现出色。 另一方面,Sentinel作为阿里云的重要中间件之一,不仅支持熔断降级功能,还提供了流量控制、系统负载保护以及实时监控等功能,全面保障微服务架构的高可用性和稳定性。尤其对于国内开发者而言,Sentinel凭借丰富的文档、活跃的社区支持和本土化优势,已成为众多企业构建分布式系统的首选工具。 无论是选择Resilience4j还是Sentinel,都反映了熔断器设计理念在应对复杂分布式系统挑战中的持续演进和创新实践。未来,随着微服务架构的深入发展,我们期待看到更多先进的熔断策略和技术涌现,以更高效的方式确保系统的韧性与稳定性。
2023-05-11 23:23:51
75
晚秋落叶_t
Go-Spring
...是Go-Spring应用启动的地方 spring.Run(func(ctx spring.Context) { // 在这里注入你的业务逻辑 ctx.Bean(new(MyService)) }) } type MyService struct {} func (s MyService) Init() { println("Hello, World! This is from Go-Spring.") } 在这个例子中,我们遵循Go语言规范定义了main函数,并利用Go-Spring来启动我们的应用。这样一来,可不光是保证了程序稳稳妥妥地跑起来,更关键的是,咱们还能亲眼见证Go-Spring框架是如何手把手教我们玩转服务注册、依赖注入这些高大上的功能哒! 四、解疑答惑 从错误到理解 面对"undefined: mainmain"这样的错误,我们需要理解的是Go语言对程序入口的要求,而非Go-Spring的功能。在真正动手开发的时候,用Go-Spring这个框架,那可是能帮我们把项目搭得既清爽又模块化,这样一来,就能有效避免那种因为命名乱七八糟引发的低级错误啦。用这种方式,我们就能把更多的注意力留给处理业务核心问题,而不是在基础的编程语法错误里团团转,浪费大好时光了! 五、总结 尽管"undefined: mainmain"这个错误看起来很棘手,但实际上它只是我们对Go语言规范理解不够深入的一个表现。在用Go-Spring干活儿的时候,我们格外看重代码书写规矩和项目架构的巧妙布局,这样一来,就能更好地把这类问题出现的可能性降到最低。所以,无论是学Go语言还是捣鼓Go-Spring框架,咱都得时刻瞪大眼睛瞅着每个小细节,拿出那股子严谨劲儿,这样咱们才能在编程这片江湖里玩得风生水起,尽情享受编程带来的乐趣哇!在未来的日子里,让我们一起携手Go-Spring,共同攻克更多编程挑战吧!
2024-03-23 11:30:21
416
秋水共长天一色
HessianRPC
...不得了,被大家伙广泛应用着呢! 然而,对于Hessian来说,其默认使用的文本格式在数据传输时可能存在性能瓶颈。这个时候,我们可以选择开启Hessian RPC协议这个小功能,让它用二进制的方式帮我们交换数据。这样一来,Hessian的性能就能蹭蹭地往上提升不少! 二、Hessian RPC协议的基本原理 Hessian是一种Java语言编写的高性能二进制序列化协议,主要用于对象的远程调用和数据交换。它就像个神奇的小帮手,能将Java对象瞬间变成二进制的小溪流,然后嗖地一下穿越网络,让数据交换变得更迅捷、更高效。 Hessian RPC协议是在Hessian协议的基础上扩展出来的,它提供了完整的RPC框架,包括请求/响应模型、错误处理机制、缓存管理等功能。跟普通的Hessian相比,Hessian RPC协议就像个升级版的小能手,它的可扩展性和易用性简直不要太赞,让你在捣鼓分布式系统设计和开发时,感觉轻松愉快、如虎添翼。 三、启用Hessian RPC协议 在Hessian中,我们可以通过设置hessian.config.useBinaryProtocol属性为true,来启用Hessian RPC协议的二进制模式。具体代码如下: java // 设置Hessian配置 HessianConfig config = new HessianConfig(); config.setUseBinaryProtocol(true); // 创建Hessian服务端对象 HessianService service = new HessianService(config); service.export(new EchoServiceImpl()); 上述代码首先创建了一个Hessian配置对象,并将其useBinaryProtocol属性设置为true,表示启用二进制模式。接着,我们捣鼓出一个Hessian服务端的小家伙,把它帅气地挂到网上,这样一来客户端的伙伴们就能随时来调用它了。 四、使用Hessian RPC协议进行数据交换 在启用Hessian RPC协议后,我们就可以使用二进制格式进行数据交换了。下面是一个简单的示例: java // 创建Hessian客户端对象 HessianClient client = new HessianClient("http://localhost:8080/hessian"); // 调用服务端方法并获取结果 EchoResponse response = (EchoResponse) client.invoke("echo", "Hello, Hessian!"); System.out.println(response.getMessage()); // 输出:Hello, Hessian! 上述代码首先创建了一个Hessian客户端对象,并连接到了运行在本地主机上的Hessian服务端。然后,我们调用了服务端的echo方法,并传入了一个字符串参数。最后,我们将服务端返回的结果打印出来。 五、结论 总的来说,通过启用Hessian RPC协议,我们可以将Hessian的默认文本格式转换为高效的二进制格式,从而显著提高Hessian的性能。另外,Hessian RPC协议还带了一整套超给力的功能,这对我们更顺溜地设计和搭建分布式系统可是大有裨益! 在未来的工作中,我们将继续探索Hessian和Hessian RPC协议的更多特性,以及它们在实际应用中的最佳实践。不久的将来,我可以肯定地跟你说,会有越来越多的企业开始拥抱Hessian和Hessian RPC协议,为啥呢?因为它们能让网络应用跑得更快、更稳、更靠谱。这样一来,构建出的网络服务就更加顶呱呱了!
2023-01-11 23:44:57
444
雪落无痕-t
Hive
...区,每个分区内部独立应用窗口函数。 - ORDER BY:在每个分区内部按照指定列进行排序。 2. 多列排序的窗口函数示例 假设我们有一个销售记录表sales_data,包含以下字段:order_id、product_id、customer_id、sale_date 和 amount_sold。现在,我们想按customer_id分组并根据sale_date和amount_sold降序排列,然后获取每个客户的最新销售记录。 sql SELECT customer_id, order_id, product_id, sale_date, amount_sold FROM ( SELECT customer_id, order_id, product_id, sale_date, amount_sold, ROW_NUMBER() OVER ( PARTITION BY customer_id ORDER BY sale_date DESC, amount_sold DESC ) as row_num FROM sales_data ) t WHERE row_num = 1; 上述代码首先通过ROW_NUMBER()窗口函数为每个客户的所有订单生成了一个行号,行号的顺序由sale_date和amount_sold共同决定。最后,我们筛选出每个客户行号为1的记录,也就是每个客户最新的销售记录。 3. 聚合操作的窗口函数示例 窗口函数不仅支持排序,还可以结合聚合函数,例如求某段时间窗口内的累计销售额: sql SELECT customer_id, sale_date, amount_sold, SUM(amount_sold) OVER ( PARTITION BY customer_id ORDER BY sale_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ) as cumulative_sales FROM sales_data; 在这段代码中,我们使用了SUM窗口函数来计算每个客户的累计销售额。"ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW"这个表达,简单来说就是指从第一个订单开始,一直到现在处理到的订单为止,包括这一整个时间段内每个客户的累积销售额。换句话说,它涵盖了当前行以及它前边所有的行,相当于在跟你说:“嘿,从这个客户下单的第一笔开始算起,直到现在这笔订单的销售额,统统给我加起来!” 4. 结语 深入理解与灵活运用 理解并掌握窗口函数的使用方式,无疑会极大地提升我们在Hive中处理复杂业务场景的能力。在实际工作中,当你遇到要对多列进行排序或者需要做聚合处理的时候,完全可以按照业务的具体情况,像变魔术一样灵活调整窗口函数的参数。这样一来,数据就像听话的小兵,整齐有序地流动起来,进而让我们的数据分析工作更加精准,更有力度,也更贴近实际情况。所以,请带着这份探索的热情,在实践中不断尝试、优化,你会发现窗口函数就像一把神奇的钥匙,能帮你打开数据洞察的大门!
2023-10-19 10:52:50
472
醉卧沙场
Etcd
...键值存储系统,被广泛应用在Kubernetes、Docker Swarm等众多容器编排平台中以实现集群的配置共享和协调服务。不过,在我们日常运维的时候,难免会遇到一些突发状况。比如硬件突然闹脾气出故障啦、网络波动捣乱不稳定啦,甚至有时候人为操作的小失误也可能让Etcd这位小伙伴意外地挂掉,没法正常工作。那么,实际情况中,当Etcd遇到重启后需要恢复数据的状况时,它是怎么巧妙应对的呢?接下来,咱们就通过一些实实在在的代码实例,来一起把这个话题掰开了、揉碎了,好好地研究探讨一番。 1. Etcd的数据持久化机制 首先,我们需要了解Etcd的数据持久化方式。Etcd采用Raft一致性算法保证数据的一致性和高可用性,其数据默认保存在本地磁盘上(可通过--data-dir配置项指定目录),并定期进行快照(snapshot)和日志记录,确保即使在异常情况下也能尽可能减少数据丢失的风险。 bash 启动etcd时设置数据存储目录 etcd --data-dir=/var/lib/etcd 2. 非正常关闭与重启恢复流程 当Etcd非正常关闭后,重启时会自动执行以下恢复流程: (1)检测数据完整性:Etcd启动时,首先会检查data-dir下的快照文件和日志文件是否完整。要是发现文件受损或者不齐全,它会像个贴心的小助手那样,主动去其它Raft节点那里借个肩膀,复制丢失的日志条目,以便把状态恢复重建起来。 (2)恢复Raft状态:基于Raft协议,Etcd通过读取并应用已有的日志和快照文件来恢复集群的最新状态。这一过程包括回放所有未提交的日志,直至达到最新的已提交状态。 (3)恢复成员关系与领导选举:Etcd根据持久化的成员信息重新建立集群成员间的联系,并参与领导选举,以恢复集群的服务能力。 go // 这是一个简化的示例,实际逻辑远比这复杂 func (s EtcdServer) start() error { // 恢复raft状态 err := s raft.Restore() if err != nil { return err } // 恢复成员关系 s.restoreCluster() // 开始参与领导选举 s.startElection() // ... } 3. 数据安全与备份策略 尽管Etcd具备一定的自我恢复能力,但为了应对极端情况下的数据丢失,我们仍需要制定合理的备份策略。例如,可以使用Etcd自带的etcdctl snapshot save命令定期创建数据快照,并将其存储到远程位置。 bash 创建Etcd快照并保存到指定路径 etcdctl snapshot save /path/to/snapshot.db \ --endpoint=https://etcd-cluster-0:2379,https://etcd-cluster-1:2379 如遇数据丢失,可使用etcdctl snapshot restore命令从快照恢复数据,并重新加入至集群。 bash 从快照恢复数据并启动一个新的etcd节点 etcdctl snapshot restore /path/to/snapshot.db \ --data-dir=/var/lib/etcd-restore \ --initial-cluster-token=etcd-cluster-unique-token 4. 结语与思考 面对Etcd非正常关闭后的重启数据恢复问题,我们可以看到Etcd本身已经做了很多工作来保障数据的安全性和系统的稳定性。但这可不代表咱们能对此放松警惕,摸透并熟练掌握Etcd的运行原理,再适时采取一些实打实的备份策略,对提高咱整个系统的稳定性、坚韧性可是至关重要滴!就像人的心跳一旦不给力,虽然身体自带修复技能,但还是得靠医生及时出手治疗,才能最大程度地把生命危险降到最低。同样,我们在运维Etcd集群时,也应该做好“医生”的角色,确保数据的“心跳”永不停息。
2023-06-17 09:26:09
712
落叶归根
Redis
...代数据库架构中的实际应用与优化策略。近期,随着云原生技术和微服务架构的普及,Redis凭借其高性能、低延迟和丰富的数据结构特性,在缓存、会话存储、消息队列等领域展现出了强大的优势。 例如,在2023年初,某知名电商公司在进行系统性能瓶颈排查时发现,通过合理运用Redis的数据类型并结合其事务功能,成功解决了高并发场景下商品库存同步一致性的问题。他们将商品库存信息存储为Redis Hash,并利用WATCH/MULTI/EXEC命令构建了一种乐观锁机制,有效防止了并发修改导致的数据不一致情况。 此外,Redis 7.0版本引入了多线程IO处理能力,以及改进的Stream数据类型,使得Redis在实时数据分析和流处理场景下的表现更为出色。开发团队可以通过深入了解这些新特性和最佳实践,避免因操作不当引发的“命令不支持当前数据类型或状态”错误,同时提升系统的整体性能和稳定性。 另外,对于Redis实例的状态管理,诸如集群模式下的主从切换、读写分离策略以及过期键的删除策略等高级主题,也是值得广大开发者持续关注和研究的方向。了解并掌握这些知识,有助于我们设计出更加高效且健壮的应用架构,充分发挥Redis这一强大工具的潜力。
2024-03-12 11:22:48
174
追梦人
ClickHouse
...的列式数据库,被广泛应用于大数据分析领域。不过在实际操作的时候,如何灵活地调控ClickHouse集群的内存使用,让它既能跑得飞快、不浪费一点儿资源,又能稳如磐石,这可是个相当重要且值得咱们好好琢磨一番的问题。本文将通过详细解析和实例演示,带你一步步掌握这项技术。 1. ClickHouse内存管理概览 首先,让我们了解ClickHouse是如何管理和使用内存的。ClickHouse主要消耗内存的地方包括查询处理(如排序、聚合等)、数据缓冲区以及维护其内部的数据结构。一般来说,ClickHouse这小家伙为了能让查询跑得飞快,默认会尽可能地把所有能用的内存都利用起来。不过呢,要是它过于贪心,把内存吃得太多,那可能就会影响到系统的稳定性和响应速度,就像一台被塞满任务的电脑,可能会变得有点卡顿不灵活。 2. 内存限制配置项 (1) max_memory_usage:这是ClickHouse中最重要的内存使用限制参数,它控制单个查询能使用的最大内存量。例如: xml 10000000000 (2) max_server_memory_usage 和 max_server_memory_usage_to_ram_ratio:这两个参数用于限制整个服务器级别的内存使用量。例如: xml 20000000000 0.75 3. 调整内存分配策略 在理解了基本的内存限制参数后,我们可以根据业务需求进行精细化调整。比如,设想你面对一个需要处理大量排序任务的情况,这时候你可以选择调高那个叫做 max_bytes_before_external_sort 的参数值,这样一来,更多的排序过程就能在内存里直接完成,效率更高。反过来讲,如果你的内存资源比较紧张,像个小气鬼似的只有一点点,那你就得机智点儿,适当地把这个参数调小,这样能有效防止内存被塞爆,让程序运行更顺畅。 xml 5000000000 同时,对于join操作,max_bytes_in_join 参数可以控制JOIN操作在内存中的最大字节数。 xml 2000000000 4. 动态调整与监控 为了实时了解和调整内存使用情况,ClickHouse提供了内置的系统表 system.metrics 和 system.events,你可以通过查询这些表获取当前的内存使用状态。例如: sql SELECT FROM system.metrics WHERE metric LIKE '%memory%' OR metric = 'QueryMemoryLimitExceeded'; 这样你就能实时观测到各个内存相关指标的变化,并据此动态调整上述各项内存配置参数,实现最优的资源利用率。 5. 思考与总结 调整ClickHouse集群的内存使用并非一蹴而就的事情,需要结合具体的业务场景、数据规模以及硬件资源等因素综合考虑。在实际操作中,我们得瞪大眼睛去观察、开动脑筋去思考、动手去做实验,不断捣鼓和微调那些内存相关的配置参数。目标就是要让内存物尽其用,嗖嗖地提高查询速度,同时也要稳稳当当地保证系统的整体稳定性,两手抓,两手都要硬。同时呢,给内存设定个合理的限额,就像是给它装上了一道安全阀,既能防止那些突如其来的内存爆满状况,还能让咱的ClickHouse集群变得更为结实耐用、易于管理。这样一来,它就能更好地担当起数据分析的大任,更加给力地为我们服务啦!
2023-03-18 23:06:38
492
夜色朦胧
转载文章
...de.js 之上的 Webpack 是单线程模型的,所以Webpack 需要处理的事情需要一件一件的做,不能多件事一起做。 我们需要Webpack 能同一时间处理多个任务,发挥多核 CPU 电脑的威力,HappyPack 就能让 Webpack 做到这点,它把任务分解给多个子进程去并发的执行,子进程处理完后再把结果发送给主进程。 由于 JavaScript 是单线程模型,要想发挥多核 CPU 的能力,只能通过多进程去实现,而无法通过多线程实现。 提示:由于HappyPack 对file-loader、url-loader 支持的不友好,所以不建议对该loader使用。 安装 HappyPack npm i -D happypack 运行机制 HappyPack_Workflow.png 使用 HappyPack 修改你的webpack.config.js 文件 const HappyPack = require('happypack');const os = require('os');const happyThreadPool = HappyPack.ThreadPool({ size: os.cpus().length });module.exports = {module: {rules: [{test: /\.js$/,//把对.js 的文件处理交给id为happyBabel 的HappyPack 的实例执行loader: 'happypack/loader?id=happyBabel',//排除node_modules 目录下的文件exclude: /node_modules/},]},plugins: [new HappyPack({//用id来标识 happypack处理那里类文件id: 'happyBabel',//如何处理 用法和loader 的配置一样loaders: [{loader: 'babel-loader?cacheDirectory=true',}],//共享进程池threadPool: happyThreadPool,//允许 HappyPack 输出日志verbose: true,})]} 在 Loader 配置中,所有文件的处理都交给了 happypack/loader 去处理,使用紧跟其后的 querystring ?id=babel 去告诉 happypack/loader 去选择哪个 HappyPack 实例去处理文件。 在 Plugin 配置中,新增了两个 HappyPack 实例分别用于告诉 happypack/loader 去如何处理 .js 和 .css 文件。选项中的 id 属性的值和上面 querystring 中的 ?id=babel 相对应,选项中的 loaders 属性和 Loader 配置中一样。 HappyPack 参数 id: String 用唯一的标识符 id 来代表当前的 HappyPack 是用来处理一类特定的文件. loaders: Array 用法和 webpack Loader 配置中一样. threads: Number 代表开启几个子进程去处理这一类型的文件,默认是3个,类型必须是整数。 verbose: Boolean 是否允许 HappyPack 输出日志,默认是 true。 threadPool: HappyThreadPool 代表共享进程池,即多个 HappyPack 实例都使用同一个共享进程池中的子进程去处理任务,以防止资源占用过多。 verboseWhenProfiling: Boolean 开启webpack --profile ,仍然希望HappyPack产生输出。 debug: Boolean 启用debug 用于故障排查。默认 false。 https://www.jianshu.com/p/b9bf995f3712 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42265852/article/details/96104507。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-07 15:02:47
949
转载
转载文章
...卡牌游戏开发中的实践应用后,我们可以进一步关注UE4引擎的最新进展以及行业内的相关案例分析。近日,Epic Games发布了Unreal Engine 5.0版本,引入了前所未有的Nanite虚拟微多边形几何体和Lumen全动态全局光照系统,为开发者提供了更为精细且高效的实时渲染技术,这无疑将对包括卡牌游戏在内的各类项目产生深远影响。 同时,在游戏开发社区中,有团队成功运用UE4开发了一款名为《影之诗》的在线卡牌对战游戏,该游戏利用蓝图系统实现了复杂的游戏逻辑,并通过优化资源加载机制确保了流畅的游戏体验。其动态加载卡牌效果、场景以及音效资源的方式,与前述文章中探讨的技术理念不谋而合,值得深入研究。 此外,针对Lua脚本在游戏逻辑实现中的角色,《英雄联盟》开发商Riot Games在其开源框架Ferret中就大量使用了Lua进行游戏逻辑扩展,展示了跨语言开发在实际项目中的高效协同作用。学习和借鉴此类项目的成功经验,对于理解如何在Unreal Engine中更好地结合C++与Lua编写复杂的卡牌游戏逻辑具有积极意义。 综上所述,了解UE4最新技术发展动态、同行的成功实践经验,以及跨语言编程在游戏开发中的应用,不仅能够帮助我们深化对先前讨论内容的理解,更能启发我们在未来卡牌游戏设计与开发过程中寻找更优解决方案。
2023-12-07 13:59:47
149
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig +trace domain.com
- 进行DNS逐级解析追踪。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"