前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Greenplum数据库与JSON集成 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...智能收银系统或其他)集成凉秋易支付涉及的技术架构师,研发工程师,测试工程师,系统运维工程师。 接口申请方式 共有两种接口模式: (一)普通支付商户 可以获得一个支付商户。请进行注册申请,申请之后会将商户ID和商户KEY给你! 协议规则 传输方式:HTTP 数据格式:JSON 签名算法:MD5 字符编码:UTF-8 [API]查询商户信息与结算规则 URL地址:http://pay.lqan.cn/api.php?act=query&pid={商户ID}&sign={签名字符串} 请求参数说明: 字段名变量名必填类型示例值描述 操作类型act是Stringquery此API固定值 商户IDpid是Int1001 签名字符串sign是String67d12af9ddbe38d9c7b0931ad102ca3c签名算法与支付宝签名算法相同 返回结果: 字段名变量名类型示例值描述 返回状态码codeInt11为成功,其它值为失败 商户IDpidInt1001所创建的商户ID 商户密钥keyString(32)89unJUB8HZ54Hj7x4nUj56HN4nUzUJ8i所创建的商户密钥 商户类型typeInt1此值暂无用 商户状态activeInt11为正常,0为封禁 商户余额moneyString0.00商户所拥有的余额 结算账号accountString1070077170@qq.com结算的支付宝账号 结算姓名usernameString张三结算的支付宝姓名 满多少自动结算settle_moneyString30此值为系统预定义 手动结算手续费settle_feeString1此值为系统预定义 每笔订单分成比例money_rateString98此值为系统预定义 [API]查询结算记录 URL地址:http://pay.lqan.cn/api.php?act=settle&pid={商户ID}&sign={签名字符串} 请求参数说明: 字段名变量名必填类型示例值描述 操作类型act是Stringsettle此API固定值 商户IDpid是Int1001 签名字符串sign是String67d12af9ddbe38d9c7b0931ad102ca3c签名算法与支付宝签名算法相同 返回结果: 字段名变量名类型示例值描述 返回状态码codeInt11为成功,其它值为失败 返回信息msgString查询结算记录成功! 结算记录dataArray结算记录列表 [API]查询单个订单 URL地址:http://pay.lqan.cn/api.php?act=order&pid={商户ID}&out_trade_no={商户订单号}&sign={签名字符串} 请求参数说明: 字段名变量名必填类型示例值描述 操作类型act是Stringorder此API固定值 商户IDpid是Int1001 商户订单号out_trade_no是String20160806151343349 签名字符串sign是String67d12af9ddbe38d9c7b0931ad102ca3c签名算法与支付宝签名算法相同 返回结果: 字段名变量名类型示例值描述 返回状态码codeInt11为成功,其它值为失败 返回信息msgString查询订单号成功! 易支付订单号trade_noString2016080622555342651凉秋易支付订单号 商户订单号out_trade_noString20160806151343349商户系统内部的订单号 支付方式typeStringalipayalipay:支付宝,tenpay:财付通, qqpay:QQ钱包,wxpay:微信支付 商户IDpidInt1001发起支付的商户ID 创建订单时间addtimeString2016-08-06 22:55:52 完成交易时间endtimeString2016-08-06 22:55:52 商品名称nameStringVIP会员 商品金额moneyString1.00 支付状态statusInt01为支付成功,0为未支付 [API]批量查询订单 URL地址:http://pay.lqan.cn/api.php?act=orders&pid={商户ID}&sign={签名字符串} 请求参数说明: 字段名变量名必填类型示例值描述 操作类型act是Stringorders此API固定值 商户IDpid是Int1001 查询订单数量limit否Int20返回的订单数量,最大50 签名字符串sign是String67d12af9ddbe38d9c7b0931ad102ca3c签名算法与支付宝签名算法相同 返回结果: 字段名变量名类型示例值描述 返回状态码codeInt11为成功,其它值为失败 返回信息msgString查询结算记录成功! 订单列表dataArray订单列表 [API]支付订单退款 URL地址:http://pay.lqan.cn/api.php?act=refund&pid={商户ID}&out_trade_no={商户订单号}&sign={签名字符串} 只支持微信官方、QQ钱包官方、当面付退款 请求参数说明: 字段名变量名必填类型示例值描述 操作类型act是Stringrefund此API固定值 商户IDpid是Int1001 商户订单号out_trade_no是Int1000 退款原因desc否String 退款金额money否Double20.00不填默认退全款 签名字符串sign是String67d12af9ddbe38d9c7b0931ad102ca3c签名算法与支付宝签名算法相同 返回结果: 字段名变量名类型示例值描述 返回状态码codeInt11为成功,其它值为失败 返回信息msgString退款成功! 发起支付请求 URL地址:http://pay.lqan.cn/submit.php?pid={商户ID}&type={支付方式}&out_trade_no={商户订单号}¬ify_url={服务器异步通知地址}&return_url={页面跳转通知地址}&name={商品名称}&money={金额}&sitename={网站名称}&sign={签名字符串}&sign_type=MD5 请求参数说明: 字段名变量名必填类型示例值描述 商户IDpid是Int1001 支付方式type是Stringalipayalipay:支付宝,tenpay:财付通, qqpay:QQ钱包,wxpay:微信支付 商户订单号out_trade_no是String20160806151343349 异步通知地址notify_url是Stringhttp://域名/notify_url.php服务器异步通知地址 跳转通知地址return_url是Stringhttp://域名/return_url.php页面跳转通知地址 商品名称name是StringVIP会员 商品金额money是String1.00 网站名称sitename否String某某某平台 签名字符串sign是String202cb962ac59075b964b07152d234b70签名算法与支付宝签名算法相同 签名类型sign_type是StringMD5默认为MD5 支付结果通知 通知类型:服务器异步通知(notify_url)、页面跳转通知(return_url) 请求方式:GET 特别说明:回调成功之后请输出 SUCCESS字符串,如果没有收到商户响应的SUCCESS字符串,系统将通过策略重新通知5次,通知频率为15s/60s/3m/30m/1h 请求参数说明: 字段名变量名必填类型示例值描述 商户IDpid是Int1001 易支付订单号trade_no是String20160806151343349021凉秋易支付订单号 商户订单号out_trade_no是String20160806151343349商户系统内部的订单号 支付方式type是Stringalipayalipay:支付宝,tenpay:财付通, qqpay:QQ钱包,wxpay:微信支付 商品名称name是StringVIP会员 商品金额money是String1.00 支付状态trade_status是StringTRADE_SUCCESS 签名字符串sign是String202cb962ac59075b964b07152d234b70签名算法与支付宝签名算法相同 签名类型sign_type是StringMD5默认为MD5 签名算法 请对参数按照键名进行降序排序(a-z)sign sign_type 和空值不进行签名!。 排序后请操作参数生成或拼接一个url请求字符串 例如 a=b&c=d&e=f (Url值不能携带参数!不要进行urlencode) 再将拼接好的请求字符串与平台生成的Key进行MD5加密得出sign签名参数 MD5 ( a=b&c=d&e=f + KEY ) (注意:+ 为各语言的拼接符!不是字符!) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39620334/article/details/115933932。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 16:55:58
92
转载
转载文章
...遍历执行,获取所有的数据 for (int i = 1; i < 10; i = i + 2) {//发起请求进行访问,获取页面数据,先访问第一页 String html = this.httpUtils.getHtml(url +i);//解析页面数据,保存数据到数据库中 this.parseHtml(html); } System.out.println("执行完成"); }//解析页面,并把数据保存到数据库中 private void parseHtml(String html) throwsException {//使用jsoup解析页面 Document document =Jsoup.parse(html);//获取商品数据 Elements spus = document.select("divJ_goodsList > ul > li");//遍历商品spu数据 for(Element spuEle : spus) {//获取商品spu String attr = spuEle.attr("data-spu");long spu = Long.parseLong(attr.equals("")?"0":attr);//Long spu = Long.parseLong(spuEle.attr("data-spu"));//获取商品sku数据 Elements skus = spuEle.select("li.ps-item img");for(Element skuEle : skus) {//获取商品sku Long sku = Long.parseLong(skuEle.attr("data-sku"));//判断商品是否被抓取过,可以根据sku判断 Item param = newItem(); param.setSku(sku); List list = this.itemService.findAll(param);//判断是否查询到结果 if (list.size() > 0) {//如果有结果,表示商品已下载,进行下一次遍历 continue; }//保存商品数据,声明商品对象 Item item = newItem();//商品spu item.setSpu(spu);//商品sku item.setSku(sku);//商品url地址 item.setUrl("https://item.jd.com/" + sku + ".html");//创建时间 item.setCreated(newDate());//修改时间 item.setUpdated(item.getCreated());//获取商品标题 String itemHtml = this.httpUtils.getHtml(item.getUrl()); String title= Jsoup.parse(itemHtml).select("div.sku-name").text(); item.setTitle(title);//获取商品价格 String priceUrl = "https://p.3.cn/prices/mgets?skuIds=J_"+sku; String priceJson= this.httpUtils.getHtml(priceUrl);//解析json数据获取商品价格 double price = MAPPER.readTree(priceJson).get(0).get("p").asDouble(); item.setPrice(price);//获取图片地址 String pic = "https:" + skuEle.attr("data-lazy-img").replace("/n9/","/n1/"); System.out.println(pic);//下载图片 String picName = this.httpUtils.getImage(pic); item.setPic(picName);//保存商品数据 this.itemService.save(item); } } } } 分享一下我学习中遇到的问题: 1.爬取数据为null,需要登录京东 看到这段代码应该就明白了吧,就是京东发现并非人为操作,需要登陆账号了。解决办法也很简单,只需要自己模拟浏览器登陆即可 在HttpUttils加上这段,两个方法中的HTTPGet对象都需要设置一下。 //设置请求头模拟浏览器 httpGet.setHeader("User-Agent","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:72.0) Gecko/20100101 Firefox/72.0"); 2.java.lang.NumberFormatException: For input string: "",获取的spu为空串,加上一个前置空串判断即可 解决如下: //获取商品spu String attr = spuEle.attr("data-spu");//判断是否为空串 long spu = Long.parseLong(attr.equals("")?"0":attr); 以上两个bug是我学习遇到的,现已解决,爬取数据如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_32161697/article/details/114506244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-13 10:48:12
105
转载
Apache Solr
...ing命令测了一下和数据库服务器的连接,发现确实有点儿延时,挺磨人的。为了解决这个问题,我在想是不是可以在Solr服务器和数据库服务器中间加一台缓存服务器。这样就能少直接去查数据库了,效率应该能提高不少。 3.2 第三方API调用 除了网络延迟外,第三方API调用也可能是导致性能不稳定的另一个原因。Solr在处理某些查询时,可能需要调用外部服务来获取额外的数据。如果这些服务响应缓慢,整个查询过程也会变慢。我翻了一下Solr的日志,发现有些查询卡在那儿等外部服务回应,结果等超时了。为了搞定这个问题,我在Solr里加了个异步召唤的功能,这样Solr就能一边等着外部服务响应,一边还能接着处理别的查询请求了。具体代码如下: java public void handleExternalRequest() { CompletableFuture.supplyAsync(() -> { // 调用外部服务获取数据 return fetchDataFromExternalService(); }).thenAccept(result -> { // 处理返回的数据 processResult(result); }); } 4. 实践经验分享 配置波动与性能优化 4.1 动态配置管理 在实践中,我发现Solr的配置文件经常需要根据实际需求进行调整。然而,频繁地修改配置文件可能导致系统性能不稳定。为了更好地管理配置文件的变化,我建议使用动态配置管理工具,如Zookeeper。Zookeeper可帮我们在不耽误Solr正常运转的前提下更新配置,这样就不用担心因为调整设置而影响性能了。 4.2 监控与报警 最后,我强烈建议建立一套完善的监控和报警机制。通过实时盯着Solr的各种表现(比如查询速度咋样、CPU用得多不多等),我们就能赶紧发现状况,然后迅速出手解决。另外,咱们得设定好警报线,就像给系统设个底线。一旦性能掉到这线下,它就会自动给我们发警告。这样我们就能赶紧找出毛病,及时修好,不让小问题拖成大麻烦。例如,可以使用Prometheus和Grafana来搭建监控系统,代码示例如下: yaml Prometheus配置 global: scrape_interval: 15s scrape_configs: - job_name: 'solr' static_configs: - targets: ['localhost:8983'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
37
蝶舞花间
Spark
...架,它提供了对大规模数据集进行高效、快速处理的能力。Spark通过内存计算技术显著提升了大数据处理速度,并支持SQL查询、流处理、机器学习等多种计算模型,能够在一个统一的平台上处理批处理和实时数据。 DataFrame API , DataFrame是Apache Spark中一种重要的编程抽象,类似于关系型数据库中的表结构。DataFrame API允许用户以更为直观且高性能的方式操作结构化数据。相较于RDD(弹性分布式数据集),DataFrame提供了更多的优化机会,包括列式存储、执行计划优化以及与SQL引擎的无缝集成,使得数据处理过程更加高效和便捷。 Partitioner , 在Apache Spark中,Partitioner是一个用于决定如何将数据集划分为多个分区的策略。它在数据并行处理时起到关键作用,确保数据能够在集群节点间均衡分布,提高任务执行效率。当处理大量小文件时,可以通过自定义Partitioner来按照某种规则将小文件整合或分类,从而减少I/O开销,提升整体性能。 DataSource V2 , DataSource V2是Apache Spark 3.0版本引入的新接口,旨在提供更灵活、高效的读写数据源方式。它允许开发者实现更细粒度的数据分区和读取策略,尤其适用于处理大量小文件场景,可以降低磁盘I/O次数,提高数据读取速度,进而优化Spark的整体性能。 动态资源分配 , 动态资源分配是Apache Spark的一项资源管理特性,可根据当前作业负载动态调整各个Spark应用程序所占用的集群资源(如CPU核心数、内存大小等)。在处理大量小文件等复杂工作负载时,合理运用动态资源分配策略有助于提高系统资源利用率和作业执行效率。
2023-09-19 23:31:34
45
清风徐来-t
Cassandra
...储系统,适用于大规模数据的实时读写,特别适合对数据有高可用性和扩展性需求的场景。 Prometheus , 一个开源的监控和警报系统,用于收集和监控大量指标数据,支持复杂的查询和聚合功能,广泛应用于现代微服务架构中,以提供实时监控和故障预警。 Grafana , 一个开源的数据可视化工具,允许用户以图形方式展示来自不同数据源的指标数据,帮助数据分析人员理解和诊断系统性能,通常与Prometheus集成使用,提供直观的监控界面。
2024-09-27 16:14:44
125
蝶舞花间
DorisDB
数据备份与安全:从DorisDB到云存储的进阶探索 随着数字化转型的加速,数据成为企业核心资产之一,而数据备份与恢复成为确保业务连续性和数据安全的关键环节。近年来,云存储技术的崛起为数据管理带来了新的机遇与挑战。在此背景下,结合DorisDB的高效备份策略,深入探讨云存储在数据安全与备份中的应用,不仅能够为企业提供更加灵活、可靠的数据保护方案,还能促进数据驱动型决策的实施。 云存储:数据保护的新舞台 云计算的普及使得云存储成为众多企业首选的数据存储解决方案。相较于传统的本地存储,云存储提供了更高的数据可访问性、更强的容灾能力和更低的成本。尤其在数据备份方面,云存储平台如Amazon S3、Google Cloud Storage和Microsoft Azure Blob Storage等,凭借其全球分布的基础设施、自动化的数据复制和加密功能,为数据备份提供了强有力的支持。 DorisDB与云存储的融合 DorisDB作为一款高性能的分布式列式存储系统,其在数据处理和查询效率方面的优势,使得在云存储环境下的数据备份和恢复变得更加高效。通过将DorisDB与云存储服务集成,企业不仅可以利用云存储的海量存储空间,还能享受到快速的数据备份和恢复能力。例如,使用AWS Lambda函数触发DorisDB备份任务,或通过CloudWatch事件监控DorisDB状态,实现自动化备份流程,大大降低了人工干预的需求,提高了数据保护的效率和可靠性。 实践案例与挑战 某金融机构通过整合DorisDB与AWS S3,构建了一套高效的数据备份体系。该体系不仅实现了数据的实时同步备份,还通过S3的跨区域复制功能,确保了数据在不同地理位置间的高可用性。同时,借助AWS Glue和Lambda的自动化脚本,实现了备份任务的周期性执行和异常检测,极大地提升了数据保护的水平。然而,这一过程中也面临了诸如成本控制、数据合规性、以及云服务的可靠性的挑战。因此,企业在实施云存储与DorisDB集成时,需综合考虑这些因素,制定相应的策略和预案。 总结与展望 数据备份与安全是现代企业不可忽视的重要议题。结合DorisDB的高效备份策略与云存储的灵活性,企业能够构建起更为强大、可靠的数据保护体系。未来,随着云计算技术的不断演进,以及数据安全标准的日益严格,如何在保障数据安全的同时,优化成本结构、提升数据治理能力,将是企业面临的又一重大课题。通过持续的技术创新和实践探索,我们有望实现数据价值的最大化,推动企业数字化转型的稳健前行。
2024-07-28 16:23:58
432
山涧溪流
Superset
...set作为一款开源的数据可视化工具,近年来受到了越来越多的关注。最近,Superset社区发布了最新的3.0版本,引入了一系列新特性和改进,旨在提升用户体验和增强功能。新版本中最重要的变化之一是增强了对大型数据集的支持能力,通过优化查询性能和提高缓存效率,使得处理大规模数据变得更加流畅。此外,新版本还增加了对更多第三方插件的支持,使得用户可以根据自己的需求扩展功能。 值得注意的是,Superset 3.0版本引入了一种全新的数据探索模式,名为“智能探索”,这一功能利用了先进的机器学习算法,能够自动识别数据中的关键特征和模式,帮助用户更快地理解数据。这种智能化的探索模式对于那些需要处理大量复杂数据的用户来说,无疑是一个巨大的福音。 除此之外,新版本还加强了安全性,引入了更多的权限控制选项,确保敏感数据的安全。这对于企业用户来说尤为重要,因为他们需要严格控制谁可以访问哪些数据。 最近,一家知名科技公司宣布将Superset集成到他们的内部数据平台中,用于日常的数据分析和报告生成。该公司表示,通过使用Superset,他们能够在短时间内生成高质量的数据可视化报告,极大地提高了工作效率。 总之,Superset的最新版本不仅在技术层面进行了重大升级,也得到了实际应用中的广泛认可。对于那些正在寻找强大且灵活的数据可视化解决方案的企业和个人而言,Superset无疑是一个值得考虑的选择。随着社区的持续发展和技术的进步,Superset在未来将会变得更加完善和强大。
2024-12-15 16:30:11
91
红尘漫步
Beego
...这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
103
月影清风
SpringBoot
...Boot与Druid集成场景? 1. 引子 我的困惑之旅 作为一个刚入行不久的Java开发工程师,我最近在负责一个基于Spring Boot的项目。这个项目需要与Oracle数据库交互,而我选用了Druid作为数据源管理工具。事情本来挺顺的,大家都觉得没啥问题,结果有一天,我们的系统突然蹦出个消息,说啥“查询超时”!就那么一下,气氛瞬间紧张了,感觉空气都凝固了似的。 当时我整个人都懵了——这到底是什么情况?是Oracle的问题吗?还是Spring Boot的锅?或者是我对Druid的理解还不够深入?带着这些疑问,我开始了一段探索之旅。今天,我想把这段经历分享给大家,希望能帮助那些和我一样遇到类似问题的朋友。 --- 2. 什么是“查询超时”? 简单来说,“查询超时”就是你的SQL语句执行的时间超过了设定的最大允许时间,导致系统直接抛出异常。哎呀,这种情况在实际开发里真的挺常见的,特别是那种高并发的场景。你要是数据库连接池没配好,那问题就容易冒出来了,简直防不胜防! 对于我来说,这个问题尤其令人头疼,因为我们的项目依赖于Oracle数据库,而Oracle本身就是一个功能强大的关系型数据库,但同时也有一些“坑”。比如说啊,它的默认查询超时时间可能设得有点短,要是咱们不改一下这个设置,那查询的时候就容易卡壳儿,最后连结果都拿不到。 --- 3. Spring Boot与Druid集成的基本配置 首先,让我们回顾一下如何在Spring Boot项目中集成Druid。这是一个非常基础的操作,但也是解决问题的第一步。 3.1 添加依赖 在pom.xml文件中添加Druid的相关依赖: xml com.alibaba druid-spring-boot-starter 1.2.8 3.2 配置数据源 接着,在application.yml文件中配置Druid的数据源信息: yaml spring: datasource: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: oracle.jdbc.driver.OracleDriver url: jdbc:oracle:thin:@localhost:1521:orcl username: your_username password: your_password druid: initial-size: 5 max-active: 20 min-idle: 5 max-wait: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false 这段配置看似简单,但实际上每一项参数都需要仔细斟酌。比如说啊,“max-wait”这个参数呢,就是说咱们能等连接连上的最长时间,单位是毫秒,相当于给它设了个“最长等待时间”;然后还有个“validation-query”,这个名字听起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
40
冬日暖阳_
Impala
数据分析领域的新趋势:深度学习与SQL查询的融合 随着人工智能技术的飞速发展,数据分析领域正经历一场前所未有的变革。近年来,深度学习技术因其强大的模式识别能力和预测能力,在图像处理、语音识别、自然语言处理等领域取得了显著成就。然而,深度学习的应用往往依赖于大量的训练数据和复杂的模型结构,这在数据量庞大的商业环境中显得尤为重要。与此同时,传统的SQL查询作为一种高效的数据检索手段,已经广泛应用于大数据分析中,但其在复杂数据分析和预测任务上的局限性日益凸显。 深度学习与SQL查询的融合 面对这一挑战,研究人员开始探索将深度学习技术与SQL查询相结合的可能性,以期在保持SQL查询高效性的同时,增强其在复杂数据分析和预测任务上的能力。这种融合不仅限于简单的集成,而是涉及到深度学习模型的构建、优化以及与SQL查询系统的无缝对接。例如,通过使用SQL查询来预处理数据,提取特征,然后将这些特征输入到深度学习模型中进行训练和预测,从而实现高效的数据分析流程。 案例分析:深度学习辅助SQL查询优化 一项研究表明,结合深度学习的SQL查询优化策略能够显著提高查询性能和响应速度。研究团队通过构建深度强化学习模型,用于预测SQL查询的执行路径和最佳执行计划,以此来减少查询执行时间。该模型通过对历史查询日志的学习,自动识别出常见的查询模式和执行瓶颈,从而动态调整查询计划,以适应不同规模和复杂性的数据集。 行业应用与展望 这一融合趋势已经在多个行业中展现出巨大潜力。例如,在金融领域,深度学习辅助的SQL查询优化可以帮助银行快速处理大量交易数据,提高风险评估的准确性和效率;在医疗健康领域,结合深度学习的SQL查询技术能够加速病例数据的分析,支持个性化治疗方案的制定。此外,随着物联网设备的普及,海量实时数据的处理成为亟待解决的问题,深度学习与SQL查询的融合有望在此领域发挥重要作用。 结论 深度学习与SQL查询的融合是数据分析领域的一大创新方向,它不仅能够提升传统SQL查询系统的性能,还能够拓宽数据分析的边界,促进人工智能与传统数据库技术的深度融合。未来,随着技术的不断进步和应用场景的拓展,这一融合趋势将为各行各业带来更加智能、高效的数据分析解决方案,推动整个社会向智能化转型。 深度学习与SQL查询的融合,不仅是技术层面的创新,更是数据分析方式的根本变革,预示着未来数据驱动型决策将成为常态,而数据分析师的角色也将因此变得更加重要。
2024-08-19 16:08:50
72
晚秋落叶
转载文章
...ng与Mybatis集成,开发一个简单用户增删改查的Web项目。 基本准备工作 1、安装JDK1.6以上版本,安装与配置 2、下载mybatis-3.2.0版:https://repo1.maven.org/maven2/org/mybatis/mybatis/ 3、下载mybatis-spring-1.2.1版:https://repo1.maven.org/maven2/org/mybatis/mybatis-spring/ 4、Spring-4.0.0的版本 5、tomacat6.x以上版本即可 当然,这些jar还不够,还需要MySQL数据库与驱动,log4j的jar等等。下面我们开始今天的旅行: 第一步:创建数据库表 在Navicat下执行如下sql命令创建数据库mybatis和表t_user [sql] view plaincopy print? CREATE DATABASE IF NOT EXISTS mybatis; [sql] view plaincopy print? USE mybatis; [sql] view plaincopy print? create table t_user ( user_id int(11) NOT NULL AUTO_INCREMENT, user_name varchar(20) not null, user_age varchar(20) not null, PRIMARY KEY (user_id) )ENGINE=InnoDB DEFAULT CHARSET=utf8; 我们先看一下项目的完整目录,再继续下面的内容 第二步:添加jar包 对于下面代码的内容,我们就不再一一贴出来,只是把最重要的内容贴出来,大家可以下载源码。 第三步:创建model 创建一个model包并在其下创建一个User.Java文件。 [java] view plaincopy print? package com.tgb.model; / 用户 @author liang / public class User { private int id; private String age; private String userName; public User(){ super(); } public int getId() { return id; } public void setId(int id) { this.id = id; } public String getAge() { return age; } public void setAge(String age) { this.age = age; } public String getUserName() { return userName; } public void setUserName(String userName) { this.userName = userName; } public User(int id, String age, String userName) { super(); this.id = id; this.age = age; this.userName = userName; } } 第四步:创建DAO接口 创建一个包mapper,并在其下创建一个UserMapper.java文件作为DAO接口。 [java] view plaincopy print? package com.tgb.mapper; import java.util.List; import com.tgb.model.User; public interface UserMapper { void save(User user); boolean update(User user); boolean delete(int id); User findById(int id); List<User> findAll(); } 第五步:实现DAO接口 在dao包下创建一个UserMapper.xml文件作为上一步创建的DAO接口的实现。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <!-- namespace:必须与对应的接口全类名一致 id:必须与对应接口的某个对应的方法名一致 --> <mapper namespace="com.tgb.mapper.UserMapper"> <insert id="save" parameterType="User"> insert into t_user(user_name,user_age) values({userName},{age}) </insert> <update id="update" parameterType="User"> update t_user set user_name={userName},user_age={age} where user_id={id} </update> <delete id="delete" parameterType="int"> delete from t_user where user_id={id} </delete> <!-- mybsits_config中配置的alias类别名,也可直接配置resultType为类路劲 --> <select id="findById" parameterType="int" resultType="User"> select user_id id,user_name userName,user_age age from t_user where user_id={id} </select> <select id="findAll" resultType="User"> select user_id id,user_name userName,user_age age from t_user </select> </mapper> 这里对这个xml文件作几点说明: 1、namespace必须与对应的接口全类名一致。 2、id必须与对应接口的某个对应的方法名一致即必须要和UserMapper.java接口中的方法同名。 第六步:Mybatis和Spring的整合 对于Mybatis和Spring的整合是这篇博文的重点,需要配置的内容在下面有详细的解释。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd"> <!-- 1. 数据源 : DriverManagerDataSource --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/mybatis" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- 2. mybatis的SqlSession的工厂: SqlSessionFactoryBean dataSource:引用数据源 MyBatis定义数据源,同意加载配置 --> <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> <property name="dataSource" ref="dataSource"></property> <property name="configLocation" value="classpath:config/mybatis-config.xml" /> </bean> <!-- 3. mybatis自动扫描加载Sql映射文件/接口 : MapperScannerConfigurer sqlSessionFactory basePackage:指定sql映射文件/接口所在的包(自动扫描) --> <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer"> <property name="basePackage" value="com.tgb.mapper"></property> <property name="sqlSessionFactory" ref="sqlSessionFactory"></property> </bean> <!-- 4. 事务管理 : DataSourceTransactionManager dataSource:引用上面定义的数据源 --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"></property> </bean> <!-- 5. 使用声明式事务 transaction-manager:引用上面定义的事务管理器 --> <tx:annotation-driven transaction-manager="txManager" /> </beans> 第七步:mybatis的配置文件 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd"> <configuration> <!-- 实体类,简称 -设置别名 --> <typeAliases> <typeAlias alias="User" type="com.tgb.model.User" /> </typeAliases> <!-- 实体接口映射资源 --> <!-- 说明:如果xxMapper.xml配置文件放在和xxMapper.java统一目录下,mappers也可以省略,因为org.mybatis.spring.mapper.MapperFactoryBean默认会去查找与xxMapper.java相同目录和名称的xxMapper.xml --> <mappers> <mapper resource="com/tgb/mapper/userMapper.xml" /> </mappers> </configuration> 总结 Mybatis和Spring的集成相对而言还是很简单的,祝你成功。 源码下载:SpringMVC+Spring4+Mybatis3 下篇博文我们将Hibernate和Mybatis进行一下详细的对比。 本篇文章为转载内容。原文链接:https://blog.csdn.net/konglongaa/article/details/51706991。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-05 11:56:25
112
转载
Kylin
... 一、引言 探索数据仓库的奥秘 在数据驱动的时代,如何高效地处理和分析海量数据是企业面临的关键挑战之一。哎呀,你听说过Kylin这个家伙没?这家伙在Apache开源项目里可是个大明星!它凭借着超棒的性能和超灵活的特性,在大数据分析这块地盘上可是独领风骚呢!就像是在数据这片海洋里,Kylin就是那条游得最快、最灵活的大鱼,让人不得不佩服它的实力和魅力!哎呀,你知道的,当Kylin碰上了MySQL这种关系型数据库,俩人之间的联接优化问题可真是个大课题啊!这事儿得好好琢磨琢磨,不然数据跑起来可就慢了不止一点点。你得想想怎么能让它们配合得天衣无缝,让数据查询快如闪电,用户体验棒棒哒!这背后涉及到的技术细节可多了去了,比如索引优化、查询语句的编写技巧,还有就是数据库配置的调整,每一步都得精心设计,才能让整个系统运行得既高效又稳定。所以,这不仅仅是个理论问题,更是一场实战演练,考验的是咱们对数据库知识的掌握和运用能力呢!本文将带你一起揭开这个谜题的面纱,从理论到实践,全方位解析Kylin与MySQL联接优化的关键点。 二、理论基础 理解Kylin与MySQL的联接机制 在深入讨论优化策略之前,我们首先需要理解两者之间的基本联接机制。Kylin是一个基于Hadoop的列式存储OLAP引擎,它通过预先计算并存储聚合数据来加速查询速度。而MySQL作为一个广泛使用的SQL数据库管理系统,提供了丰富的查询语言和存储能力。嘿,兄弟!你听过数据联接这事儿吗?它通常在咱们把数据从一个地方搬进另一个地方或者在查询数据的时候出现。就像拼图一样,对了,就是那种需要精准匹配才能完美组合起来的拼图。用对了联接策略,那操作效率简直能嗖的一下上去,比火箭还快呢!所以啊,小伙伴们,别小瞧了这个小小的联接步骤,它可是咱们大数据处理里的秘密武器! 三、策略一 优化联接条件 实践示例: sql -- 原始查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id; -- 优化后的查询语句 SELECT FROM kylin_table JOIN mysql_table ON kylin_table.id = mysql_table.id AND kylin_table.date >= '2023-01-01' AND kylin_table.date <= '2023-12-31'; 通过在联接条件中加入过滤条件(如时间范围),可以减少MySQL服务器需要处理的数据量,从而提高联接效率。 四、策略二 利用索引优化 实践示例: 在MySQL表上为联接字段创建索引,可以大大加速查询速度。同时,在Kylin中,确保相关维度的列已经进行了适当的索引,可以进一步提升性能。 sql -- MySQL创建索引 CREATE INDEX idx_kylin_table_id ON kylin_table(id); -- Kylin配置维度索引 id long true 通过这样的配置,不仅MySQL的查询速度得到提升,Kylin的聚合计算也更加高效。 五、策略三 批量导入与增量更新 实践示例: 对于大型数据集,考虑使用批量导入策略,而不是频繁的增量更新。哎呀,你瞧,咱们用批量导入这招,就像是给MySQL服务器做了一次减压操,让它不那么忙碌,喘口气。同时,借助Kylin的离线大法,我们就能让那些实时查询快如闪电,不拖泥带水。这样一来,不管是数据处理还是查询速度,都大大提升了,用户满意度也蹭蹭往上涨呢! bash 批量导入脚本示例 $ hadoop fs -put data.csv /input/ $ bin/hive -e "LOAD DATA INPATH '/input/data.csv' INTO TABLE kylin_table;" 六、策略四 优化联接模式 选择合适的联接模式(如内联接、外联接等)对于性能优化至关重要。哎呀,你得知道,在咱们实际干活的时候,选对了数据联接的方式,就像找到了开锁的金钥匙,能省下不少力气,避免那些没必要的数据大扫荡。比如说,你要是搞个报表啥的,用对了联接方法,数据就乖乖听话,找起来快又准,省得咱们一个个文件翻,一个个字段找,那得多费劲啊!所以,挑对工具,效率就是王道! 实践示例: 假设我们需要查询所有在特定时间段内的订单信息,并且关联了用户的基本信息。这里,我们可以使用内联接: sql SELECT FROM orders o INNER JOIN users u ON o.user_id = u.user_id WHERE o.order_date BETWEEN '2023-01-01' AND '2023-12-31'; 七、总结与展望 通过上述策略的实施,我们能够显著提升Kylin与MySQL联接操作的性能。哎呀,你知道优化数据库操作这事儿,可真是个门道多得很!比如说,调整联接条件啊,用上索引来提速啊,批量导入数据也是一大妙招,还有就是选对联接方式,这些小技巧都能让咱们的操作变得顺畅无比,响应速度嗖嗖的快起来。就像开车走高速,不堵车不绕弯,直奔目的地,那感觉,爽歪歪!哎呀,随着咱手里的数据越来越多,就像超市里的货物堆积如山,技术这玩意儿也跟咱们的手机更新换代一样快。所以啊,要想让咱们的系统运行得又快又好,就得不断调整和改进策略。就像是给汽车定期加油、保养,让它跑得既省油又稳定。这事儿,可得用心琢磨,不能偷懒!未来,随着更多高级特性如分布式计算、机器学习集成等的引入,Kylin与MySQL的联接优化将拥有更广阔的应用空间,助力数据分析迈向更高层次。
2024-09-20 16:04:27
105
百转千回
Apache Atlas
...las”,一款开源的数据治理工具。说实话,当我第一次听说它的时候,内心是既兴奋又紧张的。为啥呢?就因为它那个功能听着也太牛了吧!数据分类、管元数据、还能追踪数据的来龙去脉……这不就跟个啥都能搞定的“数据保姆”似的嘛! 但现实往往比想象复杂得多。哎呀,在捣鼓Apache Atlas的时候,真是被一个问题给卡住了——Hook 部署老是失败,气得我直挠头!这就跟做菜的时候,正打算大显身手呢,结果一瞧,盐和糖给放反了位置,那感觉简直要抓狂了,想直接躺平不干了! 不过别担心,咱们今天就来聊聊这个问题,看看能不能找到解决办法。毕竟,解决问题的过程本身就是一种成长嘛! --- 2. Hook是什么?为什么它如此重要? 在深入探讨问题之前,我们得先搞清楚什么是“Hook”。简单来说,Hook就是Apache Atlas用来与其他系统(比如Hive、Kafka等)集成的一种机制。有了这些“钩子”,Atlas就能在一旁盯着目标系统的一举一动,还能自动记下相关的各种小细节。 举个例子,如果你有一个Hive表被创建了,Atlas可以通过Hive Hook实时记录下这个事件,包括表名、字段定义、所属数据库等信息。这么做的好处嘛,简直不要太明显!就好比给你的数据加上了一个“出生证”和“护照”,不仅能随时知道它是从哪儿来的、去过哪儿,还能记录下它一路上经历的所有变化。这样一来,管理起来就方便多了,也不用担心数据会“走丢”或者被搞砸啦! 然而,正因如此,Hook的部署显得尤为重要。要是Hook没装好,那Atlas就啥元数据也收不到啦,整个数据治理的工作就得卡在那里干瞪眼了。这也是为什么当我的Hook部署失败时,我会感到特别沮丧的原因。 --- 3. 部署失败 从错误日志中寻找线索 那么,Hook到底为什么会部署失败呢?为了找出答案,我打开了Atlas的日志文件,开始逐行分析那些晦涩难懂的错误信息。说实话,第一次看这些日志的时候,我直接傻眼了,那感觉就跟对着一堆乱码似的,完全摸不着头脑。 不过,经过一番耐心的研究,我发现了一些关键点。比如: - 依赖冲突:有些情况下,Hook可能会因为依赖的某些库版本不兼容而导致加载失败。 - 配置错误:有时候,我们可能在application.properties文件中漏掉了必要的参数设置。 - 权限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
61
醉卧沙场
转载文章
...智慧足迹投递并参与“数据猿年度金猿策划活动——2021大数据产业创新技术突破榜单及奖项”评选。 数据智能产业创新服务媒体 ——聚焦数智 · 改变商业 中国联通智慧足迹开发的SSNG多源数据处理平台,是完全自研的新一代面向行为集成的位置数据处理系统。平台沉淀海量信令处理过程中的长期经验,着力解决影响数据输出质量的核心堵点,可兼容类似信令的多种LBS数据源接入并实现自动化、标准化输出数据结果。 技术说明 SSNG多源数据处理平台技术创新部分包括: 行为矩阵:将离散的驻留信息,转化为用户的时空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
344
转载
Hadoop
...e:如何与NoSQL数据库进行数据交互? 引言 在大数据的世界里,数据量的爆炸式增长使得数据管理成为了一项挑战。Hadoop,作为分布式计算的先驱,提供了处理大规模数据的能力。哎呀,你知道的,HBase在Hadoop这个大家庭里可是个大明星呢!它就像个超级仓库,能把海量的数据整齐地放好,不管是半结构化的数据,还是那些乱七八糟的非结构化数据,HBase都能搞定。你想想,当你需要快速查询或者修改这些数据的时候,HBase就像是你的私人管家,既快又精准,简直是太方便了!所以,无论是大数据分析、实时数据分析还是构建大规模的数据库系统,HBase都是你不可多得的好帮手!本文将深入探讨HBase如何与NoSQL数据库进行数据交互,以及这种交互在实际应用场景中的价值。 HBase概述 HBase是一种基于列存储的NoSQL数据库,它构建在Hadoop的HDFS之上,利用MapReduce进行数据处理。哎呀,HBase这东西啊,它就是借鉴了Google的Bigtable的思路,就是为了打造一个既能跑得快,又稳当,还能无限长大的数据仓库。简单来说,就是想给咱的数据找个既好用又耐用的家,让数据处理起来更顺畅,不卡壳,还能随着业务增长不断扩容,就跟咱们搬新房子一样,越住越大,越住越舒服!其数据模型支持多维查询,适合处理大量数据并提供快速访问。 与NoSQL数据库的集成 HBase的出现,让开发者能够利用Hadoop的强大计算能力同时享受NoSQL数据库的灵活性。哎呀,你知道的啦,在咱们的实际操作里,HBase这玩意儿可是个好帮手,能和各种各样的NoSQL数据库玩得转,不管是数据共享、搬家还是联合作战查情报,它都能搞定!就像是咱们团队里的多面手,哪里需要就往哪一站,灵活得很呢!以下是几种常见的集成方式: 1. 外部数据源集成 通过简单的API调用,HBase可以读取或写入其他NoSQL数据库的数据,如MongoDB、Cassandra等。这通常涉及数据复制或同步流程,确保数据的一致性和完整性。 2. 数据融合 在大数据分析项目中,HBase可以与其他Hadoop生态系统内的组件(如MapReduce、Spark)结合,处理从各种来源收集的数据,包括但不限于NoSQL数据库。通过这种方式,可以构建更复杂的数据模型和分析流程。 3. 实时数据处理 借助HBase的实时查询能力,可以集成到流处理系统中,如Apache Kafka和Apache Flink,实现数据的实时分析和决策支持。 示例代码实现 下面我们将通过一个简单的示例,展示如何使用HBase与MongoDB进行数据交互。这里假设我们已经安装了HBase和MongoDB,并且它们在本地运行。 步骤一:连接HBase java import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; public class HBaseConnection { public static void main(String[] args) { String hbaseUrl = "localhost:9090"; try { Connection connection = ConnectionFactory.createConnection(HBaseConfiguration.create(), hbaseUrl); System.out.println("Connected to HBase"); } catch (Exception e) { System.err.println("Error connecting to HBase: " + e.getMessage()); } } } 步骤二:连接MongoDB java import com.mongodb.MongoClient; import com.mongodb.client.MongoDatabase; public class MongoDBConnection { public static void main(String[] args) { String mongoDbUrl = "mongodb://localhost:27017"; try { MongoClient client = new MongoClient(mongoDbUrl); MongoDatabase database = client.getDatabase("myDatabase"); System.out.println("Connected to MongoDB"); } catch (Exception e) { System.err.println("Error connecting to MongoDB: " + e.getMessage()); } } } 步骤三:数据交换 为了简单起见,我们假设我们有一个简单的HBase表和一个MongoDB集合,我们将从HBase读取数据并将其写入MongoDB。 java import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Table; import org.apache.hadoop.hbase.util.Bytes; import com.mongodb.client.MongoCollection; import com.mongodb.client.model.Filters; import com.mongodb.client.model.UpdateOptions; import com.mongodb.client.model.UpdateOneModel; public class DataExchange { public static void main(String[] args) { // 连接HBase String hbaseUrl = "localhost:9090"; try { Connection hbaseConnection = ConnectionFactory.createConnection(HBaseConfiguration.create(), hbaseUrl); Table hbaseTable = hbaseConnection.getTable(TableName.valueOf("users")); // 连接MongoDB String mongoDbUrl = "mongodb://localhost:27017"; MongoClient mongoClient = new MongoClient(mongoDbUrl); MongoDatabase db = mongoClient.getDatabase("myDatabase"); MongoCollection collection = db.getCollection("users"); // 从HBase读取数据 Put put = new Put(Bytes.toBytes("123")); hbaseTable.put(put); // 将HBase数据写入MongoDB Document doc = new Document("_id", "123").append("name", "John Doe"); UpdateOneModel updateModel = new UpdateOneModel<>(Filters.eq("_id", "123"), new Document("$set", doc), new UpdateOptions().upsert(true)); collection.updateOne(updateModel); System.out.println("Data exchange completed."); } catch (Exception e) { System.err.println("Error during data exchange: " + e.getMessage()); } } } 请注意,上述代码仅为示例,实际应用中可能需要根据具体环境和需求进行调整。 结论 Hadoop的HBase与NoSQL数据库的集成不仅拓展了数据处理的边界,还极大地提升了数据分析的效率和灵活性。通过灵活的数据交换策略,企业能够充分利用现有数据资源,构建更加智能和响应式的业务系统。无论是数据融合、实时分析还是复杂查询,HBase的集成能力都为企业提供了强大的数据处理工具包。嘿,你知道吗?科技这玩意儿真是越来越神奇了!随着每一步发展,咱们就像在探险一样,发现越来越多的新玩法,新点子。就像是在拼图游戏里,一块块新的碎片让我们能更好地理解这个大数据时代,让它变得更加丰富多彩。我们不仅能看到过去,还能预测未来,这感觉简直酷毙了!所以,别忘了,每一次技术的进步,都是我们在向前跑,探索未知世界的一个大步。
2024-08-10 15:45:14
36
柳暗花明又一村
SpringBoot
...件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
86
寂静森林
MemCache
...布式缓存作为微服务间数据共享和状态一致性维护的重要手段,对于提升系统响应速度、降低数据库压力具有不可替代的作用。然而,在分布式系统中,缓存的一致性、失效策略、以及缓存穿透等问题日益凸显,成为影响系统稳定性和性能的关键因素。 Memcached在云原生环境中的应用 面对上述挑战,Memcached通过其轻量级的设计和高效的数据访问特性,在云原生环境中找到了新的应用场景和优化路径。例如,结合Kubernetes和Docker容器技术,Memcached可以被方便地部署到集群中,实现资源的动态扩展和负载均衡。通过使用Kubernetes的服务发现和自动缩放功能,可以确保Memcached服务在高并发场景下保持良好的性能和稳定性。 同时,借助现代云平台提供的监控和日志服务,如Prometheus和ELK Stack,可以实时监控Memcached的运行状态,及时发现并定位性能瓶颈,实现故障快速响应和自动化优化。此外,通过集成Redisson等开源库或自定义实现,Memcached可以支持更多高级特性,如事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
39
人生如戏
转载文章
...件管理比较方便,但是数据量大了之后,很难整理.所以建议将这些配置分开 cfg_file=/usr/local/nagios/etc/objects/commands.cfg cfg_file=/usr/local/nagios/etc/objects/contacts.cfg cfg_file=/usr/local/nagios/etc/objects/timeperiods.cfg cfg_file=/usr/local/nagios/etc/objects/templates.cfg cfg_file=/usr/local/nagios/etc/objects/contactgroups.cfg cfg_file=/usr/local/nagios/etc/objects/hosts.cfg cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg cfg_file=/usr/local/nagios/etc/objects/services.cfg cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg 改check_external_commands=0为check_external_commands=1.这行的作用是允许在web 界面下执行重启nagios、停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
484
转载
转载文章
...并应用于Web开发、数据可视化等多个热门领域,具有极强的时效性和实用性。 同时,针对近年来愈发重要的数据结构与算法领域,LeetCode等在线平台提供了大量实时更新的题目和详尽解析,为《算法导论》的学习者们提供了丰富的实战演练机会。众多科技公司也将LeetCode上的刷题成果视为衡量程序员技术水平的重要标准之一。 另外,在云计算、容器化技术大行其道的今天,《Docker in Action》成为了深入理解容器技术和实践DevOps理念的必备读物。它不仅介绍了Docker的基础操作,更探讨了如何利用Docker实现持续集成、微服务架构设计等前沿议题。 此外,随着人工智能与机器学习热潮的兴起,《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》成为许多想入门AI领域的读者首选。此书通过实例教学,使读者能迅速掌握使用Python进行机器学习模型构建与应用部署。 综上所述,结合经典书籍与最新技术趋势的延伸阅读,能够帮助学习者拓宽视野、增强技能,更好地应对日新月异的计算机科学技术挑战。
2023-12-11 11:49:14
121
转载
ElasticSearch
...索和分析引擎,它在大数据领域里可是大名鼎鼎。无论是日志分析、全文检索还是数据分析,Elasticsearch都能帮你搞定。 不过呢,凡事都有两面性。Elasticsearch虽然强大,但也存在一些安全隐患。如果你的集群暴露在公网下,或者权限设置不当,那可就麻烦了。你可以想想啊,要是你的数据被人偷走了,或者被乱改得面目全非,甚至整个系统都直接崩了,那可真是够呛,绝对不是闹着玩的! 所以,今天我们来聊聊如何优化Elasticsearch的安全性。我会用一些接地气的例子和代码片段,让你轻松理解这些概念。别担心,咱们会一步步来,保证你听得懂! --- 2. 配置SSL/TLS加密通信 首先,咱们得确保数据在传输过程中是安全的。SSL/TLS加密就是用来干这个的。 2.1 为什么需要SSL/TLS? 简单来说,SSL/TLS就像是一层保护罩,让别人即使截获了你的数据包,也看不懂里面的内容。想象一下,你的Elasticsearch集群要是直接暴露在网上,还不设防,那可就相当于把家里保险箱的密码和存折都摆在了大马路上。黑客轻轻松松就能闻到“香味”,啥用户的密码啊、查询出来的机密信息啊,通通被他们盯上,那后果简直不敢想!这简直太可怕了! 2.2 实现步骤 2.2.1 生成证书 首先,我们需要生成自签名证书。虽然自签名证书不能用于生产环境,但它能帮助我们快速测试。 bash openssl req -x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
98
星辰大海
Nacos
...ring生态系统无缝集成。对于那些已经采用Spring生态的企业来说,Spring Cloud Config无疑是一个不错的选择。此外,Consul Config也是值得考虑的选项之一,它不仅具备配置管理功能,还提供了服务发现和服务网格的能力,特别适合分布式系统环境下的应用。 同时,随着技术的发展,安全问题日益受到重视。在使用Nacos或其他配置管理工具时,数据传输的安全性至关重要。建议开发者们在部署过程中启用SSL/TLS加密,确保敏感信息在网络中传输时不会被窃取或篡改。另外,定期更新工具版本,修复已知漏洞,也是保障系统安全的重要措施。 在全球范围内,开源社区对这些技术的支持力度也在不断加大。比如GitHub上的Nacos项目,其活跃度非常高,每周都有大量的贡献者提交代码改进和修复问题。这种持续的技术迭代为企业提供了强大的技术支持,使得企业在面对复杂多变的技术挑战时能够更加从容应对。 总之,在选择合适的配置管理工具时,企业需要综合考量自身的业务需求和技术栈特点,同时也要密切关注最新的技术趋势和安全动态,以确保系统的稳定性和安全性。
2025-04-06 15:56:57
68
清风徐来
转载文章
...ion 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
539
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chown user:group file_or_directory
- 改变文件或目录的所有者和组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"