前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Shell脚本中的dirname用法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...avaScript等脚本语言动态访问和操作的对象。在本文中,样式切换这一前端操作实际上是对DOM元素的class属性进行修改,进而改变元素对应的CSS样式。 AJAX(异步JavaScript和XML) , AJAX是一种创建交互式网页应用的技术,通过在后台与服务器交换数据并局部更新页面内容,而无需重新加载整个网页。在文中,Java后端与前端通信时就使用了AJAX技术,前端JavaScript发起请求获取服务器端的样式状态信息,然后根据响应结果更新DOM元素的class属性以实现样式切换。 JSP/Servlet , JSP(JavaServer Pages)和Servlet都是Java Web开发中的技术。JSP是一种基于Java的动态网页技术,允许在HTML页面中嵌入Java代码;Servlet则是Java平台上的服务器端组件,用于处理HTTP请求和响应,生成动态内容。在这篇文章中,通过在Servlet或JSP中编写Java代码来动态生成带有特定CSS类的HTML内容,从而间接地实现了样式切换。
2023-08-26 16:47:56
317
人生如戏_
转载文章
...',//如何处理 用法和loader 的配置一样loaders: [{loader: 'babel-loader?cacheDirectory=true',}],//共享进程池threadPool: happyThreadPool,//允许 HappyPack 输出日志verbose: true,})]} 在 Loader 配置中,所有文件的处理都交给了 happypack/loader 去处理,使用紧跟其后的 querystring ?id=babel 去告诉 happypack/loader 去选择哪个 HappyPack 实例去处理文件。 在 Plugin 配置中,新增了两个 HappyPack 实例分别用于告诉 happypack/loader 去如何处理 .js 和 .css 文件。选项中的 id 属性的值和上面 querystring 中的 ?id=babel 相对应,选项中的 loaders 属性和 Loader 配置中一样。 HappyPack 参数 id: String 用唯一的标识符 id 来代表当前的 HappyPack 是用来处理一类特定的文件. loaders: Array 用法和 webpack Loader 配置中一样. threads: Number 代表开启几个子进程去处理这一类型的文件,默认是3个,类型必须是整数。 verbose: Boolean 是否允许 HappyPack 输出日志,默认是 true。 threadPool: HappyThreadPool 代表共享进程池,即多个 HappyPack 实例都使用同一个共享进程池中的子进程去处理任务,以防止资源占用过多。 verboseWhenProfiling: Boolean 开启webpack --profile ,仍然希望HappyPack产生输出。 debug: Boolean 启用debug 用于故障排查。默认 false。 https://www.jianshu.com/p/b9bf995f3712 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42265852/article/details/96104507。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-07 15:02:47
949
转载
Datax
...的时间规则执行命令或脚本。在本文中,为了实现在特定时间(例如每天凌晨1点)自动运行DataX同步任务,用户可以设置一个cron job来调用DataX命令并指向预先配置好的job.json文件。 Apache Airflow , Apache Airflow是一个开源的工作流管理系统,用于创建、调度和监控数据处理工作流。在本文提到的场景下,Airflow可用于更高级别的任务调度与依赖管理,帮助用户灵活地定义和控制DataX任务的执行顺序和依赖关系,从而更好地实现数据自动更新功能以及复杂业务场景下的数据自动化流转。相较于简单的cron job,Airflow提供了一种可视化的DAG(有向无环图)界面,使得整个数据同步过程更为直观且易于维护。
2023-05-21 18:47:56
482
青山绿水
转载文章
...佬的视频游戏王Lua脚本编写教程·改二_哔哩哔哩_bilibili 关于技能的发动: 1、GAS中取对象的技能设计,使用targetData Actor来表征选选择对象的信息。 另一种实现方式是设定一个定时器,当技能开始的时候⏲,如果超时没有获取到对象,那么就当作对局失败或者技能发动失败处理。我偏向于后者的实现。 2、关于效果的类型,我们可以看到ygopro和DL的分类大体相似,如果用GAS设计技能的话也可以从简单的技能类型设计起来 3、卡片的表示 沿用ygopro的卡片类型的定义,在游戏中用Pawn做为基类。初始化的时候传入基本的信息,一开始将cards.db读入内存,用map存储,后续信息的查找都查询该map 效果卡片,仍然可以用lua实现逻辑,具体的后续再看看怎么实现比较合适。 4、设计简单的演示方案,仍然是从最简单的初代规则和初代卡牌考虑 a:summon a monster 利用动态资源加载的方式,先完成了一个简单的召唤逻辑。 先实现最基本的功能。后面再考虑详细的state信息 接下来实现三种基本的技能方式,然后看看技能资源该如何组织比较好 b:进行攻击 c:装备卡发动 d:生命值回复效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33232568/article/details/117932910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-07 13:59:47
149
转载
转载文章
...Jackson的常见用法================================== Bean----->JSON public static String beanToJson(Object obj) throws IOException { // 这里异常都未进行处理,而且流的关闭也不规范。开发中请勿这样写,如果发生异常流关闭不了 ObjectMapper mapper = CommonUtil.getMapperInstance(false); StringWriter writer = new StringWriter(); JsonGenerator gen = new JsonFactory().createJsonGenerator(writer); mapper.writeValue(gen, obj); gen.close(); String json = writer.toString(); writer.close(); return json; } JSON------>Bean public static Object jsonToBean(String json, Class<?> cls) throws Exception {ObjectMapper mapper = CommonUtil.getMapperInstance(false); Object vo = mapper.readValue(json, cls); return vo; } 好了方法写完了咱们测试一下吧 看看他是否支持复杂类型的转换 public static void main(String[] args) throws Exception {// 准备数据 List<Person> pers = new ArrayList<Person>(); Person p = new Person("张三", 46); pers.add(p); p = new Person("李四", 19); pers.add(p); p = new Person("王二麻子", 23); pers.add(p); TestVo vo = new TestVo("一个容器而已", pers); // 实体转JSON字符串 String json = CommonUtil.beanToJson(vo); System.out.println("Bean>>>Json----" + json); // 字符串转实体 TestVo vo2 = (TestVo)CommonUtil.jsonToBean(json, TestVo.class); System.out.println("Json>>Bean--与开始的对象是否相等:" + vo2.equals(vo)); } 输出结果 Bean>>>Json----{"voName":"一个容器而已","pers":[{"name":"张三","age":46},{"name":"李四","age":19},{"name":"王二麻子","age":23}]} Json>>Bean--与开始的对象是否相等:true 从结果可以看出从咱们转换的方法是对的,本文只是对Jackson的一个最简单的使用介绍。接下来的几篇文章咱们深入研究一下这玩意到底有多强大! 相关类源代码: Person.java public class Person {private String name;private int age;public Person() {}public Person(String name, int age) {super();this.name = name;this.age = age;}public int getAge() {return age;}public void setAge(int age) {this.age = age;}public String getName() {return name;}public void setName(String name) {this.name = name;}@Overridepublic boolean equals(Object obj) {if (this == obj) {return true;}if (obj == null) {return false;}if (getClass() != obj.getClass()) {return false;}Person other = (Person) obj;if (age != other.age) {return false;}if (name == null) {if (other.name != null) {return false;} } else if (!name.equals(other.name)) {return false;}return true;} } TestVo.java public class TestVo { private String voName; private List<Person> pers; public TestVo() { } public TestVo(String voName, List<Person> pers) { super(); this.voName = voName; this.pers = pers; } public String getVoName() { return voName; } public void setVoName(String voName) { this.voName = voName; } public List<Person> getPers() { return pers; } public void setPers(List<Person> pers) { this.pers = pers; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } TestVo other = (TestVo) obj; if (pers == null) { if (other.pers != null) { return false; } } else if (pers.size() != other.pers.size()) { return false; } else { for (int i = 0; i < pers.size(); i++) { if (!pers.get(i).equals(other.pers.get(i))) { return false; } } } if (voName == null) { if (other.voName != null) { return false; } } else if (!voName.equals(other.voName)) { return false; } return true; } } CommonUtil.java public class CommonUtil { private static ObjectMapper mapper; / 一个破ObjectMapper而已,你为什么不直接new 还搞的那么复杂。接下来的几篇文章我将和你一起研究这个令人蛋疼的问题 @param createNew 是否创建一个新的Mapper @return / public static synchronized ObjectMapper getMapperInstance(boolean createNew) { if (createNew) { return new ObjectMapper(); } else if (mapper == null) { mapper = new ObjectMapper(); } return mapper; } public static String beanToJson(Object obj) throws IOException { // 这里异常都未进行处理,而且流的关闭也不规范。开发中请勿这样写,如果发生异常流关闭不了 ObjectMapper mapper = CommonUtil.getMapperInstance(false); StringWriter writer = new StringWriter(); JsonGenerator gen = new JsonFactory().createJsonGenerator(writer); mapper.writeValue(gen, obj); gen.close(); String json = writer.toString(); writer.close(); return json; } public static Object jsonToBean(String json, Class<?> cls) throws Exception {ObjectMapper mapper = CommonUtil.getMapperInstance(false); Object vo = mapper.readValue(json, cls); return vo; } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/gqltt/article/details/7387011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-20 18:27:10
274
转载
SeaTunnel
...户可以通过编写SQL脚本来实现数据抽取、转换以及加载等操作,其内置的SQL引擎强大且兼容性良好。但正如同任何编程语言一样,严谨的语法是保证程序正确执行的基础。如果SQL查询语句出错了,SeaTunnel就无法准确地理解和执行相应的任务啦,就像你拿错乐谱去指挥乐队,肯定奏不出预想的旋律一样。 3. SQL查询语法错误示例与解析 3.1 示例一:缺失结束括号 sql -- 错误示例 SELECT FROM table_name WHERE condition; -- 正确示例 SELECT FROM table_name WHERE condition = 'some_value'; 在此例中,我们在WHERE子句后没有提供具体的条件表达式就结束了语句,这是典型的SQL语法错误。SeaTunnel会在运行时抛出异常,提示缺少表达式或结束括号。 3.2 示例二:字段名引用错误 sql -- 错误示例 SELECT unknow_column FROM table_name; -- 正确示例 SELECT known_column FROM table_name; 在这个例子中,尝试从表table_name中选取一个不存在的列unknow_column,这同样会导致SQL查询语法错误。当你在用SeaTunnel的时候,千万要记得检查一下引用的字段名是不是真的在目标表里“活生生”存在着,不然可就抓瞎啦! 3.3 示例三:JOIN操作符使用不当 sql -- 错误示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; -- 正确示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; 在SeaTunnel的SQL语法中,JOIN操作符后的ON关键字引导的连接条件不能直接跟在JOIN后面,需要换行显示,否则会导致语法错误。 4. 面对SQL查询语法错误的策略与思考 当我们遭遇SQL查询语法错误时,首先不要慌张,要遵循以下步骤: - 检查错误信息:SeaTunnel通常会返回详细的错误信息,包括错误类型和发生错误的具体位置,这是定位问题的关键线索。 - 回归基础:重温SQL基本语法,确保对关键词、操作符的使用符合规范,比如WHERE、JOIN、GROUP BY等。 - 逐步调试:对于复杂的SQL查询,可以尝试将其拆分成多个简单的部分,逐一测试以找出问题所在。 - 利用IDE辅助:许多现代的数据库管理工具或IDE如DBeaver、DataGrip等都具有SQL语法高亮和实时错误检测功能,这对于预防和发现SQL查询语法错误非常有帮助。 - 社区求助:如果问题仍然无法解决,不妨到SeaTunnel的官方文档或者社区论坛寻求帮助,与其他开发者交流分享可能的经验和解决方案。 总结来说,面对SeaTunnel中的SQL查询语法错误,我们需要保持耐心,通过扎实的基础知识、细致的排查和有效的工具支持,结合不断实践和学习的过程,相信每一个挑战都将变成提升技能的一次宝贵机会。说到底,“犯错误”其实就是成功的另一种伪装,它让我们更接地气地摸清了技术的底细,还逼着我们不断进步,朝着更牛掰的开发者迈进。
2023-05-06 13:31:12
144
翡翠梦境
Ruby
...它的庐山真面目和实战用法,可能还没整得明明白白的。这篇文儿啊,可算是要带你揭秘Ruby单例类的那些小秘密了,咱不光说,还带着实打实的代码例子,保准让你踏踏实实地走进这个神奇又迷人的领域。 2. Ruby中的单例类 单例类在Ruby中有着特殊的用途。它们允许我们为特定的对象创建一个私有的类。这是Ruby的独特之处,因为其他大多数编程语言并不支持这种特性。你知道吗,单例类这玩意儿可厉害了,它能让我们在单独一个对象上捣鼓出特定的行为方式,完全不需要大动干戈去改动整个类。就像是给这个对象量身定制了一套独门秘籍一样,方便又高效! 3. 创建和访问单例类 创建单例类很简单,只需要在类名后面加上两个&符号(&&)。例如: ruby class User end p User.singleton_class => 这将返回一个指向User的类的新引用。注意听啊,这个家伙可不是什么全新的类,它其实就是User类的一个克隆版。不过,它的活动范围被限定在这个对象内部,就像孙悟空给唐僧画的那个保护圈一样。 要访问这个单例类,我们可以使用.singleton_class方法,就像我们在上面看到的那样。 4. 在单例类中定义方法 一旦我们有了单例类,我们就可以在这个类中定义方法。这些方法只能由单例类的实例调用。下面是一个例子: ruby class User end user = User.new user_singleton_class = user.singleton_class def user_singleton_class.greet puts "Hello, I am the singleton class of {self.class}" end user_singleton_class.greet => "Hello, I am the singleton class of User" 在这个例子中,我们定义了一个名为greet的方法,它可以打印出一条消息,告诉我们它是哪个类的单例类。 5. 使用单例类的实际应用场景 虽然单例类看起来可能有些抽象,但在实际的应用中,它们可以非常有用。下面是一些使用单例类的例子: - 日志记录:我们可以为每个线程创建一个单例类,用于收集和存储该线程的日志。 - 缓存管理:我们可以为每个应用程序创建一个单例类,用于存储和检索缓存数据。 - 数据库连接池:我们可以为每个数据库服务器创建一个单例类,用于管理和共享数据库连接。 6. 总结 单例类是Ruby的一种独特特性,它提供了一种在特定对象上定义行为的方式,而不需要修改整个类。虽然初看之下,单例类可能会让你觉得有点绕脑筋,但在实际使用中,它可是能带来大大的便利呢!了解并熟练掌握单例类的运作机制后,你就能更充分地挖掘Ruby的威力,用它打造出高效给力的软件。这样一来,你的编程之路就会像加了强力引擎一样,飞速前进,让软件开发效率嗖嗖提升。 7. 结语 Ruby的世界充满了各种各样的技巧和工具,每一个都值得我们去学习和探索。单例类就是其中之一,我相信通过这篇文章的学习,你已经对单例类有了更深刻的理解。如果你有任何疑问或者想要分享你的经验,请随时留言,我会尽力帮助你。 以上是我对Ruby单例类的理解和实践,希望对你有所帮助!
2023-06-08 18:42:51
104
翡翠梦境-t
Spark
...问题上,各有各的独特用法和特点,可以说是各显神通呢!这篇东西呢,咱们会仔仔细细地掰扯这两种时间概念的处理手法,还会一起聊聊它们在实际生活中怎么用、有哪些应用场景,保准让你看得明明白白! 二、 Processing Time 的处理方式及应用场景 Processing Time 是 Spark Structured Streaming 中的一种时间概念,它的基础是应用程序的时间,而不是系统的时间。也就是说, Processing Time 代表了程序从开始运行到处理数据所花费的时间。 在处理实时数据时, Processing Time 可能是一个很好的选择,因为它可以让您立即看到新的数据并进行相应的操作。比如,假如你现在正在关注你网站的访问情况,这个Processing Time功能就能马上告诉你,现在到底有多少人在逛你的网站。 以下是使用 Processing Time 处理实时数据的一个简单示例: java val dataStream = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load() .selectExpr("CAST(text AS STRING)") .withWatermark("text", "1 second") .as[(String, Long)] val query = dataStream.writeStream .format("console") .outputMode("complete") .start() query.awaitTermination() 在这个示例中,我们创建了一个 socket 数据源,然后将其转换为字符串类型,并设置 watermark 为 1 秒。这就意味着,如果我们收到的数据上面的时间戳已经超过1秒了,那这个数据就会被我们当作是迟到了的小淘气,然后选择性地忽略掉它。 三、 Event Time 的处理方式及应用场景 Event Time 是 Spark Structured Streaming 中的另一种时间概念,它是根据事件的实际发生时间来确定的。这就意味着,就算大家在同一秒咔嚓一下按下发送键,由于网络这个大迷宫里可能会有延迟、堵车等各种状况,不同信息到达目的地的顺序可能会乱套,处理起来自然也就可能前后颠倒了。 在处理延迟数据时, Event Time 可能是一个更好的选择,因为它可以根据事件的实际发生时间来确定数据的处理顺序,从而避免丢失数据。比如,你正在处理电子邮件的时候,Event Time这个功能就相当于你的超级小助手,它能确保你按照邮件发送的时间顺序,逐一、有序地处理这些邮件,就像排队一样井然有序。 以下是使用 Event Time 处理延迟数据的一个简单示例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Structured Streaming").getOrCreate() data_stream = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "my-topic") \ .load() \ .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") query = data_stream \ .writeStream \ .format("console") \ .outputMode("append") \ .start() query.awaitTermination() 在这个示例中,我们从 kafka 主题读取数据,并设置 watermark 为 1 分钟。这就意味着,如果我们超过一分钟没收到任何新消息,那我们就会觉得这个topic已经没啥动静了,到那时咱就可以结束查询啦。 四、 结论 在 Spark Structured Streaming 中, Processing Time 和 Event Time 是两种不同的时间概念,它们分别适用于处理实时数据和处理延迟数据。理解这两种时间概念以及如何在实际场景中使用它们是非常重要的。希望这篇文章能够帮助你更好地理解和使用 Spark Structured Streaming。
2023-11-30 14:06:21
106
夜色朦胧-t
Mongo
...一:基于mongo shell的基本操作 javascript // 假设我们有一个名为"users"的集合,下面是一个插入大量数据的例子: for (var i = 0; i < 10000; i++) { db.users.insert({name: 'User' + i, email: 'user' + i + '@example.com'}); } // 对于读取性能的测试,我们可以计时查询所有用户: var start = new Date(); db.users.find().toArray(); var end = new Date(); print('查询用时:', end - start, '毫秒'); 案例二:使用Bulk Operations提升写入性能 javascript // 使用bulk operations批量插入数据以提高效率 var bulk = db.users.initializeUnorderedBulkOp(); for (var i = 0; i < 10000; i++) { bulk.insert({name: 'User' + i, email: 'user' + i + '@example.com'}); } bulk.execute(); // 同样,也可以通过计时来评估批量插入的性能 var startTime = new Date(); // 上述批量插入操作... var endTime = new Date(); print('批量插入用时:', endTime - startTime, '毫秒'); 4. 性能瓶颈分析与调优探讨 手动性能测试虽然原始,但却能够更直观地让我们了解MongoDB在实际操作中的表现。比如,通过瞅瞅插入数据和查询的速度,咱们就能大概摸清楚,是不是存在索引不够用、内存分配不太合理,或者是磁盘读写速度成了瓶颈这些小状况。在此基础上,我们可以针对性地调整索引策略、优化查询语句、合理分配硬件资源等。 5. 结论与思考 当标准性能测试工具失效时,我们应充分利用MongoDB内置的功能和API进行自定义测试,这不仅能锻炼我们深入理解数据库底层运作机制的能力,也能在一定程度上确保系统的稳定性与高效性。同时呢,这也告诉我们,在日常的开发工作中,千万不能忽视各种工具的使用场合和它们各自的“软肋”,只有这样,才能在关键时刻眼疾手快,灵活应对,迅速找到那个最完美的解决方案! 在未来的实践中,希望大家都能积极面对挑战,正如MongoDB性能测试工具暂时失效的情况一样,始终保持敏锐的洞察力和探索精神,让技术服务于业务,真正实现数据库性能优化的目标。
2023-01-05 13:16:09
135
百转千回
Kibana
...级功能,如聚合查询、脚本排序等,以提高数据分析效率。同时,合理规划索引策略,避免过度复杂的数据结构,也能在一定程度上缓解性能瓶颈。 值得一提的是,针对Kibana性能优化,国外开发者社区中已有不少成功案例分享。例如,一位名叫David的开发者通过改进数据索引设计和使用自定义脚本排序,显著提升了其应用在处理大数据量时的表现。这些实践经验值得我们在实际工作中借鉴参考。 总之,面对Kibana中的各种问题,我们既要关注官方动向,也要善于利用现有资源和技术手段,持续探索和实践,才能更好地发挥这一强大工具的作用。
2025-01-08 16:26:06
82
时光倒流
Hive
...Git)运用在DDL脚本的管理上,那就等于给咱们的数据结构和历史变更上了双保险,让它们的安全性妥妥地更上一层楼。 4. 数据恢复策略 示例2: sql -- 如果是由于DROP TABLE导致数据丢失 -- 可以先根据备份重新创建表结构 CREATE TABLE original_table LIKE backup_table; -- 然后从备份表中还原数据 INSERT INTO TABLE original_table SELECT FROM backup_table; 示例3: sql -- 如果是INSERT OVERWRITE导致部分或全部数据被覆盖 -- 则需要根据备份数据,定位到覆盖前的时间点 -- 然后使用相同方式恢复该时间点的数据 INSERT INTO TABLE original_table SELECT FROM backup_table WHERE timestamp_column <= 'overwrite_time'; 5. 深入思考与优化方案 在面对Hive表数据丢失的问题时,我们的首要任务是保证数据安全和业务连续性。除了上述的基础备份恢复措施,还可以考虑更高级的解决方案,比如: - 使用ACID事务特性(Hive 3.x及以上版本支持)来增强数据一致性,防止并发写入造成的数据冲突和覆盖。 - 结合HDFS的快照功能实现增量备份,提高数据恢复效率。 - 对关键操作实施权限管控和审计,减少人为误操作的可能性。 6. 结论 面对Hive表数据意外删除或覆盖的困境,人类的思考过程始终围绕着预防和恢复两大主题。你知道吗,就像给宝贝东西找个安全的保险箱一样,我们通过搭建一套给力的数据备份系统,把规矩立得明明白白的操作流程严格执行起来,再巧用Hive这些高科技工具的独特优势,就能把数据丢失的可能性降到最低,这样一来,甭管遇到啥突发状况,我们都能够淡定应对,稳如泰山啦!记住,数据安全无小事,每一次的操作都值得我们审慎对待。
2023-07-14 11:23:28
787
凌波微步
Gradle
构建脚本中使用了不支持的边缘计算库 1. 开场白 为什么我要说这个? 嘿,各位开发者朋友们,大家好!今天我们要聊一个让很多开发者头疼的问题——在Gradle构建脚本中使用了不支持的边缘计算库。这个问题不仅影响项目的构建效率,还可能导致一些不可预见的错误。我最近碰到了这么个事儿,想跟大家聊聊我的经历还有我是怎么解决的。 2. 问题背景 我遇到的麻烦 事情是这样的,我在开发一个项目时,需要用到一个最新的边缘计算库来提升数据处理能力。当时觉得这个库非常棒,因为它能显著提高边缘设备的数据处理速度。所以我兴奋地把库加到了项目的依赖里,然后满怀期待地敲下了gradle build命令。然而,结果却让我大跌眼镜——项目构建失败了! groovy // 我在build.gradle文件中的依赖部分添加了这个边缘计算库 dependencies { implementation 'com.edge:edge-computing-lib:1.0.0' } 3. 初步调查 发现问题所在 开始我以为是库本身有问题,于是花了大半天时间查阅官方文档和GitHub上的Issue。但最终发现,问题出在我自己的Gradle配置上。原来,这个边缘计算库版本太新,还不被当前的Gradle版本所支持。这下子我明白了,问题的关键在于版本兼容性。 groovy // 查看Gradle版本 task showGradleVersion << { println "Gradle version is ${gradle.gradleVersion}" } 4. 探索解决方法 寻找替代方案 既然问题已经定位,接下来就是想办法解决它了。我想先升级Gradle版本,不过转念一想,其他依赖的库也可能有版本冲突的问题。所以,我还是先去找个更稳当的边缘计算库试试吧。 经过一番搜索,我发现了一个较为成熟的边缘计算库,它不仅功能强大,而且已经被广泛使用。于是我把原来的依赖替换成了新的库,并更新了Gradle的版本。 groovy // 在build.gradle文件中修改依赖 dependencies { implementation 'com.stable:stable-edge-computing-lib:1.2.3' } // 更新Gradle版本到最新稳定版 plugins { id 'org.gradle.java' version '7.5' } 5. 实践验证 看看效果如何 修改完之后,我重新运行了gradle build命令。这次,项目终于成功构建了!我兴奋地打开了IDE,查看了运行日志,一切正常。虽说新库的功能跟原来计划的有点出入,但它的表现真心不错,又快又稳。这次经历让我深刻认识到,选择合适的工具和库是多么重要。 groovy // 检查构建是否成功 task checkBuildSuccess << { if (new File('build/reports').exists()) { println "Build was successful!" } else { println "Build failed, check the logs." } } 6. 总结与反思 这次经历给我的启示 通过这次经历,我学到了几个重要的教训。首先,你得注意版本兼容性这个问题。在你添新的依赖前,记得看看它的版本,还得确认它跟你的现有环境合不合得来。其次,面对问题时,保持冷静和乐观的态度非常重要。最后,多花时间研究和测试不同的解决方案,往往能找到更好的办法。 希望我的分享对你有所帮助,如果你也有类似的经历或者有更好的解决方案,欢迎留言交流。让我们一起努力,成为更好的开发者吧! --- 好了,以上就是我关于“构建脚本中使用了不支持的边缘计算库”的全部分享。希望你能从中获得一些启发和帮助。如果你有任何疑问或者建议,随时欢迎与我交流。
2025-03-07 16:26:30
74
山涧溪流
Apache Solr
...以使用如下的Solr脚本: python 五、结论 Solr作为一款强大的全文搜索引擎,在大数据分析、机器学习和人工智能应用中有着广泛的应用。通过上述的例子,我们可以看到Solr的强大功能和灵活性,无论是数据导入和索引构建,还是数据查询和分析,或者是数据预处理和模型训练,都可以使用Solr轻松实现。所以,在这个大数据横行霸道的时代,不论是公司还是个人,如果你们真心想要在这场竞争中脱颖而出,那么掌握Solr技术绝对是你们必须要跨出的关键一步。就像是拿到通往成功大门的秘密钥匙,可不能小觑!
2023-10-17 18:03:11
536
雪落无痕-t
Apache Pig
...的工具,它以其直观的脚本语言Pig Latin和高效的执行引擎,极大地简化了大规模数据处理流程。这篇文章咱们要唠一唠如何用Apache Pig这个神器干些复杂的数据分析活儿,而且我还会手把手带你瞧瞧实例代码,让你亲身感受一下它到底有多牛掰! 1. Apache Pig简介 Apache Pig是一种高级数据流处理语言和运行环境,特别针对Hadoop设计,为用户提供了一种更易于编写、理解及维护的大数据处理解决方案。用Pig Latin编写数据处理任务,可比直接写MapReduce作业要接地气多了。它拥有各种丰富多样的数据类型和操作符,就像SQL那样好理解、易上手,让开发者能够更轻松愉快地处理数据,这样一来,开发的复杂程度就大大降低了,简直像是给编程工作减负了呢! 2. Pig Latin基础与示例 (1)加载数据 在Pig中,我们首先需要加载数据。例如,假设我们有一个存储在HDFS上的日志文件logs.txt,我们可以这样加载: pig logs = LOAD 'hdfs://path/to/logs.txt' AS (user:chararray, action:chararray, timestamp:long); 这里,我们定义了一个名为logs的关系,其中每一行被解析为包含用户(user)、行为(action)和时间戳(timestamp)三个字段的数据元组。 (2)数据清洗与转换 接着,我们可能需要对数据进行清洗或转换。比如,我们要提取出所有用户的活跃天数,可以这样做: pig -- 定义一天的时间跨度为86400秒 daily_activity = FOREACH logs GENERATE user, DATEDIFF(TODAY(), FROM_UNIXTIME(timestamp)) as active_days; (3)分组与聚合 进一步,我们可以按照用户进行分组并计算每个用户的总活跃天数: pig user_activity = GROUP daily_activity BY user; total_activity = FOREACH user_activity GENERATE group, SUM(daily_activity.active_days); (4)排序与输出 最后,我们可以按总活跃天数降序排序并存储结果: pig sorted_activity = ORDER total_activity BY $1 DESC; STORE sorted_activity INTO 'output_path'; 3. Pig在复杂数据分析中的优势 在面对复杂数据集时,Pig的优势尤为明显。它的链式操作模式使得我们可以轻松构建复杂的数据处理流水线。同时,Pig还具有优化器,能够自动优化我们的脚本,确保在Hadoop集群上高效执行。另外,Pig提供的UDF(用户自定义函数)这个超级棒的功能,让我们能够随心所欲地定制函数,专门解决那些特定的业务问题,这样一来,数据分析工作就变得更加灵活、更接地气了。 4. 思考与探讨 在实际应用中,Apache Pig不仅让我们从繁杂的MapReduce编程中解脱出来,更能聚焦于数据本身以及所要解决的问题。每次我捣鼓Pig Latin脚本,感觉就像是在和数据面对面唠嗑,一起挖掘埋藏在海量信息海洋中的宝藏秘密。这种“对话”的过程,既是数据分析师的日常挑战,也是Apache Pig赋予我们的乐趣所在。它就像给我们在浩瀚大数据海洋中找方向的灯塔一样,把那些复杂的分析任务变得轻松易懂,简明扼要,让咱一眼就能看明白。 总结来说,Apache Pig凭借其直观的语言结构和高效的数据处理能力,成为了大数据时代复杂数据分析的重要利器。甭管你是刚涉足大数据这片江湖的小白,还是身经百战的数据老炮儿,只要肯下功夫学好Apache Pig这套“武林秘籍”,保管你的数据处理功力和效率都能蹭蹭往上涨,这样一来,就能更好地为业务的腾飞和决策的制定保驾护航啦!
2023-04-05 17:49:39
643
翡翠梦境
转载文章
...运行模式,简化了小型脚本和事件驱动型应用的编写和执行流程。 总而言之,在当今Java开发领域中,虽然main方法仍然是独立Java应用程序的标准入口点,但随着技术进步和编程范式的演变,Java代码的执行和编译机制正变得日益丰富和多元化。为了紧跟这一发展步伐,开发者需要不断学习和掌握新的工具、框架及编程模式,以应对日益复杂的应用场景需求。
2023-08-16 23:56:55
367
转载
Lua
...一个新的游戏项目编写脚本引擎。为了提升性能和方便以后的维护,我们打算把核心功能用C++来写,而游戏的具体玩法就交给Lua脚本来搞定。这样既高效又灵活!事情本来进展得挺顺利的,结果当我试着调用一个自定义函数时,程序突然就崩溃了。屏幕上跳出了一行让人完全摸不着头脑的错误信息:“试图调用全局‘func_name’(一个空值)”。这下我就懵圈了,心想这到底是什么鬼? 这显然不是我想要的结果。一开始,我还以为是Lua脚本加载出问题了,结果仔细一看,发现文件路径和内容都挺正常的,就不是这个原因。难道是我的C++代码出了问题?带着疑问,我开始深入研究。 二、深入探究 揭开谜底 经过一番查阅资料和调试,我发现问题出在lua_pushvalue和lua_gettable这两个API的使用上。简单地说,lua_pushvalue就像是把栈上的某个东西复制一份放到另一个地方,而lua_gettable则是从一个表格里找到特定的键,然后取出它对应的值。虽然这些功能都挺明确的,但如果在特定情况下用错了,还是会闹出运行时的笑话。 为了更好地理解这个问题,让我们来看几个具体的例子。 示例1:基本概念 c // 假设我们有一个名为myTable的表,其中包含键为"key",值为"value"的项。 lua_newtable(L); // 创建一个空表 lua_pushstring(L, "key"); // 将字符串"key"压入栈顶 lua_pushstring(L, "value"); // 将字符串"value"压入栈顶 lua_settable(L, -3); // 使用栈顶元素作为键,-2位置的元素作为值,设置到-3位置(即刚刚创建的表) 上述代码创建了一个名为myTable的表,并向其中添加了一个键值对。接下来,我们尝试通过lua_gettable访问这个值: c lua_getglobal(L, "myTable"); // 获取全局变量myTable lua_getfield(L, -1, "key"); // 从myTable中获取键为"key"的值 printf("%s\n", lua_tostring(L, -1)); // 输出结果应为"value" 这段代码应该能正确地输出value。但如果我们在lua_getfield之前没有正确地管理栈,就很有可能会触发错误。 示例2:常见的错误场景 假设我们误用了lua_pushvalue: c lua_newtable(L); lua_pushstring(L, "key"); lua_pushstring(L, "value"); lua_settable(L, -3); // 正确 lua_pushvalue(L, -1); // 这里实际上是在复制栈顶元素,而不是预期的行为 lua_gettable(L, -2); // 错误使用,因为此时栈顶元素已经不再是"key"了 这里的关键在于,lua_pushvalue只是复制了栈顶的元素,并没有改变栈的结构。当我们紧接着调用 lua_gettable 时,其实就像是在找一个根本不存在的地方的宝贝,结果当然是找不到啦,所以就出错了。 三、解决之道 掌握正确的使用方法 明白了问题所在后,解决方案就相对简单了。我们需要确保在调用lua_gettable之前,栈顶元素是我们期望的那个值。这就像是说,我们得先把栈里的东西清理干净,或者至少得确定在动手之前,栈里头的东西是我们想要的样子。 c lua_newtable(L); lua_pushstring(L, "key"); lua_pushstring(L, "value"); lua_settable(L, -3); // 清理栈,确保栈顶元素是table lua_pop(L, 1); lua_pushvalue(L, -1); // 正确使用,复制table本身 lua_gettable(L, -2); // 现在可以安全地从table中获取数据了 通过这种方式,我们可以避免因栈状态混乱而导致的错误。 四、总结与反思 通过这次经历,我深刻体会到了理解和掌握底层API的重要性。尽管Lua C API提供了强大的功能,但也需要开发者具备一定的技巧和经验才能正确使用。错误的信息常常会绕弯弯,不会直接带你找到问题的关键。所以,遇到难题时,咱们得有耐心,一步步地去分析和查找,这样才能找到解决的办法。 同时,这也提醒我们在编写任何复杂系统时,都应该重视基础理论的学习和实践。只有真正理解了背后的工作原理,才能写出更加健壮、高效的代码。 希望这篇文章对你有所帮助,如果你也有类似的经历,欢迎分享你的故事!
2024-11-24 16:19:43
131
诗和远方
Bootstrap
...avaScript等脚本语言动态访问和操作网页内容与结构。在本文的语境中,DOM加载完成是指浏览器已经解析了HTML文档并构建出完整的DOM树结构,此时可以安全地绑定事件处理函数,确保事件能够正确响应用户交互。 事件委托(Event Delegation) , 在JavaScript中,事件委托是一种优化事件处理的技术,通过将事件处理器绑定到父元素而非每个子元素上,从而实现对多个子元素事件的统一管理。在Bootstrap组件的上下文中,当需要处理大量动态生成的子元素事件时,直接绑定可能会导致性能问题或事件丢失。事件委托则能解决这个问题,例如使用jQuery的on()方法在一个静态存在的祖先元素上设置事件处理器,该处理器能捕获在其后代元素上触发的事件,无论这些后代元素是何时生成的。 jQuery , jQuery是一个流行的JavaScript库,它简化了HTML文档遍历、事件处理、动画以及Ajax交互等功能,使得Web开发更加便捷高效。在本文中,Bootstrap框架基于jQuery,因此开发者可以利用jQuery提供的API(如on()、click()等方法)来为Bootstrap组件进行事件绑定,确保组件行为能够准确响应用户的交互动作。
2023-01-21 12:58:12
545
月影清风
Lua
...ket是一个为Lua脚本语言设计的第三方扩展库,用于提供网络编程接口。它允许Lua程序创建并管理网络连接,执行诸如TCP/IP连接、UDP收发数据包、HTTP请求等网络操作。在处理ClosedNetworkConnectionError问题时,LuaSocket提供了相应的API方法,如connect、send和receive,让开发者能够检测和应对网络连接异常情况。 长连接 , 长连接是一种保持持久性的网络连接机制,常用于实时通信应用中以减少频繁建立和断开连接带来的开销。例如,在Websocket聊天应用中,客户端与服务器之间会建立一个长连接,以便持续双向交换数据。一旦长连接因某种原因(如网络故障、服务器重启等)被关闭或断开,可能会触发ClosedNetworkConnectionError。在这种情况下,应用程序需要具备重连机制以及对这类错误的有效处理策略,确保服务的稳定性和连续性。
2023-11-24 17:48:02
132
月影清风
Apache Pig
...其SQL-like的脚本语言Pig Latin和高效的分布式计算能力深受广大开发者喜爱。在处理海量数据的时候,咱们如果巧妙地把数据切分成小块并进行压缩,这可不止是能帮我们节省存储空间那么简单,更重要的是,它能够在很大程度上让数据处理速度嗖嗖地提升上去。本文将带你一起探索如何在Apache Pig中运用这些策略,以显著提升我们的数据处理效率。 1. 数据分片 划分并行处理单元 在Apache Pig中,我们可以通过使用SPLIT语句对数据进行逻辑上的分割,从而创建多个数据流,并行进行处理。这种方式可以充分利用集群资源,大大提升任务执行效率。 pig -- 假设我们有一个名为input_data的数据集 data = LOAD 'input_data' AS (id:int, data:chararray); -- 使用SPLIT语句根据某个字段(如id)的值将数据划分为两个部分 SPLIT data INTO data_small IF id < 1000, data_large IF id >= 1000; -- 对每个分片进行独立的后续处理 small_processed = FOREACH data_small GENERATE ..., ...; large_processed = FOREACH data_large GENERATE ..., ...; 这里通过SPLIT实现了数据集的逻辑分片,根据id字段的不同范围生成了两个独立的数据流。这样,针对不同大小或性质的数据块儿,我们就可以灵活应变,采取不同的处理方法,把并行计算的威力发挥到极致,充分榨取它的潜能。 2. 数据压缩 减少存储成本与I/O开销 Apache Pig支持多种数据压缩格式,如gzip、bz2等,这不仅能有效降低存储成本,还能减少数据在网络传输和磁盘I/O过程中的时间消耗。在加载和存储数据时,我们可以通过指定合适的压缩选项来启用压缩功能。 pig -- 加载已压缩的gzipped文件 compressed_input = LOAD 'compressed_data.gz' USING PigStorage(',') AS (field1:chararray, field2:int); -- 处理数据... processed_data = FOREACH compressed_input GENERATE ..., ...; -- 存储处理结果为bz2压缩格式 STORE processed_data INTO 'output_data.bz2' USING PigStorage(',') PIGSTORAGE_COMPRESS '-bz2'; 在这段代码中,我们首先加载了一个gzip压缩格式的输入文件,并进行了相应的处理。然后呢,在存储处理完的数据时,我特意选了bz2压缩格式,这样一来,就能大大减少输出数据所需的存储空间,同时也能降低之后再次读取数据的成本,让事情变得更高效、更省事儿。 3. 深入探讨 权衡分片与压缩的影响 虽然分片和压缩都能显著提升数据处理效率,但同时也需要注意它们可能带来的额外开销。比如说,如果分片分得太细了,就可能会生出一大堆map任务,这就好比本来只需要安排一个小分队去完成的工作,结果你硬是分成了几十个小队,这样一来,调度工作量可就蹭蹭往上涨了。再来说说压缩这事,要是压得过狠,解压的时候就得花更多的时间,这就像是你为了节省打包行李的空间,把东西塞得死紧,结果到了目的地,光是打开行李找东西就花了大半天,反而浪费了不少时间,这就抵消了一部分通过压缩原本想省下的I/O时间。所以在实际用起来的时候,咱们得瞅准数据的脾性和集群环境的实际情况,灵活机动地调整分片策略和压缩等级,这样才能让性能达到最佳状态,平衡稳定。 总的来说,Apache Pig为我们提供了丰富的手段去应对大数据处理中的挑战,通过合理的分片和压缩策略,我们可以进一步挖掘其潜力,提升数据处理的效率。在这个过程中,对于我们这些开发者来说,就得像个探险家一样,不断去尝试、动手实践,还要持续优化调整,才能真正摸透Apache Pig那个家伙的厉害之处,体验到它的迷人魅力。
2023-12-10 16:07:09
460
昨夜星辰昨夜风
Sqoop
...示了Sqoop的基本用法,通过指定连接参数、认证信息、表名以及目标目录,实现从MySQL到HDFS的数据迁移,并以Parquet格式存储。 3. Apache Atlas元数据管理简介 Apache Atlas利用实体-属性-值模型来描述数据资产,可以自动捕获并记录来自各种数据源(包括Sqoop导入导出作业)的元数据。比方说,当Sqoop这家伙在吭哧吭哧执行导入数据的任务时,Atlas就像个超级侦探,不仅能快速抓取到表结构、字段这些重要信息,还能顺藤摸瓜追踪到数据的“亲缘关系”和它可能产生的影响分析,真可谓火眼金睛啊。 4. Sqoop与Apache Atlas的联动实践 联动原理: Sqoop与Atlas的联动主要基于Sqoop hooks机制。用大白话说,Sqoop hook就像是一个神奇的工具,它让我们在搬运数据的过程中,能够按照自己的心意插播一些特别的操作。具体怎么玩呢?就是我们可以通过实现一些特定的接口功能,让Sqoop在忙活着导入或者导出数据的时候,顺手给Atlas发送一条“嘿,我这儿数据有变动,元数据记得更新一下”的消息通知。 联动配置与示例: 为了实现Sqoop与Atlas的联动,我们需要配置并启用Atlas Sqoop Hook。以下是一个基本的配置示例: xml sqoop.job.data.publish.class org.apache.atlas.sqoop.hook.SqoopHook 这段配置告知Sqoop使用Atlas提供的hook类来处理元数据发布。当Sqoop作业运行时,SqoopHook会自动收集作业相关的元数据,并将其同步至Apache Atlas。 5. 结合实战场景探讨Sqoop与Atlas联动的价值 有了Sqoop与Atlas的联动能力,我们的数据工程师不仅能快速便捷地完成数据迁移,还能确保每一步操作都伴随着完整的元数据记录。比如,当业务人员查询某数据集来源时,可通过Atlas直接追溯到原始的Sqoop作业;或者在数据质量检查、合规审计时,可以清晰查看到数据血缘链路,从而更好地理解数据的生命历程,提高决策效率。 6. 总结 Sqoop与Apache Atlas的深度集成,犹如为大数据环境中的数据流动加上了一双明亮的眼睛和智能的大脑。它们不仅简化了数据迁移过程,更强化了对数据全生命周期的管理与洞察力。随着企业越来越重视并不断深挖数据背后的宝藏,这种联动解决方案将会在打造一个既高效、又安全、完全合规的数据管理体系中,扮演着越来越关键的角色。就像是给企业的数据治理装上了一个超级引擎,让一切都运作得更顺畅、更稳妥、更符合规矩。
2023-06-02 20:02:21
119
月下独酌
HBase
...率趋于均衡: shell hbase balancer (4) 磁盘I/O优化 选择高速稳定的SSD硬盘替代低速硬盘,并采用RAID技术提升磁盘读写性能。此外,针对HDFS层面,可以通过增大HDFS块大小、优化DataNode数量等方式减轻磁盘I/O压力。 4. 结论与思考 面对服务器资源不足的情况,我们需要像一个侦探一样细致入微地去分析问题所在,采取相应的优化策略。虽然HBase本身就挺能“长大个儿”的,可在资源有限的情况下,咱们还是可以通过一些巧妙的配置微调和优化小窍门,让它在满足业务需求的同时,也能保持高效又稳定的运行状态,就像一台永不停歇的小马达。这个过程就像是一个永不停歇的探险和实践大冒险,我们得时刻紧盯着HBase系统的“脉搏”,灵活耍弄各种优化小窍门,确保它不论在什么环境下都能像顽强的小强一样,展现出无比强大的生命力。
2023-03-02 15:10:56
473
灵动之光
转载文章
...连接到一个服务器端的脚本,别且如何从服务器获取数据。在这个例子里面,flash用户界面有一个Button组件(其实例名称是bt)和一个lebel组件(其实例名称是txt)。当一个用户点击Button,客户端连接到服务器;然后客户端运行服务器端的函数来返回一个字符串的值。当服务器端回应了,客户端的回应函数在label上显示字符传。客户端通过改变Button的label来断开连接。当diaconnect的按钮被点击,客户端断开连接,并且清空label。 ONE.创建用户界面 1.开启Flash CS3,然后选择新建>flash文件(ActionScript 3.0)。 2.选择窗口>组件,然后选择User Interface>Button。在属性栏里面为按钮取名bt。 3.添加一个Label组件,移动它到按钮上面,取名为txt。 保存文件为test.fla。 TWO.建立as文件。 输入以下代码: package { import flash.display.MovieClip; import flash.events.MouseEvent; import flash.events.NetStatusEvent; import flash.net.NetConnection; import flash.net.Responder; public class Main extends MovieClip { public var nc:NetConnection; public var myRespond:Responder; public function Main():void { txt.text=""; bt.label="请点击链接"; myRespond=new Responder(success,failed); bt.addEventListener(MouseEvent.CLICK,clickHandler); } private function clickHandler(e:MouseEvent) { if (bt.label=="请点击链接") { bt.label="请点击断开"; nc=new NetConnection(); nc.connect("rtmp://localhost/viniFMS"); nc.addEventListener(NetStatusEvent.NET_STATUS,statusHandler); nc.call("sayServermsg",myRespond,"Hi"); } else { txt.text=""; bt.label="请点击链接"; nc.close(); } } private function statusHandler(e:NetStatusEvent) { if (e.info.code=="NetConnection.Connect.Success") { trace("ok"); } } private function success(result:Object) { trace("成功:"+result.toString()); txt.text=result.toString(); } private function failed(result:Object) { trace("失败:"+result.toString()); } } } 将as文件保存为Main.as 在test.fla的属性那的文档类输入Main。保存。 Three:建立通讯文件(.asc) 1.选择文件>新建>actionscript通信文件。 输入以下代码: application.onConnect=function(client){ application.acceptConnection(client); client.sayServermsg=function(msg){ return msg+",欢迎你来到FMS的世界 !"; } } 将文件保存到fms的application的文件夹下的viniFMS文件夹下,文件名为:main.asc. 确保FMS的服务已经打开,80端口没有被php等占用。 然后运行flash,点击按钮。就会有结果出现了。如下图所示。 再点击按钮。关闭连接。再点就是打开。如此循环。客户端会得到服务器端返回的 数据。 一个客户端用actionscript编码来连接到服务器,处理事件,和做其它工作。通过flash CS3你可以使用actionscript 3.0,2.0或1.0,但是actionscript3.0提供更多特性。要想使用flex,你必须使用actionscript 3.0. Actionscript3.0显著的不同于actionscript 2.0。这个向导假设你是在正在编写actionscript 3.0的类,这些类是一些外部的.as文件,有符合你的开发环境的目录结构的包的名称 转载于:https://blog.51cto.com/vini123/681426 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33895475/article/details/91647859。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 18:10:29
66
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
nohup command &
- 使命令在后台持续运行,即使退出终端也不停止。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"