前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[打开文件 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...会接触到Class类文件,了解了JVM虚拟机之后也会大量接触到class字节码,那么它到底是什么样的文件?内部由什么构成?虚拟机又是如何去识别它的?这篇文章就来学习一下Class类文件的结构。 ps:我在面试蚂蚁的时候被问到过这个问题!你没看错,面试也有可能会问。 一、什么是Class文件 Class文件又称字节码文件,一种二进制文件,它是由某种语言经过编译而来,注意这里并不一定是Java语言,还有可能是Clojure、Groovy、JRuby、Jython、Scala等,Class文件运行在Java虚拟机上。Java虚拟机不与任何一种语言绑定,它只与Class文件这种特定的二进制文件格式所关联。 虚拟机具有语言无关性,它不关心Class文件的来源是何种语言,它只关心Class文件中的内容。Java语言中的各种变量、关键字和运算符号的语义最终都是由多条字节码命名组合而成的,因此字节码命令所能提供的语义描述能力比Java语言本身更加强大。 二、Class文件的结构 虚拟机可以接受任何语言编译而成的Class文件,因此也给虚拟机带来了安全隐患,为了提供语言无关性的功能就必须做好安全防备措施,避免危险有害的类文件载入到虚拟机中,对虚拟机造成损害。所以在类加载的第二大阶段就是验证,这一步工作是虚拟机安全防护的关键所在,其中检查的步骤就是对class文件按照《Java虚拟机规范》规定的内容来对其进行验证。 1.总体结构 Class文件是一组以8位字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在Class文件之中,中间没有添加任何分隔符,Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。当遇到需要占用8位字节以上空间的数据项时,就按照高位在前的方式分割成若干个8位字节进行存储。 Class文件格式采用类似于C语言结构体的伪结构来存储数据,这种伪结构只有两种数据类型:无符号数和表。 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节、8个字节的无符号数,无符号数可以来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串值。 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,所有表都习惯性的以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class文件本质上就是一张表,它的数据项构成如下图。 2.魔数(Magic Number) 每一个Class文件的头4个字节成为魔数(Magic Number),它的唯一作用是确定这个文件是否是一个能被虚拟机接收的Class文件。很多文件存储标准中都是用魔数来进行身份识别,比如gif、png、jpeg等都有魔数。使用魔数主要是来识别文件的格式,相比于通过文件后缀名识别,这种方式准确性更高,因为文件后缀名可以随便更改,但更改二进制文件内容的却很少。Class类文件的魔数是Oxcafebabe,cafe babe?咖啡宝贝?至于为什么是这个, 这个名字在java语言诞生之初就已经确定了,它象征着著名咖啡品牌Peet's Coffee中深受欢迎的Baristas咖啡,Java的商标logo也源于此。 3.文件版本(Version) 在魔数后面的4个字节就是Class文件的版本号,第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。Java的版本号是从45开始的,JDK1.1之后的每个JDK大版本发布主版本号向上加1(JDK1.0~1.1使用的版本号是45.0~45.3),比如我这里是十六进制的Ox0034,也就是十进制的52,所以说明该class文件可以被JDK1.8及以上的虚拟机执行,否则低版本虚拟机执行会报java.lang.UnsupportedClassVersionError错误。 4.常量池(Constant Pool) 在主版本号紧接着的就是常量池的入口,它是Class文件结构中与其他项目关联最多的数据类型,也是占用空间最大的数据之一。常量池的容量由后2个字节指定,比如这里我的是Ox001d,即十进制的29,这就表示常量池中有29项常量,而常量池的索引是从1开始的,这一点需要特殊记忆,因为程序员习惯性的计数法是从0开始的,而这里不一样,所以我这里常量池的索引范围是1~29。设计者将第0项常量空出来是有目的的,这样可以满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义。 通过javap -v命令反编译出class文件之后,我们可以看到常量池的内容 常量池中主要存放两大类常量:字面量和符号引用。比如文本字符、声明为final的常量值就属于字面量,而符号引用则包含下面三类常量: 类和接口的全限名 字段的名称和描述符 方法的名称和描述符 在之前的文章(详谈类加载的全过程)中有详细讲到,在加载类过程的第二大阶段连接的第三个阶段解析的时候,会将常量池中的符号引用替换为直接引用。相信很多人在开始了解那里的时候也是一头雾水,作者我也是,当我了解到常量池的构成的时候才明白真正意思。Java代码在编译的时候,是在虚拟机加载Class文件的时候才会动态链接,也就是说Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法获得真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。 常量池中每一项常量都是一张表,这里我只找到了JDK1.7之前的常量池项目类型表,见下图。 常量池项目类型表: 常量池常量项的结构总表: 比如我这里测试的class文件第一项常量,它的标志位是Ox0a,即十进制10,即表示tag为10的常量项,查表发现是CONSTANT_Methodref_info类型,和上面反编译之后的到的第一个常量是一致的,Methodref表示类中方法的符号引用。查上面《常量池常量项的结构总表》可以看到Methodref中含有3个项目,第一个tag就是上述的Ox0a,那么第二个项目就是Ox0006,第三个项目就是Ox000f,分别指向的CONSTANT_Class_info索引项和CONSTANT_NameAndType_info索引项为6和15,那么反编译的结果该项常量指向的应该是6和15,查看上面反编译的图应证我们的推测是对的。后面的常量项就以此类推。 这里需要特殊说明一下utf8常量项的内容,这里我以第29项常量项解释,也就是最后一项常量项。查《常量池常量项的结构总表》可以看到utf8项有三个内容:tag、length、bytes。tag表示常量项类型,这里是Ox01,表示是CONSTANT_Utf8_info类型,紧接着的是长度length,这里是Ox0015,即十进制21,那么再紧接着的21个字节都表示该项常量项的具体内容。特别注意length表示的最大值是65535,所以Java程序中仅能接收小于等于64KB英文字符的变量和变量名,否则将无法编译。 5.访问标志(Access Flags) 在常量池结束后,紧接着的两个字节代表访问标志(Access Flags),该标志用于识别一些类或者接口层次的访问信息,其中包括:Class是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
转载文章
...mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
Netty
...个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...关于Docker统一文件系统(the union file system)的知识,然后回过头来再看Docker的命令,一切变得顺理成章,简单极了。 题外话:就我个人而言,掌握一门技术并合理使用它的最好办法就是深入理解这项技术背后的工作原理。通常情况 下,一项新技术的诞生常常会伴随着媒体的大肆宣传和炒作,这使得用户很难看清技术的本质。更确切地说,新技术总是会发明一些新的术语或者隐喻词来帮助宣 传,这在初期是非常有帮助的,但是这给技术的原理蒙上了一层砂纸,不利于用户在后期掌握技术的真谛。 Git就是一个很好的例子。我之前不能够很好的使用Git,于是我花了一段时间去学习Git的原理,直到这时,我才真正明白了Git的用法。我坚信只有真正理解Git内部原理的人才能够掌握这个工具。 Image Definition 镜像(Image)就是一堆只读层(read-only layer)的统一视角,也许这个定义有些难以理解,下面的这张图能够帮助读者理解镜像的定义。 从左边我们看到了多个只读层,它们重叠在一起。除了最下面一层,其它层都会有一个指针指向下一层。这些层是Docker内部的实现细节,并且能够 在主机(译者注:运行Docker的机器)的文件系统上访问到。统一文件系统(union file system)技术能够将不同的层整合成一个文件系统,为这些层提供了一个统一的视角,这样就隐藏了多层的存在,在用户的角度看来,只存在一个文件系统。 我们可以在图片的右边看到这个视角的形式。 你可以在你的主机文件系统上找到有关这些层的文件。需要注意的是,在一个运行中的容器内部,这些层是不可见的。在我的主机上,我发现它们存在于/var/lib/docker/aufs目录下。 sudo tree -L 1 /var/lib/docker/ /var/lib/docker/├── aufs├── containers├── graph├── init├── linkgraph.db├── repositories-aufs├── tmp├── trust└── volumes7 directories, 2 files Container Definition 容器(container)的定义和镜像(image)几乎一模一样,也是一堆层的统一视角,唯一区别在于容器的最上面那一层是可读可写的。 细心的读者可能会发现,容器的定义并没有提及容器是否在运行,没错,这是故意的。正是这个发现帮助我理解了很多困惑。 要点:容器 = 镜像 + 可读层。并且容器的定义并没有提及是否要运行容器。 接下来,我们将会讨论运行态容器。 Running Container Definition 一个运行态容器(running container)被定义为一个可读写的统一文件系统加上隔离的进程空间和包含其中的进程。下面这张图片展示了一个运行中的容器。 正是文件系统隔离技术使得Docker成为了一个前途无量的技术。一个容器中的进程可能会对文件进行修改、删除、创建,这些改变都将作用于可读写层(read-write layer)。下面这张图展示了这个行为。 我们可以通过运行以下命令来验证我们上面所说的: docker run ubuntu touch happiness.txt 即便是这个ubuntu容器不再运行,我们依旧能够在主机的文件系统上找到这个新文件。 find / -name happiness.txt /var/lib/docker/aufs/diff/860a7b...889/happiness.txt Image Layer Definition 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
538
转载
Mahout
... // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
Sqoop
...op直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
93
风中飘零
ZooKeeper
...r的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
ElasticSearch
...cSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...adb.repo仓库文件 添加MariaDB源 vi /etc/yum.repos.d/MariaDB.repo 粘贴官方的或者阿里云的镜像: [mariadb]name = MariaDBbaseurl = http://yum.mariadb.org/10.3/centos7-amd64gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDBgpgcheck=1[mariadb]name = MariaDBbaseurl = https://mirrors.aliyun.com/mariadb/yum/10.4/centos7-amd64/gpgkey=https://mirrors.aliyun.com/mariadb/yum/RPM-GPG-KEY-MariaDBgpgcheck=1 2.如果下载速度太慢,请删除 mariadb.repo,只是为了使用阿里云的yum源中的mariadb rm -rf /etc/yum.repos.d/Mariadb.repo然后清空yum 缓存yum clean all 3.通过yum安装mariadb软件,安装mariadb服务端和客户端 官方 yum install MariaDB-server MariaDB-client -y阿里云 yum install mariadb mariadb-server -y 4.安装完成后,启动mariadb服务端 systemctl start/stop/restart/status mariadbsystemctl enable mariadb 开机启动mariadb 5. mariadb初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 6. 设置mysql的中文编码支持,修改/etc/my.cnf 1.vi /etc/my.cnf在[mysqld]中添加参数,使得mariadb服务端支持中文[mysqld]character-set-server=utf8collation-server=utf8_general_ci2.重启mariadb服务,读取my.cnf新配置systemctl restart mariadb 3.登录数据库,查看字符编码mysql -uroot -p输入 \s 查看编码 7. mysql常用命 desc 查看表结构create database 数据库名create table 表名查看如何创建db的show create database 库名 查看如何创建table结构的show create table 表名; 修改mysql的密码set password = PASSWORD('redhat'); 创建mysql的普通用户,默认权限非常低create user zhang@'%' identified by '123456'; 查询mysql数据库中的用户信息use mysql;select host,user,password from user; 7. 给用户添加权限命令 对所有库和所有表授权所有权限grant all privileges on . to 账户@主机名 给zhang用户授予所有权限grant all privileges on . to zhang@'%'; 刷新授权表flush privileges; 8. 给用户添加权限命令 给zhangsan用户授予所有权限grant all privileges on . to zhangsan@'%'; 给与root权限授予远程登录的命令 'centos这是密码随意设置grant all privileges on . to root@'%' identified by '123456'; 此时可以在windows登录linux的数据库 连接服务器的mysqlmysql -uyining -p -h 服务器的地址 9. 数据备份与恢复 导出当前数据库的所有db,到一个文件中1.mysqldump -u root -p --all-databases > /data/AllMysql.dump2.登录mysql 导入数据mysql -u root -p> source /data/AllMysql.dump3.通过命令导入数据 在登录时候,导入数据文件,一样可以写入数据mysql -uroot -p < /data/AllMysql.dump 10. 修改Mariadb存储路径 10.1 首先确定MariaDB数据库能正常运行,确定正常后关闭服务 systemctl stop mariadb 10.2 建立要更改数据存放的目录,如:我这单独分了一个区/data存放MariaDB的数据 mkdir /data/mysql_data chown -R mysql:mysql /data/mysql_data 10.3 复制默认数据存放文件夹到/data/mysql_data cp -a /var/lib/mysql /data/mysql_data 10.4 修改/etc/my.cnf.d/server.cnf vim /etc/my.cnf.d/server.cnf 在[mysqld]标签下添加如下内容 datadir=/data/mysql_data/mysqlsocket=/var/lib/mysql/mysql.sockdefault-character-set=utf8character_set_server=utf8slow_query_log=onslow_query_log_file=/data/mysql_data/slow_query_log.loglong_query_time=2 10.5 配置MariaDB慢查询 touch /data/mysql_data/slow_query_log.logchown mysql:mysql /data/mysql_data/slow_query_log.log 10.6 重启数据库 systemctl start mariadb 10.7 注意: 1、配置文件my.cnf存在,但是修改的并不是my.cnf,而是/etc/my.cnf.d/server.cnf; 2、并没有更改mysql.sock的路径配置; 3、没有修改/etc/init.d/mysql中的内容; 4、没有修改mysql_safe中的内容; 5、增加了数据库的慢查询配置。 11. Mariadb主从复制 11.1 主从库初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 11.2 修改主库配置 [root@mster mysql] grep -Ev "^$|^" /etc/my.cnf.d/server.cnf[server][mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id = 13 一组主从组里的每个id必须是唯一值。推荐用ip位数log-bin= mysql-bin 二进制日志,后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 不区分大小写binlog-format=ROW 二进制日志文件格式log-slave-updates=True slave更新是否记入日志sync-master-info=1 值为1确保信息不会丢失slave-parallel-threads=3 同时启动多少个复制线程,最多与要复制的数据库数量相等即可binlog-checksum=CRC32 效验码master-verify-checksum=1 启动主服务器效验slave-sql-verify-checksum=1 启动从服务器效验[galera][embedded][mariadb][mariadb-10.6][root@mster-k8s mysql] 11.2 修改从库配置 [mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id=14log-bin= mysql-bin log-bin是二进制文件relay_log = relay-bin 中继日志, 后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 11.3 重启主库和从库服务 systemctl restart mariad 11.4 master节点配置 MariaDB [huawei]> grant replication slave, replication client on . to 'liu'@'%' identified by '123456';Query OK, 0 rows affected (0.001 sec)MariaDB [huawei]> show master status;+------------------+----------+--------------+------------------+| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |+------------------+----------+--------------+------------------+| mysql-bin.000001 | 4990 | | |+------------------+----------+--------------+------------------+1 row in set (0.000 sec)MariaDB [huawei]> select binlog_gtid_pos('mysql-bin.000001', 4990 );+-------------------------------------------+| binlog_gtid_pos('mysql-bin.000001', 4990) |+-------------------------------------------+| 0-13-80 |+-------------------------------------------+1 row in set (0.000 sec)MariaDB [huawei]> flush privileges; 11.5 slave节点配置 MariaDB [(none)]> set global gtid_slave_pos='0-13-80';Query OK, 0 rows affected (0.004 sec)MariaDB [(none)]> change master to master_host='101.34.141.216',master_user='liu',master_password='123456',master_use_gtid=slave_pos;Query OK, 0 rows affected (0.008 sec)MariaDB [(none)]> start slave;Query OK, 0 rows affected (0.005 sec)MariaDB [(none)]> 11.6 验证salve状态 MariaDB [(none)]> show slave status\G 1. row Slave_IO_State: Waiting for master to send eventMaster_Host: 101.34.141.216Master_User: liuMaster_Port: 3306Connect_Retry: 60Master_Log_File: mysql-bin.000001Read_Master_Log_Pos: 13260Relay_Log_File: relay-bin.000002Relay_Log_Pos: 10246Relay_Master_Log_File: mysql-bin.000001Slave_IO_Running: YesSlave_SQL_Running: YesReplicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0Last_Error: Skip_Counter: 0Exec_Master_Log_Pos: 13260Relay_Log_Space: 10549Until_Condition: NoneUntil_Log_File: Until_Log_Pos: 0Master_SSL_Allowed: NoMaster_SSL_CA_File: 本篇文章为转载内容。原文链接:https://blog.csdn.net/l363130002/article/details/126121255。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-12 10:11:01
310
转载
转载文章
...properties文件中,使用Spring进行注入。 package org.kevin.jms; / @author 李文锴 连接参数信息 / public class JmsConfig { public String username = "ckevin"; public String password = "a111111111"; public String jdbcUrl = "jdbc:oracle:thin:@127.0.0.1:1521:orcl"; public String queueName = "demo_queue"; } 2. 创建消息转换类 因为消息载荷是Oracle数据类型,需要提供一个转换工厂类将Oracle类型转换为Java类型。 package org.kevin.jms; import java.sql.SQLException; import oracle.jdbc.driver.OracleConnection; import oracle.jdbc.internal.OracleTypes; import oracle.jpub.runtime.MutableStruct; import oracle.sql.CustomDatum; import oracle.sql.CustomDatumFactory; import oracle.sql.Datum; import oracle.sql.STRUCT; / @author 李文锴 数据类型转换类 / @SuppressWarnings("deprecation") public class QUEUE_MESSAGE_TYPE implements CustomDatum, CustomDatumFactory { public static final String _SQL_NAME = "QUEUE_MESSAGE_TYPE"; public static final int _SQL_TYPECODE = OracleTypes.STRUCT; MutableStruct _struct; // 12表示字符串 static int[] _sqlType = { 12 }; static CustomDatumFactory[] _factory = new CustomDatumFactory[1]; static final QUEUE_MESSAGE_TYPE _MessageFactory = new QUEUE_MESSAGE_TYPE(); public static CustomDatumFactory getFactory() { return _MessageFactory; } public QUEUE_MESSAGE_TYPE() { _struct = new MutableStruct(new Object[1], _sqlType, _factory); } public Datum toDatum(OracleConnection c) throws SQLException { return _struct.toDatum(c, _SQL_NAME); } public CustomDatum create(Datum d, int sqlType) throws SQLException { if (d == null) return null; QUEUE_MESSAGE_TYPE o = new QUEUE_MESSAGE_TYPE(); o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory); return o; } public String getContent() throws SQLException { return (String) _struct.getAttribute(0); } } 3. 主类进行消息处理 package org.kevin.jms; import java.util.Properties; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.MessageListener; import javax.jms.Queue; import javax.jms.QueueConnection; import javax.jms.QueueConnectionFactory; import javax.jms.Session; import oracle.jms.AQjmsAdtMessage; import oracle.jms.AQjmsDestination; import oracle.jms.AQjmsFactory; import oracle.jms.AQjmsSession; / @author 李文锴 消息处理类 / public class Main { public static void main(String[] args) throws Exception { JmsConfig config = new JmsConfig(); QueueConnectionFactory queueConnectionFactory = AQjmsFactory.getQueueConnectionFactory(config.jdbcUrl, new Properties()); QueueConnection conn = queueConnectionFactory.createQueueConnection(config.username, config.password); AQjmsSession session = (AQjmsSession) conn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); conn.start(); Queue queue = (AQjmsDestination) session.getQueue(config.username, config.queueName); MessageConsumer consumer = session.createConsumer(queue, null, QUEUE_MESSAGE_TYPE.getFactory(), null, false); consumer.setMessageListener(new MessageListener() { @Override public void onMessage(Message message) { System.out.println("ok"); AQjmsAdtMessage adtMessage = (AQjmsAdtMessage) message; try { QUEUE_MESSAGE_TYPE payload = (QUEUE_MESSAGE_TYPE) adtMessage.getAdtPayload(); System.out.println(payload.getContent()); } catch (Exception e) { e.printStackTrace(); } } }); Thread.sleep(1000000); } } 使用Oracle程序块进行入队操作,在没有启动Java时看到队列表中存在数据。启动Java后,控制台正确的输出的消息;通过Oracle程序块再次写入消息,发现控制台正确处理消息。Java的JMS监听不是立刻进行处理,可能存在几秒中的时间差,时间不等。 三、监控表记录变化通知Java 下面的例子创建一个数据表,然后在表中添加触发器,当数据变化后触发器调用存储过程给Oracle AQ发送消息,然后使用Java JMS对消息进行处理。 1. 创建表 创建student表,包含username和age两个子段,其中username时varchar2类型,age时number类型。 2. 创建存储过程 创建send_aq_msg存储过程,因为存储过程中调用dbms数据包,系统包在存储过程中执行需要进行授权(使用sys用户进行授权): grant execute on dbms_aq to ckevin; 注意存储过程中包含commit语句。 create or replace PROCEDURE send_aq_msg (info IN VARCHAR2) as r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type(info); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end send_aq_msg; 3. 创建触发器 在student表中创建触发器,当数据写入或更新时,如果age=18,则进行入队操作。需要调用存储过程发送消息,但触发器中不能包含事物提交语句,因此需要使用pragma autonomous_transaction;声明自由事物: CREATE OR REPLACE TRIGGER STUDENT_TR AFTER INSERT OR UPDATE OF AGE ON STUDENT FOR EACH ROW DECLARE pragma autonomous_transaction; BEGIN if :new.age = 18 then send_aq_msg(:new.username); end if; END; 创建完触发器后向执行插入或更新操作: insert into student (username,age) values ('jack.lee.3k', 18); update student set age=18 where username='jack003'; Java JMS可以正确的处理消息。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42309178/article/details/115241521。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 14:22:22
138
转载
转载文章
...除相应内容。 大容量文件上传早已不是什么新鲜问题,在.net 2.0时代,HTML5也还没有问世,要实现这样的功能,要么是改web.config,要么是用flash,要么是用一些第三方控件,然而这些解决问题的方法要么很麻烦,比如改配置,要么不稳定,比如文件上G以后,上传要么死掉,要么卡住,通过设置web.config并不能很好的解决这些问题。 这是一个Html5统治浏览器的时代,在这个新的时代,这种问题已被简化并解决,我们可以利用Html5分片上传的技术,那么Plupload则是一个对此技术进行封装的前端脚本库,这个库的好处是可以自动检测浏览器是否支持html5技术,不支持再检测是否支持flash技术,甚至是sliverlight技术,如果支持,就使用检测到的技术。 那么这个库到哪里下载,怎么搭建呢,比较懒的童鞋还是用Install-Package Plupload搞定吧,一个命令搞定所有事 Plupload支持的功能这里就不细说了,什么批量上传,这里我没有用到,主要是感觉它支持的事件非常丰富,文件选取后的事件,文件上传中的事件(可获得文件的上传进度),文件上传成功的事件,文件上传失败的事件,等等 我的例子主要是上传一个单个文件,并显示上传的进度条(使用jQuery的一个进度条插件) 下面的例子主要是为文件上传交给 UploadCoursePackage.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
127
转载
转载文章
...:刻录操作系统ISO文件到U盘 Linux下将操作系统ISO文件刻录到U盘:dd if=xxx.iso of=/dev/sda 注意使用的是整个磁盘,所以用的是sda而不是sda1 2.3 Windows GHO镜像安装方法 - 比较常见 1) 制作PE启动U盘 2) 下载Windows ISO镜像后(番茄花园),解压出来,里面包含GHO文件,拷贝到PE启动U盘的GHO文件夹(或者提前将文件.gho拷贝入待装系统的电脑D盘根目录)。 3) 插入PE启动U盘到电脑USB 2.0口,选择从U盘启动,启动到PE界面后,选ghost方式安装,ghost镜像的后缀名.gho。 2.4 Printer 1)HP LaserJet M1005 MFP 2)Nantian PR9 并口-OKI仿真驱动 2.5 Disable Driver Signature bcdedit /set testsigning on bcdedit /set testsigning off 3 Windows网络 3.1 CMD方式配置IP地址 :: netsh: Network Shell @echo off if [%1] == [] ( echo "Usage:" echo "WIN_IP.bat static" echo "WIN_IP.bat dhcp" echo "WIN_IP.bat speed" goto :EOF ) if %1 == static ( call :static_ip ) else if %1 == dhcp ( call :dhcp_ip ) else if %1 == speed ( call :nic_speed ) goto :EOF :: get interface name, use the following command :: getmac /V /FO LIST :static_ip set name="Ethernet" set ip=192.168.0.100 set mask=255.255.255.0 :: gwmetric=1 echo "setting static ip address..." netsh interface ipv4 set address %name% static %ip% %mask% none 1 :: netsh interface ipv4 set dns %name% static 114.114.114.114 :: netsh interface ipv4 add dns %name% 8.8.8.8 goto :EOF :dhcp_ip set name="Ethernet" echo "setting dhcp..." netsh interface ipv4 set address %name% dhcp netsh interface ipv4 set dns %name% dhcp goto :EOF :nic_speed wmic NIC where NetEnabled=true get Name, Speed 3.2 DNS查询流程 1) 现有的DNS缓存 ipconfig /displaydns 2) 查询hosts文件 C:\Windows\System32\drivers\etc\hosts 3) 请求发往DNS服务器 ipconfig /all 3.3 firewall appwiz.cpl msconfig wf.msc Inbound Rules and Outbound Rules Enable 4 File and Printer Sharing (Echo Request - ICMPv4-Out) netsh advfirewall firewall add rule name="UDP ports" protocol=UDP dir=in localport=8080 action=allow https://github.com/DynamoRIO/drmemory/wiki/Downloads 3.4 Multicast - Windows组播client需要使用setsockopt()设置IP_ADD_MEMBERSHIP(加入指定的组播组)才能接收组播server发送的数据。 - 组播MAC地址是指第一个字节的最低位是1的MAC地址。 - 组播MAC地址的前3个字节固定为01:00:5e,后3个字节使用组播IP的后23位。例如239.192.255.251的MAC地址为01:00:5e:40:ff:fb。 - Windows 10 Wireshark要抓取SOME/IP组播报文,需要使用SocketTool工具监听239.192.255.251:30490,然后Wireshark才会显示组播报文,否则不显示(Windows netmon不需要任何设置,就可以抓到全部报文)。 netsh interface ip show joins Win 10 PowerShell: Get-NetAdapter | Format-List -Property ifAlias,PromiscuousMode In Linux, map IP addr to multicast MAC is function ip_eth_mc_map(), kernel eventually calls driver ndo_set_rx_mode() to set multicast MAC to NIC RX MAC filter table. 3.5 NAT 查看当前机器的NAT端口代理表: netsh interface portproxy show all 1) 第三方软件PortTunnel。 2) ICS(Internet Connection Sharing)是NAT的简化版。 3) showcase: USB Reverse Tethering 3.6 route命令用法 route [-f] [-p] [command [destination] [mask netmask] [gateway] [metric metric] [if interface]] route print ::增加一条到192.168.0.10/24网络的路由,网关是192.168.0.1,最后一个if参数是数字,可以使用route print查询,类似于Android的NetId。 route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 metric 1 if 11 ::删除192.168.0.10这条路由 route delete 192.168.0.0 3.7 VLAN PowerShell Get-NetAdapter PowerShell Set-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" -DisplayValue 24 PowerShell Reset-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" 3.8 WiFi AP 1) get password netsh wlan show profiles netsh wlan show profiles name="FAST_ABCD" key=clear 2) enable Soft AP netsh wlan show drivers ::netsh wlan set hostednetwork mode=allow netsh wlan set hostednetwork mode=allow ssid=myWIFI key=12345678 netsh wlan start hostednetwork ::netsh wlan stop hostednetwork 3.9 Malicious software Task Manager Find process name, open file location, remove xxx.exe, rename empty xxx.txt to xxx.exe 4 Office 4.1 Excel Insert Symbol More Symbols Wingdings 2 4.2 Outlook 4.2.1 邮箱清理 点击 自己的邮件名字 Data File Properties(数据文件属性) Folder Size(文件夹大小) Server Data(服务器数据) 从左下角“导航选项”中切换到“日历” View(视图) Change View(更改视图) List(列表) 删除“日历”中过期的项目。 Calendar (Left Bottom) - View (Change View to Calendar) - Choose Menu Month 4.2.2 TCAM filter rule Home - ... - Rules - Create Rule (Manage Rules & Alerts) - Title 4.3 Powerpoint画图 插入 - > 形状 Insert - > Shapes 4.4 Word 升级目录 [References][Update Table] 5 Sprax EA 5.1 Basic Design - Toolbox Message/Argument/Return Value Publish - Save - Save to Clipboard 5.2 Advanced Copy/Paste - Copy to Clipboard - Full Structure for Duplication Copy/Paste - Paste Package from Clipboard 6 USB Win7 CMD: wmic path Win32_PnPSignedDriver | find "Android" wmic path Win32_PnPSignedDriver | find "USB" :: similar to Linux lsusb wmic path Win32_USBControllerDevice get Dependent 7 Abbreviations CAB: Capacity Approval Board NPcap: Nmap Packet Capture wmic: Windows Management Instrumentation Command-line 本篇文章为转载内容。原文链接:https://blog.csdn.net/zoosenpin/article/details/118596813。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 16:27:10
270
转载
Ruby
...下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
转载文章
...题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
...在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
Spark
... 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
81
素颜如水
转载文章
....launch注意文件路径rosrun rviz rviz -d rviz/rviz_euroc_config.rviz (改成你自己的rviz文件)rosbag play ~/data/euroc/MH_04_difficult.bag(改成你自己的rosbag文件) 可以看到,s_msckf的输出是没有轨迹的,可以增加如下脚本,将/odom存为/path,在rviz订阅即可可视化轨迹 脚本来自其issue:https://github.com/KumarRobotics/msckf_vio/issues/13 !/usr/bin/env pythonimport rospyfrom nav_msgs.msg import Odometry, Pathfrom geometry_msgs.msg import PoseStampedclass OdomToPath:def __init__(self):self.path_pub = rospy.Publisher('/slz_path', Path, latch=True, queue_size=10)self.odom_sub = rospy.Subscriber('/firefly_sbx/vio/odom', Odometry, self.odom_cb, queue_size=10)self.path = Path()def odom_cb(self, msg):cur_pose = PoseStamped()cur_pose.header = msg.headercur_pose.pose = msg.pose.poseself.path.header = msg.headerself.path.poses.append(cur_pose)self.path_pub.publish(self.path)if __name__ == '__main__':rospy.init_node('odom_to_path')odom_to_path = OdomToPath()rospy.spin() 或者增加一个draw_path的功能包: cpp为: include <stdio.h>include <stdlib.h>include <unistd.h>include <ros/ros.h>include <ros/console.h>include <nav_msgs/Path.h>include <std_msgs/String.h>include <nav_msgs/Odometry.h>include <geometry_msgs/Quaternion.h>include <geometry_msgs/PoseStamped.h>nav_msgs::Path path;ros::Publisher path_pub;ros::Subscriber odomSub;ros::Subscriber odom_raw_Sub;void odomCallback(const nav_msgs::Odometry::ConstPtr& odom){geometry_msgs::PoseStamped this_pose_stamped;this_pose_stamped.header= odom->header;this_pose_stamped.pose = odom->pose.pose;//this_pose_stamped.pose.position.x = odom->pose.pose.position.x;//this_pose_stamped.pose.position.y = odom->pose.pose.position.y;//this_pose_stamped.pose.orientation = odom->pose.pose.orientation;//this_pose_stamped.header.stamp = ros::Time::now();//this_pose_stamped.header.frame_id = "world";//frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光数据采集的参考系 path.header= this_pose_stamped.header;path.poses.push_back(this_pose_stamped);//path.header.stamp = ros::Time::now();//path.header.frame_id= "world";path_pub.publish(path);//printf("path_pub ");//printf("odom %.3lf %.3lf\n",odom->pose.pose.position.x,odom->pose.pose.position.y);}int main (int argc, char argv){ros::init (argc, argv, "showpath");ros::NodeHandle ph;path_pub = ph.advertise<nav_msgs::Path>("/trajectory",10, true);odomSub = ph.subscribe<nav_msgs::Odometry>("/firefly_sbx/vio/odom", 10, odomCallback);//ros::Rate loop_rate(50);while (ros::ok()){ros::spinOnce(); // check for incoming messages//loop_rate.sleep();}return 0;} cmakelists.txt cmake_minimum_required(VERSION 2.8.3)project(draw) Compile as C++11, supported in ROS Kinetic and newer add_compile_options(-std=c++11) Find catkin macros and libraries if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) is used, also find other catkin packagesfind_package(catkin REQUIRED COMPONENTSgeometry_msgsroscpprospystd_msgsmessage_generation)catkin_package( INCLUDE_DIRS include LIBRARIES learning_communicationCATKIN_DEPENDS geometry_msgs roscpp rospy std_msgs message_runtime DEPENDS system_lib) Build include_directories(include${catkin_INCLUDE_DIRS})add_executable(draw_path draw.cpp)target_link_libraries(draw_path ${catkin_LIBRARIES}) package.xml <?xml version="1.0"?><package><name>draw</name><version>0.0.0</version><description>The learning_communication package</description><!-- One maintainer tag required, multiple allowed, one person per tag --><!-- Example: --><!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --><maintainer email="hcx@todo.todo">hcx</maintainer><!-- One license tag required, multiple allowed, one license per tag --><!-- Commonly used license strings: --><!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --><license>TODO</license><!-- Url tags are optional, but multiple are allowed, one per tag --><!-- Optional attribute type can be: website, bugtracker, or repository --><!-- Example: --><!-- <url type="website">http://wiki.ros.org/learning_communication</url> --><!-- Author tags are optional, multiple are allowed, one per tag --><!-- Authors do not have to be maintainers, but could be --><!-- Example: --><!-- <author email="jane.doe@example.com">Jane Doe</author> --><!-- The _depend tags are used to specify dependencies --><!-- Dependencies can be catkin packages or system dependencies --><!-- Examples: --><!-- Use build_depend for packages you need at compile time: --><!-- <build_depend>message_generation</build_depend> --><!-- Use buildtool_depend for build tool packages: --><!-- <buildtool_depend>catkin</buildtool_depend> --><!-- Use run_depend for packages you need at runtime: --><!-- <run_depend>message_runtime</run_depend> --><!-- Use test_depend for packages you need only for testing: --><!-- <test_depend>gtest</test_depend> --><buildtool_depend>catkin</buildtool_depend><build_depend>geometry_msgs</build_depend><build_depend>roscpp</build_depend><build_depend>rospy</build_depend><build_depend>std_msgs</build_depend><run_depend>geometry_msgs</run_depend><run_depend>roscpp</run_depend><run_depend>rospy</run_depend><run_depend>std_msgs</run_depend><build_depend>message_generation</build_depend><run_depend>message_runtime</run_depend><!-- The export tag contains other, unspecified, tags --><export><!-- Other tools can request additional information be placed here --></export></package> vins_fusion: 双目vio等多系统 mkdir -p vins-catkin_ws/srccd vins-catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.gitcd ..catkin_makesource devel/setup.bash按照readme 3.1 Monocualr camera + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.2 Stereo cameras + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.3 Stereo camerasroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/euroc.gif" width = 430 height = 240 /> 4. KITTI Example 4.1 KITTI Odometry (Stereo)Download [KITTI Odometry dataset](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) to YOUR_DATASET_FOLDER. Take sequences 00 for example,Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)roslaunch vins vins_rviz.launch(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yamlrosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 4.2 KITTI GPS Fusion (Stereo + GPS)Download [KITTI raw dataset](http://www.cvlibs.net/datasets/kitti/raw_data.php) to YOUR_DATASET_FOLDER. Take [2011_10_03_drive_0027_synced](https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip) for example.Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.roslaunch vins vins_rviz.launchrosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ rosrun global_fusion global_fusion_node<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/kitti.gif" width = 430 height = 240 /> 5. VINS-Fusion on car demonstrationDownload [car bag](https://drive.google.com/open?id=10t9H1u8pMGDOI6Q2w2uezEq5Ib-Z8tLz) to YOUR_DATASET_FOLDER.Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.roslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml rosbag play YOUR_DATASET_FOLDER/car.bag 本篇文章为转载内容。原文链接:https://blog.csdn.net/slzlincent/article/details/104364909。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-13 20:38:56
310
转载
转载文章
... 在输入框输入下载的文件名称 点击暂停 再次点击开始 下载完成 代码 SpringBoot pom <!-- 做断点下载使用--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpcore</artifactId></dependency><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>commons-io</groupId><artifactId>commons-io</artifactId><version>2.8.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency> controller package com.kang.controller;import lombok.extern.slf4j.Slf4j;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;import java.io.;import java.net.URLEncoder;import java.util.Optional;/ @Description 文件切片下载 @ClassName DownLoadController @Author 康世行 @Date 20:58 2023/2/22 @Version 1.0/@Controller@Slf4jpublic class DownLoadController {private final static String utf8 = "utf-8";@RequestMapping("/down")public void downLoadFile(HttpServletRequest request, HttpServletResponse response) throws IOException {// 设置编码格式response.setCharacterEncoding(utf8);//获取文件路径String fileName=request.getParameter("fileName");String drive=request.getParameter("drive");//参数校验log.info(fileName,drive);//完整路径(路径拼接待优化-前端传输优化-后端从新格式化 )String pathAll=drive+":\\"+fileName;log.info("pathAll{}",pathAll);Optional<String> pathFlag = Optional.ofNullable(pathAll);File file=null;if (pathFlag.isPresent()){//根据文件名,读取file流file = new File(pathAll);log.info("文件路径是{}",pathAll);if (!file.exists()){log.warn("文件不存在");return;} }else {//请输入文件名log.warn("请输入文件名!");return;}InputStream is = null;OutputStream os = null;try {//分片下载long fSize = file.length();//获取长度response.setContentType("application/x-download");String file_Name = URLEncoder.encode(file.getName(),"UTF-8");response.addHeader("Content-Disposition","attachment;filename="+fileName);//根据前端传来的Range 判断支不支持分片下载response.setHeader("Accept-Range","bytes");//获取文件大小//response.setHeader("fSize",String.valueOf(fSize));response.setHeader("fName",file_Name);//定义断点long pos = 0,last = fSize-1,sum = 0;//判断前端需不需要分片下载if (null != request.getHeader("Range")){response.setStatus(HttpServletResponse.SC_PARTIAL_CONTENT);String numRange = request.getHeader("Range").replaceAll("bytes=","");String[] strRange = numRange.split("-");if (strRange.length == 2){pos = Long.parseLong(strRange[0].trim());last = Long.parseLong(strRange[1].trim());//若结束字节超出文件大小 取文件大小if (last>fSize-1){last = fSize-1;} }else {//若只给一个长度 开始位置一直到结束pos = Long.parseLong(numRange.replaceAll("-","").trim());} }long rangeLenght = last-pos+1;String contentRange = new StringBuffer("bytes").append(pos).append("-").append(last).append("/").append(fSize).toString();response.setHeader("Content-Range",contentRange);// response.setHeader("Content-Lenght",String.valueOf(rangeLenght));os = new BufferedOutputStream(response.getOutputStream());is = new BufferedInputStream(new FileInputStream(file));is.skip(pos);//跳过已读的文件(重点,跳过之前已经读过的文件)byte[] buffer = new byte[1024];int lenght = 0;//相等证明读完while (sum < rangeLenght){lenght = is.read(buffer,0, (rangeLenght-sum)<=buffer.length? (int) (rangeLenght - sum) :buffer.length);sum = sum+lenght;os.write(buffer,0,lenght);}log.info("下载完成");}finally {if (is!= null){is.close();}if (os!=null){os.close();} }} } 启动成功 Vue <html xmlns:th="http://www.thymeleaf.org"><head><meta charset="utf-8"/><title>狂神说Java-ES仿京东实战</title><link rel="stylesheet" th:href="@{/css/style.css}"/></head><body class="pg"><div class="page" id="app"><div id="mallPage" class=" mallist tmall- page-not-market "><!-- 头部搜索 --><div id="header" class=" header-list-app"><div class="headerLayout"><div class="headerCon "><!-- Logo--><h1 id="mallLogo"><img th:src="@{/images/jdlogo.png}" alt=""></h1><div class="header-extra"><!--搜索--><div id="mallSearch" class="mall-search"><form name="searchTop" class="mallSearch-form clearfix"><fieldset><legend>天猫搜索</legend><div class="mallSearch-input clearfix"><div class="s-combobox" id="s-combobox-685"><div class="s-combobox-input-wrap"><input v-model="keyword" type="text" autocomplete="off" value="java" id="mq"class="s-combobox-input" aria-haspopup="true"></div></div><button type="submit" @click.prevent="searchKey" id="searchbtn">搜索</button></div></fieldset></form><ul class="relKeyTop"><li><a>狂神说Java</a></li><li><a>狂神说前端</a></li><li><a>狂神说Linux</a></li><li><a>狂神说大数据</a></li><li><a>狂神聊理财</a></li></ul></div></div></div></div></div><el-button @click="download" id="download">下载</el-button><!-- <el-button @click="concurrenceDownload" >并发下载测试</el-button>--><el-button @click="stop">停止</el-button><el-button @click="start">开始</el-button>{ {fileFinalOffset} }{ {contentList} }<el-progress type="circle" :percentage="percentage"></el-progress></div><!--前端使用Vue,实现前后端分离--><script th:src="@{/js/axios.min.js}"></script><script th:src="@{/js/vue.min.js}"></script><!-- 引入样式 --><link rel="stylesheet" href="https://unpkg.com/element-ui/lib/theme-chalk/index.css"><!-- 引入组件库 --><script src="https://unpkg.com/element-ui/lib/index.js"></script><script>new Vue({ el: 'app',data: {keyword: '', //搜索关键字results: [] ,//搜索结果percentage: 0, // 下载进度filesCurrentPage:0,//文件开始偏移量fileFinalOffset:0, //文件最后偏移量stopRecursiveTags:true, //停止递归标签,默认是true 继续进行递归contentList: [], // 文件流数组breakpointResumeTags:false, //断点续传标签,默认是false 不进行断点续传temp:[],fileMap:new Map(),timer:null, //定时器名称},methods: {//根据关键字搜索商品信息searchKey(){var keyword=this.keyword;axios.get('/search/JD/search/'+keyword+"/1/10").then(res=>{this.results=res.data;//绑定数据console.log(this.results)console.table(this.results)})},//停止下载stop(){//改变递归标签为falsethis.stopRecursiveTags=false;},//开始下载start(){//重置递归标签为true 最后进行合并this.stopRecursiveTags=true;//重置断点续传标签this.breakpointResumeTags=true;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
546
转载
转载文章
...nment.yaml文件: conda/build-environment.yaml Build environment that can be used to build tvm.name: tvmenv The conda channels to lookup the dependencieschannels:- anaconda- conda-forge 将name的值改为刚刚创建的虚拟环境名tvmenv 执行下面的指令,将构建tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
87
转载
转载文章
...tc/sudoers文件(授权用户较多的时候使用): 六.开关机安全控制 1.调整BIOS引导设置 2.GRUB限制 七.终端以及登录控制 1.限制root只在安全终端登录 2..禁止普通用户登录 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 2.安装弱口令账号 3.密码文件的暴力破解 九.网络端口扫描 1.NMAP 2.格式 总结: 一.账号安全基本措施 1.系统账号清理 1.将非登录用户的Shell设为/sbin/nologin (ps:在我们使用Linux系统时,除了用户创建的账号之外,还会产生系统或程序安装过程中产生的许多其他账号,除了超级用户root外,其他账号都是用来维护系统运作的,一般不允许登录,常见的非登录用户有bin、adm、mail、lp、nobody、ftp等。) 格式:usermod -s /sbin/nologin 用户名 2锁定长期不使用的账号: [root@hehe ~] usermod -L test2 锁定用户账号方法一[root@hehe ~] passwd -l test3 锁定用户账号方法二[root@hehe ~] usermod -U test2 解锁用户账号方法一[root@hehe~] passwd -u test3 解锁用户账号方法二查看账户有没有被锁:passwd -S [用户名] 3.删除无用的账号 [root@hehe ~] userdel test1[root@hehe~] userdel -r test2 4.锁定账号文件passwd,shadow [root@hehe ~] chattr +i /etc/passwd /etc/shadow 锁定文件,包括root也无法修改[root@hehe ~] chattr -i /etc/passwd /etc/shadow 解锁文件[root@hehe ~] lsattr /etc/passwd /etc/shadow查看文件状态属性 举个例子: 二.密码安全控制: 1.设置密码有效期: 1.[root@localhost ~] chage -M 60 test3 这种方法适合修改已经存在的用户12.[root@localhost ~] vim /etc/login.defs 这种适合以后添加新用户PASS_MAX_DAYS 30 1.这个方法适用于早就已经存在的用户: 2.这个方法适用于新用户 2.要求用户下次登录时改密码: [root@hehe ~] chage -d 0 [用户名] 强制要求用户下次登陆时修改密码 三.命令历史限制与自动注销 1.命令历史限制: 1.减少记录的命令条数 减少记录命令的条数:1.[root@hehe ~] vim /etc/profile 进入配置文件修改限制命令条数。适合新用户HISTSIZE=200 修改限制命令为200条,系统默认是1000条profile [root@lhehe ~] source /etc/ 刷新配置文件,使文件立即生效2.[root@hehe~] export HISTSIZE=200 适用于当前(之后)用户[root@hehe~] source /etc/profile [root@hehe ~] source /etc/profile 刷新配置文件,使文件立即生效 1.减少记录命令的条数(适用之前的用户): 2.注销时自动清空命令历史 3. 注销时自动清空命令:[root@hehe ~] vim ~/.bash_logout(临时清除,重启缓存的话还在)echo "" > ~/.bash_history(永久删除)history是查你使用过的命令 2.终端自动注销: 1.闲置600秒后自动注销 闲置600秒后自动注销:[root@hehe ~]vim .bash_profile 进入配置文件export TMOUT=600 全局声明超过60秒闲置后自动注销终端[root@hehe ~] source .bash_profile [root@hehe ~] echo $TMOUT[root@hehe ~] export TMOUT=600 如果不在配置文件输入这条命令,那么是对当前用户生效[root@hehe ~]vim .bash_profile export TMOUT=600 注释掉这条命令,就不会自动注销了 四.PAM安全认证 1.su的命令的安全隐患 1.,默认情况下,任何用户都允许使用su命令,有机会反复尝试其他用户(如root) 的登录密码,带来安全风险; 2.为了加强su命令的使用控制,可借助于PAM认证模块,只允许极个别用户使用su命令进行切换。 2.什么是PAM 1.PAM(Pluggable Authentication Modules)可插拔式认证模块 2.是一种高效而且灵活便利的用户级别的认证方式; 3.也是当前Linux服务器普遍使用的认证方式。 4.PAM提供了对所有服务进行认证的中央机制,适用于login,远程登陆,su等应用 5.系统管理员通过PAM配置文件来制定不同的应用程序的不同认证策略 3.PAM认证原理 1.PAM认证一般遵循的顺序: Service (服务) --> PAM (配置文件) --> pam_.so;, 2.PAM认证首先要确定哪一项应用服务,然后加载相应的PAM的配置文件(位于/etc/pam.d下),最后调用认 模块(位于/lib64/security/下)进行安全认证。 3.用户访问服务器的时候,服务器的某一个服务程序把用户的请求发送到PAM模块进行认证。不同的应用程序所对应的PAM模块也是不同的。 4.如果想查看某个程序是否支持PAM认证,可以用ls命令进行查看/etc/pam.d/。 ls /etc/pam.d/ | grep su 5.PAM的配置文件中的每一行都是一个独立的认证过程,它们按从上往下的顺序依次由PAM模块调用。 4.PAM安全认证流程 控制类型也称做Control Flags,用于PAM验证类型的返回结果 用户1 用户2 用户3 用户4 auth required 模块1 pass fail pass pass auth sufficient 模块2 pass pass fail pass auth required 模块3 pass pass pass fail 结果 pass fail pass pass 4 五.限制使用su命令的用户(pam-wheel认证模块) 1.su命令概述: 通过su命令可以非常方便切换到另一个用户,但前提条件是必须知道用户登录密码。对于生产环境中的Linux服务器,每多一个人知道特权密码,安全风险就多一分。于是就多了一种折中的办法,使用sudo命令提升执行权限,不过需要由管理员预先进行授权, 指定用户使用某些命令: 2. su命令的用途以及用法: 用途:以其他用户身份(如root)执行授权命令用法:sudo 授权命令 3.配置su的授权(加入wheel组)(pam_wheel认证模块:): 进入授权命令:1.visudo 或者 vim /etc/sudoers语法格式:1.用户 主机名=命令程序列表2.用户 主机名=(用户)命令程序列表-l:列出用户在主机上可用的和被禁止的命令;一般配置好/etc/sudoers后,要用这个命令来查看和测试是不是配置正确的;-v:验证用户的时间戳;如果用户运行sudo后,输入用户的密码后,在短时间内可以不用输入口令来直接进行sudo操作;用-v可以跟踪最新的时间戳;-u:指定以以某个用户执行特定操作;-k:删除时间戳,下一个sudo命令要求用求提供密码; 1.首先创建3个组 2.vim /etc/pam.d/su把第六行注释去掉保存退出 1. 以上两行是默认状态(即开启第一行,注释第二行),这种状态下是允许所有用户间使用su命令进行切换的 2.两行都注释也是运行所有用户都能使用su命令,但root下使用su切换到其他普通用户需要输入密码: 3.如果第–行不注释,则root 使用su切换普通用户就不需要输入密码( pam_ rootok. so模块的主要作用是使uid为0的用户,即root用户能够直接通过认证而不用输入密码。) 4.如果开启第二行,表示只有root用户和wheel1组内的用户才可以使用su命令。 5.如果注释第一行,开启第二行,表示只有whee1组内的用户才能使用su命令,root用户也被禁用su命令。 3.将liunan加入到wheel之后,hehe就有了使用su命令的权限 4.使用pam_wheel认证后,没有在wheel里的用户都不能再用su 5.whoami命令确定当前用户是谁 4.配置/etc/sudoers文件(授权用户较多的时候使用): visudo单个授权visudo 或者 vim /etc/sudoers记录格式:user MACHINE=COMMANDS可以使用通配符“ ”号任意值和“ !”号进行取反操作。%组名代表一整个组权限生效后,输入密码后5分钟可以不用重新输入密码。例如:visudo命令下user kiro=(root)NOPASSWD:/usr/sbin/useradd,PASSWD:/usr/sbin/usermod代表 kiro主机里的user用户,可以无密码使用useradd命令,有密码使用usermod/etc/sudoers多个授权Host_Alias MYHOST= localhost 主机别名:主机名、IP、网络地址、其他主机别名!取反Host_Alias MAILSVRS=smtp,pop(主机名)User_Alias MYUSER = kiro,user1,lisi 用户别名:包含用户、用户组(%组名(使用引导))、还可以包含其他其他已经用户的别名User_Alias OPERATORS=zhangsan,tom,lisi(需要授权的用户)Cmnd_Alias MYCMD = /sbin/,/usr/bin/passwd 命令路劲、目录(此目录内的所有命令)、其他事先定义过的命令别名Cmnd_Alias PKGTOOLS=/bin/rpm,/usr/bin/yum(授权)MYUSER MYHOST = NOPASSWD : MYCMDDS 授权格式sudo -l 查询目前sudo操作查看sudo操作记录需启用Defaults logfile配置默认日志文件: /var/log/sudosudo -l 查看当前用户获得哪些sudo授权(启动日志文件后,sudo操作过程才会被记录) 1.首先用visudo 或者 vim /etc/sudoers进入,输入需要授权的命令 2.切换到taojian用户,因为设置了它不能使用创建用户的命令所以无法创建 六.开关机安全控制 1.调整BIOS引导设置 1.将第一引导设备设为当前系统所在硬盘2.禁止从其他设备(光盘、U盘、网络)引导系统3.将安全级别设为setup,并设置管理员密码 2.GRUB限制 1.使用grub2-mkpasswd-pbkdf2生成密钥2.修改/etclgrub.d/00_header文件中,添加密码记录3.生成新的grub.cfg配置文件 方法一: 通常情况下在系统开机进入GRUB菜单时,按e键可以查看并修改GRUB引导参数,这对服务器是一个极大的威胁。可以为GRUB菜单设置一个密码,只有提供正确的密码才被允许修改引导参数。grub2-mkpasswd-pbkdf2 根据提示设置GRUB菜单的密码PBKDF2 hash of your password is grub.pbkd..... 省略部分内容为经过加密生成的密码字符串cp /boot/grub2/grub.cfg /boot/grub2/grub.cfg.bak 8cp /etc/grub.d/00_header /etc/grub.d/00_header.bak 9vim /etc/grub.d/00_headercat << EOFset superusers="root" 设置用户名为rootpassword_pbkdf2 root grub.pbkd2..... 设置密码,省略部分内容为经过加密生成的密码字符串EOF16grub2-mkconfig -o /boot/grub2/grub.cfg 生成新的grub.cfg文件重启系统进入GRUB菜单时,按e键将需要输入账号密码才能修改引导参数。 方法二: 1.一步到位2.grub2-setpassword 七.终端以及登录控制 1.限制root只在安全终端登录 安全终端配置文件在 /etc/securetty 2..禁止普通用户登录 1.建立/etc/nologin文件 2.删除nologin文件或重启后即恢复正常 vim /etc/securetty在端口前加号拒绝访问touch /etc/nologin 禁止普通用户登录rm -rf /etc/nologin 取消禁止 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 1.一款密码分析工具,支持字典式的暴力破解2.通过对shadow文件的口令分析,可以检测密码强度3.官网网站:http://www.openwall.com/john/ 2.安装弱口令账号 1.获得Linux/Unix服务器的shadow文件2.执行john程序,讲shadow文件作为参数 3.密码文件的暴力破解 1.准备好密码字典文件,默认为password.lst2.执行john程序,结合--wordlist=字典文件 九.网络端口扫描 1.NMAP 1.—款强大的网络扫描、安全检测工具,支持ping扫描,多端口检测等多种技术。2.官方网站: http://nmap.orgl3.CentOS 7.3光盘中安装包,nmap-6.40-7.el7.x86_64.rpm 2.格式 NMAP [扫描类型] [选项] <扫描目标....> 安装NMAP软件包rpm -qa | grep nmapyum install -y nmapnmap命令常用的选项和扫描类型-p:指定扫描的端口。-n:禁用反向DNS 解析 (以加快扫描速度)。-sS:TCP的SYN扫描(半开扫描),只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
95
转载
Kafka
...呢,主题就好比是一个文件夹,所有的消息啊,就像文件一样,一股脑儿地塞进这个文件夹里头。每一个主题都有一个唯一的名称,这个名字就是它的标识符。比如说嘛,你可以建个叫user_events的话题分区,专门用来存用户干的事儿,点啥、买啥、逛哪儿,都往里丢,方便又清晰! java // 创建一个Kafka主题 kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic user_events 这里的关键点在于,主题的名字要尽量简单明了,避免使用特殊字符或者空格。哎呀,这就好比你给文件夹起个特别绕口的名字,结果自己都记不住路径了,Kafka也是一样!它会根据主题的名字创建对应的文件夹结构,但要是主题名太复杂,搞不好就会在找东西的时候迷路,路径解析起来就容易出岔子啦。而且啊,主题的名字最好起得通俗易懂一点,让大伙儿一眼扫过去就明白这是干啥用的。 2.2 分区(Partition):主题的分身术 接着说分区(Partition)。每个主题都可以被划分为多个分区,每个分区就是一个日志文件。分区的作用是什么呢?它可以提高并发性和扩展性。比如说,你有个主题叫orders(订单),你可以把它分成5个区(分区)。这样一来,不同的小伙伴就能一起开工,各自处理这些区里的数据啦! java // 查看主题的分区信息 kafka-topics.sh --describe --zookeeper localhost:2181 --topic orders 分区的数量决定了并发的上限。所以,在设计主题时,你需要仔细权衡分区数量。太多的话,管理起来麻烦;太少的话,可能无法充分利用资源。我一般会根据预计的消息量来决定分区的数量。比如说,如果一秒能收到几千条消息,那分区设成10到20个就挺合适的。毕竟分区太多太少了都不好,得根据实际情况来调,不然可能会卡壳或者资源浪费啊! 2.3 消费者组(Consumer Group):团队协作的秘密武器 最后,我们来说消费者组(Consumer Group)。消费者组是一组消费者的集合,它们共同消费同一个主题的消息。每个消费者组都有一个唯一的名称,这个名字同样非常重要。 java // 创建一个消费者组 kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic user_events --group my_consumer_group 消费者组的设计理念是为了实现负载均衡和故障恢复。比如说,如果有两个小伙伴在一个小组里,系统就会帮他们自动分配任务(也就是主题的分区),这样大家就不会抢来抢去,重复干同样的活儿啦!而且呢,要是有个消费者挂掉了或者出问题了,其他的消费者就会顶上来,接手它负责的那些分区,接着干活儿,完全不受影响。 --- 3. 组织结构 Kafka的大脑与四肢 3.1 集群(Cluster):Kafka的心脏 Kafka集群是由多个Broker组成的,Broker是Kafka的核心组件,负责存储和转发消息。一个Broker就是一个节点,多个Broker协同工作,形成一个分布式的系统。 java // 启动Kafka Broker nohup kafka-server-start.sh config/server.properties & Broker的数量决定了系统的容错能力和性能。其实啊,通常咱们都会建议弄三个Broker,为啥呢?就怕万一有个家伙“罢工”了,比如突然挂掉或者出问题,别的还能顶上,整个系统就不耽误干活啦!不过,Broker的数量也不能太多,否则会增加管理和维护的成本。 3.2 Zookeeper:Kafka的大脑 Zookeeper是Kafka的协调器,它负责管理集群的状态和配置。没有Zookeeper,Kafka就无法正常运作。比如说啊,新添了个Broker(也就是那个消息中转站),Zookeeper就会赶紧告诉其他Broker:“嘿,快看看这位新伙伴,更新一下你们的状态吧!”还有呢,要是某个分区的老大换了(Leader切换了),Zookeeper也会在一旁默默记好这笔账,生怕漏掉啥重要信息似的。 java // 启动Zookeeper nohup zookeeper-server-start.sh config/zookeeper.properties & 虽然Zookeeper很重要,但它也有一定的局限性。比如,它可能会成为单点故障,影响整个系统的稳定性。因此,近年来Kafka也在尝试去掉对Zookeeper的依赖,开发了自己的内部协调机制。 3.3 日志(Log):Kafka的四肢 日志是Kafka存储消息的地方,每个分区对应一个日志文件。嘿,这个日志设计可太聪明了!它用的是顺序写入的方法,就像一条直线往前跑,根本不用左顾右盼,写起来那叫一个快,效率直接拉满! java // 查看日志路径 cat config/server.properties | grep log.dirs 日志的大小可以通过参数log.segment.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
95
彩虹之上
转载文章
...业。虽然可以通过属性文件(在属性文件中可以指定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。 二、java中实现定时任务分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务。使用这种方式可以让你的程序按照某一个频度执行,但不能在指定时间运行。一般用的较少,这篇文章将不做详细介绍。 使用Quartz,这是一个功能比较强大的的调度器,可以让你的程序在指定时间执行,也可以按照某一个频度执行,配置起来稍显复杂,稍后会详细介绍。 Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多,稍后会介绍。 从作业类的继承方式来讲,可以分为两类: 作业类需要继承自特定的作业类基类,如Quartz中需要继承自org.springframework.scheduling.quartz.QuartzJobBean;java.util.Timer中需要继承自java.util.TimerTask。 作业类即普通的java类,不需要继承自任何基类。 注:个人推荐使用第二种方式,因为这样所以的类都是普通类,不需要事先区别对待。 从任务调度的触发时机来分,这里主要是针对作业使用的触发器,主要有以下两种: 每隔指定时间则触发一次,在Quartz中对应的触发器为:org.springframework.scheduling.quartz.SimpleTriggerBean 每到指定时间则触发一次,在Quartz中对应的调度器为:org.springframework.scheduling.quartz.CronTriggerBean 注:并非每种任务都可以使用这两种触发器,如java.util.TimerTask任务就只能使用第一种。Quartz和spring task都可以支持这两种触发条件。 三、Quartz与Spring的集成 第一种,作业类继承自特定的基类:org.springframework.scheduling.quartz.QuartzJobBean。 第一步:定义作业类 Java代码 import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; import org.springframework.scheduling.quartz.QuartzJobBean; public class Job1 extends QuartzJobBean { private int timeout; private static int i = 0; //调度工厂实例化后,经过timeout时间开始执行调度 public void setTimeout(int timeout) { this.timeout = timeout; } / 要调度的具体任务 / @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { System.out.println("定时任务执行中…"); } } 第二步:spring配置文件中配置作业类JobDetailBean Xml代码 <bean name="job1" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="com.gy.Job1" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="0" /> </map> </property> </bean> 说明:org.springframework.scheduling.quartz.JobDetailBean有两个属性,jobClass属性即我们在java代码中定义的任务类,jobDataAsMap属性即该任务类中需要注入的属性值。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job1" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job1" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 关于cronExpression表达式的语法参见附录。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 第二种,作业类不继承特定基类。 Spring能够支持这种方式,归功于两个类: org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean 这两个类分别对应spring支持的两种实现任务调度的方式,即前文提到到java自带的timer task方式和Quartz方式。这里我只写MethodInvokingJobDetailFactoryBean的用法,使用该类的好处是,我们的任务类不再需要继承自任何类,而是普通的pojo。 第一步:编写任务类 Java代码 public class Job2 { public void doJob2() { System.out.println("不继承QuartzJobBean方式-调度进行中..."); } } 可以看出,这就是一个普通的类,并且有一个方法。 第二步:配置作业类 Xml代码 <bean id="job2" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject"> <bean class="com.gy.Job2" /> </property> <property name="targetMethod" value="doJob2" /> <property name="concurrent" value="false" /><!-- 作业不并发调度 --> </bean> 说明:这一步是关键步骤,声明一个MethodInvokingJobDetailFactoryBean,有两个关键属性:targetObject指定任务类,targetMethod指定运行的方法。往下的步骤就与方法一相同了,为了完整,同样贴出。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job2" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job2" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 以上两种调度方式根据实际情况,任选一种即可。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 到此,spring中Quartz的基本配置就介绍完了,当然了,使用之前,要导入相应的spring的包与Quartz的包,这些就不消多说了。 其实可以看出Quartz的配置看上去还是挺复杂的,没有办法,因为Quartz其实是个重量级的工具,如果我们只是想简单的执行几个简单的定时任务,有没有更简单的工具,有! 四、Spring-Task 上节介绍了在Spring 中使用Quartz,本文介绍Spring3.0以后自主开发的定时任务工具,spring task,可以将它比作一个轻量级的Quartz,而且使用起来很简单,除spring相关的包外不需要额外的包,而且支持注解和配置文件两种 形式,下面将分别介绍这两种方式。 第一种:配置文件方式 第一步:编写作业类 即普通的pojo,如下: Java代码 import org.springframework.stereotype.Service; @Service public class TaskJob { public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:在spring配置文件头中添加命名空间及描述 Xml代码 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:task="http://www.springframework.org/schema/task" 。。。。。。 xsi:schemaLocation="http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd"> 第三步:spring配置文件中设置具体的任务 Xml代码 <task:scheduled-tasks> <task:scheduled ref="taskJob" method="job1" cron="0 ?"/> </task:scheduled-tasks> <context:component-scan base-package=" com.gy.mytask " /> 说明:ref参数指定的即任务类,method指定的即需要运行的方法,cron及cronExpression表达式,具体写法这里不介绍了,详情见上篇文章附录。 <context:component-scan base-package="com.gy.mytask" />这个配置不消多说了,spring扫描注解用的。 到这里配置就完成了,是不是很简单。 第二种:使用注解形式 也许我们不想每写一个任务类还要在xml文件中配置下,我们可以使用注解@Scheduled,我们看看源文件中该注解的定义: Java代码 @Target({java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface Scheduled { public abstract String cron(); public abstract long fixedDelay(); public abstract long fixedRate(); } 可以看出该注解有三个方法或者叫参数,分别表示的意思是: cron:指定cron表达式 fixedDelay:官方文档解释:An interval-based trigger where the interval is measured from the completion time of the previous task. The time unit value is measured in milliseconds.即表示从上一个任务完成开始到下一个任务开始的间隔,单位是毫秒。 fixedRate:官方文档解释:An interval-based trigger where the interval is measured from the start time of the previous task. The time unit value is measured in milliseconds.即从上一个任务开始到下一个任务开始的间隔,单位是毫秒。 下面我来配置一下。 第一步:编写pojo Java代码 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component; @Component(“taskJob”) public class TaskJob { @Scheduled(cron = "0 0 3 ?") public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:添加task相关的配置: Xml代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd" default-lazy-init="false"> <context:annotation-config /> <!—spring扫描注解的配置 --> <context:component-scan base-package="com.gy.mytask" /> <!—开启这个配置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
344
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep -f pattern
- 根据进程的完整命令行字符串查找进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"